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Abstract 

A novel robust method for outlier detection in structure 
and motion recovery for afJine cameras is presented. It is 
an extension of the well-known Tomasi-Kanade factoriza- 
tion technique designed to handle outliers. It can also be 
seen as an importation of the LMedS technique or W S A C  
into the factorization framework. Based on the computa- 
tion of distances between subspaces, it relates closely with 
the subspace-based factorization methods for the perspec- 
tive case presented by Sparr and others and the subspace- 
based factorization for afine cameras with missing data by 
Jacobs. Key features of the method presented here are its 
ability to compare different subspaces and the complete au- 
tomation of the detection and elimination of outliers. Its 
pe flormance and effectiveness are demonstrated by experi- 
ments involving simulated and real video sequences. 

1. Introduction 

One of the main problems in computer vision is the so- 
called structure and motion problem, where both the struc- 
ture of the scene and the motion of the camera are estimated 
from image measurements only. The problem can appear in 
several different settings depending on the camera model 
used and the type of image features available. In this paper 
we will investigate the problem for the affine camera model 
and point features. 

The affine camera model, introduced in [9], has been 
used frequently to simplify the structure from motion prob- 
lem in computer vision [6]. It uses fewer parameters and is 
a good approximation of the pin-hole camera when the dis- 
tance between the camera and the object is large in compar- 
ison to the depth-variations in the object. Mathematically, 
it can be described as an affine transformation from three- 
dimensional affine space to two-dimensional affine space. 

It is well-known that, given corresponding point coordi- 
nates, both structure and motion can be obtained by factor- 
izing a matrix built up from image measurements. Unlike 
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perspective projection which requires the estimation of the 
relative depths (or projective depths) of all point coordinates 
before factorization can be carried out (see [13,4, 12]), un- 
der affine projection these relative depths can all be set to 
unity [ 141 and so the structure and motion problem is much 
easier to deal with. The factorization method requires the 
singular value decomposition of a rather large matrix. 

The problem of outliers in structure and motion recovery 
from images is well known in the literature, The RANSAC 
(Random Sample Consensus) paradigm proposed by Fis- 
chler and Bolles [23 detects outlying data by first randomly 
selecting samples of the minimum number of data items re- 
quired to estimate a given entity and then looking for con- 
sensus of the estimates among the samples. This paradigm 
and the LMedS (Least Median Squares) approach have both 
been applied to the computation of the fundamental ma- 
trix [15, 19, 16, 181. One of the advantages of the factor- 
ization approach [ 141, compared to those using matching 
tensors, is that all the available image data are used simul- 
taneously and uniformly. Unfortunately, a problem with the 
current factorization approach is that the image measure- 
ment matrix is assumed to be outlier-free. Although Tomasi 
and Kanade [ 141 and Jacobs [5] have both extended the fac- 
torization approach to deal with missing data, there have 
been no reports, to date, dealing with outliers for this ap- 
proach. 

A major contribution of this paper is to extend the fac- 
torization approach to one that can handle outliers while 
treating all the data simultaneously. This is done by con- 
sidering the subspaces (see the work reported by Sparr [ 121 
and Triggs [ 171) spanned by different subsets of columns in 
the image measurement matrix and introducing a similarity 
measure on these subspaces, This similarity measure makes 
it possible to compare different subspaces, which is an es- 
sential part of our method. This is not a trivial problem, 
since a fixed subspace can be represented in many different 
ways and the subspace distance function must be so defined 
that it is independent of the choices of basis that spans the 
subspaces. 

The paper is organized as follows. In Section 2, we 
give a brief review of the affine factorization method. Then 



similarity functions for comparing linear subspaces are dis- 
cussed in Section 3. The proposed method for robust fac- 
torization is described in Section 4 and some experiments 
given in Section 5 .  Some related issues are discussed in 
Section 6. Finally, conclusions are presented in Section 7. 

2. Review on affine factorization 
2.1. Notation 

In the text that follows, we use uppercase letters to rep- 
resent matrices, uppercase bold letters to represent scene 
points and the special joint shape matrix, lowercase bold 
letters to represent vectors, image points, and the special 
joint image measurement matrix. We denote subspaces by 
calligraphic letters. All vectors are assumed to be column 
vectors and denotes matrix and vector transpose. 

