

MURDOCH RESEARCH REPOSITORY

http://researchrepository.murdoch.edu.au

This is the author's final version of the work, as accepted for publication following peer review but without the publisher's layout or pagination.

Morgan, J.A.T., Corley, S.W., Jackson, L.A., Lew-Tabor, A.E., Moolhuijzen, P.M. and Jonsson, N.N. (2009) Identification of a mutation in the para-sodium channel gene of the cattle tick Rhipicephalus (Boophilus) microplus associated with resistance to synthetic pyrethroid acaricides. International Journal for Parasitology, 39 (7). pp. 775-779.

http://researchrepository.murdoch.edu.au/5915

Accepted Manuscript

Identification of a mutation in the *para* sodium channel gene of the cattle tick *Rhipicephalus (Boophilus) microplus* associated with resistance to synthetic pyrethroid acaricides

Jess A.T. Morgan, Sean W. Corley, Louise A. Jackson, Ala E. Lew-Tabor, Paula M. Moolhuijzen, Nicholas N. Jonsson

PII: DOI: Reference:	S0020-7519(09)00028-9 10.1016/j.ijpara.2008.12.006 PARA 2922
To appear in:	International Journal for Parasitology
Received Date: Revised Date: Accepted Date:	 11 November 2008 19 December 2008 27 December 2008

Please cite this article as: Morgan, J.A.T., Corley, S.W., Jackson, L.A., Lew-Tabor, A.E., Moolhuijzen, P.M., Jonsson, N.N., Identification of a mutation in the *para* sodium channel gene of the cattle tick *Rhipicephalus* (*Boophilus*) *microplus* associated with resistance to synthetic pyrethroid acaricides, *International Journal for Parasitology* (2009), doi: 10.1016/j.ijpara.2008.12.006

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

1	Identification of a mutation in the <i>para</i> sodium channel gene
2	of the cattle tick Rhipicephalus (Boophilus) microplus
3	associated with resistance to synthetic pyrethroid acaricides
4	Jess A.T. Morgan ^{a,b} , Sean W. Corley ^{a,c} , Louise A. Jackson ^{a,b} , Ala E. Lew-Tabor ^{a,c,d} ,
5	Paula M. Moolhuijzen ^{a,d} , Nicholas N. Jonsson ^{a,c,*}
7	^a Cooperative Research Centre for Beef Genetic Technologies, Armidale, NSW,
8	2351, Australia
9	^b Department of Primary Industries & Fisheries, Animal Research Institute,
10	Yeerongpilly, Qld, 4105 Australia
11	^c The University of Queensland, School of Veterinary Science, St Lucia, Qld, 4072
12	Australia
13	^d Centre for Comparative Genomics, Murdoch University, Murdoch, WA, 6150
14	Australia
15	
16	*Corresponding author.
17	Tel.: +61 7 3365 1279; fax: +61 7 3365 1255.
18	E-mail address: n.jonsson@uq.edu.au
	PCT -
	P

19 Abstract

20	Resistance against synthetic pyrethroid (SP) products for the control of cattle
21	ticks in Australia was detected in the field in 1984, within a very short time of
22	commercial introduction. We have identified a mutation in the domain II S4-5 linker
23	of the para-sodium channel that is associated with resistance to SPs in the cattle tick
24	Rhipicephalus (Boophilus) microplus from Australia. The cytosine to adenine
25	mutation at position 190 in the R. microplus sequence AF134216, results in an amino
26	acid substitution from leucine in the susceptible strain to isoleucine in the resistant
27	strain. A similar mutation has been shown to confer SP resistance in the whitefly,
28	Bemisia tabaci, but has not been described previously in ticks. A diagnostic
29	quantitative PCR assay has been developed using allele-specific Taqman® minor
30	groove-binding (MGB) probes. Using the assay to screen field and laboratory
31	populations of ticks showed that homozygote allelic frequencies correlated highly
32	with the survival percentage at the discriminating concentration of cypermethrin.
33	Keywords: Rhipicephalus microplus; Cattle tick; Synthetic pyrethroid; Acaricide
34	resistance; quantitative PCR
35	ACCE
	P

