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In this paper, we present a comparison of the performance of a series of Embedded Atom 

Method (EAM) potentials for the evaluation of small aluminium cluster geometries and 

relative energies, against benchmark Density Functional Theory (DFT) calculations. In 

general, the NP-B potential, which was parameterized against Al cluster data, performs the 

best. 

 

2. Introduction 

Light-metal hydrides have for some time been considered for hydrogen storage application 

due to their high hydrogen content [1, 2]. For example, aluminium-lithium based metal 

hydrides can store up to 10.6 wt% hydrogen and magnesium-based metal hydrides can store 

up to 7.6 wt% hydrogen [3]. Despite this high storage capacity, none of the materials so far 

have exhibited fast enough kinetics for hydrogen adsorption/desorption, which is essential for 

practical applications. In addition, there remain uncertainties about the thermal behaviour of 

crystal structures, atomic configurations, and electronic structures for various intermediate 

phases [3]. Therefore, a significant amount of research is currently focused on temperature 

effects and enhancing the kinetics by developing catalysts that eliminate the need for the high 

temperature/pressure conditions currently required for the rehydriding/dehydriding cycle [3-

5].  

Clusters and other nanostructures are known to have different properties to bulk materials and 
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may provide a good alternative as a novel medium with high hydrogen storage capacity and 

good kinetics. Aluminium clusters have recently attracted attention from both cluster and 

hydrogen storage research groups [6, 7]. We have previously used Density Functional Theory 

(DFT) techniques implemented in DMol3 [8, 9] to study the interactions of bare and doped 

(Mg, Si) aluminium clusters with hydrogen [7, 10] and identified a cluster (Al12H20) with a 

high hydrogen storage capacity [11]. Furthermore, we recently discovered that while there is a 

modest barrier for chemisorption of H2 on a single Al12Mg, H2 was found to spontaneously 

dissociate between two closely spaced Al12Mg clusters [12], suggesting that doped Al clusters 

can be used as building blocks for a potential hydrogen storage material.  

Aluminium clusters are also of interest to hydrogen storage research due to their potential to 

form alanes and alanates [13, 14]. Balde et al. have recently demonstrated that large clusters 

of NaAlH4 (with a diameters of 2-10 Å) have the potential for hydrogen storage of 2 wt% 

capacity with faster kinetics than the bulk material (desorption temperature lower than 343 K) 

[15]. Zidan et al. have studied titanium/zirconium-doped NaAlH4 compounds using  thermal-

programmed desorption. The study indicated that the NaAlH4

The Embedded Atom Method (EAM) was originally developed by Daw and Baskes in order 

to study hydrogen embrittlement in nickel [17] and has since been used extensively to study 

metallic systems [18]. While there are currently many EAM potentials available for specific 

systems consisting of one or more elements, including aluminium, most of these potentials 

have been constructed by fitting to bulk structures [19-23]. It has been demonstrated that the 

Sutton-Chen, Cleri-Rosato, and Streitz-Mintmire potentials, all parameterized for aluminium, 

 compounds have a hydrogen 

storage capacity of 4.0 wt% with fast kinetics (dehydriding temperature of 398 K) [5]. While 

the hydrogen capacity is less than the current US Department of Energy (DOE) goal of 6.0 

wt% by 2010 and 9.0 wt% by 2015 [16], it demonstrates the potential of alanates as candidate 

hydrogen storage materials. 

Although the ideal approach to the study of metal clusters involves the use of quantum 

mechanically based methods, theoretical studies of clusters beyond ~100 atoms rapidly 

become computationally less tractable with DFT, especially when the structural complexity is 

taken into account. Therefore, less accurate but more practical methods must be used to 

overcome these limitations. In this paper, we test the Embedded Atom Method (EAM) 

potentials for small aluminium clusters against existing experimental and theoretical data in 

order to explore the possibility of employing EAM potentials to model larger clusters, cluster 

assemblies, and nanocrystals, that are currently demanding for study by DFT. Furthermore, 

having established which potential(s) performs the best for bare aluminium clusters, we plan 

to extend the potential to include interaction parameters for other metals (e.g. Mg, Si, Li, Na) 

where necessary, as well as hydrogen, to enable hydrogen adsorption on cluster-assembled 

light metal nanomaterials to be studied. 
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perform very well for structural features and thermodynamic behaviour of bulk materials and 

sufficiently large structures [20-22]. While Truhlar and co-workers have previously 

demonstrated the limitations of bulk fitted EAM potentials for the accurate determination of 

cluster energies, no discussion was provided on the ability of these potentials for cluster 

structure prediction. Nevertheless, Truhlar and co-workers have parameterized the Mei-

