

MURDOCH RESEARCH REPOSITORY
http://researchrepository.murdoch.edu.au/

Lee, K., Coulson, G., Blair, G., Joolia, A. and Ueyama,
J. (2004) Towards a generic programming model for network

processors. In: IEEE 12th International Conference on Networks
(ICON 04), 16 - 19 November, Singapore.

http://researchrepository.murdoch.edu.au/4845/

 Copyright © 2004 IEEE

Personal use of this material is permitted. However, permission to reprint/republish
this material for advertising or promotional purposes or for creating new collective
works for resale or redistribution to servers or lists, or to reuse any copyrighted

component of this work in other works must be obtained from the IEEE.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Repository

https://core.ac.uk/display/11235376?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://researchrepository.murdoch.edu.au/�
http://researchrepository.murdoch.edu.au/4845/�

Towards a Generic Programming Model for
Network Processors

Kevin Lee, Geoff Coulson, Gordon Blair, Ackbar Joolia, Jo Ueyama

Lancaster University, Lancaster, LA1 4YR, UK

Abstract— Network Processors (NPs) are emerging as cost
effective networking elements that can be more readily updated
and evolved than custom hardware or ASIC-based designs.
Moreover, NPs promise support for run-time reconfiguration
of low-level networking software. However, it is notoriously
difficult to develop software for NPs because of their complex
design, architectural heterogeneity, and demanding performance
constraints. In this paper we present a runtime component-
based approach to programming NPs. The approach promotes
conceptual uniformity and design portability across a wide
variety of NP types while simultaneously exploiting hardware
assists that are specific to individual NPs. To show how our
approach can be applied in a wide range of types of NPs
we characterise the design space of NPs and demonstrate the
applicability of our concepts to the various classes identified.
Then, as a detailed case study, we focus on programming the
Intel IXP1200 NP. This demonstrates that our approach can be
effectively applied, e.g. in terms of performance, in a demanding
real-world NP environment.

I. I NTRODUCTION

Network Processors (NPs) are an attempt by hardware
vendors to fulfill the growing need for low-priced specialised
network hardware that is more future proof than conventional
custom hardware or ASIC-based designs, and can be applied in
a wide range of situations (e.g. in networked devices, as edge-
network routers and even in the network core). In addition,
NPs are seen by some as potential vehicles for the deployment
of active networking-derived technologies [1] which exploit
the potential of NPs for run-time software reconfiguration.
Conceptually, NPs are multiprocessor-based hardware units
that support a number of network ports and provide software-
based packet processing facilities that can be programmed with
the aid of a toolkit. They have the ability to perform relatively
complex packet processing at line speeds.

There is a downside to current NPs, however: they are
notoriously difficult to program [2], [3]. This is because
of their complex design (e.g. involving multiple processors,
including both general purpose and specialised processors;
and multiple memory and interconnect technologies), extreme
architectural heterogeneity across vendors and products [4],
and demanding performance constraints.

Therefore, NPs often exhibit elegant hardware designs
which remain underexploited by software [5]; and their ex-
treme heterogeneity tends to inhibit translation of software,
software designs, or even skills across brands. The problem
is exacerbated by the need for high performance and runtime
reconfiguration, both of which add considerably to software

complexity (because of its complexity, many NP software
toolkits fail to provide any support at all for runtime reconfig-
uration).

The aim of the research discussed in this paper is to
develop a generic programming model for NPs that accom-
modates complex architectures and architectural heterogeneity
while also supporting design portability, high performance
and runtime reconfigurability. Our approach is based on a
run-time software component model. The model promotes
conceptual uniformity and design portability across a wide
variety of NP types while simultaneously exploiting hardware
assists that are specific to individual NPs. It features a dis-
tributed runtime with low memory footprint, employs formally
specified interfaces, supports components written in different
programming languages, and uniformly abstracts over different
processor types and different inter-processor communication
mechanisms without loss of performance. It also explicitly
supports run-time reconfiguration of software.

The remainder of the paper is structured as follows. In
section II, we characterise the design space of NPs as a basis
for arguing the genericity of our approach, and also survey
a number of existing programming models provided both by
the manufacturers of various NP products, and by indepen-
dent researchers. In section III, we present our approach to
programming NPs and show how this improves on existing
approaches. Then, in section IV, we provide a detailed case
study of the application of our approach to the Intel IXP1200
NP. Finally, in section V we offer our conclusions.

