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ABSTRACT 

Tree-kangaroos are a unique group of arboreal marsupials that evolved from terrestrial 

ancestors. The recent discovery of well-preserved specimens of extinct tree-kangaroo 

species (genus Bohra) within Pleistocene cave deposits of south-central Australia 

provides a unique opportunity to examine adaptive evolution of tree-kangaroos. Here, we 

provide the first detailed description of the functional anatomy of the forelimb, a central 

component of the locomotor complex, in the extant Dendrolagus lumholtzi, and compare 

its structure and function with representatives of other extant marsupial families. Several 

features were interpreted as adaptations for coping with a discontinuous, uneven and 

three-dimensional arboreal substrate through enhanced muscular strength and dexterity 

for propulsion, grasping and gripping with the forelimbs. The forelimb musculoskeletal 

anatomy of Dendrolagus differed from terrestrial kangaroos in the following principal 

ways: a stronger emphasis on the development of muscles groups responsible for 

adduction, grasping and gripping; the enlargement of muscles that retract the humerus; 

and modified shape of the scapula and bony articulations of the forelimb bones to allow 

improved mobility. Many of these attributes are convergent with other arboreal 

marsupials. Tree-kangaroos, however, still retain the characteristic bauplan of their 

terrestrial ancestors, particularly with regard to skeletal morphology, and the muscular 

anatomy of the forelimb highlights a basic conservatism within the group. In many 

instances, the skeletal remains of Bohra have similar features to Dendrolagus that suggest 

adaptations to an arboreal habit. Despite the irony of their retrieval from deposits of the 

‘Treeless’ Plain, forelimb morphology clearly shows that the species of Bohra were well 

adapted to an arboreal habitat. 
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INTRODUCTION 

Tree-kangaroos (Dendrolagus) belong to the macropodoid subfamily Macropodinae, 

which includes all extant kangaroos and wallabies (Flannery, 1989; Prideaux and 

Warburton, 2010; Raven and Gregory, 1946). Bipedally hopping macropodoids evolved 

from arboreal phalangeriform ancestors via a quadrupedal evolutionary stage exemplified 

by the extant Hypsiprymnodon moschatus. A reversion then to the trees within one 

derived clade (Dendrolagini), particularly in light of the highly specialised anatomy 

associated with terrestrial locomotion in macropodids, provides an interesting natural 

experiment to investigate evolutionary adaptation to arboreality. The adaptation of the 

hind foot of tree kangaroos is characterized not only by relatively short and stout 

metatarsals, but also by significant modification of the tarsal articular complexes, 

resulting in enhanced mobility and flexibility to facilitate stability and balance within the 

discontinuous, three-dimensional arboreal environment (Flannery, 1982; Szalay, 1994; 

Warburton and Prideaux, 2010). Here, we investigate whether commensurate changes 

exist within the morphology of the tree kangaroo forelimb. 

 

The forelimb of terrestrial macropodids is disproportionately small compared with other 

marsupials due to their principally bipedal locomotor behaviour (Grand, 1990; Hopwood, 

1981), and is apparently relatively unspecialised for manipulative functions (Iwaniuk et 

al., 2000; Weisbecker and Archer, 2008). Species of Dendrolagus, however, have 

relatively more equal ratios of forelimb to hind limb length and muscle weight, as well as 
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overall reduction in relative muscle mass, when compared with terrestrial kangaroos and 

wallabies (Grand 1990). These morphological differences between terrestrial and arboreal 

macropodids relate to differences in both locomotor pattern and feeding behaviours. 

 

Windsor and Dagg (1971) identified four gaits variably used by macropodids: slow 

pentapedal progression, in which the tail participates in support and progression as a fifth 

‘limb’, a quadrupedal walk, quadrupedal bound and bipedal hop. Procter-Grey and 

Ganslosser (1986) reclassified the latter two locomotor patterns as hopping and bipedal 

leaping. They also identified a galloping hop, where the forelimbs where not placed down 

simultaneously as in the quadrupedal bound. Species of Dendrolagus use all four gaits to 

some extent, although the preference varies between species (Flannery et al., 1996; 

Ganslosser, 1992; Martin, 2005). D. lumholtzi and D. inustus use bipedal leaping when 

moving on the ground between trees, while D. matschiei prefers hopping. D. dorianus 

never leaps bipedally but rather utilises a quadrupedal walk (Procter-Gray and 

Ganslosser, 1986). When moving arboreally, the gait utilised is correlated with substrate 

size and orientation. Procter-Grey and Ganslosser (1986) also describe the typical method 

of climbing vertically, which involves an initial spring from the hind limbs and 

simultaneous landing with the fore- and hind limbs, followed by climbing in which 

forelimbs are wrapped around the bole and move alternately with rapid hopping of the 

hind-limbs. Descent is generally tail first with the arms wrapped around the sides of the 

vertical bole (Procter-Grey and Ganslosser 1986).  
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Tree-kangaroos have a greater degree of manual dexterity than terrestrial macropodids. 

They have a high degree of freedom of movement of the upper forelimb in contrast to 

other groups, and, in at least one species, have some independent digital movement 

(Iwaniuk et al., 1998; Iwaniuk et al., 2000). The use of the hands during feeding is 

variable among Dendrolagus species and the mode of grasping and picking up food 

differs (Iwaniuk et al. 1998). Most species (D. lumholtzi, D. goodfellowi, D. matschiei, 

and D. dorianus) have been observed to manually pick up food with the hands, while D. 

inustus takes food with its mouth before using both hands for manipulation. D. matschiei 

and D. dorianus are more dextrous, often using only one hand to hold the food (Iwaniuk 

et al., 1998; Procter-Gray and Ganslosser, 1986).  

 

Flannery and Szalay (1982) described the first fossil tree-kangaroo from Australia as 

Bohra paulae. Three other species have since been placed in this genus, one Late 

Pliocene and two Middle Pleistocene. Bohra is allied with living tree-kangaroos 

Dendrolagus on the basis of marked similarities in craniodental and hind limb elements 

(Dawson, 2004; Flannery and Szalay, 1982; Hocknull, 2005; Prideaux and Warburton, 

2008; 2009; 2010). Functional studies of the hind foot also indicate that species of Bohra 

are adapted to moving in an arboreal environment (Warburton and Prideaux 2010). Bohra 

illuminata and B. nullarbora from Pleistocene deposits in caves beneath the Nullarbor 

Plain of south-central Australia are represented by near-complete skeletons including 

cranial, vertebral, forelimb and hindlimb elements.  
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To extend our understanding of the locomotor capabilities and palaeobiology of Bohra, 

and the evolution of arboreality in tree-kangaroos, this study investigates adaptive 

modifications of the forelimb. Anatomical description and functional analysis of 

Dendrolagus precedes and is subsequently utilised to elucidate the functional 

morphology of Bohra. This provides a test of hypotheses concerning the arboreal 

adeptness of Bohra previously raised on the basis of hind limb evidence (Prideaux and 

Warburton, 2008; 2009; Warburton and Prideaux, 2010). 

