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Abstract. Freshwater environments and their fishes are particularly vulnerable to climate change because the
persistence and quality of aquatic habitat depend heavily on climatic and hydrologic regimes. In Australia, projections
indicate that the rate and magnitude of climate change will vary across the continent. We review the likely effects of these
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Climate change and Australian freshwater fish

Introduction

Climate change is a major threat to global biodiversity and
ecosystem functioning (Thomas et al. 2004; IPCC 2007) and its
effects are already evident across a range of environments and
biota (Parmesan and Yohe 2003). The rate and severity of
climate changes have, and will, vary across the globe, with
particular regions, ecosystems and taxa being differentially
affected depending on their susceptibility and level of exposure.
Freshwater environments, and the organisms that inhabit them,
are particularly vulnerable because they are isolated and frag-
mented within a terrestrial landscape (Fausch et al. 2002).
Furthermore, surface water, which determines the quality and
availability of aquatic habitat, depends heavily on rainfall and
temperature regimes that will be drastically affected by climate
change (Carpenter ef al. 1992; Hobday and Lough 2011). Rel-
atively few studies have explored the implications of climate
change for freshwater biota, with the majority of these focussing
on northern hemisphere or high-latitude freshwaters (e.g.
Xenopoulos and Lodge 2006; Buisson et al. 2008; Graham and
Harrod 2009; Heino et al. 2009; McCullough et al. 2009; but see
Carpenter et al. 1992, for global perspectives, and Chessman
2009 and Kingsford et al. 2011, for Australian perspectives).
Projected global warming that surpasses or optimises thermal
tolerances and requirements is often emphasised as a major
driver of assemblage turnover, range shifts and range expan-
sions in these systems because surface water is seldom limiting
(but see Xenopoulos and Lodge 2006, for hydrological exam-
ple). Much less, however, is known of how climate change will
affect freshwaters in arid and semiarid regions where surface
water is already scarce and likely to become more so (Bates et al.
2008).

Australia encompasses a diversity of climates and geogra-
phy. Its aquatic biota inhabits a broad range of freshwater
environments, spanning the naturally variable and unpredictable
hydrology of arid and semiarid regions that cover much of the
continent, to the highly seasonal yet predictable flows of tropical
regions and the more stable and consistent baseflow regimes of
some temperate and subalpine regions (Puckridge et al. 1998;
Kennard et al. 2010). Australia’s freshwater fish species (~206
native species Allen et al. 2002), consequently, exhibit a diverse
array of reproductive, morphological and physiological adapta-
tions that facilitate persistence in particular environmental
circumstances (e.g. Humphries et al. 1999; Pusey et al. 2004;
Crook et al. 2010a). However, the extent to which current
populations and assemblages will persist into the future remains
unclear. Never before have freshwater fish faced such a magni-
tude and rate of climate change, coupled with the added pressure
of human disturbance (reviewed in Dudgeon et al. 2006). It is
clear that the projected reductions in surface-water availability
resulting from climate change, despite high uncertainty associ-
ated with greenhouse gas-scenario selection and model down-
scaling (CSIRO and Bureau of Meteorology 2007; Hobday and
Lough 2011), pose a significant threat to the viability of
freshwater fish populations in many regions of Australia.

At present, information regarding the nature and severity of
this threat is fragmented and largely incidental or anecdotal.
The aim of the present review is to synthesise this existing
information and begin predicting the likely impacts of climate
change on Australia’s freshwater fish species (Fig. 1). We
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conduct regional assessments to explore differences and com-
monalities in potential fish responses to climate change across
the continent, and discuss these in the context of existing
anthropogenic stressors. We also consider the potential for
species to adapt to projected conditions and discuss manage-
ment options to some of the issues raised. The review will
provide a contextual background to facilitate further research
through the identification of key knowledge gaps and will assist
managers in forming proactive and effective responses to the
threats posed by climate change.

Regional comparisons

Across Australia, significant climatic changes have been
observed over the past 50 years (CSIRO and Bureau of Mete-
orology 2007). Average annual air temperatures have risen by
0.9°C, which is faster than the global average (Lough et al.
2011), and rainfall patterns have changed such that some regions
are experiencing significant deficits and others increased vari-
ability. Droughts are also becoming more severe and less pre-
cipitation is falling as snow. Although there are some general
patterns associated with climate change, the impacts on
hydrology and thus aquatic fauna have not been, and will not be,
uniform across the continent (Fig. 2; CSIRO and Bureau of
Meteorology 2007; Hobday and Lough 2011; Lough et al.
2011). In the following sections, we explore the potential
impacts of climate change on freshwater fish across six repre-
sentative geographic regions of Australia (Table 1, Fig. 3) that
loosely correspond to major drainage divisions, hydrological
regimes (Haines et al. 1988; Kennard et al. 2010) and bio-
geographical provinces of freshwater fish (Unmack 2001). The
implications of climate change in the Murray—Darling Basin
are considered in more detail by others (Aldous ef al. 2011;
Kingsford et al. 2011; Pittock and Finlayson 2011; Balcombe
et al. 2011; Pratchett et al. 2011).

Northern Australia

The freshwaters of northern Australia are diverse, ranging from
the complex floodplain-river and billabong systems in the Gulf
of Carpentaria, to deeply incised bedrock-controlled rivers of
the Kimberley region and geographically isolated streams on
upland plateaus. Flow regimes are summer-dominated and vary
according to the extent of seasonality, predictability and degree
of flow permanence (Kennard ef al. 2010). Northern Australia,
as defined here, constitutes only 17% of the continental area, yet
contains ~60% of Australia’s freshwater-fish biodiversity
(Unmack 2001; Pusey et al. 2004). Although most of the
floodplain ecosystems are in good ecological condition and
reflect the integrity of the surrounding savanna and limited ex-
tent of past water-resource development (Woinarski et al. 2007;
Pusey and Kennard 2009), the fish fauna of the region is
increasingly threatened by hydrological alteration and a range of
diffuse threats.