1. Introduction

37	Even before the commercial release of synthetic pyrethroid (SP) products for
38	the control of cattle ticks in Australia in the early 1980s, Jim Nolan and associates
39	(Nolan et al., 1977) had demonstrated that an organochlorine-resistant strain of cattle
40	ticks (Rhipicephalus (Boophilus) microplus) showed cross-resistance to experimental
41	SPs. These ticks had resistance ratios (ratio of the concentration required to kill a
42	given proportion of a sample of resistant ticks compared with the concentration
43	required to kill the same proportion of a sample of susceptible ticks, e.g.
44	LC_{50} (resistant)/ LC_{50} (susceptible)) of up to 10 in larvae (Nolan et al., 1977). The
45	mechanism was subsequently determined to be increased esterase activity
46	(Schnitzerling et al., 1983). Resistance was indeed detected against SPs in the field in
47	1984, within a very short time of their commercial introduction (Nolan et al., 1989).
48	In one strain (Marmor) the resistance ratios were 3, 9.5 and 6 for flumethrin,
49	cyhalothrin and cypermethrin, respectively, and were due to increased detoxification.
50	However, some cases of field resistance were associated with much higher resistance
51	ratios and there was no evidence of increased detoxification. For example, the
52	Parkhurst strain was associated with resistance ratios of 114 against cypermethrin,
53	130 against cyhalothrin, 152 against deltamethrin and 446 against flumethrin. A
54	second mechanism conferring SP resistance, independent of increased detoxification,
55	seemed likely (Nolan et al., 1989).
56	In the USA, Miller and co-workers demonstrated a similarly diverse pattern of
57	resistance to SP products in Mexican ticks (Miller et al., 1999). They showed that
58	resistance ratios were consistently greater than 1,000 for the Corrales and San Felipe
59	strains, in which there was no evidence of increased detoxification mechanisms. In
60	contrast, detoxification was evident in the Coatzacoalcos strain, which had a

61	resistance ratio of 166, with synergist ratios with permethrin of 19.7 and 13.0 for
62	triphenylphosphate and piperonyl butoxide, respectively (Miller et al., 1999). The
63	synergist ratio is the ratio of the concentration of the active compound required to kill
64	a given proportion of ticks in the absence of the synergist to the concentration of the
65	active compound required to kill the same proportion of ticks in the presence of the
66	synergist. Pyrethroid insecticides primarily target the voltage-gated sodium channel
67	and point mutations in the gene have been linked to SP resistance in numerous insect
68	species including flies, cockroaches, moths, aphids, mosquitoes, beetles, thrips and
69	fleas (reviewed by Dong, 2007). The gene consists of four domains (I-IV) each
70	containing six segments (S1-6). A resistance-linked mutation in the domain III S6
71	para- sodium channel that caused an amino acid substitution from phenylalanine (F)
72	to isoleucine (I) was discovered in the Corrales and San Felipe R. microplus strains
73	(He et al., 1999), but has not been reported in ticks in Australia.
74	Most mutations that confer SP resistance in arthropods are found in the
75	domain II S6 or in the linker between domain II S4-5 (Williamson et al., 1996;
76	Guerrero et al., 1997; Morin et al., 2002). In houseflies, a leucine (L) to phenylalanine
77	(F) replacement in the domain II S6 alone confers knockdown resistance (kdr) , and a
78	methionine (M) to threonine (T) replacement in the domain II S4-5 linker in addition
79	to the kdr mutation confers super-kdr resistance (Williamson et al., 1996). In some
80	cases, such as the whitefly Bemisia tabaci, a mutation in the domain II S4-5 linker
81	alone has been associated with resistance to SPs (Morin et al., 2002).
82	Various bioassay techniques have been developed for detecting acaricide
83	resistance in ticks, however the most definitive method for many acaricides has been
84	the larval packet technique (LPT) (Stone and Haydock, 1962). This method has been
85	adopted by the Food and Agriculture Organization of the United Nations (FAO) as the