 

MATERIALS AND METHODS 

Dendrolagus lumholtzi inhabits the upland closed forest of north eastern Queensland 

(Van Dyck and Strahan, 2008). Though it is reportedly common in suitable habitat, few 

specimens are collected and made available for anatomical dissection. An adult male 

road-killed specimen was collected in the Atherton Tableland region and made available 

for dissection by the Queensland Environmental Protection Authority. Specimens 

available for dissection are rare, thus we needed to base this study on the dissection of 

only one specimen. However, in our experience, differences between species are 

generally greater than the variation observed within (e.g. Harvey and Warburton 2010). 

The specimen was skinned, eviscerated and embalmed in 10% formalin 4% glycerol 

solution for one week, before being stored in 70% ethanol (The University of Western 

Australia 2006). Standard dissecting techniques were used. Muscles were identified, their 

attachments recorded and removed from the skeleton. X-rays of the specimen were made 

at Murdoch University Veterinary Hospital and were used as supplementary information 

during the dissection process. Isolated muscles from the left forelimb were air dried at 
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40
o
C for 48 hours and dry-weights are obtained on a Mettler BasBal digital scale (2006) 

and converted to a percentage of total limb muscle mass. Anatomic descriptions and 

percentage muscle masses for extrinsic forelimb muscles are presented in Table 1. The 

right side was subsequently dissected for review and consistency of the initial description 

(Murdoch University 2009). 

 

After muscle removal, skeletal material was boiled to remove any traces of flesh. 

Measurements of skeletal elements were completed using PES electronic digital callipers. 

Comparative skeletal material was accessed in the mammal collection at the Western 

Australian Museum, Perth (2006-2009). A summary of these measurements is provided 

in Tables 2 and 3. 

 

To facilitate comparative analysis of the forelimb musculature among marsupials and 

interpretation of the literature, additional ethically sourced cadaver specimens, in 

accordance to the regulations of the Western Australian Department of Conservation and 

the Animal Ethics Committee guidelines of the University of Western Australia, were 

dissected following the technique described above (sample size of specimens in 

parentheses); Macropus eugenii (5), M. fuliginosus (3), M. rufus (2), Setonix brachyurus 

(2), Trichosurus vulpecula (2). The details of these dissections are published elsewhere 

(Harvey and Warburton, 2010). Published accounts of marsupial anatomy were consulted 

with respect to the following taxa Macropus (Badoux, 1965; Boardman, 1941; Hopwood, 

1974; Owen, 1876; Windle and Parsons, 1898), Petrogale (Parsons, 1896), Phalanger 
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(Sonntag, 1922), Phascolarctos (Grand and Barboza, 2001; Macalister, 1865; Sonntag, 

1922; Young, 1882), and T. vulpecula (Barbour, 1963). 

 

Fossil remains of two recently described species of Bohra are housed in the Western 

Australian Museum. B. illuminata (Prideaux and Warburton, 2008) is represented by a 

partial adult skeleton (WAM03.5.10)  including the following forelimb elements: 

fragments of right and left scapulae; left clavicle; right humerus (missing proximal 

epiphysis); right ulna; fragments of radius; triquetrum, hamatum, metacarpals and carpal 

phalanges, and a partial juvenile skeleton (WAM 02.7.16) including proximal fragment 

of left scapula; proximal fragment of right humerus; numerous carpals and metacarpals. 

A single individual of B. nullarbora (Prideaux and Warburton, 2009; WAM 05.4.70) 

includes left and right clavicles, humerus (left proximal and distal fragments, 

right partial diaphysis), left ulna, left radius (diaphysial fragment), carpals (right 

hamatum, left scaphoid), metacarpals (left and right III, left IV–V), and manual 

phalanges (digits I–IV proximal; digits III–V medial; digits III–IV distal). Images of 

postcranial elements of B. illuminata and B. nullarbora are provided in Prideaux and 

Warburton (2008, 2009) respectively. 

RESULTS 

Scapular form and function 

Scapulae of australidelphian marsupials range in shape from rectangular in Isoodon, 

roughly trapezoidal in the terrestrial macropodids Macropus and Setonix, to more 

triangular shaped in the arboreal Trichosurus and Phascolarctos (Fig. 1). Dendrolagus is 

intermediate in shape between the terrestrial macropodids and the arboreal taxa, tending 
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toward a triangular shape. The cranial border is sinuous in outline, the angle between the 

vertebral and cranial borders is smoothed, the vertebral border is relatively long 

compared to the length of the scapula, and the angle made between the vertebral and 

caudal borders is more acute. This morphology is more pronounced in the ‘short-footed’ 

New Guinean species of tree-kangaroo (e.g., D. dorianus) than in the ‘long-footed’ D. 

bennettianus, D. lumholtzi, and D. inustus. 

 

In D. lumholtzi, the scapular spine is high and flattened proximally. The scapula spine 

tapers sharply, approximately three quarters of the way along the scapular blade. The 

spine is inflected over the infraspinous fossa and is noticeably thickened approximately 

two thirds of the way along the spine, for the attachment of the m. deltoideus pars spinalis 

(Table 4). The infraspinous fossa is noticeably broader and larger in area than the 

supraspinous fossa. Among macropodines, Dendrolagus have relatively the widest 

infraspinous fossa (Table 2). 

 

In Dendrolagus, the caudal angle of the scapula is posteriorly extended and the bone is 

noticeably thicker than the rest of the scapular boundaries. The m. teres major arises from 

the ventral surface of the caudal border (Fig. 2) and is relatively large in Dendrolagus 

(Table 1). A distinct thickening of the caudal border more proximally reflects the origin 

of the long head of the m. triceps brachii. This ridge is measurably longer in Dendrolagus 

than in any of the other macropodids observed (Table 2), reflecting the role of the long 

head of the triceps as a stabiliser of the elbow joint preventing elbow flexion when the 

limb is weight-bearing and also in humeral retraction. This muscle would function as a 
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synergist of the m. latissimus dorsi during extension of the shoulder when the limb is 

weight-bearing. 

 

The m. deltoideus pars acromialis extends more laterally in D. lumholtzi than in terrestrial 

kangaroos, covering the medial two thirds of the spinalis portion of the deltoid along the 

scapular spine (Fig. 2). The acromial part of the deltoideus muscle is thickened and 

medially differentiated into two layers at its insertion; the superficial portion inserts onto 

the aponeurosis of the m. brachialis; the deeper portion inserts to the pectoral ridge. The 

omotransverse muscle inserts to the acromion, and is relatively larger in D. lumholtzi than 

in terrestrial macropodids (Table 1). The coracoid process is robust but not especially 

long, and is irregular in outline, protruding medio-cranially above the glenoid fossa. 

 

The clavicle, which articulates with the acromion, is robust in Dendrolagus with a 

distinct dorso-ventral curvature. The sternal articulation is expanded and bulbous; the 

acromial (lateral) extremity is more modestly expanded. Medially, the clavicle is dorso-

ventrally compressed. Mesially, the shaft ‘twists’, such that it appears to be antero-

posteriorly compressed at the acromial end. The anterior (clavicular) portion of the 

trapezius is more strongly developed in D. lumholtzi than in terrestrial kangaroos, and 

inserts along the distal two thirds, rather that one third, of the clavicle. 