Davenport EAM potential [24] using accurately determined characteristics of a library of 

small aluminium clusters (Al2-Al177

3. Methods 

) and bulk aluminium obtained by first principles methods 

[25, 26]. In this work, we present a comparison of the structural and thermodynamical 

behaviour of a number of clusters of interest to our longer term research goals modelled using 

the Truhlar potential (NP-B) and three commonly used bulk-fitted EAM potentials [22, 20, 

21]. We explore the ability of the potentials to accurately predict equilibrium cluster 

geometries, to identify local minima and relative energies of clusters against our previously 

tested benchmark PBE/DNP level. We also present preliminary results of cluster melting 

behaviour evaluated using each of the potentials. 

 

3.1. EAM Potentials 

The EAM potentials chosen for this study were the Sutton-Chen [22], Cleri-Rosato [20], 

Streitz-Mintmire [21], and NP-B [25]. The functional form and parameters of the EAM 

potentials used in this work are summarized below. 
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Table 1: Functional form and parameters for the bulk-fitted EAM potentials. 

Potential EAM functional EAM density Pair potential 

Sutton-

Chen 
( )i ii i

i
F Aρ ρ= −∑  

A =1.000 eV 

6
i ij

i
Crρ −=∑  

C =1303.9271480 Å

( ) 7ij ij
Ar
r

φ =

6 

 

A =592.4195621 eV Å7 
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Rosato 
( )i ii i

i
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( )0expi ij
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0r

-1 
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( ) expij ij
rr Aφ
ρ

 
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 
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Streitz-

Mintmire 
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r rB C C
r r

φ
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 
= − 
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− + − − −      
         

 

A =4.474755 eV 

B =0.159472 eV 

C =5.949143672 

ρ =0.991317 Å  

0r =3.365875 Å  
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The charge of each aluminium atom for all the above potentials is zero, including the Streitz-

Mintmire potential, because we are interested in purely metallic systems. For each of the 

functional forms considered, the pair potential and many-body cut-off is 12.0 Å, except for 

Streitz-Mintmire where the latter is 8.0 Å. 

The EAM functional of the NP-B potential is given in the following Mei-Davenport form [24, 

27]; 

( )

( ) ( )
3

0
1

1 ln

1 exp 1 1 1 ln
2

i i
ii c

i e e

m

i i
m

m e e

F E

ms m m

α
β

γ
β

ρ ραρ
β ρ ρ

ρ ρδφ γ δ
β ρ ρ=

    
= − −            

     + − − + − −              

∑

∑

, 

with the following parameters: cE =2.834 eV; α =4.954; β =5.203; γ =5.824; δ =8.969; 

0φ =0.2095 eV; 1s =6.928; 2s =3.861; and 3s =15.50. The parameter eρ  is an adjustable 

parameter determined from fitting the calculated electron density [27]. 

The density term is given by the equation; 

5

0 012

l

l i
i e

i l

c r
r

ρ ρ
=

 
=  

 
∑∑ , 

with the following parameters: 0c =0.4333; 1c =-7.305; 2c =29.812; 3c =-54.44; 4c =48.41; 

5c =-15.50; and 0r =2.760 Å. The parameter eρ  in the density term cancels exactly in the 

EAM functional. 

Finally, the pair potential is given in the following form; 

( ) 0
0 0

1 1 exp 1ij ij
r rr
r r

φ φ δ γ
      

= − + − − −      
         

, 

with the following parameters: 0φ =0.2095 eV; δ =8.969; γ =5.824; and 0r =2.760 Å. 

The density and pair potential terms are multiplied by a taper function as follows; 

( ) ( ) ( )
( ) ( ) ( )
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i i
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r r f r

r r f r

ρ ρ

φ φ
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=
, 
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0
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m

m
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
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, 
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m

m

r r
x

r r
−

=
−

. 

The mr  parameter is the distance for the start of the tapering function, which is set to 4.83 Å, 
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and cutr  is the cut-off for both the many-body potential and the pair potential, which is set to 

5.382 Å. Similarly to the other potentials studied here, the charge of each aluminium atom is 

zero. 

The graphical representation of each of the terms of the potentials is shown in Table 2. 
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Table 2: The graphical representation of each of the terms of the potentials used in the present work. Note that the EAM density of the NP-B potential is 
expressed in terms of the parameter eρ . 