86	standard for acaricide resistance detection and measurement (Jonsson et al., 2007). In
87	the LPT, live larvae are exposed to filter paper packets impregnated with acaricide,
88	incubated for acaricide-specific time periods and then larval mortality is assessed. The
89	LPT can be used to detect resistance to organochlorines, organophosphates, synthetic
90	pyrethroids, amidines and macrocyclic lactones, and can be used for single and multi-
91	host ticks. It is a repeatable test that performs better than the widely used adult
92	immersion test (Jonsson et al., 2007). Although the LPT provides repeatable
93	indications of the overall level of resistance to acaricides of a given population, it does
94	not provide an indication of the proportion of a population that carries resistance-
95	conferring genes and the requirement for larvae means that it takes at least 6 weeks to
96	provide a result.
97	Allele-specific PCR assays and probe-based quantitative PCR assays have
98	been developed to detect drug resistance in a variety of organisms (Wada et al., 2004;
99	Moreno et al., 2008; Yoshida et al., 2008). Such assays offer sensitive and rapid
100	alternatives to bioassays required to determine levels of drug resistance for the
101	subsequent application of appropriate treatments. Further advantages of molecular-
102	based assays are that specimens do not need to be maintained alive; ticks can be
103	screened at any life-stage, reducing the time and cost associated with completing life
104	cycles in the laboratory; and there is comparatively little exposure of laboratory
105	technicians to the toxic compounds used in the bioassays. The obvious disadvantage is
106	that in contrast to the LPT, more advanced equipment is required to conduct the tests.
107	Another, perhaps more important disadvantage is that PCR-based assays can only
108	detect the known mutations and will not detect new mutations in the same gene,
109	mutations in other genes or enhanced detoxification through over-expression of

- 110 esterases, mixed function oxidases or GSTs. For this reason, PCR-based assays should
- 111 not be viewed as a complete replacement for conventional bioassays.
- 112 In this paper we describe the identification of a mutation in the domain II S4-5
- 113 linker that is associated with resistance to SPs in the cattle tick *Rhipicephalus*
- 114 microplus. The C-A mutation at nucleotide position 190 in Genbank R. microplus
- sequence AF134216 results in an L to I substitution, the same as that described by
- 116 Morin et al. (2002) in the whitefly. A molecular assay was developed to confirm the
- 117 detection of this mutation in resistant tick strains.
- 118
- 119
- 120 **2. Materials and methods**
- 121
- 122 2.1. Laboratory tick strains for assay development

123 A strain of ticks resistant to SPs (Parkhurst; Nolan et al., 1989) and a strain

- susceptible to all acaricides (NRFS, or N; Stewart et al., 1982), are maintained at the
- 125 Queensland Department of Primary Industries and Fisheries (DPI&F) Animal
- 126 Research Institute. Parkhurst ticks are resistant to all SPs, including flumethrin,
- 127 deltamethrin, cyhalothrin and cypermethrin (Nolan et al., 1989). Homozygous
- resistant ticks were selected from the SP resistant (Parkhurst) strain by selecting
- 129 larvae that survived exposure to the discriminating concentration of cypermethrin
- 130 expected to kill all susceptible ticks but no resistant ticks (0.3% w/v). Homozygous
- 131 susceptible (wild type) ticks were obtained from the NRFS (N) strain which has 100%
- 132 mortality with cypermethrin treatment (Stewart et al., 1982).
- 133
- 134 2.2. Field isolates of ticks for validation of assay

135 The DPI&F provides a diagnostic acaricide resistance testing service to cattle 136 producers throughout Australia, using the LPT (Stone and Haydock, 1962). Larvae 137 remaining after diagnostic testing are stored frozen at -20° C to use for research on the 138 development of molecular diagnostic tests and for population genetic studies. The 139 database of results from diagnostic samples submitted to the DPI&F for acaricide 140 resistance using the LPT were examined to identify field populations with a range in 141 survivorship when exposed to cypermethrin. Diagnostic submissions were identified 142 for which survivorship at the discriminating dose of cypermethrin (0.3% w/v) was 143 0%, 28%, 53% and 75% and from which sufficient frozen, stored larvae were 144 available. Cypermethrin is used routinely in the LPT bioassay because all ticks 145 resistant to cypermethrin are expected to be resistant to all SPs (Nolan et al., 1989). 146 One hundred larvae from the Parkhurst strain as well as 100 larvae from each of the 147 four additional field isolates were screened with the new quantitative PCR diagnostic 148 assay to evaluate its performance. 149