 

The fragmentary scapular remains of Bohra illuminata and B. nullarbora share a number 

of features with Dendrolagus. The medial end of the spine, including the acromion, is 

placed high above the body of the scapula. The acromion appears to be relatively broad 
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and robust. It projects over the cranial edge of the glenoid fossa. The supraspinous fossa 

is apparently smaller than that of the infraspinous fossa, and the angle formed at the 

scapular notch is intermediate in form between Dendrolagus and Macropus. There is 

distinct concavity for the insertion of the m. triceps longus that extends a short distance 

from the glenoid cavity on the caudal edge. The coracoid process is globular with an 

indistinct outline protruding above the ventro-cranial (subscapular) edge of the glenoid 

fossa. 

 

The clavicles of Bohra are moderately robust and dorso-ventrally curved; the edge of the 

ventral facet is straighter than the more rounded dorsal edge and with broadened articular 

ends. The sternal end is only slightly broader than the shaft. It bends ventrally and is 

thickened and semi–ovate in cross section. On the acromial end there is a large fossa for 

articulation with the acromion. A line of muscle attachment for pectoral muscles along 

anterior edge is present.  

 

Glenohumeral joint form and function 

The glenoid cavity of Dendrolagus is oval in outline and concave (Fig. 2). The cranial 

portion is distally extended and inflected. The length to width ratio of the glenoid fossa in 

Dendrolagus is generally high (Table 2), although the single specimen of D. matschiei is 

round (L/W 99%). In comparison, terrestrial macropodids (Macropus, Setonix, 

Thylogale) have a more circular glenoid cavity with less development of the cranial 

projection, and the length to width ratio is close to 100. Onychogalea and Petrogale have 

elongated glenoid fossae, similar to Dendrolagus. In Dendrolagus, the humeral head is 
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noticeably larger in surface area than the glenoid, only moderately convex and more 

posteriorly projected.  

 

The glenoid fossa of B. illuminata and B. nullarbora closely resemble the oval-shaped 

fossa of D. lumholtzi. In Bohra the glenoid fossa is roughly oval in outline, though 

broader caudally than cranially. The cranial portion is elongate and curved over the 

relatively flat surface of the glenoid fossa at an angle of approximately 45°.  

 

Humeral form and function 

The four tree-kangaroo species measured here have longer humeri (relative to trunk 

length) when compared with terrestrial macropodids (Table 3). The proximal humerus 

comprises the head and two low and broad tuberosities. The bicipital groove is shallow 

and relatively wide. The shaft is robust with a well-developed pectoral ridge, and obvious 

teres tubercle (particularly in D. bennettianus; Fig. 3, 4). The distal humerus is broad 

mediolaterally, and the medial epicondyle is large.  

 

The pectoral muscles are large in D. lumholtzi when compared to terrestrial macropodids. 

They arise over a relatively larger area and are relatively large in mass (Fig. 4, Table 4). 

The superficial pectoral muscle (pectoralis major), in particular, is enlarged. 

Characteristic of Dendrolagus is an enlarged medial crest for the insertion of the teres 

major and latissimus dorsi muscles. This insertion is more distally placed in comparison 

to terrestrial kangaroos, as previously noted by Flannery (1996). Both the teres major and 
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latissimus dorsi are relatively large in D. lumholtzi (Table 4) and their attachments to the 

humerus are broad and strong.  

 

Dendrolagus have larger medial epicondyles compared with the terrestrial forms and 

relatively larger flexor muscles (see below). Both terrestrial kangaroos and tree-

kangaroos possess a long supinator (lateral epicondylar) ridge which provides the origin 

for the m. brachioradialis. In Dendrolagus the supinator ridge is thickened proximally; 

the m. brachioradialis is approximately twice the mass in D. lumholtzi (1.5% of forelimb 

musculature) than in terrestrial kangaroos. 

 

The humerus of B. nullarbora is similar in morphology to that of Dendrolagus. The 

humerus is robust with strongly developed pectoral and deltoid ridges, and a deep 

bicipital groove. The teres tubercle is observed as a distinct rugosity on the proximal half 

of medial shaft; the humeral shaft is relatively robust. The distal end of the humerus is 

transversely broad and marked by a large capitulum and a long lateral supracondylar 

ridge. The medial epicondyle is large and robust. These features suggested strong 

development of the shoulder flexors, humeral adductors and retractors and antebrachial 

muscles as in Dendrolagus. The humeral morphology of B. illuminata is similar to that of 

B. nullarbora and Dendrolagus, but is overall less robust and the development of the 

pectoral insertion is weaker.  

 

Elbow joint form and function 
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Dendrolagus species are characterised by humero-ulnar joints with a wide humeral 

trochlea, a shallow trochlear furrow together with a relatively long and shallow trochlear 

notch of the ulna, and shallow olecranon, anconeal and radial fossa. The anconeal and 

coronoid processes (and their respective humeral fossa) in tree-kangaroos are both less 

protuberant and relatively narrow transversely than in terrestrial macropodines. The 

humeral capitulum is larger than the trochlea anteriorly and posteriorly. There is a 

relatively deep medial trochlear flange; most strongly in the New Guinean ‘short-footed’ 

group of tree-kangaroos. The radial notch of the ulna is tear-drop shaped, converging at 

the lip of the coronoid process and is oriented ventrally. The radial notch is ventrally 

orientated in tree-kangaroos in contrast to a more lateral orientation in terrestrial 

macropodids. Consequently, the interosseous space between the radius and ulna is larger 

in the forearm in tree-kangaroos. The radial head is more circular in shape in 

Dendrolagus; in terrestrial kangaroos the radial head is more oval-shaped.   

 

On the ulna, Bohra and Dendrolagus share a reduced coronoid process, narrow semilunar 

notch, and enlarged, deep radial facet. The distal condyle of humerus of Bohra is 

transversely broad, with large articular surfaces, particularly the capitulum. The trochlea 

notch is elongate and relatively ‘open’; the coronoid process and anconeal process project 

cranially and slightly away from each other. The radial facet is very flat and deep 

longitudinally; in B. nullarbora it is buttressed out slightly from shaft. The radial head is 

circular in outline.  

 

Antebrachial form and function 
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The length of the radius is relatively shorter in tree-kangaroos than in terrestrial 

kangaroos. In Dendrolagus the radius is roughly equal in length to the humerus (Table 3) 

while in terrestrial macropodids the brachial index ranged from 111 in P. brachyotis to 

greater than 130 in the larger species of Macropus.  

 

The radius is robust and sinuous in shape; the shaft curves laterally in the proximal 

portion and the medially along its distal half. The proximal radius is circular in section 

with a large, oval-shaped tubercle for the insertion of the m. biceps brachii. This insertion 

is more medially placed than in terrestrial macropodids. The diaphysis becomes 

transversely compressed but dorso-ventrally broad distally. The interosseous space is 

long and wide. The distal epiphysis is roughly oval in shape. From our observations, in 

terrestrial macropodids, the radial diaphysis is more cylindrical along its entire length and 

the interosseous space is reduced such that the radius and ulna are in contact over the 

distal half (or more) of the antebrachium. The distal articular surface of the radius is large 

relative to the size of the shaft, and the styloid process is relatively shorter and more 

obliquely aligned in comparison to Macropus. 

 

The ulna of Dendrolagus is robust, laterally compressed, and dorsoventrally curved (Fig. 

