View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by Research Repository

Murdoch

UNIVERSITY

MURDOCH RESEARCH REPOSITORY
http://researchrepository.murdoch.edu.au/

Lee, K., Coulson, G., Blair, G., Joolia, A. and Ueyama,
J. (2004) Towards a generic programming model for network
processors. In: IEEE 12th International Conference on Networks
(ICON 04), 16 - 19 November, Singapore.

http://researchrepository.murdoch.edu.au/4845/

Copyright © 2004 IEEE
Personal use of this material is permitted. However, permission to reprint/republish
this material for advertising or promotional purposes or for creating new collective
works for resale or redistribution to servers or lists, or to reuse any copyrighted
component of this work in other works must be obtained from the IEEE.

https://core.ac.uk/display/11235376?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://researchrepository.murdoch.edu.au/�
http://researchrepository.murdoch.edu.au/4845/�

Towards a Generic Programming Model for
Network Processors

Kevin Lee, Geoff Coulson, Gordon Blair, Ackbar Joolia, Jo Ueyama

Lancaster University, Lancaster, LA1 4YR, UK

Abstract—Network Processors (NPs) are emerging as costcomplexity (because of its complexity, many NP software
effective networking elements that can be more readily updated toolkits fail to provide any support at all for runtime reconfig-
and evolved than custom hardware or ASIC-based designs. uration).

Moreover, NPs promise support for run-time reconfiguration Th . f th h di d in thi .
of low-level networking software. However, it is notoriously e aim of the researc Iscussed in this paper Is to

difficult to develop software for NPs because of their complex develop a generic programming model for NPs that accom-
design, architectural heterogeneity, and demanding performance modates complex architectures and architectural heterogeneity

constraints. In this paper we present a runtime component- hijle also supporting design portability, high performance
based approach to programming NPs. The approach promotes 5.4 \ntime reconfigurability. Our approach is based on a

conceptual uniformity and design portability across a wide .
variety of NP types while simultaneously exploiting hardware run-time software component model. The model promotes

assists that are specific to individual NPs. To show how our conceptual uniformity and design portability across a wide
approach can be applied in a wide range of types of NPs variety of NP types while simultaneously exploiting hardware

we characterise the design space of NPs and demonstrate thegssists that are specific to individual NPs. It features a dis-
applicability of our concepts to the various classes identified. tributed runtime with low memory footprint, employs formally

Then, as a detailed case study, we focus on programming the A . S
Intel IXP1200 NP. This demonstrates that our approach can be specified interfaces, supports components written in different

effectively applied, e.g. in terms of performance, in a demanding Programming languages, and uniformly abstracts over different
real-world NP environment. processor types and different inter-processor communication

mechanisms without loss of performance. It also explicitly
supports run-time reconfiguration of software.

Network Processors (NPs) are an attempt by hardwareThe remainder of the paper is structured as follows. In
vendors to fulfill the growing need for low-priced specialisedection Il, we characterise the design space of NPs as a basis
network hardware that is more future proof than convention@r arguing the genericity of our approach, and also survey
custom hardware or ASIC-based designs, and can be applied inumber of existing programming models provided both by
a wide range of situations (e.g. in networked devices, as edgge manufacturers of various NP products, and by indepen-
network routers and even in the network core). In additiodent researchers. In section Ill, we present our approach to
NPs are seen by some as potential vehicles for the deploymprigramming NPs and show how this improves on existing
of active networking-derived technologies [1] which exploiapproaches. Then, in section IV, we provide a detailed case
the potential of NPs for run-time software reconfiguratiorstudy of the application of our approach to the Intel IXP1200
Conceptually, NPs are multiprocessor-based hardware umis. Finally, in section V we offer our conclusions.
that support a number of network ports and provide software-
based packet processing facilities that can be programmed with II. NETWORK PROCESSORS
the aid of a toolkit. They _have tr_le ability to perform relativel)’/a_ Classification
complex packet processing at line speeds.