The precise nature of changes in northern Australia’s rainfall
and runoff under various climate scenarios has been notoriously
difficult to quantify with high certainty (Cresswell et al. 2009).
In general, however, the projected trends of slightly reduced
discharge, a minor increase in the number of days of zero flow,
and increased rates of evapotranspiration (Table 1) suggest that
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Schematic diagram highlighting the influences of past climatic and hydrologic regimes, anthropogenic stressors and future climate change, in

shaping historical, current and future freshwater fish assemblages. The interdependency of human activity and future climate and hydrology is emphasised,
each having both additive and interactive implications for future fish assemblages. Alternate pathways to a future assemblage whereby climate-change
impacts are limited or ameliorated by properties intrinsic to the biota or appropriate management interventions that facilitate system adaptation are denoted

by dashed lines.

the current trend for increasing intermittency in inland river
reaches will intensify. More intense cyclones and individual
rainfall events are likely to steepen the flood hydrograph
and increase recharge rates of shallow groundwater aquifers
(Cresswell et al. 2009). The impacts of these minor hydrological
changes on the freshwater fish species of the region are difficult
to predict, except that any reduction in dry-season flows may
potentially exacerbate droughts, reduce the availability of flow-
ing habitats (e.g. riffle habitats used by members of the Ter-
apontidae (grunters) as nursery areas), decrease the extent to
which migratory species may move within individual river
systems (Chan ef al. 2011), and decrease the number of refugial
habitats if spell lengths exceed refugia permanence. Further,
increased rainfall intensity, unaccompanied by an overall sub-
stantial increase in total rainfall, may mean that flood events are
shorter in duration. This may result in intermittent tributary
streams that flow during floods being less likely to provide
suitable spawning habitat for a sufficient time to allow hatching,

development and migration back to permanent water for species
such as plotosid catfishes.

Northern Australia’s coastal freshwater floodplains are
extensive (~30% of the region’s area) and occur close to the
current sea level (D. Ward, pers. comm.); thus, they are
vulnerable to sea-level rise. For example, the extensive coastal
wetlands of Kakadu are only 0.2—1.2m above the mean high
water level (Eliot et al. 1999), which is within the bounds of
projected sea-level rises of ~0.3 m by 2030 (Table 1). Likewise,
increased intensity of cyclones and associated storm surges
further increases the likelihood of saltwater intrusion into
coastal freshwater wetlands, with the attendant risk of floristic
change (e.g. loss of Melaleuca forests and upstream migration of
mangroves) and geomorphological transition from freshwater
wetlands to saline mudflats (Eliot et al. 1999). The transition of
wetlands to saline mudflats would occur rapidly (Woodroffe
1995) and locally extirpate wetland-dependent species such as
pennyfish (Denariusa bandata) and blue-eyes (Pseudomugil
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tennellus and P. gertrudae) and potentially reduce population
sizes of many other species, including the diadromous barra-
mundi (Lates calcarifer) for which coastal floodplain wetlands
are an important nursery habitat. A shift from a wetland to saline
mudflat habitat would have widespread effects on primary
production, foodwebs, fish-assemblage structure and overall
diversity.

Mean annual air temperatures in northern Australia already
range from 30°C to 33°C, and maximum instantaneous water

temperatures frequently exceed this range (e.g. >37°C), partic-
ularly during the dry season (Pusey et al. 2004; Hamilton 2010).
Projected warming in northern Australia, coupled with
increased intermittency in rivers that regularly cease to flow
(Cresswell et al. 2009; Kennard et al. 2010), may result in
refugial water temperatures exceeding the physiological toler-
ances, already near their lethal limit, of many species. Although
altered thermal regimes might cause a contraction in the
distributions of some species in northern Australia, others may
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Fig. 3. Australian freshwater regions compared in the review.

experience geographic range shifts and expansions when dis-
persal is not restricted by barriers. For example, the broad-scale
distribution of spangled perch (Leiopotherapon unicolor) was
suggested to be limited by the 4°C winter isotherm (Llewellyn
1973), whereas more recent research has extended the distribu-
tion further south (Schiller ef al. 1997). Whether this is due to a
shift southward of the limiting isotherm, or extension beyond
this thermal limit, is unknown. However, range shifts in many
other species restricted to this region may be constrained, given
the presence of arid zones to the immediate south and the
presence of the Great Dividing Range in the east.

Importantly, the generally low levels of human development,
near-natural condition of the catchments and flow regimes
coupled with the few artificial barriers to fish movement and
dispersal mean rivers of northern Australia provide a circum-
stance where the native fauna is less constrained by human
factors in its potential capacity to adjust to system-wide changes
as a result of global climate change.

Wet Tropics

Australia’s Wet Tropics region is confined to a small and iso-
lated coastal strip in the continent’s north-east (Fig. 3) char-
acterised by forested mountain ranges in the upper reaches and
cleared alluvial floodplains in the lowlands (Russell et al. 1996).

The current climate is highly seasonal, with low interannual
variability (Table 1; Kennard ez al. 2010). During the monsoonal
summer months (December—March), air temperature, rainfall
and floodplain inundation are at their peaks, whereas stable
baseflows extend through the dry season (April-November),
maintained by rainfall-recharged groundwater and cloud cap-
ture in upland rainforests (McJannet er al. 2007). The Wet
Tropics region hosts a highly diverse and endemic freshwater
fish fauna (~107 species, ~50% of Australia’s freshwater fish
biodiversity), including representatives from 37 families (Pusey
et al. 2008). These families can be divided into the following
two broad groups: those distinguished by low within-family
generic and specific diversity (i.e. one species per family, e.g.
Scorpaenidae (bullrout)), and those characterised by higher
specific or generic diversity and containing endemics (e.g.
Melanotaeniidae (rainbowfishes)). Most of the fish biodiversity
is found on the narrow coastal plain, in short, lowland main-
channel sections of rivers, owing to natural and anthropogenic
instream barriers that limit upstream movement (Pusey and
Kennard 1996). However, upland streams are important
reservoirs of endemic species because of their prolonged
isolation and persistence as refugia through past glacial maxima
(Schneider and Moritz 1999).