II. N ETWORK PROCESSORS

A. Classification

The field of NPs is notable for its great architectural
heterogeneity. In general, however, it can safely be said that
NPs universally provide programmable support for processing
packets, and that this usually takes the form of one or more
packet processors. These can be supported either on a single
chip or across multiple chips. In addition, NPs universally
support a number of MAC-level ports, some memory, and
some form or forms of processor interconnect.

In this section we attempt to capture the design space of
NPs in terms of a small number of orthogonal dimensions.
These are:

• the packet processor dimension - the range of types of
available packet processors

Fig. 1. The Intel IXP1200 (from [7])

• the interconnect dimension - the range of interconnect
technologies employed

• the control dimension - the degree of support for cen-
tralised control

We then go on to show how prominent NP products map to
this space. In so doing, we lay the groundwork for a discussion
on how our component-based programming approach can
accommodate the full diversity of NPs.

1) The Packet Processor Dimension:Most NPs feature
multiple packets processors, but the nature of these can vary
from units with very general instruction sets to single-purpose
dedicated units for, e.g., checksumming or hashing, which
are not programmable. Furthermore, some NPs feature only
one type of packet processor and others support a number of
different types.

For example, the Intel IXP1200 NP [6] (see figure 1) sup-
ports a uniform set of six so-calledmicroengineswhich serve
as packet processors. These are 233-600Mhz CPUs whose in-
struction set includes I/O to/from MAC-ports, packet queuing
support, and checksumming. They support hardware threads
with zero context switch overhead and can be programmed
either in assembler or C. The IXP1200 also includes a general
purpose StrongARM CPU which serves as a controller and
also typically performs slow-path operations.

On the other hand, the Motorola C-Port [8] employs so-
calledchannel processorswhich are generic packet processors
grouped in sets of four that share an area of fast memory.
But in addition it supports a range of dedicated, non pro-
grammable, processors that perform functions such as queue
management, table lookup, and buffer management.

As a third example, the EZChip NP-1 [9] has no fully
generic processors. Rather, it exclusively employs dedicated
packet processors that perform specific tasks such as parsing
packets, table lookup or packet modification. Although these
are dedicated to their given ‘domain’, they are quite flexible
and programmable within that domain.

2) The Interconnect Dimension:Different NPs provide
different mechanisms for inter-processor communication: such
as shared registers, buses (of varying types), shared memory
(perhaps a range of types that make different trade-offs be-
tween capacity and speed), and dedicated channels.

For example, the IXP1200 provides a fast bus for commu-
nication between its microengines, MAC ports and memory.
It also provides shared registers and a range of memory types
(i.e. SRAM, SDRAM). The shared registers and memory are
typically used together at the software level for inter-processor
communication. The newer IXP2400 NP from Intel also
provides ‘next-neighbour’ registers that provide a dedicated
interconnect between two ‘adjacent’ microengines.

The Motorola C-Port employs shared fast memory for
interconnection between grouped channel processors (as men-
tioned above). It also employs multiple onboard buses for
communication between these groups, and shared memory that
is managed by a dedicated processor.

Unlike the two examples above, the EZChip offers a very
static and limited interconnect which arranges the packet pro-
cessors in a strict pipeline topology. The Cisco PXF [10] uses
a variant of this approach: it offers multiple parallel pipelines
and some capability for communication between pipelines.
Clearly, these architectures are less flexible, although poten-
tially faster, than the bus-based interconnects discussed above.

3) The Control Dimension: Apart from the generic-
ity/specificity of their packet processors, different NPs make
different choices regarding centralisation/ decentralisation of
control and management. For example, some NPs rely exclu-
sively on external control in the form of a host workstation.
Others (e.g. the IXP1200) incorporate a commodity CPU on
the NP itself which runs an operating system, and others
support sufficiently powerful and general packet processors
that any of these can potentially serve as a locus of control
and management.

The IXP 1200’s on-board StrongARM CPU runs a com-
modity OS such as Linux. As well as handling slow-path
packet processing, the StrongARM is responsible for loading
code onto the microengines and stopping and starting them as
required.

The Motorola C-Port, on the other hand, has no built-in
centralised controller. Instead, it relies on a host workstation
to load and supervise the operation of its ‘channel controller’
packet processors. Nevertheless, it is theoretically possible to
dedicate one of the channel controllers to take the supervisory
role, especially if fine-grained dynamic reconfiguration of the
NP is a goal.

Similarly, the EZChip relies on a host workstation for
control and management. In this case, there is no alternative
because dedicating one of the packet processors, even if
possible (cf. their lack of generality), would introduce an
unacceptable bottleneck in the pipeline.

B. Software for Network Processors

The provision of software development environments for
different NPs is almost as diverse as NP hardware architecture.