150 2.3. DNA extraction, amplification and sequencing

151 Single tick larvae were crushed with forceps in a 200 μ l microfuge tube. Fifty 152 microlitres of lysis buffer (PCR buffer containing 67 mM Tris-HCl pH 8.8, 16.6 mM 153 (NH₄)₂SO₄, 0.45% Triton X-100, 0.2 mg/ml Gelatin, 2.5 mM Mg, 0.25 µl Tween 20) 154 were then added to the crushed ticks followed by $0.125 \,\mu$ l of 20 mg/ml Proteinase K. 155 The ticks were incubated overnight at 56° C then heat inactivated at 95° C for 45 min. 156 PCR genomic DNA primers were designed to amplify the exon region 157 between domain II, S4 loop and domain II, S5 because it is an area where resistance-158 conferring mutations have been described previously. Intron position was determined 159 from an alignment of partial sodium channel *R. microplus* RNA (Mexican strain

160	GenBank accession number AF134216) against Ixodes scapularis sodium channel
161	DNA sequences obtained searches using the BLASTn algorithm for matches against
162	Ixodes contigs (Ixodes genome: http://iscapularis.vectorbase.org). Genomic DNA
163	amplification was between forward primer BmNaF5 5'
164	TACGTGTGTTCAAGCTAGC (position 103 in <i>R. microplus</i> GenBank accession
165	number <u>AF134216</u>) and reverse primer BmNaR5 5' ACTTTCTTCGTAGTTCTTGC
166	(position 260 in <i>R. microplus</i> GenBank accession number <u>AF134216</u>) producing a
167	167 bp product. PCR reactions contained 0.5 μ M of each primer, combined with 10-
168	100 ng of template DNA, 10 x Taq buffer, 0.8 mM dNTP, 3.75 mM magnesium and
169	0.05 units/µl of Taq polymerase (Geneworks BTQ-1). This mix was amplified in an
170	Applied Biosystems 2720 thermocycler for 30 cycles. Cycle 1 was 95°C for 60 s,
171	50°C for 45 s and 72°C for 90 s. This was followed by 29 shorter cycles, 95°C for 30
172	s, 50°C for 30 s and 72°C for 90 s. The mix was held at 72°C for 7 min to complete
173	extension then dropped to 4°C. Products were viewed on an ethidium bromide stained
174	1.5% agarose and tris(hydroxymethyl)aminomethane, acetic acid, EDTA (TAE) gel.
175	PCR products were concentrated and desalted prior to sequencing using
176	Exosap-it® (USB Corporation distributed by GE Healthcare Bio-Sciences, Rydalmere
177	NSW, Australia). PCR products were sequenced using an ABI Prism Big Dye
178	Terminator Cycle Sequencing Ready Reaction Kit Version 3.1 (PE Applied
179	Biosystems, California, USA) and the products were run on an ABI 3130xl automated
180	sequencer. Forward and reverse sequences were aligned and edited using ChromasPro
181	(Technelysium Pty Ltd, Tewantin, Australia).
182	
183	2.4. Dual probe quantitative PCR diagnostic assay

184	Generic primers and two diagnostic Taqman® MGB probes (Table 1) were
185	designed around the target mutation site using Primer Express (Version 2.0 Applied
186	Biosystems, California, USA). Quantitative PCR assays were run on both Rotor-Gene
187	3000 and Rotor-Gene 6000 (Corbett Research, Mortlake, NSW, Australia)
188	thermocyclers. Reactions of 20 µl total volume containing 8 µl RealMasterMix Probe
189	(Eppendorf), PCR primers at a concentration of 300 nM, the two MGB Taqman®
190	probes at 200 nM each, 4% DMSO and 5 µl of undiluted extracted DNA.
191	Amplification conditions were 2 min at 95°C followed by 45 cycles of 15 s at 95°C,
192	20 s at 58°C and 20 s at 68°C, acquiring the differently coloured FAM^{TM} and VIC^{TM}
193	fluorescence (Applied Biosystems) at the end of the extension step. At the completion
194	of the run the dynamic tube was turned on and the data was slope corrected. After
195	preliminary testing the threshold line was set to 0.01 for all assays. Ticks were scored
196	using the allelic discrimination function. Known homozygous and manually mixed
197	heterozygous samples were run alongside all unknown ticks as standards and a
198	negative PCR control, substituting water for DNA, was also included in every run.
199	
200	2.5. Allele-specific PCR assay