2.2. Background 

Let X = (2, p, 2, l)T be a scene point and 2 = 
(Z,@, l)T be the corresponding image point. Under the 
affine camera model, the projection matrix p E !R3x4 has 
the form 

[; 71  
where P E R2* and q E R2. The common approach to 
take from here is to reduce to a 2 x 3 matrix by offset- 
ting the coordinates of all the image points by the centroid 
of the image point cluster. This effectively eliminates the 
requirement of computing q, leaving the unknown projec- 
tion matrix as a 2 x 3 matrix and the unknown scene point 
X in inhomogeneous coordinates. However, since the cen- 
troid of the image point cluster cannot be reliably estimated 
when outliers are present, it is better to retain the projection 
matrix as a 2 x 4 matrix, as given below: 

rxi 

*x = Pit. (1) 

By stacking up the n scene points and their image coor- 
dinates in the m images we obtain the following relation 
connecting the joint affine pjojection matrix P E !T22mx4, 
thejoint affine shape matrix X E !R4'la, and the joint image 
measurement matrix f E SRarnxn: 

where Pi E 82x4 denotes the affine projecGon matrix of 
camera i in the joint affine projec_tion matrix P, Xj the jth 
scene point in the shape matrix X, xi the jth image point 
in image i, and fj a 2m-vector that encompasses all the 
image coordinates in the m images of the j t h  scene point. 
We call jiii the observation of the jth scene point. 

2.3 Outliers and Subspaces 

In the absence of localization errors and outliers, the 
true subspace C RZm spanned by the columns of 2 
is 4-dimensional. Thus, any four or more observations 
(i.e. columns) of 2 should give the same subspace ,%!. Local- 
ization errors of image point coordinates in f would inflate 
the rank of 8, giving a small non-zero value to the 5th sin- 
gular value. Truncating 2 to a rank-4 maKix would give a 
slightly distorted 4-dimensional subspace K .  When outliers 
are present, such distortion can be so significant that one 
must first exclude the outlying observations before attempt- 
ing a reasonable estimation of the 4-dimensional subspace. 

To discuss further about the distortion to the true sub- 
space ,%! due to outliers, a similarity function for comparing 
two subspaces must be first defined. 

3. Similarity functions for subspace compari- 
son 

In the discussion that follows, uppercase calligraphic let- 
ters are used to represent subspaces, e.g. A. An upper- 
case, identical letter will represent a matrix whose columns 
form an orthonormal basis (which can be computed using 
the Matlab function orth) of the corresponding subspace, 
e.g. A z [ a1 * .  . a, ] is the matrix for subspace A. 
Here, m = dim(A) is the dimension of subspace d and 
{ ai 1 1 5 i 5 m} is an orthonormal basis that spans A. 

When dealing with two subspaces, one is often interested 
in obtaining a similarity function that measures the close- 
ness between them. There are some criteria that such a sim- 
ilarity function # should satisfy: 

4 ( A , B ) = O % d = B a .  
0 0 5 #(A, 23) = 4(23, A) < 00 for all A and 23. 

4(d, 23) 5 4(d, C) + 4(C, 23) for all A, i3, C. 
The first criterion imposes the condition that identical 

subspaces should have a zero similarity measure, the sec- 
ond criterion that the similarity function must be symmetric 
and finite, and the third criterion that the triangle inequality 
holds for any three subspaces. In the mathematics literature 
such concepts are called merrics. 

We have investigated into two different similarity func- 
tions for subspaces. We shall show that these functions 
are related and then describe an alternative similarity func- 
tion which has significant computational advantages over 
the other two. 
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3.1. Similarity function 41 
The first similarity function is derived from a set of prin- 

cipal angles (see [ 1,3]) between the two subspaces of con- 
cern. The definition of the largest principal angle is given 
below. 