In this section we examine both proprietary and research-
derived programming environments and show that each is hard
to generalise beyond the specific architecture at which it is
targeted.

In terms of proprietary software, we focus on programming
models and development environments for the IXP1200 and
the IBM PowerNP. Information on the software environments
used by other NPs is unfortunately hard to obtain without
signing non-disclosure agreements.

Intel’s MicroACE [11] is targeted at the IXP1200 and
other Intel IXA products. In this model, proxy-like software
elements (calledactive computing elementsor ACEs) on the
IXP1200’s StrongARM control processor are ‘mirrored’ by
blocks of code (called microblocks) that run on microengines.
Thanks to this mirroring, when the programmer loads a Stron-
gARM element, the corresponding microblock is transparently
loaded onto a microengine as a side effect. The microblock can
choose to offload packets to its associated ACE for handling
on the slow path.

Although it provides a useful degree of abstraction, the
MicroACE approach is limited to IXP1200-like architectures
that employ a tightly integrated control processor. Further-
more, the model leaves linkages between microblocks implicit
in the way the microblocks are written: is not possible to
combine microblocks in unanticipated topologies or to exploit
interconnect mechanisms other than those explicitly chosen by
the microblock author. Also, the ACE approach cannot be used
to perform dynamic software reconfiguration as it takes no
heed of theintegrityof a running configuration: if a component
is replaced, a neighbouring component will inevitably fail as
components expect to interact directly.

Teja NP[12] is another commercial product targeted at the
IXP1200, although it also runs on the IBM PowerNP series
[13] which is very similar architecturally to the IXP1200.
Rather than offer an abstract programming model like Mi-
croACE, Teja focuses on the provision of an integrated tool
chain and development environment. Although this eases the
development of NP software it provides minimal architectural
abstraction and therefore minimal design portability.

Turning to research-derived programming environments,
NetBind [14] provides the abstraction of a set of packet-
processing components that can be bound into a data path.
This is done by adopting the convention of a standard entry
and exit instruction sequence for microblocks, and offering the
capability to dynamically ‘morph’ jump instructions in these
sequences so that execution is transferred to the entry point
of the microblock to be executed next. This separates the raw
functionality of a microblock from the way it is composed with
others, and also gives the NetBind programmer the ability to
dynamically reconfigure compositions of microblocks.

NetBind goes beyond MicroACE in supporting flexible
composition of microblocks, but it offers no abstraction over
the NP’s interconnects or over different sorts of processors
(e.g. the microengines, StrongARM, and workstation host of
an IXP1200-based router). It therefore offers no more design
portability across different NPs than MicroACE.

NP-Click [15] is another component-based programming
model for NPs; it is derived from an earlier PC-based software
router model called Click. Again, NP-Click has been primarily
targeted at the IXP1200. It is founded on a much richer model
of components than NetBind. While communication between
NetBind microblocks takes place over low-level untyped entry
and exit points, Click components have typedports; and
connections between ports can be designated as either ‘push’
or ‘pull’ which provides declarative control over flow of
control and threading. In addition, NP-Click abstracts, to a
degree, over the different memory technologies offered by the
IXP1200 by providing keywords such as ‘global’, ‘regional’
or ‘local’ which cause the associated component to be auto-
matically allocated an appropriate memory type. Furthermore,
it provides low level abstractions such asmalloc() and free()
to facilitate and manage the allocation of NP resources such
as microengine LIFO registers.

NP-Click does a much better job of abstracting NP architec-
ture than NetBind, but it still falls short of providing a generic
approach to NP programming. While it abstracts particular fea-
tures of the IXP1200, it has no notion of abstracting arbitrary
architectures in a principled way, and thereby encouraging
design portability and transferable skills across NP types. That
is, there is no necessary commonality between the abstractions
provided over different architectures (e.g. NPs other than the
IXP1200 may not use LIFOs). In addition, NP-Click provides
no support for dynamic reconfiguration.

VERA [16], [17] is an extensible software router architec-
ture that comprises three layers: the top layer provides the
abstraction of a router, the bottom layer abstracts the hardware,
and a ‘distributed operating system’ layer mediates between
the two. The distributed operating system layer organises the
available packet processors into a hierarchy of levels. Initial
classification occurs on a ‘low level’ processor attached to
the MAC-port, and if the packet requires further or more
complex processing then a ‘higher level’ processor is used.
This provides a high degree of abstraction, but it is heavily
dependent on the IXP1200 architecture. For example, it is hard
to see how this same abstraction of levels could be maintained
on the EZChip NP (see section II).

