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Abstract

This paper studies the sensitivity in Euclidean recon-
struction from an image triplet taken by an uncalibrated
camera mounted on a robot arm. The idea of such a
reconstruction is closely related to that proposed in [4].
In this paper, we focus on an intermediate step of the
reconstruction procedure which requires estimating the
screw axis that corresponds to the defective eigenvector
of a 4�4 matrix. Hundreds of the conducted synthetic
tests show that the algorithm is very sensitive to image
noise and perturbations on camera motions and that
if the matrix is perturbed by Gaussian noise then the
reliability of the computed screw axis can be estimated.

1. Introduction

It is often essential for a stereo vision system to
reconstruct the 3D map of an environment without
any prior knowledge of the characteristics and relative
geometry of the cameras. There has been much re-
search conducted in this area [1], and a review to all
of past contributions to the literature is not possible
in this short paper. In this research work we are in-
terested in reconstructing the 3D map of objects in the
workspace of an RTX robot using an uncalibrated cam-
era mounted at the robot's wrist for object recognition.
If an image triplet (3 images) that is captured by the
camera is such that F 12 and F 23 are identical, where
F ij denotes the fundamental matrix between the i-th
and j-th images, then a Euclidean reconstruction pro-
cedure similar to that proposed by Zisserman et al [4]
can be applied. The sensitivity of the reconstruction
procedure in the presence of image noise and pertur-
bations of camera motion is the focus of this research.
Before going into the details of our conducted sensi-
tivity analysis, the reconstruction procedure is briey

described below:

1. compute F 12 = F 23 from corresponding image
points and estimate the epipoles (the left and right
null vector of the matrix) e12l = e23l and e12r = e23r .

2. set the 3�4 perspective transformation matrices
P 12
l = P 23

l = [ I j 0 ] and compute P 12
r =

P 23
r = [M j er ] where I is the identity matrix,

M =
�
[er]� F jer

�
, F is the fundamental matrix

and er is its null vector, and [v]� denotes the skew-
symmetric matrix of v.

3. compute the projective structure X12 using P 12
l

and P 12
r . Then compute the transformation T

such that

P 23
l TX12

i = x2i

P 23
r TX12

i = x3i ; 8i = 1:::n

where xji is the i-th corresponding point from im-
age j.

4. compute S = T�>. Matrix S is known to be sim-
ilar to the defective matrix TE having eigenvalues
�(S) =

�
ei�; e�i�; 1; 1

	
and eigenvectors e(S) =�

[1; i; 0; 0]>; [1;�i; 0; 0]>; [0; 0; 1; 0]>; [0; 0; 1; 0]>
	
.

5. apply the eigen-decomposition to S and retrieve
the real eigenvector w = [w1; w2; w3; w4]

> that
corresponds to the repeated real eigenvalue.

6. compute H1 =M � er[w1; w2; w3]=w4.
7. solve the elements of K = AA> in the equality

(de�ned up to a scale) K = H1KH1.
8. recover A from the Cholesky decomposition of K.

The estimated camera matrix A (3�3 upper tri-
angular) is essential for Euclidean reconstruction.

2. A sensitivity analysis

Let B be the similarity transformation of S and
TE, then the eigenvectors of S are simply e(S) =�
e1 = B [ 1; i; 0; 0 ]>; e2 = B [ 1;�i; 0; 0 ]>; e3 = e4 =