201 Allele-specific primers were designed using the Web-based Allele Specific 202 Primer designing tool (WASP) Bioinformatics Laboratory, BIOTEC 2006-2007 203 (http://bioinfo.biotec.or.th/WASP) (Table 1). A mis-match of a C to a T was 204 incorporated at the penultimate base of the forward allele-specific primers to reduce 205 the possibility of mis-primed amplification, thus increasing the primers' specificity. 206 Amplification of genomic DNA was carried out in two separate PCR reactions 207 (forward susceptible + reverse common), (forward resistant + reverse common), each 208 producing a 102 bp product. PCR reactions contained 0.5 µM of each primer,

209	combined with 10-100 ng of template DNA, $10 \times \text{Taq}$ buffer, 0.3 mM dNTP, 3.8 mM
210	magnesium and 0.05 units/ μ l of Taq polymerase (Geneworks BTQ-1). This mix was
211	thermocycled in an Applied Biosystems 2720 thermocycler for 35 cycles of 94°C for
212	10 s, 52°C for 15 s and 72°C for 20 s. The mix was held at 72°C for 7 min to complete
213	extension then dropped to 4°C. Products were viewed on an ethidium bromide stained
214	2.0% agarose and TAE gel.
215	
216	2.6. Analyses
217	Field populations were tested to determine whether allele frequencies
218	conformed to the Hardy–Weinberg equilibrium (HWE) using GENEPOP 3.4
219	(Raymond and Rousset, 1995). Those that did not conform were further tested to
220	determine whether distortion from HWE resulted from deficient or excessive
221	heterozygosity (Raymond and Rousset, 1995).
222	
223	
224	3. Results
225	A single point mutation at position 190 in GenBank R. microplus sequence
226	AF134216 substituting a C for an A was identified in the resistant Parkhurst R.
227	microplus strain. The mutation is non-synonymous, causing an amino acid change
228	from L in the susceptible strain to I in the resistant strain. Table 2 shows the amino
229	acid sequence alignment of this area of the gene for several species.
230	On the basis of this mutation, a dual probe quantitative PCR assay was
231	developed using FAM and VIC labelled probes (Table 1). The assay is sensitive
232	enough to detect the alleles in DNA extracted from single tick larvae. Homozygous

- 233 susceptible ticks (from the NFRS population) produced strong fluorescence in the

234 FAM channel alone. Homozygous resistant ticks (Parkhurst) produced strong 235 fluorescence in the VIC channel and occasionally produced a weak false signal in the 236 FAM (susceptible) channel. This false signal was partly overcome by the introduction 237 of DMSO (4%) into the reaction mix and by adopting three-step temperature assay 238 conditions (adding an annealing step of 58°C). During screening, any heterozygotes 239 identified with weak amplification of the susceptible allele (FAM channel) were 240 confirmed using an allele-specific conventional PCR assay. 241 The distribution of susceptible and resistant alleles in Parkhurst and field 242 collected populations of ticks with varying pyrethroid resistance (based on LPT) are 243 shown in Table 3. Both alleles were detected in all populations with the frequency of 244 the resistant allele (R) ranging from 0.03 to 0.97. The presence of the resistant allele 245 was strongly correlated with the reduced mortality observed in the bioassays with 246 cypermethrin. Only the fully susceptible population (0%) was found to be in HWE; 247 the remaining field populations displayed either heterozygote excess or deficiency 248 (Table 3). The relationship between allele frequency and mortality in the bioassay is 249 illustrated in Fig. 1. There was a strong correlation between the percentage of resistant 250 homozygote ticks and the proportion of survivors in the LPT bioassay ($r^2 = 0.98$) but 251 only a weak relationship between the proportion of heterozygotes and survival ($r^2 =$ 252 0.071), suggesting that the allele conferring resistance to SPs might be recessively 253 inherited. 254 255 256 4. Discussion 257 We believe this to be the first report of a single point mutation in the domain II