Potential EAM functional EAM density Pair potential 

Sutton-Chen 

   
Cleri-Rosato 
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Streitz-Mintmire 

   
NP-B 
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3.2. Computational procedure 

In order to compare the EAM potentials, we have calculated the structural properties of Al2, 

Al3, Al12, Al13, and bulk aluminium using the GULP simulation package [28] where all the 

potentials described above have been implemented. In addition, we have also calculated the 

melting temperatures for the larger clusters of Al34 and Al55. Bulk Al was constructed as a 

face-centred cubic lattice with lattice constant of 4.050 Å. Constant pressure geometry 

optimization was then performed for the bulk system. Geometry optimization was conducted 

for Al2, Al12, and Al13 clusters using the EAM potentials and compared with the optimized 

structures obtained by DFT calculations, which provide a benchmark for this study. We 

calculated the binding energy curves for Al2 to assess the accuracy of the potentials in 

predicting the equilibrium bond separation as well as to compare the overall shape of the 

curves. In order to assess the angular dependence of the potentials, we calculated the binding 

energy curves for different structural configurations of Al3 with arbitrary Al-Al bond lengths 

(r1, r2 = 2, 2.3, 2.506, 2.863, 3.5, and 5 Å). For the Al12 and Al13 clusters, we have also 

calculated the EAM single point energies for a range of DFT optimized structural isomers in 

order to assess the ability of each potential to predict the relative stability. 

For the EAM-based methods, geometry optimization was performed using the Broyden-

Fletcher-Goldfarb-Shanno (BFGS) minimizer [29] until the forces fell below 0.1 eV/Å, after 

which the rational functional optimization (RFO) method [30] was used in order to ensure the 

positive definite nature of the Hessian matrix. The convergence criteria applied were 10-5 eV 

for energy, 10-3 eV/Å for force (with individual force components not exceeding 10-2 eV/Å), 

and displacements not exceeding 10-5 Å. For the evaluation of the melting temperature, 

molecular dynamics (MD) calculations were performed at temperatures between 150 and 800 

K. For each temperature, the MD calculations were performed for 1 ns with a timestep of 0.5 

fs. Each calculation starts with a temperature of 100 K and applying a temperature ramp of 

0.2 K/fs. 

DFT calculations were performed using DMol3 [8, 9] with the Perdew-Burke-Ernzerhof 

(PBE) functional [31, 32] and a double numerical polarized (DNP) basis set, giving a proper 

description of Al atoms [33]. This method has been well validated in previous studies on Al 

clusters [11, 7, 10]. Thermal occupation with an energy of 0.136 eV was utilized to improve 

convergence. An orbital cut-off of 10.0 Å has been used throughout this study. The criteria of 

convergence used for the geometry optimization procedure were 2.721 × 10-4 eV for energy, 

5.442 × 10-2 eV/Å for force, and 0.005 Å for displacement. 
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4. Results and Discussion 

4.1. Bulk properties 

We begin our assessment with a review of the performance of each potential for the 

determination of bulk Al properties. Table 3 summarizes the bulk properties of aluminium 

predicted by the different potentials. Although most of the presented values are obtained from 

the literature, we have independently determined these properties using each of the potentials 

to ensure accurate implementation of the potentials in GULP. The values calculated in this 

work and not reported in the original studies are denoted by the hash (#) symbol. The bulk 

and shear moduli that were not given in the literature have been derived from the elastic 

constants and are denoted by the star (*) symbol. As can be seen from the table, all EAM 

potentials perform well for determining the structural parameters of bulk aluminium showing 

close agreement with experimental lattice constant and density. Furthermore, all potentials 

give a binding energy per atom to within 2% of the experimental value and density to within 

1%. Interestingly, the NP-B potential performed equally well as compared to the bulk-fitted 

potentials for the structural and energetic properties, because the training set included a range 

of cluster sizes as well as the bulk with different weightings [25]. However, while the Cleri-

Rosato and Streitz-Mintmire potentials showed good agreement with the experimental elastic 

constants, the Sutton-Chen and NP-B showed significantly larger variations. Not surprisingly, 

the better performance of Cleri-Rosato and Streitz-Mintmire potentials in this regard can be 

attributed to the fact that the elastic constants were included in the fitting procedure for these 

potentials, while this is not the case for Sutton-Chen and NP-B. Nevertheless, the Sutton-

Chen potential provides a reasonable estimate of the bulk modulus, which can be attributed to 

the fact that the values for the exponents of density and pair potential were specifically chosen 

to provide the best approximation to the experimental value of this quantity [22]. The NP-B 

potential severely overestimates the stiffness of the material, which suggests its inadequacy in 

describing bulk materials and surfaces. However, it should be noted that the NP-B potential 

was developed specifically for clusters and not bulk materials and cannot therefore be 

expected to predict bulk properties with the same accuracy as the potentials that were 

developed specifically for this purpose. 
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Table 3: Theoretical and experimental bulk properties of aluminium. 