Apart from the work discussed above, additional research
has focused on creating toolsets for specific NPs such as C
compilers, simulators, debuggers and benchmarkers; some of
this work is described in [18], [19], [20]. Like Teja, however,
this work focuses on making tools more usable rather than on
providing programming model that promote design portability
and transferable programming skills.

Finally, the Network Processor Forum [21], a Industry
consortium that aims to facilitate and accelerate the develop-
ment of NP products, is starting to take an interest in NP
programming interface standardisation. To date their focus
has been on hardware level interoperability, but they have
recently announced the formation of a study group that will
define a software API for network-computing applications.
However, it is envisaged that this API will not address low
level programming of individual NP products.

Capsule

Caplet Caplet
Caplet

Fig. 2. Illustration of capsules and caplets

III. T OWARDS A GENERIC PROGRAMMING MODEL FOR

NETWORK PROCESSORS

A. Overview of the OpenCOM Component Model

A high-level view of our proposed component model, called
OpenCOM[22], is given in figure 2. This depicts the central
concepts ofcomponents(the filled circles), capsules (the
outer dotted box),caplets(the inner dotted boxes),interfaces
(the small circles),receptacles(the small cups), andbindings
(the implied association between the adjacent interfaces and
receptacles).
• Components, Capsules and CapletsComponentsare

encapsulated units of functionality and deployment that inter-
act with their environment (i.e. other components) exclusively
through interfaces and receptacles. The key difference between
our notion of components and Click’s is that ours are deployed
at run-time. The target of this deployment is either acapsuleor
a caplet. Both of these concepts represents a scope or locus for
component deployment; the latter are sub-scopes of the former
(they can be nested to arbitrary depth). If the deployment
environment permits, caplets can be created and destroyed at
runtime.

Each capsule offers a simple run-time API for component
lifecycle management (i.e. loading components into the cap-
sule and instantiating and destroying them), and interface/
receptacle binding (see below). To accomplish loading, the
model supports the notion ofplug-in loaders. New loaders
can be added at runtime, and they can be selected according
to their particular properties. Examples are given below. Im-
portantly, the loading of components into a capsule can be
requested by any component hosted by the capsule no matter
which caplet is hosting it (this is referred to asthird-party
deployment).
• Interfaces and ReceptaclesInterfacesare units of ser-

vice provision offered by components; they are expressed in
terms of sets of operation signatures and associated datatypes.
For language independence, OMG IDL [23] is used as a
specification language. As in Click, components can support
multiple interfaces: this is useful in recognising separations of
concerns (e.g. between base functionality and management).
Receptaclesare ‘anti-interfaces’ used to make explicit the
dependencies of components on other components: whereas
an interface represents an element of service provision, a re-
ceptacle represents a unit of service requirement. Receptacles
are key to supporting a third-party style of composition (to

complement the third-party deployment referred to above):
when third-party-deploying a component into a capsule, one
knows by looking at the component’s receptacles precisely
which other component types must be present to satisfy its
dependencies.
• Pluggable Loaders and BindersFinally, bindings, cre-

ated via the above-mentioned API, are associations between a
single interface and a single receptacle that reside in a common
capsule (but not necessarily a common caplet). Similarly to
plug-in loaders, OpenCOM also supports a notion ofplug-
in binders. Again, the idea is to give access to an extensible
range of binding mechanisms with varying characteristics. See
below for examples. As mentioned, the creation of bindings
is inherently third-party in nature; it can be performed by
any party within the capsule (i.e. not only by the ‘first-party’
components whose interface or receptacle participates in the
binding).

B. Applying OpenCOM in NPs

We now consider how the above concepts can be applied
in the diverse range of NP types outlined in section II. First,
the scoping-related notions of capsules and caplets are useful
in distinguishing different processors and types of processors
on the NP in a generic manner (i.e., the packet processor
dimention). For example, in an IXP1200, we might map a
single capsule onto the entire NP, and sub-scope individual mi-
croengines, and the StrongARM control processor, as caplets.
The capsule runtime in such a mapping would reside on the
StrongARM where it could run in a standard operating system
environment. An alternative mapping could encapsulate all the
microengines in a single caplet. A plug-in loader associated
with this caplet could then perform intelligent load balancing
of components across microengines, thus providing a higher
level of abstraction than the first alternative. The notion of
caplets is also useful in isolating untrusted code, which is
important in active networking environments. For example, a
Java sandbox could be isolated as a caplet.