Climate-change modelling suggests that warming and rain-
fall changes will be less pronounced on the north-eastern coast
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than elsewhere in Australia (CSIRO and Bureau of Meteorology
2007). However, the effects of increased flow seasonality and
duration of dry periods (Table 1) is likely to result in greater
upstream tidal penetration, longer water-residence times and
increased water temperatures (Rayner et al. 2008). Increased
water extraction for human use also has the potential to exacer-
bate these effects, with implications for water quality, habitat
availability, riparian vegetation structure, instream productivity
and ultimately fish assemblages (Pusey et al. 2008; Rayner et al.
2009). For example, climate-induced alterations to the structure
of riparian vegetation communities could affect the availability
and consumption of riparian fruits by khaki grunter (Hephaestus
tulliensis) (Rayner et al. 2009). Increases in water-residence
time, instream temperature and autochthonous production could
advantage alien species such as black mangrove cichlid (7ilapia
mariae) that consume filamentous algae — a niche that appears
under-utilised by native species (Rayner et al. 2009). Increases
in the intensity of cyclones and rainfall events will result in a
concurrent change in flood-disturbance regimes (Eliot et al.
1999; Williams et al. 2003), and disrupt the seasonal cycle of
fish-assemblage structure and function (T. Rayner, unpubl.
data).

Cyclonic storm surges will exacerbate the effects of saltwater
intrusion associated with sea-level rise (CSIRO and Bureau of
Meteorology 2007). Projected sea-level rises are likely to have
analogous impacts on the habitat and fishes of the Wet Tropics
to those associated with past sea-level rises (e.g. during the
Holocene) where between 50 and 400 km of main channel
habitat in each catchment was lost (Chivas et al. 2001;
Yokoyama et al. 2001). For example, the lesser salmon catfish
(Arius graeffei) is not found in the Wet Tropics, whereas it is
present in all surrounding systems, where long, low-gradient
main channels were maintained during past climate-change
events (Pusey ef al. 2004). In contrast, the presence of high
mountains in the region is likely to have buffered fishes from
past climate-change events by maintaining flows through cloud
capture, especially in small streams. This hypothesis is consis-
tent with the work of Tedesco et al. (2005) who found the highest
fish species richness in Central and South American and West
African drainages that were connected to rainforest refugia
during the last glacial maximum. Increases in the basal elevation
of orographic cloud formation of 100 m per degree of warming
are predicted, with major implications for flow volumes in
upland tropical streams (Still et al. 1999). Fish species that are
restricted to shallow riffle habitats (e.g. Allen’s cling-goby
(Stiphodon alleni), scaleless goby (Schismatogobius sp.) and
Glossogobius bellendenensis; Pusey et al. 2004) are particularly
vulnerable to extended periods of low rainfall, because their
habitats are likely to experience more frequent and extreme
drying. Never before have Wet Tropics fish faced the challenge
of rapid climate change with the added pressure of human
disturbance.

Lake Eyre Basin

Riverine systems in the arid and semiarid interior of Australia
are characterised by unpredictable and highly variable hydrol-
ogy (Puckridge et al. 1998). Consequently, rivers persist as a
chain of isolated waterholes for most of the time. In the major
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catchments, such as the Diamantina/Warburton, Georgina and
Cooper, flow and flood events generally occur in summer and
occasionally fill large terminal lakes, such as Lake Eyre. The
23 native and 2 alien fish species present in central Australian
rivers often have life-history characteristics adapted for these
variable habitats (Pusey et al. 2004; Balcombe et al. 2006; Ker-
ezsy 2010), with the majority of species reproducing throughout
the year in permanent waterholes (Balcombe and Arthington
2009). Many fish species from central Australian waterways are
also capable of migrating long distances (at least 300 km in the
case of L. unicolor) in ephemeral desert systems when flow and
connection pathways are re-instated (Kerezsy 2010). Addition-
ally, some species such as desert goby (Chlamydogobius ere-
mius) and Lake Eyre hardyhead (Craterocephalus eyresii)
possess specific traits, such as tolerance to hypersaline and
hypoxic conditions and the ability to take up oxygen from the air,
that enable them to persist in arid environments (Thompson and
Withers 2002; McNeil and Schmarr 2009).

Given that arid-zone fish must persist in isolated waterholes
for the majority of the time, any prolonged drying of central
Australia that exceeds waterhole permanence thresholds would
reduce ranges for species in systems where there is already little
surface water (Silcock 2009). In extreme cases, such as the
Neales catchment in South Australia where only a single
permanent waterhole exists (McNeil and Schmarr 2009), pro-
longed drying could result in catchment-wide extinction of all
species. Although most arid-zone fish species have a wide
distribution, some are range-limited, and these species would
obviously be most at risk if catchments experienced increased
drying. Examples include the endemic Cooper Creek catfish
(Neosiluroides cooperensis) and arid-zone populations of more
widespread species such as Australian smelt (Retropinna
semoni), carp gudgeon (Hypseleotris spp.), barred grunter
(Amniataba percoides) and golden goby (Glossogobius aureus).
It is important, however, to acknowledge the role of natural
environmental variability with, for example, an ephemeral
catchment such as the Mulligan containing no water in a dry
year and at least seven species of fish following a flood (Kerezsy
2010). Consequently, determining the precise impact of climate
change (as opposed to the overall impact of on-going climatic
variability) on these arid riverine systems is likely to be difficult.

