Auto-calibration via the Absolute Quadric and Scene Constraints*

~A. Heyden
School of Technology and Society
Malmo University
SE-20506 Malmo SWEDEN
Email: heyden@ts.mah.se

Abstract

A scheme is described for incorperation of scene con-
straints into the structure from motion problem. Specif-
ically, the absolute quadric is recovered with constraints
imposed by orthogonal scene planes. The scheme involves
a number of steps. A projective reconstruction is first ob-
tained, followed by a linear rechnique to form an initial
estimate of the absolute quadric. A nonlinear iteration
then refines this quadric and the camera intrinsic param-
eters to upgrade the projective reconstruction to Euclidean.
Finally, a bundle adjustment algorithm optimizes the Eu-
clidean reconstruction to give a statistically optimal result.
This chain of algorithms is essentially the same as used in
auto-calibration and the novelry of this paper is the inclu-
sien of orthogonal scene plane constraints in each step. The
algorithms involved are demonstrated on both simulated
and real data showing the performance and usability of the
proposed scheme.

1. Introduction

1.1. Problem description

One of the central problems in computer visien is the so-
called “structure from motion problem”. If no special infor-
mation about the camera or the scene is available then only
a projective reconstruction of the scene can be obtained, cf,
[1, 11, 4]. Since this projective reconstruction might con-
tain severe projective distortions, it is often desirable to ob-
tain a4 Euclidean reconstruction (up to an unknown similar-
ity transformation) of the scene.

Traditionally, there are two different ways to obtain the
Euclidean structure of a scene. The first method, which re-
lies on some a priori information about the scene, €.g. some
distance or angular measurements, cf. [2], is often referred
10 as stratification, since one starts with a projective recon-
struction and then finds an affine ‘stratum’ and finally a Eu-
clidean ‘stratum’, giving the desired reconstruction. The
other method, which relies on some a priori information
about the intrinsic parameters, e.g. known skew and/or as-
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pect ratio (see {10, 18, 6, 13]), is often referred to as auto-
calibration since the main focus is on finding the intrinsic
parameters, i.e. auto-calibrating the cameras, in addition 1o
motion and structure recovery.

The purpose of this paper is to auto-calibrate a camera
based on the natural camera model (i.¢. unit aspect ratio and
no skew) with the incorporation of consiraints from orthog-
onal planes present in the scene. This is achieved via the
recovery of the absolute quadric, with the orthogonal scene
planes providing the additional equations to constrain this
entity. The results are that a more accurate estimate of the
absolute quadric is obtained, leading to smaller errors in the
estimates of the camera intrinsic parameters and a more ac-
curate Euclidean reconstruction.

The applicability of the proposed algorithm is manifold.
First, with high quality digital and video cameras, it is often
safe to assume vanishing skew and unit aspect ratio. If one
is in doubt, it is always possible to assume constant skew
and aspect ratio. The natural camera model is thus accurate
for modelling the 3D to 2D projection of all modern cam-
eras. This model reduces the humber of intrinsic parame-
ters to be recovered for each image (or camera) to 3: focal
length and principal point. Furthermore, for a large number
of applications, orthogonal scene planes arise naturally. For
example, in images of man-made objects such as buildings,
orthogonal walls can be easily detected, making it possible
to incorporate such scene constraints into auto-calibration,

1.2. Previous work

The earliest work on auto-calibration is the algonithm by
Faugeras, Luong and Maybank [3], where the case of con-
stant intrinsic parameters is treated. Later auto-calibration
work that involves absolute conic and absolute quadric in-
cludes [5, 7, 18, 12, 13]. Although the incorporation of
scene constraints is known to be useful (see, e.g. [13]) in
auto-calibration, none of these earlier reports have con-
ducted detailed investigation into the use of scene con-
straints in auto-calibration. While Liebowitz and Zisser-
man [8] detect the image projections of parallel and or-
thagonal scene lines and use them to estimate the vanishing
points and as constraints in auto-calibration, they apply the
constraints to the absolute conic. Also, their work requires



the computation of the fundamental matrix, and that limits
their method to the use of two images.

2. The proposed scheme

The proposed scheme is divided into five steps: projective
reconstruction, solving for the absolute quadric, refining the
absolute quadric, initial linear Euclidean upgrade, and bun-
dle adjustment with scene constraints. Details of these steps
are described below.

2.1. Projective reconstruction
Given a scene point X¥ = [X7 ¥4 Z7 1]7, its projection
x7 = [z¢ ¥ 1]7 onto an image plane is governed by:

o f 0 wug ’
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where the superscript j denotes the j% scene (or image)
point, X is an unknown scalar. The camera matrix, de-
noted by K, embodies the unknown camera focal length f
and principal point (g, vp). The motion matrix contains the
unknown rotation matrix J2 and translation vector t of the
camera relative to a coordinate system. The special form of
K here arises from the use of the natural camera model. In
the situation where none of these parameters are known a
priori, (1} is often put in the compact form Mx/ = PX7,
where P € R%! is a projection matrix. With the availability
of 7 images and n scene points, the joint projection matrix
P c R34 the joint image measurement matrix x € R3™7,
and the joint shape matrix X € ™" are related by

Abx! APxD P
Lo = |0 Ix e xn]
ALxL - Anxm, P
2x = PX . (2)

where the subscript ¢ indicates the 5™ camera, and Al’s,

known as the projective depths, are unknown scalars.

