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Abstract 

A scheme is described for incorporation of scene con- 
straints into the srrucrure from morion pmblem. Spec$- 
ically, rhe absolure quadric is recovered wirh consrraints 
imposed by onhogonal scene planes. The scheme involves 
a number of sreps. A projective reconstrucrion is first ob- 
tained. followed by a linear technique to form an initial 
estimate of rhe absolute quadric. A nonlinear iteration 
then refines this quadric and the camera inrrinsic param- 
eters IO upgrade the projective reconsrrucrion lo Euclidean. 
Finally, a bundle adjasrmenr algorithm oprimizes rhe Eu- 
clidean reconsrrucrion ro give a statisrically optimal result. 
This chain of algorithms is essenrially rhe same as used in 
auto-calibration and rhe novelry ojrhis paper is the inclu- 
sion of orrhogonal scene plane constraints in each srep. The 
algorithms involved are dernonsrrared on both simnlared 
and real dara showing the performance and rrsabilify of the 
proposed scheme. 

1. Introduction 
1.1. Problem description 
One of the central problems in computer vision is the so- 
called “structure from motion problem”. I f  no special infor- 
mation about the camera or the scene is available then only 
a projective reconstruction of the scene can be obtained, cf. 
[I, I I .  41. Since this projective reconstruction might con- 
tain severe projective distortions, it is often desirable to oh- 
tain a Euclidean reconstruction (up to an unknown similar- 
ity transformation) of the scene. 

Traditionally, there are two different ways to obtain the 
Euclidean structure of a scene. The first method, which re- 
lies on some a priori information about the scene, e.g. some 
distance or  angular measurements, cf. 121, is often referred 
to as srrarification, since one starts with a projective recon- 
struction and then finds an affine ‘stratum’ and finally a Eu- 
clidean ‘stratum’. giving the desired reconstruction. The 
other method, which relies on  some a priori information 
about the intrinsic parameters, e.g. known skew andor  as- 

‘This resrxch w a  funded by the SSFISRC-JIG project 9 5 ~ 6 - 2 2 2  and 
[he Murdoch Special Rcrsarch Giant MU.AMH.D.413. 

D. Q. Huynh 
School of Information Technology 

Murdoch University 
Perth WA 6 150 AUSTRALIA 

Email: d.huynh@murdoch.edu.au 

pect ratio (see [ I O ,  18. 6, 131). is often referred to as auro- 
calibration since the main focus is on finding the intrinsic 
parameters. i.e. auto-calibrating the cameras, in addition to 
motion and structure recovery. 

The purpose of this paper is to auto-calibrate a camera 
based on the natural camera model (i.e. unit aspect ratio and 
no skew) with the incorporation of constraints from orthog- 
onal planes present in the scene. This is achieved via the 
recovery of the absolute quadric, with the orthogonal scene 
planes providing the additional equations to constrain this 
entity. The results are that a more accurate estimate of the 
absolute quadric is obtained, leading to smaller errors in the 
estimates of the camera intrinsic parameters and a more ac- 
curate Euclidean reconstruction. 

The applicability of the proposed algorithm is manifold. 
First. with high quality digital and video cameras, it is often 
safe to assume vanishing skew and unit aspect ratio. If one 
is in doubt, it is always possible to assume constant skew 
and aspect ratio. The natural camera model is thus accurate 
for modelling the 3D to 2D projection of all modern cam- 
eras. This model reduces the number of intrinsic parame- 
ters to be recovered for each image (or camera) to 3: focal 
length and principal point. Furthermore. for a large number 
of applications. orthogonal scene planes arise naturally. For 
example, in images of man-made objects such as buildings, 
orthogonal walls can he easily detected, making it possible 
to incorporate such scene constraints into auto-calibration. 

1.2. Previous work 
The earliest work on auto-calibration is the algorithm by 
Faugeras, Luong and Maybank 131, where the case of con- 
stant intrinsic parameters is treated. Later auto-calibration 
work that involves absolute conic and absolute quadric in- 
cludes [5 .  7, 18, 12, 131. Although the incorporation of 
scene constraints is known to be useful (see, e.g. [13]) in 
auto-calibration, none of these earlier reports have con- 
ducted detailed investigation into the use of scene con- 
straints in auto-calibration. While Liehowitz and Zisser- 
man [8] detect the image projections of parallel and or- 
thogonal scene lines and use them to estimate the vanishing 
points and as constraints in auto-calibration, they apply the 
constraints to the absolute conic. Also, their work requires 
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the computation of the fundamental matrix. and that limits 
their method to the use of two images. 