5). It is broadest proximally and tapered distally. The olecranon is moderately long, 

robust, medially curved and roughly square in section. Concave fossae on both the lateral 

and medial surfaces of the olecranon extend along the proximal shaft. The shaft is 

semicircular in section with a strongly developed interosseous ridge along the cranial 
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border in the distal half. There is a strong, concave, posterolateral notch marking the 

passage of the flexor tendons on the distal ulna epiphysis of Dendrolagus. 

 

Fragments of radius of Bohra are similar in form to Dendrolagus. The radial shaft is 

robust, the radial tuberosity is massive and the interosseous ridge is strongly developed in 

B. nullarbora. The disc-like proximal epiphysis of B. illuminata is roughly circular, 

rather than oval, in shape. The ulna is long with a transversely compressed shaft, 

anteroposteriorly expanded proximally and distinctly tapered distally elongate and 

transversely compressed. The anteroposteriorly expanded shaft is also deeper in Bohra 

and Dendrolagus than in terrestrial kangaroos. The proximal half of the diaphysis is 

dorso-ventrally broad with a deep proximomedial sulcus, which suggests a well-

developed deep digital flexor muscle. The olecranon is large and robust. A rugose scar is 

present for the m. brachialis anterior to the trochlear notch as in Dendrolagus. The 

interosseous border bares a strong ridge in distal half. The styloid process is large with a 

hemispherical articular surface. The flexor notch is less developed in Bohra than 

Dendrolagus, but is more strongly developed than in the terrestrial macropodine genera. 

 

Form and function of carpus and manus 

The proximal articular surface of the scaphoid is large and transversely elongate (Fig. 6). 

The remainder of the scaphoid is long and proximodistally compressed, and follows an 

arc shaped path toward the base of the first metacarpal. The triquetrum is roughly cubic 

in shape and long in comparison to Macropus; the styloid fossa, however, is relatively 

shallower (Fig. 6). The hamate is large with a stepped distal face with articular facets for 
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the capitate medially and metatarsals IV and V distally. There is a long, proximolateral 

projection on the ventral aspect of the hamate of Dendrolagus. The capitate is longer than 

it is wide and the trapezoid and trapezium are relatively large.  

 

The metacarpals of Dendrolagus are distinguished from terrestrial kangaroos by their 

massively enlarged heads; the transverse width of the metacarpal head is rough twice the 

width of the shaft. The enlarged metacarpal head provides a large surface area for the 

metacarpophalangeal joint which is further strengthened by strong collateral ligaments. 

The proximodorsal surface of metacarpals II and III are marked by oval shaped tubercles 

for the insertion of the extensor musculature. The phalanges are more elongate than those 

of terrestrial kangaroos, and the articular facets reflect a strongly flexed posture. The 

distal (ungual) phalanges have very long, laterally compressed and sharply curved claws. 

In contrast, the claws of terrestrial kangaroos are broader and less curved.  

 

The large m. flexor carpi ulnaris has a long muscle belly, rather than long tendon, which 

inserts to the elongate pisiform (Fig. 6). The m. flexor digitorum profundus is relatively 

massive and has an additional, medial segment that inserts along the ventral side of the 

ulna. The radial head of that muscle took a longer origin from the ulna in D. lumholtzi 

than in the terrestrial kangaroos. The combined mass of flexors is more than double the 

combined mass of extensors, and approaches 15% of the total muscle mass of the 

forelimb in D. lumholtzi.  
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The carpal elements of Bohra are intermediate in relative size between Dendrolagus and 

those of terrestrial kangaroos. The palmar process of the hamate, which is broad in 

Dendrolagus, is more elongate in Bohra. The metacarpals of Bohra are robust with 

enlarged heads; broader than the corresponding proximal bases. The proximo-dorsal 

surface of metacarpal III is marked by an irregular depression. The proximal phalanges 

are more elongate than the middle phalanges. The distal carpal phalanges are long, 

strongly curved and laterally compressed (Fig. 6). 

 

 

DISCUSSION  

 

Locomotion in tree-kangaroos 

For many animals, the gait used in arboreal habitats is not dissimilar to their terrestrial 

relatives. Dendrolagus utilise a number of different gaits, when moving at different 

speeds and in different conditions (Windsor and Dagg, 1971). When moving terrestrially 

or on large horizontal substrates Dendrolagus employ a slow pentapedal progression or 

bipedal hopping, similar to terrestrial macropodids, or a quadrupedal bounding gait 

(similar to Setonix; Windsor and Dagg, 1971). Where branch thickness does not allow 

simultaneous use of the fore- or hindlimbs, Dendrolagus employ a slow walk in which 

the hindlimbs are used asynchronously; a unique gait among macropodids (Windsor and 

Dagg, 1971). Forelimb suspension has been observed and animals are able to return from 

a hanging position using their arms (Proctor-Gray and Ganslosser, 1986). Dendrolagus 

has less than three-quarters the relative mass of muscle in body composition as Macropus 
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and is in this characteristic convergent with other slow-moving arboreal climbers (Grand, 

1990). However, reduction in muscle mass has occurred particularly in hindlimb and 

axial systems, while the forelimb has relatively the greatest muscle mass of any of the 

marsupials studied by Grand (1990).The detailed description of the muscular anatomy of 

the tree-kangaroo forelimb provided here, suggests that, while muscular anatomy of the 

forelimb is relatively conservative among macropodids, significant adaptations for 

enhanced mobility and shifted emphasis on actions has been achieved by relatively slight 

modifications in muscle attachments and relative muscle proportions. 

 

Grasping – maintaining contact 

In D. lumholtzi, there is a strong emphasis on the development of muscles groups 

responsible for adduction, grasping and gripping that function to provide pressure on 

uneven arboreal surfaces in order that the animal may maintain contact with the substrate. 

Enhanced muscle mass and mechanical advantage from adduction and grasping is seen, 

particularly in the pectoral muscle group and flexor muscles of the carpus and digits. The 

pectoral ridge is relatively longer and more laterally placed in Dendrolagus than in 

terrestrial kangaroos (Fig. 3). The arrangement of the m. pectorales is similar in all 

macropodids, however, in D. lumholtzi enlargement of the pectoral muscles is apparent 

both in the extent of muscular attachments, the thickness of the muscle sheets and the 

large relative mass. In D. lumholtzi the pectoral muscle group made up 13% of the total 

muscle mass of the limb, in contrast to 7.6% for M. eugenii and 10.7% for M. fuliginosus 

(Harvey and Warburton 2010). The enlarged and more distal insertion could improve the 

mechanical advantage of that muscle during vertical ascent. The relatively reduced length 
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of the antebrachium could further improve the mechanical advantage by reducing out-

lever length of the adductor muscles. The pectoral ridge of Bohra is strongly developed 

and distinctly more laterally placed than in terrestrial kangaroos, suggesting that the 

pectoral muscles are derived in this group for enhanced adduction. Muscles that medially 

rotate the arm, including the subscapularis, teres major and latissimus dorsi may also 

contribute to adduction strength, and are relatively strongly developed in Dendrolagus (as 

discussed below). 