In contrast, the responses of isolated fish populations in
spring complexes to a reduction in the availability of artesian
water, associated with less rainfall and groundwater recharge
(Fairfax et al. 2007), are more predictable. These include range
reductions and possible extinction of endangered and endemic
species in springs such as Dalhousie in South Australia and
Edgbaston and Elizabeth Springs in Queensland. Undoubtedly,
the species at most risk from spring drying include the red-
finned blue eye (Scaturiginichthys vermeilipinnis), which is
currently present in only four springs at Edgbaston in western
Queensland (Fairfax er al. 2007), the Dalhousie endemics
(Neosilurus sp., Cratocephalus dalhousiensis, Chlamydogobius
sp.) and the Flinders Ranges gudgeon (Mogurnda clivicola),
which is restricted to two springs in the Northern Flinders
Ranges (McNeil ef al. 2010). These fish species, however,
currently face more immediate threats such as alien species
(Kerezsy 2009), agricultural development and disease (McNeil
and Schmarr 2009). Additionally, water-resource development
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in the Lake Eyre Basin is likely to increase under drying climatic
conditions, with the possible exploitation of artesian spring
resources posing a catastrophic threat to the persistence of these
groundwater-dependent species.

South-western Australia

The Mediterranean climate of south-western Australia is char-
acterised by highly seasonal rainfall (Nicholls et al. 1997),
resulting in seasonal stream flow and significant periods of
natural intermittency. As a consequence, the aquatic fauna has
evolved under a regime of seasonal inundation of wetlands and
annual periods of no-flow in rivers (Bunn et al. 1986). However,
since 1975, a climatic phase shift has seen significant reductions
in rainfall and stream flows (Table 1) (CSIRO 2009q). Fur-
thermore, 80-90% of native vegetation has been cleared for
agriculture (Halse et al. 2003), resulting in >70% of the Aus-
tralian continent’s secondary salinised areas. Now only ~44%
of flow in the largest 30 rivers is fresh (Mayer ez al. 2005). These
current stressors have already caused reductions in the range of
aquatic fauna from upstream areas of catchments (e.g. Morgan
et al. 1998; Halse et al. 2003; Davies 2010) and the greatest
diversity of freshwater fishes is now found in less-degraded,
forested systems (Morgan et al. 1998).

Although this region hosts a relatively low-diversity native
fish assemblage (10 native, 10 alien species), 80% of these
natives are endemic (Morgan et al. 1998). Many species have
highly restricted distributions; e.g. salamanderfish (Lepidoga-
laxias salamandroides), black-stripe minnow (Galaxiella
nigrostriata) and mud minnow (G. munda) are found almost
exclusively in seasonal peat-wetland habitats of the far south-
west (Pusey and Edward 1990; Morgan et al. 2000). Endemic
freshwater fish species of the region breed during high flow
periods in winter and spring (Allen et al. 2002) and this is the
period projected to continue to experience substantial declines
in rainfall and discharge (CSIRO 2009a). Many species also
move into seasonally inundated tributary or wetland habitats to
spawn (e.g. Pen and Potter 1991; Beatty et al. 2009). Durational
suitability of these habitats has already declined since 1975 and
will continue to decline in the face of an additional 25%
reduction in annual flow (CSIRO 2009a). The projected addi-
tional decreases in rainfall, stream flow and groundwater
recharge (CSIRO 2009a, 2009b), and increases in extreme
weather events associated with climate change (Table 1), cou-
pled with increased human exploitation of water resources
(CSIRO 2009a, 2009b) will only exacerbate current impacts
on an already stressed system.

Substantial reductions in groundwater levels will have major
implications for habitat availability. For example, groundwater-
derived baseflow in the Blackwood River is important in
maintaining access to feeding areas (riffles) for freshwater
cobbler (Tandanus bostocki), with a reduction of just 8% in
baseflow discharge predicted to prevent access to riffle zones
(Beatty et al. 2010b). Further reductions in rainfall will poten-
tially prevent access to these habitats because baseflow magni-
tude depends on the previous year’s rainfall (Golder and
Associates 2008). Likewise, projected reductions in ground-
water discharge may result in the loss of tributaries as freshwater
refugia during baseflow periods (Beatty et al. 2009). Further
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rainfall and groundwater reductions in the northern region of
south-western Australia will threaten the habitats of outlying
populations of both Galaxiella species (300 km north of com-
mon range Morgan et al. 1998; Beatty et al. 2010a) which are
already under pressure from recent flow reductions (Durrant
2009). Reductions in rainfall, delayed onset of the wet season
and lowered groundwater levels are likely to seriously threaten
the two aestivating species, namely L. salamandroides and
G. nigrostriata (Pusey and Edward 1990). Both species are very
small, with limited energetic capacity to persist for many
months in the dormant condition; prolongation of this state
increases mortality and has serious consequences for subsequent
reproductive viability after the onset of winter rains (Pusey
1990).

Salinisation of lotic systems has already altered fish assem-
blages, causing upstream colonisation by estuarine species and
downstream contraction of more sensitive species into remain-
ing fresher habitats (Beatty et al. 2009; Beatty et al. 2010a).
Along with maintaining habitat connectivity, fresh groundwater
discharge buffers salinities in the main channel of the Black-
wood River (Beatty er al. 20105b), resulting in several fishes
utilising only the main channel during baseflow periods when
most freshwater tributaries cease to flow (Beatty et al. 2009).
Although the relationship between future rainfall reductions and
trends in salinisation of rivers throughout this region is largely
unknown (Mayer et al. 2005), further reductions in fresh
groundwater discharge have the potential to result in the loss
of main channel habitat for freshwater fish in many south-
western rivers. Some species, such as western minnow (Galax-
ias occidentalis), may be resilient to additional hydrological
changes compared with other fish species that have undergone
drastic range declines or have highly specialised habitat require-
ments. This fish has an acute salinity tolerance of 14 gL~
(Beatty etal. 2011) and continues to occupy large areas of inland
salinised catchments (Morgan ef al. 1998; Beatty et al. 2011).

Projected increases in the number of extreme-temperature
days (i.e. >40°C, Suppiah et al. 2007) will increase the risk of
the thermal tolerances of fish being exceeded in the small
refuge-pool habitats typical throughout the south-west (Davies
2010), which could result in southerly contractions of the
region’s fish fauna (Booth et al. 2011). Temperature is also a
critical factor in the reproduction and growth of many freshwa-
ter fish species (e.g. Pen and Potter 1991) and changes in
prevailing average temperature regimes may lead to a decou-
pling of the thermal and hydrological conditions essential for
reproductive success. Reductions in discharge and elevated
temperatures are likely to favour the continued establishment
and spread of alien species in south-western Australia, such as
mosquitofish (Gambusia holbrooki) and goldfish (Carassius
auratus). In particular, G. holbrooki is predicted to increase in
prevalence because of its life-history characteristics and high
thermal and salinity tolerances (Pyke 2005), with its likely
increased dominance of remaining refugia further imperilling
the persistence of native species into the future.