Definition. Let A and B be two m-dimensional subspaces 
in R* satisfying the condition dim(A) = dim(B) = m 2 
1. The largest principal angle 0 5 8, 5 7r/2 between A 
and B is defined by cos(8,) = s,, i.e. 

$1 (A, B) =  COS-^ ( sm)  

where sm is the smallest singular value of ATB. cl 

The estimation of 8, thus requires carrying out the SVD 
of ATB. We note that the orthonormal bases in matrices A 
and B can be arbitrary since these bases would be aligned 
by the SVD to give the desired Om. It is straightforward to 
verify that satisfies all of the three listed criteria. 

3.2. Similarity function 4 2  

The second similarity function that we have investigated 
is known as the subspace distance as described below (see 
also Golub and Van Loan [3]). 

Definition. Let A and B be two m-dimensional subspaces 
in R* where m 2 1. Let A and B be, respectively, the 
two matrices whose columns are the orthonormal bases of 
A and B. Then the subspace distance $2 between A and B 
is defined by 

where A* denotes a matrix whose columns form an or- 
thonormal basis for A* (the orthogonal complement of the 
subspace A), and 11.112 denotes the 2-norm of the matrix 
concerned. 0 

It can be verified that 4 2  gives an upper bound of 1, cor- 
responding to when d n BL # 0 (and B n d* # 0). The 
function 4 2  also satisfies the criteria given above provided 
that the subspaces in question have the same dimension. 

The similarity functions 41 and $2 are related by (a proof 
can be found in [3] (pages 76-77)) 

4z(A,B) = J1- cos2 (4i(A,B)>. (4) 

3.3. Similarity function 43 
While qbl (A, B) involves an SVD on ATB and 42(d,  B) 

involves an SVD on ATB*, function 42 involves an ad- 
ditional SVD on B (or A) to get B* (or A*). To avoid 
computation of the orthogonal complement of a subspace, 

as required in 42, and the inverse of cosine, as required in 
41, we may define 

where sm, as before, is the smallest singular value of ATB. 
This ensures that 4 3  and 4 2  return the same distance mea- 
sure of two given subspaces. 

In addition to the saving in computation, another ad- 
vantage of using 4 3  instead of $2 arises when we need 
to deal with subspaces of different dimensions. We note 
that $2 is not symmetric but 4 3  is (and so is $1) when the 
two subspaces in consideration have different dimensions, 
i.e. 42(A7B) # 42(B7d) but 43(A,B) = 43(B,A) if 
dim(A) # dim(B). 

From here on, we will use the similarity function 4 3  to 
determine the closeness of two given subspaces. 

4. Subspace computation and outlier detection 

The rank-4 property of our joint image measurement ma- 
trix jt  given in (2) requires a minimum of 4 observations to 
estimate the 4-dimensional subspace. Thus, if a quadruplet 
of observations is tracked through a video sequence then the 
rank-4 subspace spanned by them can be used for factoriza- 
tion, provided that the 4 observations are the projections of 
4 scene points in general position, i.e. no more than 3 of 
them are coplanar in space. 

Given that there are n observations in a video sequence, 
our goal is to look for those observations that are in!iers and 
use only them to factorize to the required P and X matri- 
ces. The approach we have taken is analogous to the LMedS 
method [lo] implemented by Zhang et a1 for the fundamen- 
tal matrix computation. Since localization errors and out- 
liers often inflate the rank of 2, it would be of interest for 
our future study to examine the magnitude of the 5th sin- 
gular value of the sub-matrix o f f  if more observations are 
selected. Thus, in this report, we have chosen to sample 5 
observations from 2 to form a R2fflx5 matrix and study the 
rank4 truncation of the matrix. 

Assume that 5 observations are drawn randomly from 
the n observations and a !R2mx5 matrix x is constructed and 
truncated to rank 4. If a matrix xj E R2mx6, constructed 
by including the jth observation of x in x and then trun- 
cated to rank 4, is compared with k, the distance between 
the subspaces allows us to assess the consistency of the two 
subspaces. We can add the remaining observations, one (in- 
dexed by j) at a time, to x and compute the subspace dis- 
tance, d j ,  between the subspaces in x and xj. Obviously, 
if the original sample that constitutes x is free of contami- 
nation then the list of subspace distances { d  I 1 5 j 5 n }  
would have many small values and so a small median. Out 
of a sufficient number of samples chosen from the n obser- 
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vations, the winning sample should have the smallest me- 
dian and should be free of outliers. 