 

The paws of Dendrolagus appear to be adapted for maintaining contact with substrate 

through enhanced frictional resistance. Gripping with claws requires strong flexion of the 

digits, wrist and hand. The digital flexor muscles in D. lumholtzi are relatively large in 

mass and have thickened tendons of insertion and enlarged bony attachment sites. The 

muscles of the antebrachium comprise over 23% of the total forelimb musculature in the 

tree-kangaroo, rather than 16–18% in Macropus (Harvey and Warburton, 2010). The 

medial epicondyle of the humerus serves as the principle site of origin for the flexor 

muscles of the forearm and is obviously enlarged in Dendrolagus in comparison to other 

macropodid groups. A wide medial epicondyle provides a greater surface area and 

leverage for the attachment of carpal and digital flexor muscles, and has been interpreted 

to facilitate enhanced gripping and clinging, and are characteristic of arboreal mammals 

for example arboreal didelphids (Argot, 2001) and viverrids (Taylor, 1974). Additional 

strengthening of the flexor muscles is evidenced by the enlarged bony attachments deep 

digital flexor (particularly the radial head) and the robust shafts and enlarged flexor 

tubercles of the metacarpals and phalanges. The noticeably flared and robust medial 



WARBURTON  21 

epicondyle in Bohra is reminiscent of well-developed flexor muscles of the forearm and 

wrists similarly implying an enhanced grasping function of the fore-paws for climbing. 

Strong carpal and digital flexion in Bohra are further indicated by the deep medial 

concavity beneath the trochlear notch on the ulna which suggests well-developed digital 

flexor muscles and thus enhanced gripping.  

 

Propulsion 

In Dendrolagus, vertical climbing is achieved by synchronous bounding of the hindlimbs 

alternated with strongly adducted forelimbs (Procter-Gray and Ganslosser, 1986). In this 

phase of locomotion, the muscles that draw the humerus backwards effectively pull the 

trunk forward during flexion of the shoulder, and thus provide propulsion and act against 

gravity. In the strongly flexed and adducted posture, the muscles responsible for 

retracting the humerus are primarily the m. latissimus dorsi and m. teres major. These 

muscles are massively developed in D. lumholtzi, with extended origins, more distally 

placed and greater relative mass than in terrestrial kangaroos. (The latissimus dorsi 

comprises 12% of total forelimb muscle mass in Dendrolagus in comparison to less that 

9% in M. eugenii and S. brachyurus (Harvey and Warburton, 2010)). The skeletal 

features that reflect the strengthening of these muscles are the thickened caudal angle of 

the scapula for the origin of the teres major, and the enlarged and distally placed teres 

tuberosity. Bohra similarly has a strongly developed teres tuberosity. These 

characteristics reflect strengthening and improved mechanical advantage of these muscles 

for improved leverage for adduction and retraction of the arm from a raised position. The 

m. tensor fascia antebrachii may also contribute to forelimb retraction and is relatively 
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large in D. lumholtzi. When moving along horizontal substrates, these muscles may 

similarly provide propulsive force when the forelimbs are weight-bearing.  

 

During climbing, the elbow is held in a strongly flexed posture such that the elbow flexor 

muscles (m. brachialis, m. biceps brachii and m. brachioradialis) transmit the weight to 

the substrate when climbing, by bringing the body close to the tree, then lifting the body 

vertically against gravity (Argot, 2001; Oxnard, 1963; Procter-Gray and Ganslosser, 

1986; Stalheim-Smith, 1984). This is in contrast to terrestrial groups, in which extension 

of the elbow via the triceps muscle group contributes to propulsion in the forelimb. 

Enlargement of the elbow flexor muscles is apparent in D. lumholzti, where together 

these muscles accounted for  around 10% of the total forelimb musculature, and the m. 

biceps brachii almost 6% alone. In contrast, these muscles combined accounted for less 

than 8% in M. eugenii and around 6% in S. brachyurus. In Dendrolagus, the enlarged 

coracoid process of the scapula and radial tuberosity reflect the strong development of the 

m. biceps brachii. The origin of the m. brachioradialis is proximally extended, further 

improving the potential mechanical advantage of this muscle via increasing length of the 

in-lever. The lateral epicondylar ridge is proximally thickened in Bohra, implying strong 

development of the m. brachioradialis and thus stabilisation of the joints, resistance 

against extension, or strong flexion of the arm.  

 

Enhanced joint mobility  

The shape of the scapula and clavicle of tree-kangaroos reflects greater mobility of the 

forelimb in comparison to terrestrial kangaroos; such enhanced joint mobility would 
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enable contact with varied branch surfaces. Iwaniuk et al. (1998) noted that Dendrolagus 

species are distinct from other marsupials, including terrestrial kangaroos and dasyurids, 

in the high degree of freedom of movement in the pectoral girdle and upper limb. The 

triangular shape of the scapula is convergent with arboreal didelphids and reflects a 

greater range of rotation and tensile forces acting on the scapula in arboreal forms, 

particularly via the muscles of the serratus group (Argot 2001). The insertion of the 

serratus ventralis in Dendrolagus is restricted to the caudal border of the scapula, which 

may enable greater mobility of the scapula on the trunk. The extrinsic muscles which 

insert to the scapula also function to rotate of the scapula on the body, to allow an animal 

to protract and retract the limb in an adducted posture during climbing. Among 

marsupials there is a trend for arboreal species toward increasing the size of the 

infraspinous fossa relative to the supraspinous fossa (Fig. 1); the supraspinous fossa is 

relatively the largest in the terrestrial species and smallest in Phascolarctos. There is also 

a change in the shape of the cranial border, from an acute scapular notch in Isoodon, to a 

progressively more obtuse scapular notch in the most arboreal species. The shape of the 

cranial border reflects, at least in part, the origin of the supraspinatus muscle. The 

supraspinatus may serve to protect from anterior dislocation of the shoulder (Jenkins and 

Weijs, 1979) and a large supraspinatus muscle has been hypothesised to act as a shock-

absorber across the shoulder during bounding or leaping locomotion in didelphids (Argot, 

2001). The reduced supraspinous fossa in Dendrolagus, in comparison to terrestrial 

macropods, may reflect a change in the posture of the shoulder to act more under tension 

than compression in arboreal forms, in which the emphasis is placed on action of the 

infraspinatus muscle in when the shoulder moves through flexion and rotation.  
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Dendrolagus has a relatively larger acromion in comparison to terrestrial macropodines. 

This reflects enlargement of the omotransverse muscle, and enlargement and separation 

of the acromial deltoid which contribute to mobility of the pectoral girdle and limb in 

protraction and abduction. The m. omotransversarius rotates the glenoid (distal) portion 

of the scapula cranially, and would also stabilise the scapula during contraction of the 

acromial deltoid. Thus, the large acromion reflects both enhanced rotation of the scapula 

on the thorax and enlargement of the deltoids for extension and abduction of the arm. In 

arboreal didelphids the acromion process extends past the glenoid cavity, allowing the 

acromial head of the deltoid muscle to wrap further medially around the shoulder, 

providing added leverage for the protraction (forward elevation) than in terrestrial species 

(Argot, 2001). Robust development of the clavicle also reflects enhanced rotational 

movements of the pectoral limb, and is particularly important for grasping actions and 

manual dexterity (Jenkins, 1974). The dorsoventral flexion of the clavicle in Dendrolagus 

improves the mechanical advantage of the clavicular deltoid for protraction of the 

humerus by creating a more obtuse angle relative to its insertion on the humerus. 