South-eastern Australia

South-eastern Australia has a diversity of freshwaters, ranging
from coastal rivers to alpine streams (Table 1, Fig. 3) and spans
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several biogeographical provinces (Unmack 2001). The sea-
sonally variable climate experiences precipitation peaks in
winter and spring, and is frequently punctuated by drought
(Murphy and Timbal 2008), with many lowland streams
experiencing cease-to-flow conditions for significant periods in
most years (Kennard ef al. 2010). Large areas of this region are
heavily developed for agriculture and forestry, or urbanised such
that much of the available water is exploited for human con-
sumption. Despite this extensive human disturbance, south-
eastern Australia continues to host a relatively high number of
native fish species (~54 species, Allen ef al. 2002; Lintermans
2007). Climate change is predicted to severely affect the
freshwaters of this region, with significant declines in rainfall
and increases in temperature resulting in less runoff, increased
evapotranspiration and decreased groundwater recharge, as well
as increased frequency and severity of drought, bushfire and
individual rainfall events (Table 1). These additional climatic
impacts will add to, or compound, the existing anthropogenic
stressors that have already degraded the region’s freshwaters.

South-eastern Australia has recently experienced one of the
most severe and prolonged droughts on record (Murphy and
Timbal 2008). During this ‘millennium drought’, many small
and headwater streams ceased flowing or completely dried out,
resulting in the mortality of local fish assemblages and loss of
species at the regional level (Bond and Lake 2005; Morrongiello
et al. 2006). Species particularly affected were river blackfish
(Gadopsis marmoratus), mountain galaxias (Galaxias olidus),
southern pygmy perch (Nannoperca australis) and the cool-
water alien salmonids Salmo trutta and Oncorhynchus mykiss.
These drought conditions reflect projections of longer dry spells
and reduced runoff (CSIRO and Bureau of Meteorology 2007)
that will intensify cease-to-flow events and potentially lower
ground-water levels, thus rendering isolated pool habitats more
vulnerable to complete desiccation via evaporation (Lake 2003).
Increased drying may also expose acid sulfate soils (Kingsford
et al. 2011), that when rewetted can seriously affect water
quality. The occurrence of locally catastrophic fish kills may
increase in the future because flow pulses following extended
dry spells have commonly resulted in ‘blackwater’ events that
cause mass mortality of fish because of low dissolved oxygen
(Howitt et al. 2007) and toxic polyphenols (McMaster and Bond
2008). Reductions in river discharge will increase ephemerality
and lead to greater fragmentation and isolation of habitat,
potentially limiting genetic exchange among local populations.
Although this can result in high levels of genetic structuring
within ephemeral streams (e.g. N. australis Cook et al. 2007),
any larger-scale drying may increase the incidence of genetic
bottlenecks and the loss of locally adapted genotypes from
whole regions.

Fish in many regulated lowland systems of south-eastern
Australia probably face fewer acute risks of a drier climate than
those in ephemeral systems, although they are still likely to be
negatively affected by reduced runoff and increased human
water demands. These fish assemblages are already in a gener-
ally degraded state and composed of resistant or resilient species
(Humphries and Lake 2000). Further reductions in discharge
during spring are likely to result in a loss of flow peaks that act as
spawning cues for several lowland river fish species (Humphries
etal. 1999). Reduced flood frequency and magnitude could have
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a negative impact on riparian trees such as river red gum
(Eucalyptus camaldulensis) (Horner et al. 2009) and impede
the transport of terrestrial organic carbon into the river
channel, which helps support the food chain on which fish rely
(Robertson et al. 1999).

In coastal river systems, most fish species are diadromous
and spawn from autumn to winter, coinciding with peaks in river
discharge. Recent studies, for example, have found that tupong
(Pseudaphritis urvillii) (Crook et al. 2010b) and Australian
grayling (Prototroctes maraena) (Koster and Dawson 2009)
undertake downstream spawning migrations in response to
within-channel flow peaks. O’Connor and Mahoney (2004) also
showed that P. maraena will reabsorb their eggs and fail to
spawn if appropriate flows do not occur during the autumn—
winter period. Reductions in the frequency of flow peaks in
autumn—winter that trigger spawning behaviour, therefore,
present a potential threat to reproduction and recruitment of
diadromous species in coastal river systems. Reduced flows are
also associated with increased periods of estuary mouth closure
and species that exhibit obligate diadromy will not be able to
complete their life cycles if they are unable to access the sea at
the appropriate time of year (Gillanders ef al. 2011).

Climatic warming may compound stressors associated with
stream drying through raised water temperatures and associated
reduced dissolved oxygen, resulting in the physiological toler-
ances of at least some species being surpassed (McNeil and
Closs 2007; McMaster and Bond 2008). Successful spawning
and recruitment under such conditions is highly unlikely, even
if a pool ultimately retains enough water to permit survival of
the resident fish. For example, the maximum sustained toler-
able temperatures for adult G. marmoratus, N. australis and
R. semoni are within the range 27-29°C, whereas gamete
viability and larval survival of N. australis and R. semoni are
very low at these levels (Harasymiw 1983). Projected increases
in fire frequency and severity in upland areas could also have
catastrophic impacts on fishes, because of acute thermal stress,
water quality degradation, habitat loss and sedimentation
(Lyon and O’Connor 2008). Species such as barred galaxias
(G. fuscus), two-spined blackfish (G. bispinosus) and Macquarie
perch (Macquaria australasica) are particularly vulnerable to
local extinction because of their already fragmented ranges
(Lintermans 2007), whereas aliens such as salmonids will
experience range contractions as a result of widespread warming
(Bond et al. 2011).