B [ 0; 0; 1; 0 ]>
	
. From here on, we denote the true

value of an entity k as �k and its observed value in
the presence of noise as ~k. Let �S be the matrix
under the noise-free conditions, N be the noise matrix
such that its elements satisfy a Gaussian distribution
N (0; �2) with the standard deviation � denoting the
noise level, and the eigenvalues of ~S = �S + N be
e( ~S) = f~e1; ~e2; ~e3; ~e4g. Since the eigenvalues associ-
ated with e1 and e2 are disjoint from that associated
with e3, the subspace spanned by e1 and e2 (denoted
as ran([e1; e2])) is less sensitive to perturbations
and remains relatively invariant. De�ne the distance
between two subspaces V1 and V2 to be (see [2])

dist(V1; V2) = kW>
1 Z2 k2 = kZ>1 W2 k2 (1)

where [W1 W2 ] and [Z1 Z2 ] are square and orthog-
onal matrices; V1 = ran(W1); V2 = ran(Z1). If the
noise level is low then dist(ran([~e1; ~e2]); ran([�e1; �e2]))
is small. This means that the 2D subspace that con-
tains the screw axis �w (=�e3) is also relatively invariant
although the 1D subspace ran([�e3]) is much less stable.

The perturbed ~S matrix is usually non-defective
and 3 cases can occur when applying the eigen-
decomposition to it:

Case 1: �( ~S) contains 4 complex eigenvalues (i.e. 2
complex conjugate pairs).

Case 2: �( ~S) contains 2 complex eigenvalues in a con-
jugate pair and 2 di�erent real eigenvalues.

Case 3: �( ~S) contains 4 di�erent real eigenvalues.

In all the cases above, a criterion for correctly se-
lecting the eigenvector that is closest to the screw axis
is essential. This is, we want to choose an eigenvector
~e (and thus ~w) such that

�w = cos�1 j < ~w; �w> j ! min (2)

where j : j denotes absolute value and < : ; : > denotes
inner product. Since �w is the eigenvector of �S that
corresponds to a defective eigenvalue, ~w (or ~e) should
be the eigenvector corresponding to the eigenvalue ~�
that is a repeated eigenvalue of a nearby defective ma-
trix. Such a � has a large condition number, C�, the
de�nition of which is given as (see [2] for explanations):

C� = 1 = j <x;y> j

where x and y are the left and right eigenvectors as-
sociated with �. This criterion for determining ~w is
e�ective only if the noise level is low. For a signi�-
cantly high level of noise, ~S may not be near a defective
matrix or, even if it does, the nearby defective matrix
may not be �S. We shall assume from here onward that
kNk2 << k �Sk2.

If the eigenvector ~e = [~e1; ~e2; ~e3; ~e4]
> chosen is com-

plex, as is always for case 1, then an approximation
of the screw axis must be in ran([~e; ~e�]) where ~e� is
the complex conjugate of ~e y. Indeed, it was found
that the distance (de�ned in (1)) between ran([~e; ~e�])
and the 2D subspace (computed using the Schur de-
composition of �S) containing ran([ �w]) is very small.
To estimate the screw axis ~w = [ ~w1; ~w2; ~w3; ~w4]

> from
the complex eigenvector ~e, we adopted the following
procedure:

� If kRe(~e) k2 > k Im(~e) k2 then ~wi, i = 1 : : : 4 was
estimated as sign(Re(~ei))

�
Re(~ei)

2 + Im(~ei)
2
�
.

� Otherwise, ~wi, i = 1 : : : 4 was estimated as
sign(Im(~ei))

�
Re(~ei)

2 + Im(~ei)
2
�
.

Here, Re(:) and Im(:) denote the real component and
imaginary component of the complex number con-
cerned, and

sign(x) =

8<
:

�1 if x < 0
1 if x > 0
0 otherwise:

To study the sensitivity in estimating the screw axis
from ~S at di�erent noise levels, we set � to values
ranging from 0:001 to 0:05 while maintaining the mean
value of k �Sk2 at � 8. In each set of the experiments,
the transformation matrix TE with a randomly gener-
ated rotation angle � (see step 4, Section 1) was �rst
computed. A non-singular matrix B was then ran-
domly generated; the computation of T = BTEB

�1

and �S = T�> followed. The noise matrix N was then
generated for a speci�ed noise level � and ~S was com-
puted. We de�ne the condition number ratio r as fol-
lows:

r =
�
max
�

C�

�.�
min
�

C�

�
:

For each of the estimated ~w, we also computed �w as
given in (2).