There is a downside to current NPs, however: they areThe field of NPs is notable for its great architectural
notoriously difficult to program [2], [3]. This is becauseheterog_eneity. In general, however, it can safely be said t_hat
of their complex design (e.g. involving multiple processordPs universally provide programmable support for processing
including both general purpose and specialised processd?%?kets: and that this usually takes the form of one or more
and multiple memory and interconnect technologies), extrerRCket processorsThese can be supported either on a single
architectural heterogeneity across vendors and products [@JiP or across multiple chips. In addition, NPs universally
and demanding performance constraints. support a number of MAC-level ports, some memory, and

Therefore, NPs often exhibit elegant hardware desigi@me form or forms of processor interconnect.
which remain underexploited by software [5]; and their ex- N this section we attempt to capture the design space of
treme heterogeneity tends to inhibit translation of softwarBlPs in terms of a small number of orthogonal dimensions.
software designs, or even skills across brands. The probldR€se are:
is exacerbated by the need for high performance and runtime the packet processor dimension - the range of types of
reconfiguration, both of which add considerably to software available packet processors

I. INTRODUCTION

2) The Interconnect DimensionDifferent NPs provide
+t ¢

different mechanisms for inter-processor communication: such

32 PCIBus as shared registers, buses (of varying types), shared memory
v (perhaps a range of types that makg different trade-offs be-
o tween capacity and speed), and dedicated channels.
Ery<— M DRAM For example, the IXP1200 provides a fast bus for commu-
- L nication between its microengines, MAC ports and memaory.
+ It also provides shared registers and a range of memory types
:j (i.e. SRAM, SDRAM). The shared registers and memory are
typically used together at the software level for inter-processor
el communication. The newer IXP2400 NP from Intel also
. provides ‘next-neighbour’ registers that provide a dedicated
Iﬁx I L interconnect between two ‘adjacent’ microengines.
e IXVO The Motorola C-Port employs shared fast memory for
interconnection between grouped channel processors (as men-
tioned above). It also employs multiple onboard buses for
Fig. 1. The Intel IXP1200 (from [7]) communication between these groups, and shared memory that

is managed by a dedicated processor.
Unlike the two examples above, the EZChip offers a very
« the interconnect dimension - the range of interconnestatic and limited interconnect which arranges the packet pro-

technologies employed cessors in a strict pipeline topology. The Cisco PXF [10] uses
« the control dimension - the degree of support for cer variant of this approach: it offers multiple parallel pipelines
tralised control and some capability for communication between pipelines.

We then go on to show how prominent NP products map E’Iﬁar]!y, thesg arckr:lt%cturgs azje. less flexible, ;Ithoughdpo;en—
this space. In so doing, we lay the groundwork for a discussigA"y faster, than the bus-based interconnects discussed above.

on how our component-based programming approach ca) Th,e, .Control _Dimension:Apart from the generic-
accommodate the full diversity of NPs. ity/specificity of their packet processors, different NPs make

. . different choices regarding centralisation/ decentralisation of
1) The Packet Processor Dimensiofost NPs feature g g

. control and management. For example, some NPs rely exclu-
multlple_ pac!<ets processors, but th? nature of t_hese can Vgﬂyely on external control in the form of a host workstation.
from units with very general instruction sets to single-purpo thers (e.g. the IXP1200) incorporate a commodity CPU on
dedicated units for, e.g., checksumming or hashing, whi

e NP itself which runs an operating system, and others
are not programmable. Furthermore, some NPs feature og

" ; ket d oth " b port sufficiently powerful and general packet processors
one type ol packet processor and others Support a NUMbey Py any of these can potentially serve as a locus of control
different types.

. and management.

For example, the Intel IXP1200 NP [6] (see figure 1) sup- The IXP 1200's on-board StrongARM CPU runs a com-
ports a uniform set of six so-calledicroengineswvhich serve modity OS such as Linux. As well as handling slow-path
as packet processors. These are 233-600Mhz CPUs whos&ikket processing, the StrongARM is responsible for loading

struction set includes I/O to/from MAC-ports, packet queuingyde onto the microengines and stopping and starting them as
support, and checksumming. They support hardware thre"i‘gauired.

with zero context switch overhead and can be programmedrne Motorola C-Port, on the other hand, has no built-in

either in assembler or C. The IXP1200 also includes a genegghralised controller. Instead, it relies on a host workstation

purpose StrongARM CPU which serves as a controller agd |oaq and supervise the operation of its ‘channel controller’

also typically performs slow-path operations. packet processors. Nevertheless, it is theoretically possible to
On the other hand, the Motorola C-Port [8] employs s@tedicate one of the channel controllers to take the supervisory

calledchannel processorshich are generic packet processorgole, especially if fine-grained dynamic reconfiguration of the

grouped in sets of four that share an area of fast memogp s a goal.