A warmer climate may also facilitate increases in the range or
abundance of some species in south-eastern Australia normally
associated with warmer or more northern freshwaters (Bond
etal 2011; Booth et al. 2011). For example, the southerly range
of golden perch (M. ambigua) is partly temperature-limited.
Morrongiello et al. (2011) found that during the recent drought,
the annual growth of M. ambigua in south-eastern Australian
lakes was negatively correlated with declining water levels;
however, this effect was offset by increased growth during
warmer years. Despite climatic models projecting significant
declines in future water availability, fish growth may increase
because of a disproportionate lengthening of the growing
season, and thus make these higher latitudes more favourable
habitat. Such a pattern is supported by modelling of M. ambi-
gua’s distribution under future climate-change scenarios (Bond
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etal. 2011). The potential for such range shifts may, however, be
retarded by in-stream barriers or geographic features (Booth
et al. 2011; Morrongiello et al. 2011).

Tasmania

Tasmania’s unique freshwater environment is characterised by
an extensive network of lentic water bodies, particularly in the
state’s Central Plateau region (Table 1; Hardie er al. 2006),
resulting in a highly endemic fish fauna (Allen e al. 2002). This
region’s 10 endemic galaxiids naturally have restricted dis-
tributions; however, the additional impacts of predation by alien
fish species and anthropogenic catchment and waterway
manipulations for hydro-electricity generation (Hardie et al.
2006; Stuart-Smith et al. 2007), irrigation and recreation have
resulted in distributions being further constrained. Limited life-
history and physiological-tolerance information is available for
most of the galaxiid endemics; however, they are thought to be
adapted to predictable and relatively benign conditions, and thus
to be sensitive to environmental change.

In Tasmania, climate change is projected to result in more
seasonally and spatially variable rainfall, with concordant shifts in
local hydrology (Fig. 2). In the upper Derwent and Lake St Clair
regions, catchment runoff is projected to significantly decline,
particularly during summer (Bennett et al. 2010). In the Lake
Pedder region, rainfall is projected to increase over winter and
decline over summer, with no significant change to mean annual
levels (Grose et al. 2010). Swamp galaxias (Galaxias parvus,
Lake Pedder) and Clarence galaxias (G. johnstonii, Upper
Derwent) are endemic to these regions of Tasmania’s south-west
and rely on marshes and headwater rivulets as important refuges
from predation and competition from brown trout (S. trutta) and
the more widespread climbing galaxias (G. brevipinnis) (Crook
and Sanger 1998a; Threatened Species Section 2006). Reduced
summer runoff is likely to diminish habitat availability and
connectivity, which may lead to further population declines for
both species, as evidenced by recent surveys that indicate negative
drought impacts on several G. johnstonii populations (Inland
Fisheries Service, unpubl. data). Further, although projected
increases in winter runoff may facilitate population connectivity,
it may also heighten the risk of refuge invasion by S. trutta and
G. brevipinnis because of increased stream flow and barrier
inundation (Crook and Sanger 1998a).

Freshwaters on Tasmania’s Central Plateau will experience
the most significant declines in runoff, with average projected
decreases of between 15% and 35% by 2100 (Bennett et al.
2010). Inflow changes for three representative lakes in the
Central Plateau region (Great Lake and Lakes Crescent and
Sorell) are included in Fig. 2. This area supports six endemic fish
species, all likely to be affected by climate change, in addition to
significant existing stressors. Declining lake levels have the
potential to reduce refuge and spawning habitat for paragalax-
iids (Paragalaxias julianus, P. dissimilis, P. eleotroides and
P. mesotes) and saddled galaxias (G. tanycephalus), in turn
leading to increased predation, increased risk of recruitment
failure and a subsequent reduction in their abundance. Inflow
decreases are also likely to influence power generation from
these lakes, resulting in increased abstraction and altered water
level-management regimes, as well as causing acute and
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chronic water-quality deterioration within shallow lakes and
lagoons.

Spawning of golden galaxias (G. auratus) in Lakes Crescent
and Sorell has been linked to rising water levels in late autumn to
winter, which are needed to inundate the critical spawning habitat
of cobbled littoral areas (Hardie e al. 2007). Spawning takes place
in water temperatures ranging from 1.4°C t0 9.7°C, with spawning
peaks recorded in winter when temperatures were below 5°C
(Hardie et al. 2007). Decreased winter inflows, coupled with
projected warming of up to 2.5°C, may reduce spawning success
by limiting habitat access and altering thermal cues.

One endemic galaxiid that may not be negatively affected by
climate change is Swan galaxias (G. fontanus), which inhabits a
restricted number of headwater streams around Tasmania’s
eastern highlands and midlands region (Crook and Sanger
1998b). This species appears to be remarkably tolerant of high
temperatures, low oxygen and high chemical concentrations
associated with low flows in residual stream-pool habitats
(Threatened Species Section 2006); however, a significant
number of G. fontanus monitoring sites were dry in 2008—
2009 (Inland Fisheries Service, unpubl. data). Nonetheless,
although climate-change projections indicate that mean annual
temperatures will increase in the region by several degrees,
modelling (Fig. 2) indicates that inflows are projected to
increase in the region and this is likely to decrease the threat
of habitat loss resulting from headwater drying. In general,
climate change is likely to increase the risk of population decline
for many of Tasmania’s endemic galaxiids proportional to
projected hydrological change. These risks, however, need to
be put into perspective with existing threatening processes
(Hardie et al. 20006), particularly alien species, irrigation devel-
opment and hydro-electricity generation.