Enlargement of the trapezius muscle, and in particular the clavicular portion, facilitates 

elevation of the clavicle and acromial end of the scapula that would occur when raising 

the arms in front of the body. Bohra have both an elongated acromion process and robust 

clavicle to support rotation of the forelimb, consistent with the ability to raise the arm 

above the head and reach for distant hand holds while climbing.  
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The oval glenoid of Dendrolagus reflects an increased cranio-caudal rotation of the joint, 

consistent with the ability to raise the arms in front of the body when climbing. Elongated 

glenoid fossae have been observed in arboreal primates (Miller, 1932) and didelphids 

(Argot, 2001). The cranially extended glenoid cavity in tree kangaroos may serve to 

stabilise the humeral head when the arm is raised above the head, thereby preventing 

dislocation when the joint is under tensile stress during climbing (Argot, 2001; Miller, 

1932). Enhanced gleno-humeral mobility is further indicated by the reduced height of the 

humeral tuberosities, as is similarly characteristic of arboreal didelphids (Argot 2001). In 

Bohra, the glenoid fossa is oval in shape indicative of increased cranio-caudal rotation of 

the joint as seen in Dendrolagus. 

 

Both the elbow and wrist morphology of Dendrolagus are consistent with a greater range 

of movement than in terrestrial kangaroos. At the elbow, the open trochlear notch and 

shorter anconeal and coronoid processes of Dendrolagus could enable more multi-axial 

movement. In contrast, terrestrial macropodids have a deeply concave trochlear notch 

with a corresponding deeper furrow on the humeral trochlea which would provide 

enhanced stability. A similar morphological pattern has been identified in arboreal versus 

terrestrial didelphids (Argot, 2001) and viverrids (Heinrich and Houde, 2006), and also 

‘grappling’ versus ‘non-grappling’ cursorial carnivorans (Andersson, 2004); arboreal 

and/or grappling forms possess much more rotational ability than their terrestrial 

counterparts. The enlarged capitulum of Dendrolagus facilitate improved contact with the 

radius through a greater range of postures, and the more circular radial head and the large 

interosseous space between the radius and ulna could all reflect a much great range of 
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rotational movements through the forearm. Additionally, Dendrolagus have a relatively 

large, distally projecting medial trochlear flange which has been identified in other 

mammals with enhanced rotational ability of the elbow to provide extra stability against 

non-parasagittal forces (Andersson, 2004). The elbow joint of Bohra similarly has an 

elongated trochlear notch and low anconeal and coronoid, a relatively ventral radial notch 

and a rounded radial head, suggesting enhanced rotational mobility in comparison to 

terrestrial kangaroos. 

 

Corresponding with the enhanced mobility of the elbow articulations, the rotator muscles 

acting at the elbow for pronation and supination are relatively large and have extended 

areas of attachment to the bones which enhance their mechanical advantage. The muscles 

involved in rotation of the antebrachium and carpus, m. brachioradialis, m. supinator and 

m. pronator teres have enlarged areas of attachment and have a relatively larger mass in 

D. lumholtzi (3.5% total forelimb muscle mass) than in the other marsupials dissected 

(Harvey and Warburton, 2010). These observations suggest modification for enhanced 

rotation of the forearm for arboreal locomotion. 

 

The bones of the carpus are more globular in shape with broad articular surfaces 

suggesting improved mobility and manual dexterity, in contrast to the compact and 

tightly packed morphology in terrestrial macropodids. The morphology of the carpals 

could provide a greater overall length between the radiocarpal joint and the 

carpometacarpal articular row, accentuating freedom of movement in all planes. The 

triquetrum is roughly cubic and long in comparison to Macropus. The styloid fossa is 
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shallower, facilitating a greater freedom of movement. Enhanced mobility of the carpal 

bones corresponds with observations of dexterity in D. matschiei that highlighted that 

tree-kangaroos are capable of some independent movement of the digits (Iwaniuk et al., 

1998). 

Conclusions 

Our inferences of stabilised arm movements, increased strength and reach in the forearm 

and arm, and strong gripping mechanisms in the forelimb of the extinct tree-kangaroo 

Bohra confirm prior functional appraisal of the hind foot (Warburton and Prideaux, 

2010). Our analysis suggests that species of Bohra are evidently equally as well adapted 

to the functional demands of an arboreal environment as extant species of Dendrolagus, 

despite weighing up to twice as much (Flannery and Szalay, 1982), and despite their 

occupation of habitats not previously considered within the domain of tree-kangaroos, 

namely semi-arid woodland/shrubland mosaics (Prideaux et al., 2007; Warburton and 

Prideaux, 2010). The differences observed between Dendrolagus and Bohra, namely a 

relatively larger body to the size of the head, and relatively longer limbs (Prideaux and 

Warburton, 2008) reflect ecological differences that could be required for Bohra to 

survive in these more open environment. Long forelimbs would be advantageous for 

climbing, while efficient terrestrial locomotion through semi-arid woodland or shrubland 

would require hindlimbs with sufficient mechanical advantage (McGowan et al., 2008). 

The short limbed, more compact body morphology of Dendrolagus likely reflect 

adaptation under the selective pressure imposed by a more closed habitat (both canopy 

and understory) of the rainforest environments in which they are found.  
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Figures  

 

Figure 1 - Left scapula of marsupials, lateral view. A, Isoodon obesulus; B, Dasyurus geoffroii; C, Setonix 

brachyurus; D, Macropus fuliginosus; E, Dendrolagus bennettianus; F, Dendrolagus dorianus; G, 

Trichosurus vulpecula; H, Phascolartos cinereus. Not to scale. 

 

 

Figure 2 - Left scapula of Dendrolagus lumholtzi showing key landmarks and areas of muscular origin (Or) 

and insertion (In). A lateral view, B glenoid view. Atl, Atlantoscapularis In; BiB, Biceps brachii 

Or; DAc, Deltoideus pars acromialis Or; DSp, Deltoideus pars spinalis Or; Inf, Infraspinatus Or; 

Rho, Rhomboideus In; Sub, Subscapularis Or; Sup, Supraspinatus Or; TMj, Teres major Or; TMn, 

Teres minor Or; TrC, Trapezius pars cervicus In; TrT, Trapezius pars thoracis In; TLn, Triceps 

pars longum Or. 
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Figure 3 – Right humerus of marsupials, lateral view. A, Dasyurus geoffroii; B, Macropus eugenii; C, 

Macropus fuliginosus; D, Dendrolagus bennettianus; E, Dendrolagus dorianus; F, Trichosurus 

vulpecula; G, Phascolartos cinereus; H, Bohra illuminata. Not to scale 

 

Figure 4 – Right humerus of Dendrolagus lumholtzi showing areas of muscular origin (Or) and insertion 

(In). A cranial view, B caudal view, C medial view. AnL, Anconeus lateralis Or; AnM, Anconeus 

medialis Or; Bra, Brachialis Or; BrR, Brachioradialis Or; DAc, Deltoid pars acromialis In; DCl, 

Deltoid pars clavicularis In; DSp, Deltoid pars spinalis In; ECR, Extensor carpi radialis Or; ECU, 
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Extensor carpi ulnaris Or; EDC, Extensor digitorum communis Or; EDM, Extensor digitorum 

minimus Or; FCR, Flexor carpi radialis Or; FCU, Flexor carpi ulnaris Or; FDPh, Flexor digitorum 

profundus humerale Or; Inf, Infraspinatus Or; LtD, Latissimus dorsi In; PaL, Palmaris longus Or; 

PeM, Pectoralis minor (profundis); PeQ, Pectoralis quartus In; PeS, Pectoralis superficialis In; 

PrT, Pronator teres Or; Spr, Supinator Or; Sub, Subscapularis Or; Sup, Supraspinatus In; TMj, 

Teres major In; TMn, Teres minor Or; Tri, Triceps Or; TLt, Triceps caput lateral Or. 