The number of samples w that require testing is often 
quite small. If the percentage of outliers is known to be 
E and the probability of obtaining at least one outlier-free 
sample is w then 

1 - (1 - (1 - €)P)" = w 

where p, which is number of observations in each sample, 
is 5 in our method. 

The procedure of our method is given below. 

Randomly draw a quintuplet of observations from the 
n observations. 
For each quintuplet, indexed by k, construct the rank- 
4 matrix kk E E2mx5, i.e. xk has its fifth, smallest 
singular value set to 0. 
For each observation (wherej.= 1 , .  . . , n)  in then 
tracked observations, 

(a) construct the rank4 matrix x i  E ?R2mx6 defined 
as x i  = [ kk 5ij 1. Again, the rank-4 constraint 
is imposed to xi. 

(b) compute the subspace distance d i  between xk 
and xi using the similarity function 4 3  described 
in Section 3. 

If the kth quintuplet sample contains no outliers then 
the 4-dimensional subspace should be consistent with 
the majority of the tracked observations. That is, the 
majority of values in the list of subspace distances 
{ d i  I 1 5 j 5 n }  should be small. If outliers are 
present in the sample then the majority of the tracked 
observations would be large. 

4. For the kth sample, retrieve the median from the list 
{ d i  I 1 5 j 5 n} and store it in the entity dk. That is, 

dk = median d i  11 5 j 5 n}. 
5 .  Go back to step 1 for the next sample until w samples 

have been randomly drawn. 
6. Follow the LMedS method and retrieve the smallest 

median value d in the list and th_e sample index k-that 
corresponds to d. That is, set d = mindk and k = 
arg min dk. 

7. The next step is to isolate the outliers and eliminate 
them. The robust standard deviation estimate is given 

{ 

k 

k 

by [lo1 

S = 1.4826 (1 + ") & (6) 
n - p  

and a threshold value t is set to 26. Those observations 
(indexed by j )  having their d i  values (stored in the 

list { d i  I 1 5 j 5 n } )  larger than the threshold t are 
classified as outliers. 

8. One may now proceed with the traditional approach of 
setting the image origin of each image at the centroid 
of the inlying point cluster. Construct the joint image 
measurement matrix using these observations, truncate 
it to rank, 3, and factorize it to retrieve the projective 
form of P and X. 

5. Experiments 

We have tested our method on both synthetic image data 
and real video sequences. In all the conducted experiments, 
the percentage of outliers E was assumed to be 40% and the 
probability U was set to 99%. This gave w = 57 (number 
of samples), regardless of the number of observations and 
number of image frames taken to compose matrix 2. 

For all the synthetic tests, 18 to 24 scene points were 
synthesized. Their image points were obtained by affinely 
projecting the scene points onto 5 images to simulate the 
capturing of a distant scene from 5 different viewpoints. As- 
suming that, in the feature tracking process, we used a win- 
dow of approximately 15 x 15 pixels to identify correspond- 
ing image points, the coordinates of a number of observa- 
tions in some images were perturbed by as large as f7 pix- 
els to simulate outliers. In addition, all the inliers were also 
perturbed up to f0.2 pixel to simulate small localization er- 
rors. In the synthetic test reported here, 24 scene points with 
localization errors were created and 9 outliers, correspond- 
ing to a 37.5% contamination, were synthesized: these were 
points 2,6,11,13,15,16,17,19,20. The algorithm given 
in the previous section was applied. To illustrate the effec- 
tiveness of using subspace distances to identify outliers, the 
values of two di  lists (see Step 7) are given in Table 1. In the 
experiment, the 5th sample (i.e. k = 5), which contained 
the observations {1,3,8,18,23}, was selected by the algo- 
rithm to be the winner. In comparison with a sample that 
had been contaminated by just 1 outlier, e.g. the 3'd sample 
which contained the quintuplet {4,11,22,23,24} shown in 
Table 1, the winning sample clearly has its majority of sub- 
space distances much smaller. The smallest median value 
d of this experiment was computed to be 0.0050, giving 
S = 0.0093 and the threshold value t = 0.0187. All the 
outliers were successfully identified. 