258 S4-5 linker of the sodium channel gene in *R. microplus* that is associated with

259 cypermethrin resistance. The mutation causes an amino acid change from L in 260 susceptible ticks to I in resistant ticks. A similar mutation (L925I) has been 261 discovered in whitefly, B. tabaci, in which it confers resistance to SP insecticides 262 (Morin et al., 2002). In houseflies, mutations in the domain II S 6 have been 263 associated with knockdown resistance (kdr) and an additional mutation in domain II 264 S4-5 linker confers a highly resistant phenotype (*super kdr*) (Williamson et al., 1996). 265 Given the absence of a kdr mutation in cattle ticks to date, the use of the terminology 266 *kdr* and *super kdr* does not seem to be appropriate. 267 The C-A mutation at position 190 was identified first in ticks of the cultured 268 Parkhurst strain of R. microplus with high resistance to SPs. Ninety-seven percent of 269 the ticks genotyped from that population were homozygous for the mutation. In 270 contrast, 94% of the ticks from the susceptible field population were homozygous for 271 the wild-type allele, with 6% heterozygotes. The hypothesis that the mutation is associated with resistance was supported by the close correlation ($R^2 = 98\%$) between 272 273 homozygote frequency and survival in the bioassay, using three field populations with 274 intermediate acaricide resistance status. The results suggest that the mutation is a 275 major mechanism for pyrethroid resistance in these field populations. Similarly, the 276 inconsistent association between heterozygotes and survival suggests that the trait is 277 recessive. Controlled mating studies would be required to substantiate this possibility, 278 however. 279 The observed shift from an excess of heterozygotes in populations displaying 280 low level resistance (28-53%) to synthetic pyrethroids, to a deficit of heterozygotes in

- 281 populations displaying a high level of resistance (75-100%), suggests that allele
- 282 frequencies in tick populations exposed to SPs are strongly driven by selection.

283	A diagnostic quantitative PCR assay has been developed using allele-specific
284	Taqman® MGB probes. By amplifying the DNA with generic primers and distinct
285	probe fluorophores (FAM or VIC), single larvae can be screened for both alleles in
286	one multiplexed reaction. Together with assays for detoxification mechanisms that
287	likely exist in the field, the quantitative PCR assay will enable researchers to confirm
288	the role of the mutation in the expression of resistance in the field. The assay will also
289	enable the rapid confirmation of suspected resistance to synthetic pyrethroid
290	acaricides in samples of ticks collected from the field. Because of the potential role of
291	detoxification mechanisms and other mutations, the molecular assay should be used in
292	conjunction with, rather than as a replacement for, the existing LPT bioassay.
293	
294	
295	Acknowledgements
296	The authors would like to acknowledge the assistance of Ralph Stutchbury of

297 DPI&F with the identification of the tick samples used in this study.

ACCEPT

298	References
299	
300	Dong, K. 2007. Insect sodium channels and insecticide resistance. Invert. Neurosci. 7,
301	17–30.
302	
303	Guerrero, F. D., Jamroz, R.C., Kammlah, D., Kunz, S.E. 1997. Toxicological and
304	molecular characterisation of pyrethroid resistant horn flies, Haematobia
305	irritans: identification of kdr and super-kdr point mutations. Insect Biochem.
306	Molec. Biol. 27, 745-755.
307	$\langle \mathcal{O} \rangle$
308	He, H., Chen, A.C., Davey, R.B., Ivie, G.W., George, J.E. 1999. Identification of a
309	point mutation in the para-sodium channel gene from a pyrethroid-resistant
310	cattle tick. Biochem. Biophys. Res. Comm. 261, 558-561.
311	
312	Jonsson, N.N., Miller, R.J., Robertson, J.L. 2007. Critical evaluation of the modified-
313	adult immersion test with discsriminating dose bioassay for Boophilus
314	microplus using American and Australian isolates. Vet. Parasitol. 146, 307-
315	315
316	$-O^{*}$
317	Miller, R.J., Davey, R.B., George, J.E. 1999. Characterisation of pyrethroid resistance
318	and susceptibility to coumaphos in Mexican Boophilus microplus (Acari:
319	Ixodidae). J. Med. Entomol 36, 533-538.
320	
321	Moreno M., Vicente J.L., Cano J., Berzosa P.J., de Lucio A., Nzambo S., Bobuakasi
322	L., Buatiche J.N., Ondo M., Micha F., Do Rosario V.E., Pinto J., Benito A.