But in addition it supports a range of dedicated, non pro- Similarly, the EZChip relies on a host workstation for

grammable, processors that perform functions such as queggtrol and management. In this case, there is no alternative

management, table lookup, and buffer management. because dedicating one of the packet processors, even if
As a third example, the EZChip NP-1 [9] has no fullypossible (cf. their lack of generality), would introduce an

generic processors. Rather, it exclusively employs dedicat@gacceptable bottleneck in the pipeline.

packet processors that perform specific tasks such as parsing

packets, table lookup or packet modification. Although the§ Software for Network Processors

are dedicated to their given ‘domain’, they are quite flexible The provision of software development environments for

and programmable within that domain. different NPs is almost as diverse as NP hardware architecture.

In this section we examine both proprietary and research-NP-Click [15] is another component-based programming
derived programming environments and show that each is handdel for NPs; it is derived from an earlier PC-based software
to generalise beyond the specific architecture at which it iguter model called Click. Again, NP-Click has been primarily
targeted. targeted at the IXP1200. It is founded on a much richer model
In terms of proprietary software, we focus on programmingf components than NetBind. While communication between
models and development environments for the IXP1200 ah&tBind microblocks takes place over low-level untyped entry
the IBM PowerNP. Information on the software environment@nd exit points, Click components have typedrts and
used by other NPs is unfortunately hard to obtain withogbnnections between ports can be designated as either ‘push’
signing non-disclosure agreements. or ‘pull’ which provides declarative control over flow of
Intel's MicroACE [11] is targeted at the IXP1200 andcontrol and threading. In addition, NP-Click abstracts, to a
other Intel IXA products. In this model, proxy-like softwaredegree, over the different memory technologies offered by the
elements (callecctive computing elements ACEs) on the 1XP1200 by providing keywords such as ‘global’, ‘regional’
IXP1200’s StrongARM control processor are ‘mirrored’ byor ‘local’ which cause the associated component to be auto-
blocks of code (called microblocks) that run on microenginesiatically allocated an appropriate memory type. Furthermore,
Thanks to this mirroring, when the programmer loads a Stron-provides low level abstractions such amlloc() and free()
gARM element, the corresponding microblock is transparently facilitate and manage the allocation of NP resources such
loaded onto a microengine as a side effect. The microblock cas microengine LIFO registers.
choose to offload packets to its associated ACE for handlingNP-Click does a much better job of abstracting NP architec-
on the slow path. ture than NetBind, but it still falls short of providing a generic
Although it provides a useful degree of abstraction, thepproach to NP programming. While it abstracts particular fea-
MicroACE approach is limited to IXP1200-like architecturesures of the IXP1200, it has no notion of abstracting arbitrary
that employ a tightly integrated control processor. Furthearchitectures in a principled way, and thereby encouraging
more, the model leaves linkages between microblocks impliciesign portability and transferable skills across NP types. That
in the way the microblocks are written: is not possible tis, there is no necessary commonality between the abstractions
combine microblocks in unanticipated topologies or to explaitrovided over different architectures (e.g. NPs other than the
interconnect mechanisms other than those explicitly chosenB§P1200 may not use LIFOs). In addition, NP-Click provides
the microblock author. Also, the ACE approach cannot be used support for dynamic reconfiguration.
to perform dynamic software reconfiguration as it takes no VERA[16], [17] is an extensible software router architec-
heed of thantegrity of a running configuration: if a componentture that comprises three layers: the top layer provides the
is replaced, a neighbouring component will inevitably fail agbstraction of a router, the bottom layer abstracts the hardware,
components expect to interact directly. and a ‘distributed operating system’ layer mediates between
Teja NP[12] is another commercial product targeted at thine two. The distributed operating system layer organises the
IXP1200, although it also runs on the IBM PowerNP seriemvailable packet processors into a hierarchy of levels. Initial
[13] which is very similar architecturally to the IXP1200.classification occurs on a ‘low level' processor attached to
Rather than offer an abstract programming model like Mthe MAC-port, and if the packet requires further or more
croACE, Teja focuses on the provision of an integrated toobmplex processing then a ‘higher level’ processor is used.
chain and development environment. Although this eases fhiais provides a high degree of abstraction, but it is heavily
development of NP software it provides minimal architecturalependent on the IXP1200 architecture. For example, it is hard
abstraction and therefore minimal design portability. to see how this same abstraction of levels could be maintained
Turning to research-derived programming environmentsn the EZChip NP (see section II).
NetBind [14] provides the abstraction of a set of packet- Apart from the work discussed above, additional research
processing components that can be bound into a data p&ifis focused on creating toolsets for specific NPs such as C
This is done by adopting the convention of a standard entwgmpilers, simulators, debuggers and benchmarkers; some of
and exit instruction sequence for microblocks, and offering thieis work is described in [18], [19], [20]. Like Teja, however,
capability to dynamically ‘morph’ jump instructions in thesehis work focuses on making tools more usable rather than on
sequences so that execution is transferred to the entry pgimviding programming model that promote design portability
of the microblock to be executed next. This separates the ramd transferable programming skills.
functionality of a microblock from the way it is composed with Finally, the Network Processor Forum [21], a Industry
others, and also gives the NetBind programmer the ability tmnsortium that aims to facilitate and accelerate the develop-
dynamically reconfigure compositions of microblocks. ment of NP products, is starting to take an interest in NP
NetBind goes beyond MicroACE in supporting flexibleprogramming interface standardisation. To date their focus
composition of microblocks, but it offers no abstraction ovdras been on hardware level interoperability, but they have
the NP’s interconnects or over different sorts of processamcently announced the formation of a study group that will
(e.g. the microengines, StrongARM, and workstation host define a software API for network-computing applications.
an IXP1200-based router). It therefore offers no more desigtowever, it is envisaged that this API will not address low
portability across different NPs than MicroACE. level programming of individual NP products.