Adaptive potential among and within species

The evolution of Australia’s fish species in a variable and
unpredictable environment has led, in part, to a depauperate
fauna (Allen et al. 2002). Yet this has also meant that many
species have adaptations that enable survival, exploitation and
even dependence on these unique conditions. Equally important,
however, is the acknowledgement that other fish species have
very localised ranges and narrow tolerances because of isolation
and habitat or physiological specificity (Unmack 2001). Popu-
lation and species persistence under climate change depends on
the interplay between ecological and evolutionary processes
(Fig. 1; Kinnison and Hairston 2007); the study of variation in
life-history traits provides a valuable evolutionary perspective
to current and historical ecological processes and facilitates the
prediction of species’ responses to future climatic scenarios.
Functional traits, such as life-history strategies, have been
used to characterise groups of species and predict their res-
ponse and vulnerability to environmental change (Winemiller
2005). For example, Humphries ef al. (1999) used reproductive
and larval developmental traits to categorise the responses
of Murray—Darling species to flow parameters, whereas Crook
et al. (2010a) explored the sensitivity of south-eastern
Australian fish species to the impacts of drought by characteris-
ing resistance and resilience traits. The approach of this latter
study is potentially useful for exploring the impacts of climate
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change, as increasingly drought-like conditions have been
projected for much of inland Australia (CSIRO and Bureau of
Meteorology 2007). Among-species trait-based approaches
have also been used for comparisons among regions such as
along hydrologic gradients in southern USA and eastern Aus-
tralia (Olden and Kennard 2010).

For species to persist in the face of climate change, they
require traits that allow them to resist its impacts (1) in situ (e.g.
thermal tolerances, plastic or adapted life-history characteris-
tics), (2) by moving to more favourable locations (e.g. individual
dispersal potential, scope for range shifts) or (3) by rapidly
evolving mechanisms that confer resistance or resilience
(Parmesan 2006). Australia’s variable environment means that
many fish species are exposed to different conditions across
their range, such that preferential phenotypes in one population
may be unfavourable in others. In the absence of constraints,
divergent natural selection can result in the adaptation of
populations, through specialist genotypes, to their local condi-
tions (reviewed by Kawecki and Ebert 2004). Conversely,
temporal environmental heterogeneity or significant gene flow
may result in set trait values not being beneficial in unpredict-
able conditions, or adaptations diluted by immigrants. These
conditions favour the evolution of adaptive phenotypic plas-
ticity where genotypes produce different phenotypes of rela-
tively high fitness under all environments, or dominant
generalist genotypes with moderate fitness in all environments.

The exploration of within-species trait and genetic variation
has only recently begun in Australian freshwater fish species and
initial results indicate that significant variation in both is the
norm (e.g. N. australis reproductive investment, colouration,
genetics: Llewellyn 1974; Humphries 1995; Cook ef al. 2007;
Morrongiello et al. 2010; M. ambigua reproductive behaviour,
genetics: Pusey et al. 2004; Balcombe et al. 2006; King et al.
2009; Faulks et al. 2010). The degree to which observed trait
variability is related to local adaptation or phenotypic plasticity
remains largely unknown; however, it does raise the possibility
that some populations have an inbuilt adaptive potential to
persist under changing environmental conditions. Nonetheless,
the rate of climate change and the existence of other current
stressors such as habitat fragmentation may render any trait or
genetic variability ineffective in saving species from range
reductions or extinction.

Management considerations

Future climate impacts on freshwater fish biodiversity and the
required adaptation responses will depend not only on the rate
and magnitude of climate change, but on the ability to reduce
system vulnerability and increase system resilience by treating
existing impacts and conserving freshwater habitat (Fig. 1).

Alien species

The introduction and spread of alien species has significantly
impacted on freshwater environments worldwide (Dudgeon
et al. 2006). These impacts now need to be considered in concert
with climate change. Alterations to the thermal and hydrological
regime of freshwaters will significantly interact with natural and
anthropogenic factors, the ability of alien species to become
established, their interactions with native fish species and
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ecosystem functioning, as well as the control strategies required
to ameliorate impacts (Rahel and Olden 2008). Alien species
already make up a significant proportion of Australia’s fresh-
water fish diversity (~206 natives: Allen er al. 2002; ~43
aliens: Koehn and MacKenzie 2004) and trends indicate that the
proportion of aliens is likely to increase (Koehn and MacKenzie
2004; Lintermans 2004). Similarly, at least 53 native species are
known to have been translocated, mostly outside their natural
range (Lintermans 2004).

The changing impacts of alien species were identified as a
major issue in the regional summaries above, suggesting that
climate change will alter or intensify the nature of interactions
between native and alien species, and increase the prevalence of
novel or homogenised fish assemblages (Hobbs et al. 2006;
Olden et al. 2008), which will raise further management
implications. Some aliens will benefit from warmer tempera-
tures, habitat degradation and increased modification of natural
flow regimes (Bunn and Arthington 2002; Koehn 2004
Kennard et al. 2005), whereas others will be detrimentally
affected by increases in flow ephemerality, disturbance and
the surpassing of physiological tolerances (Closs and Lake
1996; Lyon and O’Connor 2008; Costelloe et al. 2010). Identi-
fying the factors that give alien species competitive advantages
or disadvantages over native species are key requirements for
managing the threat of alien fish species under climate change.

The role of refugia

Refugia are integral properties of the abiotic environment that
confer resistance or resilience on biota to disturbance and will
play a vital role in facilitating the persistence of the species
into the future. By definition, refuge habitats are a relative
concept and depend on the species present, their adaptations and
the spatial and temporal scale of disturbance (reviewed in
Magoulick and Kobza 2003). Intertwined with the natural per-
sistence of refugia into the future are anthropogenic impacts that
increase climatic pressures on refuge biota (e.g. water allocation
away from refuge habitats, catchment modification and habitat
fragmentation). A significant increase in the awareness of
refugia and their integration into legislative and management-
policy frameworks is required to reduce impacts of future cli-
mate change (D. G. McNeil, S. K. C. Gehrig, G. Peters,
J. Marshall, K. Cheshire, J. Lobegeiger, S. Balcombe, N. Bond,
P. Reich and T. Barlow, unpubl. data). Likewise, more work is
needed to fully understand the spatial and temporal extent over
which current refugia are effective, the importance of connec-
tivity among refugia, and their likely persistence and form under
climate-change scenarios.