Seuting all the A} to 1 for the affine camera model,
Tomasi and Kanade[ 17] pioneered the factorization method
to retrieve the P and X from x. For the projective camera
model, the values of /\f ’s must be recovered prior to factor-
ization (see [15, 16]). We adopt the method of [15] in our
scheme. First, all the A!’s are assumed to be 1. At each
iteration, the s are refined with the subspace (4D space
of ®™) constraint on x being enforced while minimizing
the image point reprojection errors. The matrix x is then
updated with the refined values of A{'s and re-factorized
to give new P and X matrices for the next iteration. The
method has shown to give very good estimates of the A]'s
and very fast convergence.
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2.2, Solving for the absolute quadric

The structure contained in the shape matrix X is projective
only, since for any P and X matrices that satisfy (2), P4
and A='X are also a solution, where 4 € R is any non-
singular matrix. So, an appropriate A matrix satisfying

H_‘i’vK—j[R," _R.g'ti]-’ (3)
must be estimated to upgrade the structure to Euclidean, Let
P={I0}and P, = {Q; qil.fori=2,--- ,m, Then

A takes the form [f# 2 , where a = (a),4s,a3)7 and s

fort=1,---,m,

is a non-zera scalar often set to unity. Let 4 be the matrix
that contains the first three columns of 4. It follows that
PAATPT ~ KK, and so

P[KIK}' Kia
“laTkK] Jlalf

& POP" ~ KK, 4)

where 2 is the absolure quadric or the singular dual
quadric that contains the coordinates, a, of the planc at in-
finity for affine reconstruction and the DIAC (dual image of
the absolute conic), K1 K, , for Euclidean reconstruction.
Furthermore, ) relates the angle & between the projective
coordinates of any two scene planes, n and m, by

cos(8) = nTﬂm/(VnTQn\/mTQ m) . 5)

As the number of unknowns and available equations in (4)
are 64 3(m — 1) and 5{sn. — 1), the introduction of only one
pair of scene planes would reduce the minimum value of 7t
to 2.

Sclving for the above unknowns from (4) is a difficult
nonlinear problem. An alternative is, as suggested in [13],
to use a special case of the natural camera model, namely,
(upsvo;) = (0,0) for all . The diagonal form of K; K
and the equality of its first two diagonal elements then give
4 linear constraints on 2. Equation {5) can be simplified fur-
ther to n tm = 0, if @ = 90°, to linearize the equations
from the orthogonal scene planes. In our experiments re-
ported here, we included at least 5 images from each video
sequence to recover ). More images were chosen since a
degenerate configuration or critical motion that might affect
any particular image pair is unlikely to affect the entire se-
lected set of images.

J P’ ~ KK

fori=1,--+ ;.

2.3. Refining the absolute quadric

Writing (4) and (5) in matrix-vector form, we have the fol-
lowing objective functions and constraints:

2
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fori = 2.--- ,m. Here, each M; € R®10 N, e R1*10,
and q € R!° is the vector form containing the elements of
2. Similarly, k; € R® contains the elements of K; K. The
constraint from any two orthogonal planes n; and n; with
respect to {2 can be written in the form given by (7).

1t is useful to apply the Levenberg-Marquardt method
1o solve the above constrained minimization problem. We
introduce the vector y; that embodies all the parameters 1o
be refined at the i* iteration. Let J = [J1,++- Jz,- -] be the
collection of all the minimization functions in (6} and (7),
and let j; = J(y;) be the residuals at the same iteration.
The update Ay for the vector y; at the i™ iteration is given
by Ay = (BT B +eI) ' BT, where B = Zd(y;) and ¢ is
a small positive number. At the (i+1)®
¥i+1 = ¥; + Ay and so on.

iteration, we have

2.4. Initial linear Euclidean upgrade

The objective of this step is to estimate matrix A. Since
AAT ~ ), the easiest way to compute A is to let A =
U383/ where 0 = USVT is the SVD of Q and Us, Ss
are the matrices containing the first 3 columns of U and
S. By means of the intrinsic parameters refined from (6)
and the recovered A matrix; K; can be constructed and H;,
t;, fori = 1,--- ,7n can all be computed. The projective
structure X estimated from Section 2.1 is then upgraded to
X.=A"1X

2.5. Bundle adjustment with scene constraints

The initial Euclidean reconstruction obtained above can
be improved further by incorporating the reconstructed 3D
points and camera intrinsic and extrinsic parameters and
minimizing the reprojection errors. To impose orthogonal
scene plane constraints into this bundle adjustment, each it-
eration can be broken into two separate steps:

Step A: minimizing the reprojection errors. This is the nor-
mal bundle adjustment process.