 

 

Figure 5 – Right radius and ulna of Dendrolagus lumholtzi showing areas of muscular origin (Or) and 

insertion (In). A cranial view, B lateral view, C medial view. BiB, Biceps brachii In; Bra, 

Brachialis In; ECU, Extensor carpi ulnaris Or; EMP, Extensor ossis metacarpus pollicus; FDPr, 

Flexor digitorum profundus radiale Or; FDPu, Flexor digitorum profundus ulnaris Or; PrQ, 

Pronator quadratus Or; PrT, Pronator teres In; Spr, Supinator In; Tri, Triceps In. 
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Figure 6 – Right carpus of Dendrolagus lumholtzi (x-ray). 

 

Table 1 – Anatomical description and muscle mass proportions of the extrinsic muscles of the pectoral limb 

of Dendrolagus lumholtzi 

 

Muscle Origin Insertion Muscle mass % 

as proportion of 

total limb  
M. trapezius  
     pars cervicus 

Fleshy fibres from nuchal 
crest along dorsal midline to 
spinous process T2 
 

Fleshy fibres along the 
acromial half and cranial aspect 
of the scapular spine, acromion 
process and lateral 3/4 of the 
clavicle 

3.12 
 

      pars thoracis Fleshy fibres along dorsal 
midline from spinous 
processes of T2 - T6/C7 
 

Aponeurotic sheet along the 
distal 3rd of scapular spine  

 

M. serratus ventralis Fleshy fibres from lateral 
aspect of the 6 anterior ribs 
and transverse processes of 
the T6 and T7 

Thick, fleshy insertion on the 
vertebral border of scapula 
(facies serrata)   
 

Combined serratus 
ventralis and 
levator scapulae 
4.37  

M. levator scapulae Fleshy origin from 
transverse process of T3 to 
T5 

Fleshy fibres onto the cranial 
angle of scapula, the facies 
serrata, adjacent to insertion of 
M. serratus anterior 
 

 

M. atlantoscapularis.  
 

Aponeurotic fibres from 
transverse process of atlas 
(C2), deep to the M. atlanto-

acromialis 

Fleshy fibres onto the vertebral 
border and proximal end of 
scapular spine bordering the 

supraspinous fossa 

0.31 

M. omotransversarius 
(atlanto-acromialis) 

Fleshy fibres from transverse 
process of atlas (C2), 
superficial to M. 
atlantoscapularis 

Fleshy and aponeurotic fibres 
onto the distal half of scapula 
spine, and cranial aspect of the 
acromion process.   
 

1.45 

M. latissimus dorsi  Dorsal midline, from level of 
caudal angle of the scapula, 
to the spinous process and 

rib of T12 and 
thoracolumbar fascia 

Tendon to proximomedial 
humeral shaft, immediately 
distal to tendon of m. teres 

major 
 

11.98 

M. rhomboideus Lateral aspect of upper neck, 
close to level of nuchal crest 

Along entire edge of scapular 
vertebral border (thick, strong 

1.9 
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(fleshy fibres, not a strong 
attachment) as well as a 
midline origin of thicker 
fleshy fibres from the 1st to 
the 3rd spinous process. 

fleshy fibres). 

M. pectoralis 
superficialis 
 

Thick fleshy fibres from the 
ventral midline from 
manubrium of sternum to 5th 
costal cartilage 

Fleshy and aponeurotic fibres 
to the medial half of clavicle, 
and along entire length of 
pectoral ridge of humerus; 
fuses distally with the m. 
deltoideus pars clavicularis.  

13.02 Combined 
pectoral mass 
 

M. pectoralis minor Fleshy fibres between the 
clavicle and 2nd and 3rd 

costal cartilages on the 
ventral midline 

Aponeurotic sheet proximal to 
the m. pectoralis quadratus on 

the proximal half of the 
pectoral ridge, medially on the 
greater tubercle, and the 
posterior aspect of the clavicle. 

 

M. pectoralis quartus Fleshy fibres from the 
ventral midline between the 
3rd & 6th costal cartilages 

Thin aponeurotic sheet to 
central segment of the pectoral 
ridge deep to the insertion of 
the m. pectoralis superficialis 

 

M. subclavius Fleshy fibres from medial 
3rd of 1st rib and lateral edge 
of the manubrium. 

Medial deep 3/4 of clavicle.  

  

 

 

Table 2– Measurements of the scapula in kangaroos and wallabies. Where n>1, data are species means and 

standard errors (S.E.) are included within parentheses. 

 

 Length of 
the scapula 
(mm) 

Width of 
infraspinous 
fossa / scapula 
length (%) 

Length of 
tricep crest/ 
scapula 
length (%) 

Glenoid 
fossa length 
/ width (%) 

   Dendrolagus bennettianus (n=2) 57.6 (1.43) 61  37  114  

   Dendrolagus dorianus (n=2) 57.6 (0.68) 64 72 143 

   Dendrolagus lumholtzi (n=6) 55.6 (1.43) 65  66  158  

   Dendrolagus matschei (n=1) 54.8 67  45 99  

   Dorcopsis vetereum (n=1) 59.4 54  28 124 

   Lagorchestes conspicillatus (n=5) 36.5 (0.35) 39 NA 153 

   Macropus eugenii (n=6) 44.8 (3.57) 62  29 101 

   Macropus fuliginosus  (n=4) 96.7 (13.81) 61 25  105 

   Macropus rufus   (n=4) 95.1 (18.08) 59 24 123 

   Onychogalea unguifera (n=4) 44.8 (1.92) 41 NA 166 

   Petrogale brachyotis (n=3) 45.6 (1.70) 55  NA  142  

   Petrogale lateralis (n=6) 39.0 (1.12) 59 NA 137 

   Setonix brachyurus (n=4) 45.2 (1.65) 47 28 100 

   Thylogale billardierii (n=1) 71.2  46  33  96 
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Table 3– Measurements of the humerus and radius in kangaroos and wallabies. Where n>1, data are species 

means and standard errors (S.E.) are included within parentheses. 