Learning from experience

The recent drought in south-eastern Australia has served as a
‘dry run’ for a drier climatic future, with the fate of many native
fish populations dependent on emergency interventions by
management agencies. Recently, in Victoria, environmental
flows have been released to sustain populations of Murray
hardyhead (Craterocephalus fluviatilis) and individuals from
several G. fuscus populations were maintained in captivity to
facilitate restocking after their catchments were badly burnt
by bushfire. Although reactive rather than proactive, these
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measures are likely to have played a vital role in preventing the
extinction of both species. In general, however, the allocation of
water to protect threatened refuge populations has been difficult
to obtain, particularly with increasing human demands. A fur-
ther problem is that the majority of threatened species and
critical refuge habitats exist within unregulated waterways and
off-channel habitats, where water delivery may be impossible or
unfeasible. Emergency responses such as fish rescues and
captive-breeding programs have been widely undertaken in
response to the recent drought (see the South Australian Drought
Action Plan); however, they do not provide a long-term option
for maintaining fish populations under a drying climate future.
Management interventions around key fish habitats need long-
term and proactive vision, with the aim of ameliorating the
impacts of water abstraction and land-use practices. It is
imperative that contingencies developed under the recent
drought are not forgotten during intervening wet periods and that
a focus is maintained on planning for the protection of native fish
species under future drought and drying climatic regimes.

Preserving genetic diversity

Understanding the importance of genetic variability in deter-
mining how species will respond to climate change is critical to
developing strategies to conserve the diversity of fish species in
Australian freshwaters (sensu Adkison 1995). If trait variation is
locally adaptive or dispersal potential low, then a range of
populations would need to be protected to ensure that underlying
genetic diversity is conserved (Adkison 1995; Hughes 2007).
Conversely, if trait variation is plastic, then conservation man-
agement should focus on preserving a variety of habitats to
ensure that a range of life histories continues to be expressed in
wild populations (Beechie ef al. 2006). Both scenarios bestow
on species a capacity to adapt to climate change.

Managed translocation

Many freshwater fish species are particularly vulnerable to the
impacts of climate change because they cannot resist in situ, lack
adaptive potential or are prevented from moving to more
favourable environments by natural and anthropogenic barriers.
The future conservation of many of these species may therefore
rely on proactive managed translocation of individuals to areas,
either within or outside natural ranges, where conditions are
more favourable (Richardson er al. 2009). Although such
interventions have obvious appeal, there are ecological and
management implications that need to be considered (Olden
etal 2011). For example, translocated species (e.g. translocated
mouth almighty (Glossamia aprion) is suspected of causing the
local extinction of Lake Eacham rainbowfish (Melanotaenia
eachamensis) in Lake Eacham; Barlow et al. 1987) or genotypes
within species (e.g. freshwater shrimp (Paratya australiensis);
Hughes et al. 2003) may have a detrimental impact on local
species or endemic genotypes. Conversely, translocated popu-
lations of the threatened M. australasica and Pedder galaxias
(G. pedderensis) have played a vital role in preventing these
species going extinct, although the impacts of these transloca-
tions on native species in receiving areas is unclear (Hamr 1995;
Lintermans 2006). Olden ef al. (2011) documented a series of
recommendations that should be considered before any planned
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translocation occurs. These include assessing the trade-offs
between the probability of extinction in the donor region versus
the probability of causing declines of native species or loss of
ecosystem function in the recipient region (e.g. by life-history
and ecological traits), the preferential translocation of species
within their natural range (dependent on genetic assessments),
an examination of the trade-offs between actively facilitating a
species’ range expansion through barrier removal and habitat
restoration and the probability of range expansion by non-
natives, and strategically targeting receiving waters to convey
the best long-term resistance to climate change on translocated
species.

We emphasise, however, that interventionist measures such
as managed translocation, although a legitimate option, should
be considered as a last resort in dealing with climate-change
impacts. Instead, it is better if the resilience of a system or
assemblage is maintained through the mitigation of current and
well known stressors such as water abstraction, habitat frag-
mentation and loss, water-quality degradation and the spread of
alien species, coupled with the conservation of representative
aquatic habitats and fish populations (Kingsford 2011;
Kingsford et al. 2011; Pittock and Finlayson 2011; Pratchett
etal 2011).

Conclusion

Climate change will have differential implications for
Australia’s freshwater fish, in part dependent on current levels
of anthropogenic stress. We predict that a drier, warmer and
more variable climate will have a negative effect on many native
fish species. Projected hydrological changes will be a particu-
larly important driver because these will affect habitat quality,
connectivity and persistence as well as disrupt key life-history
processes. Our conclusion differs somewhat from those of other
studies worldwide (e.g. Buisson et al. 2008; Graham and Harrod
2009; Heino et al. 2009; McCullough et al. 2009) that have
strongly implicated warming as being the major impact on
freshwater fish assemblages through the surpassing or optimi-
sation of thermal tolerances. This key difference likely reflects
the primary focus of many studies on northern hemisphere or
high-latitude freshwater environments where water availability
is currently not, and is unlikely to be, limiting. Further research
into the implications of climate change on arid and semiarid
freshwater systems worldwide is needed because these envir-
onments will continue to experience significant water deficits
(Bates et al. 2008) that will threaten the persistence of fish
assemblages into the future.

It is important to recognise that Australia’s fish fauna has
often (but not always) evolved in a variable and unpredictable
environment and this legacy may confer some degree of resis-
tance or resilience to climate-change effects. The danger is that
any such adaptive potential has already been eroded by current
anthropogenic stress or will be swamped by the rate of climatic
change. We encourage further research into the lethal (e.g.
physiological tolerances) and sublethal (e.g. reproductive
requirements) responses to environmental conditions by
species and a more thorough examination of feedback loops
involving climate drivers and anthropogenic pressures. This
additional knowledge will facilitate more accurate predictions
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of climate-change impacts on fish and also pragmatic solutions
to managers. However, it is vital that our present understanding
of environment-biota interactions is not forgotten but incorpo-
rated into current actions via a proactive and adaptive approach
to managing the effects of climate change.
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