The reprojection errors and reconstruction errors (after 
using control points from the scene to upgrade the projec- 
tive structure to Euclidean) were also compared in the syn- 
thetic tests. In the synthetic test reported here, the root mean 
squared reprojection errors with all scene points included 
and with only the inlying scene points included were respec- 
tively 3.741 and 0.237 pixels. The corresponding root mean 
squared 3D reconstruction errors were 2.1 130 and 0.1033 
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Table 1. The computed $3 values for the 5" 
and the 3rd samples. 

units. The improvement to the reprojection errors and re- 
construction errors by our method is significant. 

Several experiments involving real data have been con- 
ducted to test our method. Due to the lack of space, only 
two experiments are reported. For each of the real video se- 
quences, the KLT feature tracker [7, l l ]  was applied to the 
entire sequence of images to track feature points from one 
frame to the next. However, when constructing the joint 
image measurement matrix 2, only a small subset of im- 
ages was chosen. The reason of doing so is to illustrate the 
use of subspace distances to detect and eliminate outliers 
without getting into the computational complexity issues of 
factorizing a large x matrix. 

The first video sequence, which was downloaded from 
the CMU web site, contains 50 images (512 x 480 pixels) 
of buildings. A total of 475 observations in the 50 images 
were tracked. Five images (every 8th images) were selected 
from the image sequence, giving a matrix 2 E %10x475. 

Figure 1 shows the five images used in our experiment, su- 
perimposed on each image are the tracked image feature 
points (marked as blue dots). Application of the algorithm 
described in the previous section led to the computation of 
d and threshold t to be 0.0058 and 0.0173. A total of 427 
inliers were identified. 

In this experiment, regular, repetitive patterns in the 
scene posed some challenge to the algorithm. Nevertheless, 
all the outliers we could manually detect were eliminated 
successfully. Figure 2 shows the detected inliers (marked as 
blue +'s), the outliers (red x's) and the winner quintuplet 
(cyan 0's) that gave the minimum d overlayed on the first 
and last images. Figure 3 shows the enlarged version near 
the top-right portion of the images where a few outlying 
features were present. Observations 127,91, 128,44,51, 3 
are all outliers that were correctly eliminated. Inlying ob- 

servation 138, which was incorrectly classified as an outlier, 
corresponds to a feature point on a window that disappears 
in the image sequence due to occlusion. If the image se- 
quence were to continue with the camera motion remained 
heading in the North direction, observations 138, 84, 127, 
etc. would disappear in the tracking. 

Figure 2. The tracked and inlying feature 
points in the first and last images. 

Figure 3. An enlarged portion of the images 
in Figure 2, ' 

The second experiment involves a video sequence of an 
indoor scene taken by our Sony DCR-PC100 digital video 
camera. The images are of dimensions 768 x 576. A total 
of 141 frames were captured and 187 feature points were 
successfully tracked. 8 images (at 20 image frames apart) 
were selected from the video sequence, giving a 16 x 187 
matrix for 2. Figure 4 shows the first and last of the cho- 
sen images, with the cracked image feature points superim- 
posed. The value of d and the robust standard deviation 13 
were computed to be 0.0178 and 0.0271, giving a threshold 
value t of 0.0542. This classified 179 of the observations to 
be inliers. 
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Figure 1. Five images of the building video sequence and the tracked image feature points. 

Figure 4. The first and last images of a video 
sequence of an indoor scene. The blue dots 
are the tracked image feature points. 

Apart from localization errors of a few observations, this 
second image sequence contains no outliers. However, our 
method appears to work well in detecting erroneous coor- 
dinates due to poor localization (see Figure 5) .  Again, in- 
liers are labelled as blue +'s, outliers as red x's, the winner 
quintuplet as cyan 0's. 

f '  

Figure 5. An enlarged portion of the images 
showing the detection of localization errors: 
two tracked image points were classified as 
outliers (pointed by the arrows). 