 Sutton-Chen 

[22] 

Cleri-Rosato 

[20] 

Streitz-

Mintmire 

[21] 

NP-B [25] Experiment 

Binding 

energy per 

atom [eV] 

-3.34 -3.339 -3.39 -3.43 -3.34 [34] 

-3.339 [35] 

-3.39 [36] 

-3.43 [37] 

Lattice 

constant [Å] 

4.05 4.05 4.05 4.03 4.05 [38, 35, 

34] 

4.034 [39] 

Density 

[g/cc] 

2.694 2.702# 2.699# 2.727# 2.70 [40] # 

Bulk 

modulus 

(Voigt 

average) 

[GPa] 

75.3 81 82.7 169.0* 76.9 [41] 

76 [42] 

# 

Shear 

modulus 

(Voigt 

average) 

[GPa] 

11.5 26.4* 

 

23.8* 

 

78.8* 

 

26.1 [43] # 

Young's 

modulus 

[GPa] 

14.1 29.4# 19.1# 116.0# 70.3 [43] # 

Poisson’s 

ratio 

0.468 0.440# 0.461# 0.386# 0.345 [43] # 

c11 82  [GPa] 95 94 225 107.3 [41] 

107 [42, 44] 

# 

c12 72  [GPa] 74 77 141 60.9 [41] 

61 [42, 44] 

# 

c44 16  [GPa] 37 34 103 28.8 [41] 

29 [42] 

28 [44] 

# 
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*calculated from the elastic constants in the original reference 
#

4.2. Al

calculated in this work 

 

2

Next we focus our attention on the performance of the potentials for the description of the Al

 equilibrium separation 

2 

dimer. The characterisation of Al2

Although the EAM potential cannot distinguish between the singlet and triplet states, it is 

curious to see which of the potential energy surfaces associated with the two electronic states 

each parameterisation will favour. Figure 1 shows the comparison of binding energy curves of 

Al

 dimer has provided a challenge for both theory and 

experiment due to the closeness in energy of the singlet and triplet states. 

2 for the EAM potentials considered in this study, along with the PBE/DNP and 

PBE0/MG3 levels, the latter of which was used in fitting the NP-B potential [25]. The 

PBE/DNP binding energy curve compares favourably to the PBE0/MG3 results, with a 

slightly slower decay of the potential beyond the equilibrium value. The NP-B potential 

slightly overestimates the depth of the binding energy minimum by 0.412 eV, which is 

slightly more than the mean unsigned error (MUE) (0.185 eV) reported by Jasper et al. [25] 

for the complete Al2 data set, but agrees well with the long tail behaviour of the PBE0/MG3 

results. 

The three bulk-fitted EAM potentials significantly overestimate the depth of the binding 

energy minimum and underestimate the equilibrium separation distance. Jasper et al. report 

that the MUE for the Al2

 

 data set are 1.034, 1.130 eV and 0.776 eV for the Cleri-Rosato, 

Sutton-Chen and Streitz-Mintmire potentials, respectively [45]. The decay of the binding 

energy curve for these potentials is also slower compared to the NP-B potential and indicates 

a longer range over which the potential acts. The Sutton-Chen potential is observed to have a 

harder short-range interaction compared to the other potentials and the DFT results. This may 

indicate its unsuitability for studying small aluminium clusters. The repulsive strength of the 

Streitz-Mintmire potential is also observed to diminish more rapidly as compared to the other 

potentials, thus increasing the likelihood of smaller Al-Al separations in a cluster relative to 

the other potentials. 
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Figure 1: Binding energy curve of Al2

Table 4

 as a function of separation. For the DFT calculations 

the curve given is that of the lower energy triplet state. 

 

 shows the equilibrium separation values for the EAM potentials considered in this 

study, along with the values obtained by several ab initio and DFT calculations, as well as 

experiment for comparison. The results from the quantum mechanical calculations agree well 

with the experimental value of 2.835 Å, which corresponds to the low energy X3Πu state. The 

Al2

Table 4: Al

 equilibrium separation distance as calculated using the NP-B potential is 0.133 Å shorter 

than the value predicted using PBE/DNP, while the bulk-fitted potentials underestimate the 

equilibrium separation value by an average of 0.45 Å. 