Step B: incorporating constraints of orthogonal scene
planes. In this step, all the parameters refined by Step A are
fed into a Similar operation as described in Section 2.3, The
differences are: (1} all the scene plane coordinates must be
recomputed, using the Euclidean structure estimated from
Step A above, and (2) the absolute quadric {2 is replaced
with the update absotute quadric 87 whose initial estimate

60 is set to [OIT g]. At each iteration, the refined 892 is
used to update all the intrinsic and extrinsic parameters sim-
ilar to the procedure described in Section 2.4. To ensure
that the camera coordinate systems used in Step A do not
undergo major changes due to 41, the update matrix §A
(analogous to A in Section 2.4) is defined as

T
s ] i [ ]

dKda

0= { I5al?
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The updated Euclidean structure, intrinsic and extrinsic pa-
rameters are then fed back into Step A for the next bundle
adjustment iteration. )

The rate of convergence for the above modified bundle
adjustment is very fast. The extra process in Step B above
appears not only to help retain the orthogonality of the scene
planes but, on average, give better estimates of all the pa-
rameters and smaller 3D reconstruction errors.

3. Experiments

To demonstrate that using all the available constraints in-
creases the accuracy of the reconstruction, we first con-
ducted experiments using synthetic data. In each experi-
ment, we compared the relative errors of the focal lengths,
principal points, reconstruction errors, and orthogonality er-
rors computed from (i) auto-calibration without scene con-
straints, which does not incorporate any orthogonal scene
plane constraints given in (5), {7), and Step B described
in Section 2.5, and ({i) auto-calibration with scene con-
straints, which incorporates scene constraints described in
Sections 2.2, 2.3, and 2.5. The means and standard de-
viations of these errors for 20 experiments listed in Ta-
ble 1 clearly show that a smaller mean reconstruction er-
ror (0.4895 versus 1.1095) and a mean orthogonality error
(1.05% versus 3.29%) could be achieved by incorporating
orthogonal scene plane constraints (if they are available).
While a slightly larger mean principal point error was in-
curred, a smaller focal length error, 0.04%, (5.85% versus
5.81%) also resulted from the use of scene constraints.

Tean std devianon

without with without with

scene scene scene sCeng

e i constraints | consiraints | consirainis

[Cer 0.0585 0.0581 0.0472 0.0464

€X 1.1093 0.4895 0.9234 04054

€(ug.vg) 19.78%0 24.1697 10.5831 13.8939

1] 0.0329 0.0105 0.0391 0.0123
Table 1: The means and standard deviations of a few

error measures with and without the use of scene con-
straints: €; = |f — f}/f (relative error of estimated focal
length in pixels); ex = ||X — X|| {reconstruction error),;
€(ug,uey = ||{fo:D0) — (i, To)|| (principal point error in
pixels); es = |8 ~ 90|/90 (relative error on orthogonality).
The symbols *™* and *~ denote the estimated and true values
of the entity.

For the experiments on real video data, we used images
captured by a Sony DCR-PC100 digital video camcorder.
Due to the limitation of space, we report only one of the ex-
periments conducted. Figure 1 shows 3 images of a video
sequence of a house. At the beginning of the sequence,
the camera moved from left to right; in the last part of
the sequence (about 20 frames), the camera stopped mov-
ing but zoomed slowly in to the scene. The KLT feature



tracker [9, 14] was used to track the image feature points in
the video sequence. 324 image feature points were detected
and 9 images were selected from frames 20 to 100, at every
10" frame interval.

Figure 1: Frames 20, 90, 100 of a video sequence of a house
with the tracked image features superimposed.

To incorporate scene constraints into the Euclidean re-
construction, 22 and 32 image points of two orthogonal
scene planes (the two walls of the house) were manually se-
lected. The coordinates of these two planes from the projec-
tive reconstruction {step 1) were computed and were used
to constrain the initial estimate and refinement of the abso-
lute quadric. Figure 2 shows the Euclidean reconstruction
of the house and the estimated positions of the camera in
the scene. Because of the large number of reconstructed
scene points and the lack of a texture mapping software
for 3D visualization, we only display one third of the re-
constructed scene points of and surrounding the house to
demonstrate that orthogonality of the walls was retained.
From frames 80 to 100 the estimated focal length increased,
in accordance to the zooming in to the scene of the cam-
era. The angle between the two walls were estimated tc be
75.20° {without scene constraints) and 90.22° (with scene
constraints),

A i

Y w \.‘ j"
@ (b) 1\ _ ;
Z N |
— : .

Figure 2: (a) The top view of the Euclidean reconstruction.
Some feature points on the two walis of the house are 1a-
belled as ‘" and ‘+’. (b) An enlarged view of the estimated
camera positions (projected onto the ground plane).

4, Conclusions

We have described a scheme for incorporating orthogonal
scene plane constraints into the auto-calibration problem. It
involves computing the projective structure of the scene and
the estimation of the absolute quadric for Euclidean upgrade
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followed by bundle adjustment to statistically optimize the
Euclidean reconstruction. Throughout all the steps in the
scheme, scene constraints are enforced. Our synthetic and
real experiments have shown that known scene constraints
can be easily incorporated to improve the estimate of the
absolute quadric and subsequcﬁ[ly to attain a more accurate
Euclidean reconstruction.
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