323	2008. Knockdown resistance mutations (kdr) and insecticide susceptibility to
324	DDT and pyrethroids in Anopheles gambiae from Equatorial Guinea. Trop.
325	Med. Int. Health. 13, 430-433.
326	
327	Morin, S., Williamson, M.S., Goodson, S.J., Brown, J.K., Tabashnik, B.E., Dennehy,
328	T.J. 2002. Mutations in the <i>Bemisia tabaci para</i> sodium channel gene
329	associated with resistance to a pyrethroid plus organophosphate mixture.
330	Insect Biochem. Mol. Biol. 32, 1781-1791.
331	\mathcal{O}^{*}
332	Nolan, J., Roulston, W.J., Wharton, R.H. 1977. Resistance to synthetic pyrethroids in
333	a DDT-resistant strain of Boophilus microplus. Pestic. Sci. 8,484-486.
334	
335	Nolan, J., Wilson, J.T., Green, P.E., Bird, P.E. 1989. Synthetic pyrethroid resistance
336	in field samples in the cattle tick (Boophilus microplus). Aust. Vet. J. 66, 179-
337	182.
338	
339	Raymond M., Rousset F., 1995. GENEPOP (version 1.2): Population genetics
340	software for exact tests and ecumenicism. J. Heredity, 86:248-249.
341	
342	Schnitzerling, H.J., Nolan, J., Hughes, S. 1983. Toxicology and metabolism of some
343	synthetic pyrethroids in larvae of the cattle tick <i>Boophilus microplus</i> (Can.).
344	Pestic. Sci. 14, 64-72.
345	

346	Stewart N.P., Callow, L.L., Duncalfe F 1982. Biological comparisons between a
347	laboratory-maintained and a recently isolated field strain of Boophilus
348	microplus. J Parasitol, 68, 691-694.
349	
350	Stone, B.F., Haydock, K.P. 1962. A method for measuring the acaricide susceptibility
351	of the cattle tick <i>B. microplus</i> (Canestrini), Bull. Entomol. Res. 53, 563–578.
352	
353	Wada T., Maeda S., Tamaru A., Imai S., Hase A., Kobayashi K. 2004. Dual-probe
354	assay for rapid detection of drug-resistant Mycobacterium tuberculosis by real-
355	time PCR.J Clin Microbiol.42, 5277-5285.
356	
357	Williamson, M.S., Martinez-Torres, D., Hick, C.A., Devonshire, A.L., 1996.
358	Identification of mutations in the housefly para-type sodium channel gene
359	associated with knockdown resistance (kdr) to pyrethroid insecticides. Mol.
360	Gen. Genet. 252, 51-60.
361	
362	Yoshida S., Hige S., Yoshida M., Yamashita N., Fujisawa S., Sato K., Kitamura T.,
363	Nishimura M., Chuma M., Asaka M., Chiba H. 2008. Quantification of
364	lamivudine-resistant hepatitis B virus mutants by type-specific TaqMan minor
365	groove binder probe assay in patients with chronic hepatitis B. Ann. Clin.
366	Biochem. 45, 59-64.
367	Υ Υ

368 **Figure legend**

369

370 Fig. 1. Correlation between population genotype and survivorship in the larval packet

- 371 bioassay at a discriminating concentration of cypermethrin. Black diamonds represent
- 372 r ,* the resistant allele as an homozygous genotype only while grey squares represent the

- 379 **Table 1.** Primers and probes for dual-probe quantitative PCR assay and allele-specific
- 380 conventional PCR assay targeting a single nucleotide mutation (underlined) in the
- 381 sodium channel that confers synthetic pyrethroid (SP) resistance in Australian
- 382 *Rhipicephalus (Boophilus) microplus.* The mismatched penultimate base in the
- 383 conventional PCR forward primers is italicised.