 

2

EAM potential 

 equilibrium separation values. The star (*) symbol denotes triplet state. 

Al2 equilibrium separation [Å] 

Sutton-Chen 2.092 

Cleri-Rosato 2.325 

Streitz-Mintmire 2.207 

NP-B 2.523 

PBE/DNP 2.656* 

PBE0/MG3  2.730* [46] 

CCSD(T,full)/6-311+G(2df) 2.7157* 

Experiment [47] 2.835*  

 

This implies that these potentials will result in clusters that are more compact in structure, due 

to the increased bonding interaction between any two aluminium atoms. 

 

4.3. Al

The next stage of our study involved an investigation of the angular dependence of the 

3 



 14 

binding energy for different structural configurations of Al3 Figure 2.  provides a schematic 

representation of the arrangement of Al3 with definitions of the key variables. Following the 

methodology of Truhlar and coworkers [25], binding energy curves were obtained for angles 

ranging from 15°-175° (in 15° increments) for Al3 clusters with arbitrary Al-Al bond lengths 

(r1, r2 = 2, 2.3, 2.506, 2.863, 3.5, and 5 Å). We have also included the PBE0/MG3 data that 

was used to train the NP-B potential [25].  

 

 

 

Figure 2: Schematic diagram of the Al3

Figure 3

 arrangement. 

 

 

 shows the binding energy for the different Al3 arrangements. All of the bulk-fitted 

potentials were observed to overestimate the binding energy of the Al3 cluster. In general, 

NP-B predicts the binding energy for the selected configurations quite accurately relative to 

PBE/DNP and PBE0/MG3. For small values of r1 and r2, the EAM potentials were found to 

be relatively insensitive to the variation in θ, for angles greater than equilibrium angular 

separation (where the binding energy is at its minimum). Except for r1, r2=2.0 Å, the Cleri-

Rosato and Streitz-Mintmire potentials give almost identical binding energy curves. As the 

values of r1 and r2 were increased, the binding energy minimum was found to occur at 

successively smaller angles. The electronic state of the trimer at the equilibrium angular 

separation is 2A1' 
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Figure 3: Binding energy of Al3 as a function of angle at different r1, r2 separations: (a) r1, 

r2=2 Å, (b) r1, r2=2.3 Å, (c) r1, r2=2.506 Å, (d) r1, r2=2.863 Å, (e) r1, r2=3.5 Å, and (f) r1, 

r2

4.4. Al

=5 Å. 

 

12 and Al

In this section, we investigate the performance of the potentials for the determination of the 

structures and relative energies of isomers of Al

13 

12 and Al13 Table 5.  presents the binding 

energies for a selection of structural isomers of Al12. In all cases, the Ih

Table 5

 symmetric isomer is 

found to be the lowest in energy. However, as can be seen in , there is quite a range in 

the calculated binding energies relative to the benchmark PBE/DNP values. Not surprisingly, 

the NP-B value is in close agreement with the PBE/DNP value. For the bulk-fitted potentials, 

Cleri-Rosato gives the closest agreement with the PBE/DNP value, closely followed by 
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Streitz-Mintmire, while Sutton-Chen gives the largest error. The binding energies for the 

remaining isomers are given relative to the values for the structure in Ih symmetry, which was 

found to be the lowest energy isomer given by PBE/DNP. It is noteworthy that all of the 

potentials studied in this work give the correct ordering of binding energies, including the 

ordering of the Ih and D3d symmetries that are observed to differ by only 0.0015 eV using 

PBE/DNP. The NP-B potential also predicts that these two isomers are essentially degenerate, 

with only 10-4 eV separating the two isomers. However, the energy difference at all levels, 

including DFT, between these symmetries is small and substantially less than thermal energy 

at room temperature. In general, binding energies obtained with the NP-B potential are within 

0.13 eV of the PBE/DNP values. In comparison, Cleri-Rosato and Streitz-Mintmire values 

differ from PBE/DNP on average by 2.7 and 2.8 eV, respectively, while the average error for 

the Sutton-Chen potential is 6.2 eV. 

 

 

Figure 4: Structural isomers of Al12

Table 5: Binding energies

, shown from the side (left) and top (right). 