6. Discussions 

As with the RANSAC and LMedS methods implemented 
in [15, 191, extra computation is required in order to detect 
outliers. For each sample, one SVD is required to truncate 
the matrix x k  to rank 4. Another SVD is then required to 
truncate each of the n gk matrices. To compute the dis- 
tance of the subspaces spanned by columns of x k  and k:, 
one SVD is required (see Section 3). Thus, each sample 
requires 2n + 1 SVD computations. Since these SVD com- 
putations involve no more than 6 columns, a more econom- 
ical method, such as the power method or the QR factor- 
ization incorporated in an iterative refinement process [3] 
could be employed [8]. If speed was a concern then the 
LMedS approach used in our method could also be replaced 
with RANSAC to achieve an early jump-out (see [ 191 for a 
discussion about RANSAC and LMedS). 

Although video sequences have been used to test our 
method, corresponding image points found in discrete im- 
ages could also be used to construct the 2 matrix and this 
would be transparent to our method. To ensure that 2 has 
more than 4 rows, 3 or more discrete images would be re- 
quired. Our method can also be applied to each of the indi- 
vidual sections of a video sequence rather than to the entire 
video sequence. 

In our random selection of samples, the first image was 
used as reference and was divided into disjoint buckets. A 
lower bound on image point separation was imposed to en- 
sure that the observations in each sample were well dis- 
tributed in the reference image. This approach is similar 
to that used in [19]. While it is desirable to have the matrix 
x k  to be of rank 4, a further drop in rank of the matrix is an 
indication of degeneracy of scene points in the sample. For 
instance, if the sample contains observations that are pro- 
jections of 4 or more coplanar scene points then the fourth 
singular value of x k  would be negligible and the degener- 
acy could be easily identified and avoided. The detection of 
such degeneracy has been incorporated in our method. 

A variation to our proposed method is to let x be 
a 4-column matrix and, for any observation XJ (a one- 
dimensional !J?2m matrix), we compute the subspace dis- 
tance between k and xj. The quadruplet sample that has 
the minimum median subspace distance is finally selected 
as the winner. This alternative scheme requires choosing 
only 34 samples instead of 57 for U = 99%. It can be used 
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in conjunction with 4 3  and is more computationally effi- 
cient. 

An issue of concern is: How easy could this method be 
extended if the pin-hole camera model was used? It appears 
that there is no easy answer to this question. If the relative 
depths of all observations have been estimated then it may 
be worthwhile to single out those relative depths that show 
abrupt changes over the different image frames. The reason 
is that any sudden changes to the relative depths are likely to 
be due to tracking errors and thus possible outliers. How to 
automate this process and whether subspace distances can 
be applied are still subject of study by us. 

Another issue of concern is: If x k  contained an outly- 
ing observation yet the rank-4 truncation in fact eliminated 
the distortion effect of the outlier, could the kth sample that 
formed the matrix x k  be incorrectly identified as the win- 
ning sample? In our synthetic tests, this occurred only when 
we increased the localization errors and when the scene 
points were confined to be on only 2-4 planes. Thus, in 
real experiments, it is unlikely that a contaminated sample 
would be identified as the winner. Also, for long video se- 
quences, the errors involved in outlying observations could 
be much larger than the size of the tracking window because 
of accumulation of tracking errors. This makes it easier to 
identify such outliers. 

7. Conclusions 

We have presented a novel method of detecting and 
eliminating outliers for the factorization approach under 
affine projection. The method employs a similarity function 
that measures the distances of the 4-dimensional subspaces 
spanned by the columns of the image measurement matrix 
and the LMedS criteria for automatic detection and elimina- 
tion of outliers. The method has been tested on many syn- 
thetic test data and real video sequences with very promis- 
ing results. The contribution of this research is to demon- 
strate the use of subspace distances for outlier elimination, 
giving a more accurate 3D reconstruction of the imaged 
scene. 
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