 
 Humerus 

Length (mm) 
Ant-post W 
trochlea / 
humerus 
length (%) 

Radius length 
(mm) 

Brachial 
Index (radius 
length / 
humerus 
length) 

   Dendrolagus bennettianus (n=2) 96.1 (3.23) 19 101.4 (2.15) 106 

   Dendrolagus dorianus (n=2) 105.2 (0.49) 25 103.5 99 

   Dendrolagus lumholtzi (n=6) 98.4 (1.91) 18 103.5 (1.06) 103 

   Dendrolagus matschei (n=1) 101.8 21 96.9 95 

   Dorcopsis vetereum (n=1) 78.8 10 93.0 118 

   Lagorchestes conspicillatus (n=5) 44.6 (0.78) 21 56.0 (1.10) 124 

   Macropus eugenii (n=6) 63.91 (5.60) 12 77.4 (6.57) 121 

   Macropus fuliginosus  (n=4) 148.4 (22.0) 10 240.4 (25.77) 134 

   Macropus rufus   (n=4) 143.5 (23.73) 13 222.9 (47.67) 133 

   Onychogalea unguifera (n=4) 63.4 (3.49) 22 82.1 (3.65) 130 

   Petrogale brachyotis (n=3) 58.8 (1.47) 21 67.2 (1.80) 111 

   Petrogale lateralis (n=6) 57.7 (1.53) 18 65.4 (2.04) 113 

   Setonix brachyurus (n=4) 53.4 (1.16) 13 62.7 (1.16) 118 
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Table 4 - Anatomical description and muscle mass proportions of the intrinsic muscles of the pectoral limb: 

muscles of the shoulder and brachium of Dendrolagus lumholtzi 

 

Muscle Origin Insertion Muscle mass % 

as proportion of 

total limb  
M. deltoideus 
     pars spinalis 

Fleshy fibres from medial 
2/3rd of scapula spine and 
fascia that covers the 
infraspinatus 

Aponeurotic fibres laterally on 
delto-pectoral ridge of the 
humerus; medially inseparable 
from pars acromialis and M. 
brachialis  

3.17 Combined 
deltoid mass 
 

     pars acromialis Fleshy fibres from acromion 
process 

Immediately distal to the pars 
spinalis on the delto-pectoral 
ridge, fuses to m. brachialis. 

 

      pars clavicularis Fleshy fibres from central 3rd 
of the clavicle 

Aponeurotic fibres to the 
anterior and proximal 3rd of the 
humerus, the distal extension of 
the greater tubercle with 
superficial pectoral  

 

M. supraspinatus Fleshy fibres from 
supraspinous fossa and 
cranial edge of scapula 

spine; shares an aponeurosis 
with the subscapularis in the 
cranial notch.  

Dorso-laterally on the greater 
tuberosity of the humerus by a 
strong fleshy & aponeurotic 

tendon. 

1.94 

M. infraspinatus Fleshy fibres from the 
infraspinous fossa and 
caudal aspect of scapula 
spine; sharing an aponeurotic 
membrane with the m. 

subscapularis in the caudal 
notch.  

Strong tendon to the lateral 
aspect of the greater tuberosity 
of humerus.  

3.49 

M. teres minor Small muscle from distal 
caudal border of scapula 

Base of greater trochanter 0.09 

M. subscapularis Fleshy fibres from 
subscapular fossa, covers 
almost entire medial surface;  
facies serrata very narrow. 

Fleshy and aponeurotic fibres 
insert medially onto the lesser 
humeral tuberosity.  

5.19 

M. biceps brachii Two heads from the coracoid 
process and from beneath the 
supraglenoid tubercle; thick 
tendons combine passing 
over the anterior facet of the 
lesser tuberosity and shallow 
bicipital groove. 

Superficial portion to the 
bicipital notch of the radius; 
deep portion to proximal ulna 
with the brachialis  

5.81 

M. coracobrachialis Coracoid process of scapula. Medial and distal on lesser 
tuberosity of humerus. 

0.08 

M. brachialis Lateral humeral shaft, 
between the deltoid and 
supinator ridge, and anterior 
distal humerus 

Aponeurotic fibres onto ulna, 
distal to trochlear notch & 
coronoid process  

2.76 

M. triceps  
   brachii caput lateral 

Aponeurotic and fleshy 
fibres from postero-lateral 
humeral neck and shaft. 

Lateral olecranon 10.49 Combined 
triceps brachii 
mass 
 

   brachii caput medial Fleshy fibres from the 
medial and distal 2/3rds of 
the humeral shaft. 
 

Medial olecranon  

   brachii caput longum Fleshy and aponeurotic 
fibres from the distal half of 

Proximal olecranon  
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the caudal border of the 
scapula. 

M. tensor fasciae 
antebrachii 

Fleshy fibres from mid m. 
latissimus dorsi.  

To antebrachial fascia, fascia of 
medial triceps and olecranon  

1.40 

M. anconeus   0.31 

 

Table 5 - Anatomical description and muscle mass proportions of the intrinsic muscles of the pectoral limb: 
muscles of the antebrachium and carpus of Dendrolagus lumholtzi 

  

Muscle Origin Insertion Muscle mass % 

as proportion of 

total limb 
M. pronator teres Fleshy and aponeurotic 

fibres from the anterior face 
of the medial epicondyle, 

deep to the origin of the 
flexor carpi radialis 

Fleshy fibres to anteromedial 
radius 

1.40 

M. flexor carpi radialis 
(FCR) 

Fleshy and aponeurotic 
fibres from medial 
epicondyle superficial to the 
pronator teres.  

Inserts by tendon onto the 
scaphoid bone of the carpus. 

1.21 

M. flexor carpi ulnaris 
(FCU) 

Medial epicondyle, passes 
along medial aspect of ulna  

Pisiform (accessory carpal)  1.44 

M. palmaris longus Fleshy origin from the 

medial epicondyle, deep to 
the FCR.  

Deep fascia of ventral carpus  0.73 

M. flexor digitorum 
superficialis 

Distal medial epicondyle 
with FDPrH. 

Tendons along superficial belly 
of FRPr extending to each of 
the digits. 

 

M. flexor digitorum 
profundus (FDPrH) 

Fleshy fibres from distal 
medial epicondyle of the 
humerus;  proximal 2/3rds of 

medial facet of ulna; 
proximal 2/3rds of medial 
face of radius 

The large tendons of each 
portion unite and then give rise 
to one thick insertion for each 

distal phalanx.  

11.20 
Combined digital 
flexor mass 

M. brachioradialis Fleshy fibres from proximal 
third of the supinator ridge, 
and distal aponeurosis of 
lateral head of the triceps. 

Tendon to dorsum of 
metacarpal I.  

1.54 

M. extensor carpi 
radialis  

Supinator ridge distal to 
brachioradialis, and lateral 
radius.  Longus and brevis 

portions not easily separable 
at origin. 

Longus portion to dorsum 
metacarpal II. Brevis portion 
with thick tendon to dorsum of 

metacarpal III.  

2.27 

M. extensor carpi 
ulnaris (ECU) 

Lateral epicondyle and 
proximal lateral ulna  

To pisiform bone and 
intercarpal ligaments  

0.39 

M. supinator Lateral epicondyle of the 
humerus and capsule of the 
elbow joint. 

Fleshy fibres to the proximal 
third of the medial border of 
the radius. 

0.56 

M. extensor digitorum 

communis (EDC) 

Aponeurotic fibres from the 

anterior aspect of lateral 
epicondyle distal to ECRB 
(two heads)  

Four tendons to insert medial  

digit 3, medial digit 4, lateral 
digit 4 (small) and medial digit 
5; deeper portion gives tendons 
to lateral digit 1 and medial 
digit 2.  

0.90 

Extensor ossis 
metacarpus pollicus 
(EMP) 

Fleshy fibres from the 
medial border of radius and 
ulna  

Tendinous insertion onto the 
base of metacarpal I.  

0.73 

 


	Cover page
	forelimb of living and extinct tree-kangaroos