 

* for different Al12 symmetries.  
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Symmetry PBE/DNP 

[eV] 

Sutton-Chen 

[eV] 

Cleri-Rosato 

[eV] 

Streitz-

Mintmire 

[eV] 

NP-B  

[eV] 

I -27.4576 

[11] 
h -32.7915 -29.7736 -29.8411 -27.5103 

D 0.2765 3d 0.0296 0.0579 0.2171 0.0620 

D 0.2781 5h 0.0305 0.0583 0.2175 0.0621 

O 1.1265 h 0.4680 0.9151 0.9920 1.1510 

D 2.0938 6h 0.6140 1.1430 1.2251 1.4290 

*The binding energy for the Ih symmetry is given as an absolute value, while the rest are 

given in terms of difference with respect to the Ih

Table 7

 value. 

 

 shows the characteristic distances for the Ih isomer of Al12 Figure 5 ( ) determined 

using geometry optimization with each of the EAM potentials and compared with the 

PBE/DNP values [11]. The Sutton-Chen potential significantly underestimates all of the key 

distances, with an average deviation of 5.93% compared to PBE/DNP. Cleri-Rosato and 

Streitz-Mintmire also tend to slightly underestimate the key distances, but to a lesser extent 

(1.64% and 2.16%, respectively). This may be due to the overestimation of the binding 

energy by these potentials, as evidenced from Table 5. Again, the NP-B potential, which was 

fitted to small cluster data, performed extremely well with a deviation of only 0.14% relative 

to the PBE/DNP results. 

 

 

 

Figure 5: Schematic diagram of an Al12 cluster, showing the labelling and the centroids used 

for the structural analysis. For Al13, an additional aluminium atom occupies the COM 

position. 
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Table 6: Characteristic distances for the Al12 cluster with Ih

Distance type 

 symmetry. 

PBE/DNP 

[Å] [11] 

Sutton-Chen 

[Å] 

Cleri-Rosato 

[Å] 

Streitz-

Mintmire [Å] 
NP-B [Å] 

Al1-Al2 2.724 2.562 2.679 2.665 2.720 

Alt-Cal 1.432 1.347 1.409 1.401 1.430 

CAl-CAl 2.317 2.180 2.279 2.267 2.314 

COM-Als 2.591 2.437 2.548 2.535 2.587 

Alt-Alt 5.181 4.874 5.096 5.070 5.174 

Average 

deviation 

 
-5.93% -1.64% -2.16% -0.14% 

 

 

As a further test of the potentials, we investigate the structures and relative binding energies 

of isomers of Al13. The binding energies of Al13 Table 8 isomers are shown in  relative to the 

values for the structure in D3d symmetry; the lowest energy symmetry given by PBE/DNP. 

All levels considered predict that the D3d and Ih isomers are very close in energy, with D3d 

slightly favoured, except for NP-B, which favours the Ih isomer. However, despite the minor 

discrepancy, the NP-B potential gives the closest absolute binding energies for these isomers 

compared to PBE/DNP. All levels predict that the D5h structure is next highest in energy. 

However, all of the potentials predict a much smaller separation in the binding energies of the 

Cs and Oh isomers compared to PBE/DNP and generally predict Oh to be slightly lower in 

energy than Cs. All levels predict D6h to be of significantly higher energy than the other 

isomers. In terms of absolute binding energies, NP-B performs the best with an average 

deviation from PBE/DNP of 0.17 eV which is slightly lower than the MUE reported by Jasper 

et al. (0.67 eV) [25]. Sutton-Chen differs by an average of 1.3 eV, while the Cleri-Rosato and 

Streitz-Mintmire potentials differ by an average of 0.41 and 0.49 eV, respectively. Jasper et 

al. reported the MUEs from PBE0/MG3 to be 2.38, 3.26, and 1.27 eV, respectively for the 

Al13 data set [45]. The deviations between the EAM methods and PBE/DNP for Al13 cluster 

are generally lower than those for Al12 cluster. 
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Figure 6: Structural isomers of Al13

Table 7: Binding energies

, shown from the side (left) and top (right).  

 

 

 

* for different Al13

Symmetry 

 symmetries.  