Primer/Probe	Position in	Sequence 5' -		
	AF134216			
Quantitative PCR assay				
Forward primer (common)	132	CAAATCGTGGCCTACCCTTA		
Reverse primer (common)	198	TTCCCAGGACAAAGGTCAAG		
Susceptible MGB probe (C) FAM TM	181	ATCGGTGCCCTCG		
fluorophore				
Resistant MGB probe (A) VIC TM	180	CATCGGTGCC <u>A</u> TC		
fluorophore				
Conventional PCR assay				
Forward primer (susceptible)	173	GGAAAACCATCGGTGCT <u>C</u>		
Forward primer (resistant)	173	GGAAAACCATCGGTGCT <u>A</u>		
Reverse primer (common)	255	CTTCGTAGTTCTTGCCAAAG		

385 MGB, minor groove-binding.

386

384

1ª

Table 2. Amino acid sequence alignment for the domain II S4-5 linker region from several species of diverse taxa, showing the leucine to isoleucine mutation in cattle tick and the whitefly, highlighted in black. A second mutation in the whitefly is underlined. Highly conserved residues across species are shaded.

Rhipicephalus microplus	
NRFS ^a (susceptible)	RVFKLAKSWPTLNLLISIMGKTIGALGNLTFVLGIIIFIFAVMGMQLFGKNYEES
Parkhurst (resistant)	$RVFKLAKSWPTLNLLISIMGKTIGA \mathbf{I}GNLTFVLGIIIFIFAVMGMQLFGKNYEES$
B. tabaci (susceptible)	AKSWPTLNLLISI M GRTVGALGNLTFVLCIIIFIFAVMGMQLFGKNYTDN
B. tabaci (resistant)	AKSWPTLNLLISI ${f v}$ GRTVGA ${f I}$ GNLTFVLCIIIFIFAVMGMQLFGKNYTDN
D. melanogaster	RVFKLAKSWPTLNLLISIMGRTMGALGNLTFVLCIIIFIFAVMGMQLFGKNYHDH
M. domestica	RVFKLAKSWPTLNLLISIMGRTMGALGNLTFVLCIIIFIFAVMGMQLFGKNYIDH
B. germanica	RVFKLAKSWPTLNLLISIMGRTVGALGNLTFVLCIIIFIFAVMGMQLFGKNYYDN
L. opalescens	RVFKLAKSWPTLNMLISIVAGTMGALGNLTLVLGIIVFIFAVMGQQLFGANYEKP
G. gallus	RVFKLAKSWPTLNMLIKIIGNSVGALGNLTLVLAIIVFIFAVVGMQLFGKNYKEC
M. musculus	RVFKLAKSWPTLNMLIKIIGNSVGALGNLTLVLAIIVFIFAVVGMQLFGKSYKEC
H. sapiens	RVFKLAKSWPTLNMLIKIIGNSVGALGNLTLVLAIIVFIFAVVGMQLFGKSYKEC

388

^aNon-resistant field strain.

390 Accession numbers in GenBank are as follows: *Bemisia tabaci* (Whitefly) <u>CAD29437</u>, *Drosophila melanogaster* (Fruit Fly) <u>P35500</u>, *Musca*

domestica (House Fly) <u>U38814</u>, Blattella germanica (German Cockroach) <u>U71083</u>, Loligo opalescens (Squid) <u>L19979</u>, Gallus gallus (Chicken)
 <u>XP_424477</u>, Mus musculus (Mouse) <u>CAM23795</u>, Homo sapiens (Human) <u>P35499</u>.

393

395

396 **Table 3**. Distribution of observed and expected genotype frequencies and results of

397 tests for Hardy-Weinberg (H-W) equilibrium for sodium channel alleles in different

398 populations of ticks with varying synthetic pyrethroid resistance.

Isolate	Genotype frequencies observed (expected)			P value H-W	Heterozygote	
(LPT resistance)	SS	RS	RR	Total	exact test	deficit or excess
Field 0%	94 (94)	6 (6)	0 (0)	100	1.000	
Field 28%	19 (25)	61 (50)	20 (26)	100	0.045 ^a	excess
Field 53%	0 (6)	47 (36)	53 (59)	100	0.001 ^a	excess
Field 75%	12 (6)	23 (36)	65 (59)	100	<0.0001 ^a	deficit
Parkhurst 100%	3 (0)	0 (6)	97 (94)	100	<0.0001 ^a	deficit

399 ^a significant at $\alpha = 0.05$ level,

400 S = allele with C at position 190 linked to susceptible phenotype, R = allele with A at

6

401 position 190 linked to resistant phenotype, hence SS = putative susceptible

402 homozygote, RS = heterozygote, RR = putative resistant homozygote

403

404 LPT, larval packet technique.

A COLORING