}CB"S”'E | complement the third-party deployment referred to above):

| cae o I P when third-party-deploying a component into a capsule, one

Q : ! knows by looking at the component’s receptacles precisely

‘ ° e Do which other component types must be present to satisfy its
************ . . dependencies.

‘ @ P Do e Pluggable Loaders and BindersFinally, bindings cre-

R« B S — - ated via the above-mentioned API, are associations between a

N ————————Y—F]YMYSMSMS] : single interface and a single receptacle that reside in a common
capsule (but not necessarily a common caplet). Similarly to
plug-in loaders, OpenCOM also supports a notionpbfg-
in binders Again, the idea is to give access to an extensible
I1l. TOWARDS A GENERIC PROGRAMMING MODEL EOR range of binding mechanisms with varying characteristics. See
NETWORK PROCESSORS below for examples. As mentioned, the creation of bindings
is inherently third-party in nature; it can be performed by
any party within the capsule (i.e. not only by the ‘first-party’
A high-level view of our proposed component model, calledomponents whose interface or receptacle participates in the
OpenCOM[22], is given in figure 2. This depicts the centrabinding).
concepts ofcomponents(the filled circles), capsules (the _)
outer dotted box)caplets(the inner dotted boxesjpterfaces B- APPlying OpenCOM in NPs
(the small circles)receptacleqthe small cups), anBiindings We now consider how the above concepts can be applied
(the implied association between the adjacent interfaces andhe diverse range of NP types outlined in section Il. First,
receptacles). the scoping-related notions of capsules and caplets are useful
e Components, Capsules and Caplet€omponentsare in distinguishing different processors and types of processors
encapsulated units of functionality and deployment that intesn the NP in a generic manner (i.e., the packet processor
act with their environment (i.e. other components) exclusivetiimention). For example, in an IXP1200, we might map a
through interfaces and receptacles. The key difference betweargle capsule onto the entire NP, and sub-scope individual mi-
our notion of components and Click’s is that ours are deployedoengines, and the StrongARM control processor, as caplets.
at run-time. The target of this deployment is eith@a@suleor The capsule runtime in such a mapping would reside on the
acaplet Both of these concepts represents a scope or locus 8rongARM where it could run in a standard operating system
component deployment; the latter are sub-scopes of the forrsevironment. An alternative mapping could encapsulate all the
(they can be nested to arbitrary depth). If the deploymenticroengines in a single caplet. A plug-in loader associated
environment permits, caplets can be created and destroyedvigh this caplet could then perform intelligent load balancing
runtime. of components across microengines, thus providing a higher
Each capsule offers a simple run-time API for componefavel of abstraction than the first alternative. The notion of
lifecycle management (i.e. loading components into the cagaplets is also useful in isolating untrusted code, which is
sule and instantiating and destroying them), and interfadeiportant in active networking environments. For example, a
receptacle binding (see below). To accomplish loading, tdava sandbox could be isolated as a caplet.
model supports the notion gilug-in loaders New loaders The IXP1200 is situated towards the ‘centralised’ end of
can be added at runtime, and they can be selected accordhg control dimension defined in section 1l-A. In an NP with
to their particular properties. Examples are given below. Intess centralisation, such as the Motorola C-Port or the EZChip,
portantly, the loading of components into a capsule can bee capsule abstraction could span both the NP itself and its
requested by any component hosted by the capsule no matiesting workstation. In this case, the capsule runtime would
which caplet is hosting it (this is referred to #srd-party execute on the host. Alternatively, the capsule abstraction
deploymenjt could be restricted to the NP itself, and the capsule runtime
e Interfaces and Receptaclednterfacesare units of ser- could execute on one of the general packet processors, if
vice provision offered by components; they are expressedpresent. This would be possible in principle on the Motorola
terms of sets of operation signatures and associated dataty@ePBort, but not on the EZChip which has no general purpose