2. The proposed scheme 
The proposed scheme is divided into five steps: projective 
reconstruction, solving for the absolute quadric. refining the 
absolute quadric, initial linear Euclidean upgrade, and bun- 
dle adjustment with scene constraints. Details of these steps 
are described below. 

2.1. Projective reconstruction 
Given a scene point xj = [xj Y j  Z j  1IT, its projection 
xJ = [d 1IT onto an image plane is governed by: 

X j x j  =: [ i  ; + E  - R t ] X j  

O X ' x '  = K [ R -Rt 1x1: (1) 

where the superscript j denotes the jlh scene (or image) 
point, is an unknown scalar. The camera matrix, de- 
noted by A', embodies the unknown camera focal length / 
and principal point (uo: u o ) .  The motion matrix contains the 
unknown rotation matrix R and translation vector t of the 
camera relative to a coordinate system. The special form of 
K here arises from the use of the natural camera model. I n  
the situation where none of these parameters are known U 
priori, ( I )  is often put in  the compact form Xjxj = PXj,  
where P E  R3x' is a projection matrix. With the availability 
of rn images and ri scene points, the joint projection matrix 
P E 8?3mx4, the joint image measurement matrix x E R3'"x", 
and the joint shape matrix X E P""" are related by 

[X' . ( .  xn] 

e x  = P X :  (2) 

where the subscript i indicates the camera, and Xi's.  
known as the projecrive depths, are unknown scalars. 

Setting all the X i  to 1 for the affine camera model, 
Tomasi and Kanadel171 pioneered the factorization method 
to retrieve the P and X from x. For the projective camera 
model, the values of X i s s  must be recovered prior to factor- 
ization (see [15, 161). We adopt the method of [ I51 in  our 
scheme. First, all the X:'s are assumed to be I .  At each 
iteration. the X:'s are retined with the subspace (4D space 
of L") constraint on x being enforced while minimizing 
the image point reprojection errors. The matrix x is then 
updated with the refined values of X i ' s  and re-factorized 
to give new P and X matrices for the next iteration. The 
method has shown to give very good estimates of the X j ' s  
and very fast convergence. 

2.2. Solving for the absolute quadric 
The structure contained in the shape matrix X is projective 
only, since for any P and X matrices that satisfy (2). P.4 
and A - ' X  are also a solution, where A E Rdxn is any non- 
singular matrix. So, an appropriate A matrix satisfying 

P,A - K,  [ R ,  ' -dit{] for i  = 1;. . : r u >  (3) 
must be estimated to upgrade the structure to Euclidean. Let 
PI = [ I  O ]  and F', = [ Q, q, 1. for i = ?., . . . ~ 711. Then 
-4 takes the form KT , where a = (aI:uZ;uQ)T and s 

is a non-zero scalar often set to unity. Let .a be the matrix 
tha! Eontains the first three columns of .4. It follows that 
P+4.4T P: - K, K: ~ and so 

.I 

UP,RP,T-K&: f o r i = l : " ' : r n :  (4) 
where R is the absolure quudric or the singular dicul 
quadric that contains the coordinates. a, of the plane at in- 
finity for affine reconstruction and the DIAC (dual image of 
the absolute conic), KIK:, for Euclidean reconstruction. 
Furthermore, R relates the angle 8 between the projective 
coordinates of any two scene planes, n and m, by 

cosio) = n T n r n / ( d Z G & F i G ) .  ( 5 )  

AS the number of unknowns and available equations in (4) 
are F+ 3 ( m  - 1) and 5(rri - 1).  the introduction of only one 
pair of scene planes would reduce the minimum value of rrr 
to 2. 

Solving for [he above unknowns from (4) is a difficult 
nonlinear problem. An alternative is, as suggested in [13], 
to use a special case of the natural camera model, namely, 
( ? I O , : U ~ ~ )  = (0:O) for all i .  The diagonal form of K,K' 
and the equality of its first two diagonal elements then give 
4 linear constraints on R. Equation (5) can be simplified fur- 
ther to n T R m  = 0.. if 0 = 90". to linearize the equations 
from the orthogonal scene planes. I n  our experiments re- 
poned here, we included at least 5 images from each video 
sequence to recover 0. More images were chosen since a 
degenerate configuration or critical motion that might affect 
any particular image pair is unlikely to affect the entire se- 
lected set of images. 

2.3. Refining the absolute quadric 
Writing (4) and ( 5 )  in  matrix-vector form, we have the fol- 
lowing objective functions and constraints: 

(7) 
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for i = 2:. . . m. Here, each M; E R6"'", N j ,  E R'x'o, 
and q E R'" is the vector form containing the elements of 
R. Similarly, k, E 8' contains the elements of KiKT. The 
constraint from any two orthogonal planes nj  and nl with 
respect to R can be written in the form given by (7). 