PBE/DNP 

[eV] 

Sutton-

Chen [eV] 

Cleri-

Rosato [eV] 

Streitz-

Mintmire 

[eV] NP-B [eV] 

D -31.7136 3d -36.3230 -33.8064 -34.1071 -31.8873 

I 0.0027 [11] h 0.0044 0.0004 0.0006 -0.0015 

D 0.2962 5h 0.2848 0.6038 0.5836 0.8283 

C 0.5649 s 0.3644 0.7085 0.6917 0.9287 

O 1.0940 h 0.3226 0.7078 0.7035 0.9166 

D 2.7781 6h 0.7995 2.3248 2.2131 3.2739 
*The binding energy for the D3d symmetry is given as an absolute value, while the rest are 

given relative to the D3d

 

 value. 
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Table 10 shows the characteristic distances of the Ih isomer of Al13 obtained by geometry 

optimization with the different potentials. Similar to the results for Al12

Table 5

 clusters, the Sutton-

Chen potential underestimates the key distances, with an average deviation of 4.02% from 

PBE/DNP, which is also reflected in the overestimation of the binding energy as shown in 

. The NP-B potential only slightly overestimates the distances, with an average 

deviation of 1.20%. Surprisingly, the Cleri-Rosato and Streitz-Mintmire potentials performed 

extremely well for the structure of Al13

Table 8: Characteristic distances for the Al

, with average deviations of 0.40% and 0.55%, 

respectively. 

 

13 cluster with Ih

Distance type 

 symmetry. 

PBE/DNP 

[Å] [11] 

Sutton-Chen 

[Å] 

Cleri-Rosato 

[Å] 

Streitz-

Mintmire [Å] 
NP-B [Å] 

Al1-Al2 2.808 2.694 2.796 2.792 2.841 

Alt-Cal 1.476 1.417 1.470 1.468 1.494 

CAl-CAl 2.388 2.292 2.379 2.375 2.417 

COM-Als 2.670 2.563 2.660 2.655 2.702 

Alt-Alt 5.340 5.125 5.319 5.311 5.404 

Average 

deviation 

 
-4.02% -0.40% -0.55% +1.20% 

 

4.5. Al34 and Al

After evaluating the performance of the EAM potentials on small clusters, we provide a 

preliminary examination of the melting process for two larger clusters (Al

55 

34 and Al55

( )

22
2

1
ij ij tt

i j ij t

r r

N N r
δ

<

−
=

− ∑

), 

determined using each of the potentials. The potentials are compared in terms of the 

characteristic nearest neighbour distances of the clusters, Lindemann index, which can be 

used to measure the melting process [48-50], and melting temperature. The Lindemann index 

is a measure of the relative root-mean-square bond-length fluctuation and is defined as; 

, 

where ijr  is the separation between atoms i  and j , N  is the number of atoms, and the 
t
 

symbols indicate time average. At temperatures below the melting point, the individual atoms 

of the cluster vibrate around their equilibrium positions. However, the bond length between 

any two atoms will not change significantly from their equilibrium values. As the temperature 
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is increased beyond the melting point, the atoms gain translational freedom and deviate from 

their equilibrium positions, thus increasing the Lindemann index significantly. 

Figure 7 presents the Lindemann index as a function of temperature for Al34. All the 

potentials exhibit a straightforward, one-stage melting process. However, the Al34 cluster 

modelled with the Sutton-Chen potential is predicted to melt at a temperature below 200 K, 

which is outside the range of temperatures considered in this study. Puri and Yang also 

confirmed the Sutton-Chen potential to severely underestimate the melting temperature of 

bulk and large aluminium clusters (up to 9 nm in diameter) [51]. However, the Cleri-Rosato, 

Streitz-Mintmire, and NP-B potentials all give similar performance, with the Lindemann 

indices that start at ~0.02 at 150 K and increase to ~0.16 at 800 K after melting. 

 

 

Figure 7: Lindemann index of the Al34

Table 11 presents the melting temperatures of the cluster determined from the Lindemann 

index as predicted by the potentials. The melting temperature of the Sutton-Chen potential 

cannot be calculated from the data that we obtained for this study. All the other potentials 

predict melting temperatures that are relatively consistent (with an average value of 312 K), 

with ~70 K separating the three values. The Cleri-Rosato value is at the lower end of the 

range (280 K), while NP-B predicts a higher temperature of 350 K. 

 

 cluster as a function of temperature for the EAM 
potentials. 

 

Table 9: Melting temperatures of Al34

EAM potential 

 cluster. 

Tm [K] 

Sutton-Chen <200 

Cleri-Rosato 280 

Streitz-Mintmire 305 

NP-B 350 

 



 22 

 

Figure 8 shows the Lindemann index as a function of temperature for the Al55 cluster. We 

have not included the Sutton-Chen results due to the underestimation of the melting 

temperature observed in Al34. As for the Al34 cluster, the Lindemann indices for the other 

potentials show a one-stage melting process, with values again starting at ~0.02 and 

increasing to ~0.16 after melting. 