For language independence, OMG IDL [23] is used as @ocessors.
specification language. As in Click, components can supportThe pluggable loader concept is closely associated with cap-
multiple interfaces: this is useful in recognising separations siiles/caplets. Typically, at least one loader will be provided for
concerns (e.g. between base functionality and managemeeéch type of caplet, and each will know how to load compo-
Receptaclesare ‘anti-interfaces’ used to make explicit thenents into the hardware environment underlying its particular
dependencies of components on other components: whereaglet type. For example, in the 1XP1200, there would be (at
an interface represents an element of service provision, a least) one loader for the StrongARM caplet and another for the
ceptacle represents a unit of service requirement. Receptacésroengine caplets. Importantly, the OpenCOM API allows
are key to supporting a third-party style of composition (teelective transparency in the use of loaders. If full transparency

Fig. 2. lllustration of capsules and caplets

A. Overview of the OpenCOM Component Model

is desired, one can issue a call suchl@sd(componentl, A final crucial property of the component model is its
capletl); which will deduce an appropriate loader type frommadically third-party nature in terms of loading and binding.
meta-data attached mmponentl, and use this to load the Thanks to this, a component on an IXP1200 microengine can
component into the designated caplet. This essentially maskad and bind two components on the StrongARM control
the fact that different components may be implemented processor, or even on the host workstation, if that comes within
different machine languages. Even more transparency cantlhe scope of the capsule.
requested by issuing a call of the fordwmad(componentl); Note that in this paper we omit, for lack of space, any
which causes the runtime to lo@@mponentl into a default discussion of the important OpenCOM notion @dmponent
capsule using a default loader. Alternatively, one can opt filameworkswhich is used to support safe dynamic software
complete control and zero transparency by issuing a call fconfiguration. Information on this is available in the litera-
the formload(componentl, capletl, loader3);. ture [22].

The pluggable binder concept is equally central to the
component model’s abstraction power. In this case, the abstrac-/- CASE STUDY: OPENCOM ON THE INTEL IXP1200
tion is over the interconnect dimension. For example, on theFor the past year we have been working to deploy and eval-
IXP1200 we can encapsulate the NetBind binding mechanisrate the OpenCOM component model on the Intel IXP1200.
(see section 1I-B) as a plug-in binder that is competent fithe IXP1200 was selected because of its open and well
bind components that have been loaded into a common caplecumented architecture, and because it is a richly-featured
that represents a single underlying microengine. But equalip in terms of the three dimensions presented in section II-A.
well, we can provide a binder that is competent to bind To generate useful components with which to populate
components on different microengines (e.g. based on a shatteel implementation, we have taken as our starting point
memory or a next-neighbour register mechanism), or evearious modules (e.g. classifiers, forwarders, schedulers etc.)
between components on a microengine and components onphavided by the NetBind project [14] at Columbia Univer-
StrongARM. Again, the use of plug-in binders is selectivelgity. We have transformed these bare modules, which are
transparent. If we dont know or care in which caplets our twaritten in C or assembler, for both the StrongARM CPU
target components are located, we can bmd(interfacel, and the microengines, into standard OpenCOM components
receptaclel5); and an appropriate loader will be selectefly attaching appropriate meta-data (e.g. IDL interfaces, and
according to location-related meta-data attached to the colmader and binder attributes) to produce standardly-packaged
ponents that own the specified interface and receptacle. On éimel deployable units.
other hand, if it is important to select a particular mechanism, The mapping we currently employ of OpenCOM capsules
we can saybind(interfacel, receptaclel5, loader4);. And and caplets to the IXP1200 involves a single capsule that
SO on. encompasses both the NP and the host workstation, and