It is useful to apply the Levenberg-Marquardt method 
to solve the above constrained minimization problem. We 
introduce the vector y; that embodies all the parameters to 
berefinedattheihiteration.LetJ= [ J 1 ; . . .  J 2 : . . . ] b e t h e  
collection of all the minimization functions in (6) and (7). 
and let ji G J(y;) be the residuals at the same iteration. 
The update Ay for the vector yi at the ith iteration is given 
by Ay = (BTB + d-'BTj, where B = a ( y i )  and e is 
a small positive number. At the (i + l)Ih iteration, we have 
yi+l = y1 + Ay and so on. 

2.4. Initial linear Euclidean upgrade 
The objective of this step is to estimate matrix A. Since 
A.AT - R,  the easiest way to compute -4 is to let .A E 

U&" where R I USVT is the SVD of R and U,. SS 
are the matrices containing the first 3 columns of U and 
S. By means of the intrinsic parameters refined from (6) 
and the recovered A matrix; Ki  can be constructed and Ri, 
ti, for i = 1:. . . :7n can all be computed. The projective 
structure X estimated from Section 2.1 is then upgraded to 
X, I A-'X. 

BY 

2.5. Bundle adjustment with scene constraints 
The initial Euclidean reconstruction obtained above can 
be improved further by incorporating the reconstructed 3D 
points and camera intrinsic and extrinsic parameters and 
minimizing the reprojection errors. To impose orthogonal 
scene plane constraints into this bundle adjustment, each it- 
eration can be broken into two separate steps: 
Step A: minimizing the reprojection errors. This is the nor- 
mal bundle adjustment process. 
Step B: incorporating constraints of orthogonal scene 
planes. In this step, all the parameters refined by Step A are 
fed into a similar operation as described in Section 2.3. The 
differences are: ( I )  all the scene plane coordinates must be 
recomputed, using the Euclidean structure estimated from 
Step A above, and (2) the absolute quadric R is replaced 
with the update absolute quadric 6R whose initial estimate 
6Rn is set to . At each iteration, the refined 6R is 
used to update all the intrinsic and extrinsic parameters sim- 
ilar to the procedure described in Section 2.4. To ensure 
that'the camera coordinate systems used in Step A do not 
undergo major changes due to 60,  the update matrix 6.2 
(analogous to A in Section 2.4) is defined as 

1: "I 

without 
scene 

6R I 

wiih without wiih 
scene scene ICme 

The updated Euclidean structure, intrinsic and extrinsic pa- 
rameters are then fed back into Step A for the next bundle 
adjustment iteration. 

The rate of convergence for the above modified bundle 
adjustment is very fast. The extra process in Step B above 
appears not only to help retain the orthogonality of the scene 
planes but. on average, give better estimates of all the pa- 
rameters and smaller 3D reconstruction errors. 

'I 
ex 
L ( ~ ~ , ~ ~ )  
( 0  

coniminlr C""itrar",S conrrmimr COniirainiS 

00585 0.0581 0.0172 0.0461 
1.1095 O M 9 5  0.9281 0.1154 

19.7890 24.1697 10.5831 13.8939 
0.0329 00105 0.0391 0.0123 

Table 1: The means and standard deviations of a few 
error measures with and without the use of scene con- 
straints: e f  = I f  - f i / f  (relative error of estimated focal 
length in pixels); t~ = 118 - XI1 (reconstruction error); 
quo,uo) = Il(,Go:,ijo) - (iio,i&)I( (principal point error in 
pixels); eo = Ill - 90 1/90 (relative error on orthogonality). 
The symbols '"' and denote the estimated and true values 
of the entity. 

For the experiments on real video data, we used images 
captured by a Sony DCR-PC100 digital video camcorder. 
Due to the limitation of space, we repon only one of the ex- 
periments conducted. Figure 1 shows 3 images of a video 
sequence of a house. At the beginning of the sequence, 
the camera moved from left to right; in  the last part of 
the sequence (about 20 frames), the camera stopped mov- 
ing but zoomed slowly in to the scene. The KLT feature 
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tracker [9,14] was used to track the image feature points in 
the video sequence. 324 image feature points were detected 
and 9 images were selected from frames 20 to 100, at every 
10 '~  frame,intervai. 

Figure 1: Frames 20.90, 100 of a video sequence o f  a house 
with the tracked image features superimposed. 