 

 

Figure 8: Lindemann index of the Al55

Table 12 shows the melting temperatures of the Al

 cluster as a function of temperature for the EAM 
potentials. 

 

55 cluster as predicted by the potentials. 

The spread of the melting temperatures is larger (~100 K) compared to the Al34

Table 10: Melting temperatures of Al

 cluster. The 

lowest melting temperature was predicted by the Streitz-Mintmire potential at 485 K, which 

compares favourably with the value found by Alavi and Thompson using the same potential 

(450 ± 90 K) [48]. The melting temperature predicted by the Cleri-Rosato potential is 30 K 

higher than the Streitz-Mintmire value, while NP-B again predicts a higher melting 

temperature of 585 K. 

 

55

EAM potential 

 cluster. 

Tm [K] 

Cleri-Rosato 515 

Streitz-Mintmire 485 

450 ± 90 [48] 

NP-B 585 

 

In order to evaluate the structural properties of the clusters after melting, two regions have 

been defined and shown in Figure 9 that we will subsequently refer to as the core and shell. 

Radial distribution functions of the clusters at 800 K (i.e. above the melting temperature) 
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were then obtained on these two regions and the characteristic nearest neighbour distances 

compared. 

 

 

Figure 9: The core (blue) and shell (pink) regions of the (a) Al34 and (b) Al55

Table 13 shows the nearest neighbour distances for the structures obtained with the different 

potentials. In general, the shell region has a longer nearest neighbour distance compared to 

the core region. For the Al

 clusters. 

 

 

34 cluster, Sutton-Chen gives a very short shell nearest neighbour 

distance, which is related to the underestimation of bond lengths, discussed earlier for smaller 

clusters that have higher surface atom-to-bulk ratios. Cleri-Rosato and Streitz-Mintmire give 

no appreciable difference between the core and shell nearest neighbour distances, while NP-B 

shows a longer shell than core nearest neighbour distance. For the Al55 cluster, all the 

potentials give slight variations in the distances, with Cleri-Rosato predicting slightly shorter 

shell nearest neighbour distances, but well within the margin of uncertainty in the calculation. 

Overall, the distances are consistent with the analysis on the Al12 and Al13

Table 11: Nearest neighbour distances (Å) of the core and shell regions of the Al

 surface atoms 

discussed in section 4.4, with the NP-B giving the longest nearest neighbour distance between 

the surface atoms, compared to the other potentials. 

 

34 and Al55

Potential 

 
clusters at 800 K. 

Al Al34 55 

Core Shell Core Shell 

Sutton-Chen 2.74 ± 0.02 2.59 ± 0.02 - - 
Cleri-Rosato 2.75 ± 0.02 2.75 ± 0.02 2.80 ± 0.02 2.77 ± 0.02 
Streitz-Mintmire 2.72 ± 0.02 2.75 ± 0.02 2.76 ± 0.02 2.77 ± 0.02 
NP-B 2.74 ± 0.02 2.81 ± 0.02 2.80 ± 0.02 2.83 ± 0.02 
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5. Conclusions 

In this paper, we have compared the performance of three bulk-fitted and a cluster-fitted 

EAM potential for the determination of the structural and energetic properties of a range of Al 

clusters, compared to PBE/DNP calculations as a benchmark.  

All of the bulk-fitted potentials were observed to overestimate the binding energies for small 

clusters, with largest variations for Al2 and Al3. The Sutton-Chen potential is found 

unsuitable in predicting the structural properties of these clusters, overestimating the strength 

of the interactions between aluminium atoms, which results in a 4% underestimation of bond 

lengths. This may be due to the Sutton-Chen being fitted to just structural data, which does 

not take into account the energetics data such as the vacancy formation energy and surface 

energies. The Cleri-Rosato and Streitz-Mintmire potentials were shown to perform rather well 

for predicting Al12 and Al13 structures, although with higher absolute binding energy value 

differences compared to PBE/DNP results. For the Al34 and Al55

Acknowledgements 

 clusters, these potentials 

predict nearest neighbour distances that are slightly shorter compared to the values obtained 

using the NP-B potential. The melting temperatures predicted by these potentials are also 

lower compared to the value predicted by the NP-B potential. While this suggests that they 

can be used to predict the structures of relatively large aluminium clusters reasonably well, 
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