Note that the abstract model of binding provided by theontains separate caplets for each of: the host workstation
pluggable binder framework is consistent across all types @fctually, a single Linux process on the workstation); the
NP regardless of the nature and diversity of the interconne@8ongARM (again, a single Linux process); and the six
between packet processors. For example, it can uniformmyjicroengines. The OpenCOM runtime runs in the StrongARM
accommodate the fixed hardware channels supported by tlaplet; all the other caplets are ‘slaves’ of this ‘central’ runtime
pipeline-oriented EZChip, or the bus and shared memoayd incur only minimal memory overheads (see below). The
interconnects of the Motorola C-Port, in just the same wayemory footprint of the central runtime itself is of the order
as the various mechanisms supported by the IXP1200. @f300Kb, although we believe that there is considerable scope
course, different NP architectures may impose constraints f@n reducing this. The central runtime in the StrongARM caplet
the form of possible bindings. For example, it would not beommunicates with the other caplets by means of so-called
straightforward to directly bind components on non-adjacecaplet channels The role of these is to bootstrap plug-in
processors on the EZChip NP; although even here it woulthders and binders associated with non-central caplets, and to
be possible (if perhaps undesirable) to provide a plug-support communication between their two parts: such loaders/
binder that implemented this type of binding by transparenthinders are implemented as a ‘delegator’ part that resides in
instantiating a forwarder on the intermediary processor(s). the central StrongARM caplet, and a (minimal) ‘delegate’ part

The component concept alone is capable of providing cotirat resides in the other caplet. As examples, we now briefly
siderable abstraction power in terms of accommodating dedescribe example loader and binder plug-ins that are associated
cated non-programmable processors such as those provideavlil the microengine caplets.
the Motorola C-Port. These processors can be accommodate@ihe microengine loader plug-ins of interest in that it
by representing them with a ‘dummy’ component and agorovides the illusion of dynamic loading despite the fact
associated special plug-in loader and binder pair. Loaditigat the microengine hardware only allows modification of
the component and binding it to the client component h#s instruction store when the CPU is stopped [11]. The
the effect of making the service provided by the dedicatdmhsic capability provided by the microengine hardware is to
processor (e.g. table lookup) look as if it were a normakop the microengine, read/ write arbitrary instruction store
software component. locations, and then restart it at a hard-wired address. To