To, incorporate scene constraints into the Euclidean re- 
construction, 22 and 32 image points of two orthogonal 
scene planes (the two walls of the house) were manually se- 
lected. The coordinates o f  these two planes from the projec- 
tive reconstruction (step I) were computed and were used 
to constrain the initial estimate and refinement o f  the abso- 
lute quadric. Figure 2 shows the Euclidean reconstruction 
o f  the house and the estimated positions o f  the camera in 
the scene. Because o f  the large number o f  reconstructed 
scene points and the lack of a texture mapping software 
for 3D visualization, we only display one third o f  the re- 
constructed scene points o f  and surrounding the house to 
demonstrate that orthogonality of the walls was retained. 
From frames 80 to 100 the estimated focal length increased, 
in accordance to the zooming in to the scene of the cam- 
era. The angle between the two walls were estimated to be 
75.20" (without scene constraints) and 90.22' (with scene 
constraints). 

Figure 2: (a) The top view of the Euclidean reconstruction. 
Some feature points on the two walls o f  the house are la- 
belled as '*' and '+'. (b) An enlarged view of the estimated 
camera positions (projected onto the ground plane). 

4. Conclusions 
We have described a scheme for incorporating orthogonal 
scene plane constraints into the autorcalibration problem. I t  
involves computing the projective structure of the scene and 
the estimation of the absolute quadric forEuclidean upgrade 

followed by bundle adjustment to statistically optimize the 
Euclidean reconstruction. Throughout a11 the steps in the 
scheme, scene constraints are enforced. Our synthetic and 
real experiments have shown that known scene constraints 
can he easily incorporated to improve the estimate of the 
absolute quadric and subsequently l o  attain a more accurate 
Euclidean reconstruction. 

References 
[I] 0. Faugeras. What can be seen in three dimensions with an 

uncalibrated stereo rig? In Proc. ECCV, pp. 563-578, 1992. 
[21 0. Faugeras. Stratification of three-dimensional projective. 

affine and metric representations. J. Opr. Soc. America, 
12(3):465434. 1995. 

[3] 0. Faugeras, Q.-T. Luong, and S.  Maybank. Camera self- 
calibration: Theory and experiments, In  Proc. ECCV, 
pp. 321-334, 1992. 

[41 R. Hartley. Estimation of relative camera positions far un- 
calibrated cameras. In Proc. ECCV, pp. 579-587. 1992. 

[SI A. Heyden and K. Aslrom. Euclidean reconstructio" from 
constant intrinsic parameters. In  Proc. ICPR, vol 1, pp. 339- 
343, 1996. 

[61 A. Heyden and K. Astrom. Euclidean reconstruction from 
image sequences with varying and unknown focal length and 
principal p in t .  In Proc. CVPR, pp. 4 3 8 4 3 ,  1997. 

[7] A. Heyden and K. Astriim. Flexible calibration: Minimal 
cases for auto-calibration. In Proc. ICCV, pp. 350-355, 
1999. 

[8]  D. Liebowitz and A. Zisserman. Combining scene and auto- 
calibration constraints. In  Proc. ICCV. 1999. 

[9] B. D. Lucas and T. Kanade. An iterative image registration 
technique with an application to stereo vision. In IJCAI, 
pp. 67-19, I98 I .  

[IO] 0:T. Luone and 0. Fauaeras. Self-calibration of a movinn - .- 
camera from point correspondences and fundamental matri- 
ces. IJCV, 22(3):261-289, 1997. 
R. Mohr and E. Arbogast. I t  can be done without camera 
calibration. Parrern Recognirion Lerrers, 12(1):3943, 1991. 
M. Pollefeys, L. V. Cool. and M. Oosterlinck. The modulus 
constraint: A new constraint for self-calibration. In Proc. 
ICPR. pp. 349-353. 1996. 
M. Pollefevs. R. Koch. and L. V. Gaol. Self-calibration and 
metric reconstruction in spite of varying and unknown inter- 
nal camera parameters. In Proc. ICCV. 1998. 
J. Shi and C. Tomasi. Good features to track. In Proc. CVPR. 
pp. 593400, 1994. 
G. Sparr. Simultaneous reconstruction of scene structure 
and camera locations from uncalibrated image sequences. 
In Proc. ICPR, 1996. 
P. Sturm and B.  Triggs. A factorization based algorithm 
for multi-image projective structure and motion. In Proc. 
ECCV, pp. 709-720. 1996. 
C. Tomasi and T. Kanade. Shape and motion from image 
streams under orthography: a factorization method IJCV, 
9(2): 137-154, 1992. 
B. Triggs. Autocalibration and the absolute quadric. In Proc. 
CVPR, 1997. 

634 