Figure 1 shows the relationship between r and �w
for 50 synthetic tests with � = 35� and � = 0:001.
All the �w's for case 1 are very small (< 0:5�) even
for r � 10; however, for the same ratio r for case 2,
the �w's are much larger (up to 3:5�). Note that the
angle deviations �w for case 2 show an exponential
drop with an increase of r and that for a small �, case
3 seldom occurs.

Figure 2 shows another 40 synthetic tests with � =
24� and � = 0:05. Almost all the computed �w's are
too large to be acceptable. Case 3 occurs in 3 occasions.
Most of the �w angles for case 1 are comparatively
better than those for the other two cases. As mentioned
above, for a high noise level ~S may not be near the

y
Note that both ~e and ~e

�
have the same condition number.



5 10 15 20 25 30 35 40
0

0.5

1

1.5

2

2.5

3

3.5

r

∆ 
w

+  case 1
o  case 2

Figure 1. Relationship between r and �w
when � = 0:001.

defective matrix �S. However, the plot shows a general
decrease of �w when r increases. Empirically, this
demonstrates that if ~S was near a defective matrix then
this defective matrix was likely to be �S. Unfortunately,
we have not been able to provide a formal mathematics
proof to support this claim.
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Figure 2. Relationship between r and �w
when � = 0:05.

The above analysis and experiments show that a
large value of r is prerequisite to a reliable estimation
of ~w on which the subsequent Euclidean reconstruc-
tion depend. We have simpli�ed our analysis by ap-
plying perturbations directly to S from which ~w is de-
termined. In real applications, the image noise comes
from the errors in the image coordinates of correspond-
ing points, and the behaviour of the noise matrix N is
not clear. Although we have not investigated into this
further at this stage, our analysis shows that a small r
is a good indication that the estimated ~w is poor.

The above procedure for computing the screw axis
had been applied to many synthetic tests in which the
image coordinates or camera motion were perturbed.
Due to space limitation, we only outline an experiment
that involves adding Gaussian noise of N (0; 0:252) to
the coordinates of corresponding points. The proce-
dure for computing the camera matrix for Euclidean
reconstruction is given in Section 1, and the funda-
mental matrices were computed using the method de-

scribed in [3]. In Table 1, �w < 5� yet the errors
in focal length and image centre are quite large, and
the percentage error of the aspect ratio is around 15%.
This result indicates that a good estimate of the fun-
damental matrix is essential so that optimal estimates
of H1, and subsequently, A are also guaranteed.

�S

"
2:228 0:542 0:246 0:253
1:476 2:883 �0:640 1:176

�2:369 1:199 1:966 �0:174
�1:843 �2:244 0:704 �0:000

#

C� 1:8363; 1:8363; 7:881�106; 7:881�106

�r 4:29� 106 (case 2)

�w [ 0:269; 0:405;�0:311;�0:8163 ]>

�A

�
�740:655 0 �17:244

0 �860:029 �3:077
0 0 1

�

~S 104�

"
�0:314 0:471 0:331 �0:049
0:233 �0:263 �0:211 0:056
0:478 �0:714 �0:494 0:072
0:927 �1:396 �0:962 0:137

#

C~� 2:528; 32:073; 32:073; 47:052

~r 18:608 (case 2)

~w [ �0:259;�0:345; 0:367; 0:823 ]>

�w 4:747�

~A

�
�791:091 �0:000 �28:782

0 �797:402 �73:835
0 0 1

�

Table 1. Estimation of screw axis and camera
matrix in the presence of image noise.

3. Conclusion

In this paper, we have focused on the estimation
of the screw axis from a 4�4 defective matrix in Eu-
clidean reconstruction. The results of our analysis indi-
cate that if the perturbed matrix is not near a defective
matrix then the estimated screw axis is not reliable.
We conclude that all the steps involved in the recon-
struction procedure must be optimized.
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