achieve transparent loading it is therefore necessary for theApart from the microengine loader and binder discussed
loader to not only load the new component but also to patelove, we are currently implementing loaders that load com-
the (hard-wired) restart address so that subsequent execufionents into StrongARM and host workstation caplets; and
resumes at the point it left off. The loader also has the abilibinders that bind components across any pairwise combina-
to autonomously move code around within the instruction statiens of the three caplet types. Bindings between the micro-
to avoid memory fragmentation as components are loaded ardjines and the other two caplet types are considerably more
unloaded. The loader is also of interest in that it constraicemplex than intra- and inter-microengine bindings as they
the form of OpenCOM components it is willing to load. Theequire stubs and skeletons to map the parameter and return
general notion of particular loaders somehow restricting tivalue to a bus packet. To minimise memory overhead, the
components they can work with is a general and powerfolicroengine-side stubs/ skeletons are hand coded rather than
pattern in OpenCOM. In the present case, the IDL interfacbeing generated automatically from the IDL specification.
of loaded components may only support operations that accept
and return a single integer. This restriction, which is enforced
by inspecting the component’s IDL meta-data at load time, V. CONCLUSIONS ANDFUTURE WORK
is imposed partly to simplify the design of the associated) _)
binder (see below), and partly because the assumed model df' this paper we have characterised the design space of
component composition on the microengines (borrowed froMf>S and proposed a component-based programming model
above-mentioned NetBind work) is that components are boulitt: We have argued, can be applied generally within this
into a more-or-less linear sequence and cooperatively W(ﬁﬁs'g” space. Th_e component model, _mamly th_rough its plug-
on queues of network packets whose addresses are passd #@ders and binders and its associated notion of caplets,
integer arguments. providgs a high degree of design portability and potenti.al
The intra-microengine binder plug-iis strongly coupled to for skill transfer. We have also demonstrated how plug-in
the loader just described. It builds on the above-mentioniders and binders can exploit NP-specific features to provide
NetBind technique (see section II-B) of creating bindinggom high performance (for example,.our microengine binder
by ‘morphing’ jump instructions. However, the binder idNCcurs comparable qverheads to NetBind on_the IXElZOO), and
more complex than the NetBind implementation becaus\@lue-added behawor_ (for_example_, our microengine loader/
together with the loader, it supports multiple instantiations &inder supports multiple instantiations of components and
components (unlike NetBind which only supports Sing|et0§qansparent_ly optimises instruction store use as components
components). The single argument and return value are pas3&j dynamically loaded/ instantiated/ destroyed). Most im-
via a designated register, so the binder does not needPgjtantly, we have argued that our abstractionsgeneerally
employ stubs or skeletons. The necessary entry and e%)[pllcz_ible NP-Click also abstracts NP-specn‘l_c featur_es - e.g.
point information is obtained from IDL meta-data attached t Provides an API to manage and allocate microengine LIFO
the packaged component, which is transformed from relatif@Sources on the IXP1200. But this APl would make no sense
offsets to absolute offsets by the loader. It is important €1 @n NP that did not support LIFOs. The OpenCOM approach
notice, by the way, that the IDL-specified interfaces rot Woul_d be to provide a plug in binder (a generic abgtractlon)
incur performance overhead. In fact, the overhead of the binde@t internally uses, manages and allocates LIFOs (if present)
in calling a null operation with no arguments or return valudg build a reusable binder plug-in.
is only five (1-cycle) instructions. These subsume passing onOpenCOM also supports run-time reconfiguration. In this
the stack a pointer to the per-instance state vector of the calR&per we have discussed the basic mechanisms behind this
component, and the return address. Note that NetBind inc(r€. receptacles, and the ability to bind and unbind components
an overhead of just two 1-cycle jump instructions (for the cafit runtime). But we have not elaborated on OpenCOM’s ap-
and the return). But this is because NetBind does not supppf@ach to managing integrity, consistency, safety and security
multiple instantiations of components. However, note that wehen performing reconfiguration operations. As mentioned,
could easily retrieve the NetBind performance in the OpeMe€ rely on the notion otomponent framework® support
COM environment simply by implementing and installing atthis. We have already explored the provision of component
new binder plug-in that assumes components that observe fiiggneworks in other domains in which we have applied
NetBind calling convention and (therefore) does not suppdPPenCOM (e.g. Middleware [24]); one aspect of our future
multiple component instantiation. The essential point is thatork will be to further explore this interesting and demanding
OpenCOM'’s plug-in architecture enables us to support agyea in the NP domain.
appropriate trade-off. More generally, it is crucial to note that The main thrust of our future work, however, will be to
the performance of the OpenCOM programming model aseaplore the use of OpenCOM in other NP environments. We
whole is almost entirely dependent on the performance of thee already looking at the more advanced 1XP2400 from Intel
binding mechanisms used. Almost all the value-added featusesd the IBM PowerNP; but we would also like to provide
of OpenCOM are confined to the central runtime and do nfatrther evidence for the generality of our approach by looking
‘get in the way’ when components communicate with eadh more detail at NPs elsewhere in the design space outlined
other on the NP’s fast path. in this paper.

(1]

(2]

(3]

(4]

(5]

(6]
(7]

(8]
(0]
[10]
[11]
[12]

[13]

[14]

[15]

[16]

[17]

(28]

[29]

[20]

[21]

[22]

(23]

[24]

REFERENCES

Ruf L. Pletka R. Erni P. Droz P. Towards high-performance active
networking. Proceedings of the Fifth Annual International Working
Conference on Active Networks (IWAN 200Bgcember 2003. Kyoto,
Japan.

C. Sauer K. Keutzer C. Kulkarni, M. Gries. Programming Challenges
in Network Processor Deployment. Int. Conference on Compilers,
Architecture, and Synthesis for Embedded Systems (CAEE®)ber
2003.

Agere Systems Proprietary. The Challenge for Next Generation Network
Processors. April 2001.

Mel Tsai, Chidamber Kulkarni, Christian Sauer, Niraj Shah, and Kurt
Keutzer. A benchmarking methodology for network processors. In
1st Workshop on network processors along with HPCA 26@bruary
2002.

Paulin P G. Network processors: A perspective on market requirements,
processor architectures and embedded s/w to8§Microelectronics
2001.

Adiletta M. et al. The next generation of intel network processbrtel
Technology Journal, Volume 6, issugAugust 15 2002.

Radisys Corporation. IXP1200 White Paper: Using the Intel IXP1200
Network Processor to optimize Packer-Processing Application Develop-
ment, 2001.

Motorola Research. Architecture guide, C-5e/C-3e network processor,
silicon revision BO, 2003.

EZchip technologies. Network processor designs for next-generation
networking equipment white paper, 2003.

Cisco Systems Inc. Parallel express forwarding on the Cisco 10000
series, 2003.

Intel Press. MicroACE, design document, revision 1rfel Press, Intel
Corporation 2001.

Akash Deshpande, Kevin Crozier, and Mandeep Baines. The Teja
Software Platform for Network Processors.

James Allen et al. IBM PowerNP Network Processor: Hardware
Software and ApplicationdBM Journal of Research and Development
47(2/3):177-194, March/May 2003.

Campbell A.T., Kounavis M.E., Villela D.A., Vicente J.B., de Meer H.G.,
Miki K., and Kalaichelvan K.S. NetBind: A Binding Tool for Con-
structing Data Paths in Network Processor-based Routers.5tHn
IEEE International Conference on Open Architectures and Ne twork
Programming (OPENARCH’02)June 2002.

Kurt Keutzer Niraj Shah, William Plishker. Np-click: A programming
model for the intel ixp1200. I2nd Workshop on Network Processors
(NP-2) at the 9th International Symposium on High Performance Com-
puter Architecture (HPCA-9), Anaheim, CRebruary 2003.

Karlin S. and Peterson L. VERA: An Extensible Router Architecture.
In 4th International Conference on Open Architectures and Networ k
Programming (OPENARCHApril 2001.

Tammo Spalink, Scott Karlin, Larry Peterson, and Yitzchak Gottlieb.
Building a Robust Software-Based Router Using Network Processors,
Oct 2001.

Wagner J. Leupers R. C compiler design for an industrial network
processor. Proceedings of the 2001 ACM SIGPLAN workshop on
Optimization of middleware and distributed syste2801.

Memik G. Mangione-Smith W H. Hu W. Netbench: A benchmarking
suite for network processoréCCAD, 2001.

Gries M. Kulkarni C. Sauer C. Keutzer K. Comparing analytical
modeling with simulation for network processors: A case stiBsign,
Automation, and Test in Europe (DATE), Munich, Germakiarch,
2003.

Network Processing Forum Working Group. Network processing forum
backgrounder, Oct 2002. http://www.npforum.org/.

Geoff Coulson, Gordon Blair, David Hutchison, Ackbar Joolia, Kevin
Lee, Jo Ueyama, Antonio Gomes, and Yimin Ye. NETKIT: A Soft-
ware Component-Based Approach to Programmable Networking . In
ACM SIGCOMM Computer Communication Revielume 33, No 5,
October 2003.

Object Management Group, Inc. CORBA 3.0 - IDL Syntax and
Semantics chapter, formal/02-06-07.

G. Coulson, Blair G.S., M. Clarke, and N. Parlavantzas. The Design of
a Highly Configurable and Reconfigurable Middleware PlatfoAM
Distributed Computing Journall5(2):109-126, April 2002.

	Cover page version IEEE
	towards generic programming