The IXP1200 is situated towards the ‘centralised’ end of
the control dimension defined in section II-A. In an NP with
less centralisation, such as the Motorola C-Port or the EZChip,
the capsule abstraction could span both the NP itself and its
hosting workstation. In this case, the capsule runtime would
execute on the host. Alternatively, the capsule abstraction
could be restricted to the NP itself, and the capsule runtime
could execute on one of the general packet processors, if
present. This would be possible in principle on the Motorola
C-Port, but not on the EZChip which has no general purpose
processors.

The pluggable loader concept is closely associated with cap-
sules/caplets. Typically, at least one loader will be provided for
each type of caplet, and each will know how to load compo-
nents into the hardware environment underlying its particular
caplet type. For example, in the IXP1200, there would be (at
least) one loader for the StrongARM caplet and another for the
microengine caplets. Importantly, the OpenCOM API allows
selective transparency in the use of loaders. If full transparency

is desired, one can issue a call such asload(componentc1,
caplet1); which will deduce an appropriate loader type from
meta-data attached tocomponentc1, and use this to load the
component into the designated caplet. This essentially masks
the fact that different components may be implemented in
different machine languages. Even more transparency can be
requested by issuing a call of the formload(componentc1);
which causes the runtime to loadcomponentc1 into a default
capsule using a default loader. Alternatively, one can opt for
complete control and zero transparency by issuing a call of
the form load(componentc1, caplet1, loader3);.

The pluggable binder concept is equally central to the
component model’s abstraction power. In this case, the abstrac-
tion is over the interconnect dimension. For example, on the
IXP1200 we can encapsulate the NetBind binding mechanism
(see section II-B) as a plug-in binder that is competent to
bind components that have been loaded into a common caplet
that represents a single underlying microengine. But equally
well, we can provide a binder that is competent to bind
components on different microengines (e.g. based on a shared
memory or a next-neighbour register mechanism), or even
between components on a microengine and components on the
StrongARM. Again, the use of plug-in binders is selectively
transparent. If we dont know or care in which caplets our two
target components are located, we can saybind(interface1,
receptacle15); and an appropriate loader will be selected
according to location-related meta-data attached to the com-
ponents that own the specified interface and receptacle. On the
other hand, if it is important to select a particular mechanism,
we can saybind(interface1, receptacle15, loader4);. And
so on.

Note that the abstract model of binding provided by the
pluggable binder framework is consistent across all types of
NP regardless of the nature and diversity of the interconnects
between packet processors. For example, it can uniformly
accommodate the fixed hardware channels supported by the
pipeline-oriented EZChip, or the bus and shared memory
interconnects of the Motorola C-Port, in just the same way
as the various mechanisms supported by the IXP1200. Of
course, different NP architectures may impose constraints on
the form of possible bindings. For example, it would not be
straightforward to directly bind components on non-adjacent
processors on the EZChip NP; although even here it would
be possible (if perhaps undesirable) to provide a plug-in
binder that implemented this type of binding by transparently
instantiating a forwarder on the intermediary processor(s).

The component concept alone is capable of providing con-
siderable abstraction power in terms of accommodating dedi-
cated non-programmable processors such as those provided by
the Motorola C-Port. These processors can be accommodated
by representing them with a ‘dummy’ component and an
associated special plug-in loader and binder pair. Loading
the component and binding it to the client component has
the effect of making the service provided by the dedicated
processor (e.g. table lookup) look as if it were a normal
software component.

A final crucial property of the component model is its
radically third-party nature in terms of loading and binding.
Thanks to this, a component on an IXP1200 microengine can
load and bind two components on the StrongARM control
processor, or even on the host workstation, if that comes within
the scope of the capsule.

Note that in this paper we omit, for lack of space, any
discussion of the important OpenCOM notion ofcomponent
frameworkswhich is used to support safe dynamic software
reconfiguration. Information on this is available in the litera-
ture [22].

IV. CASE STUDY: OPENCOM ON THE INTEL IXP1200

For the past year we have been working to deploy and eval-
uate the OpenCOM component model on the Intel IXP1200.
The IXP1200 was selected because of its open and well
documented architecture, and because it is a richly-featured
NP in terms of the three dimensions presented in section II-A.

To generate useful components with which to populate
the implementation, we have taken as our starting point
various modules (e.g. classifiers, forwarders, schedulers etc.)
provided by the NetBind project [14] at Columbia Univer-
sity. We have transformed these bare modules, which are
written in C or assembler, for both the StrongARM CPU
and the microengines, into standard OpenCOM components
by attaching appropriate meta-data (e.g. IDL interfaces, and
loader and binder attributes) to produce standardly-packaged
and deployable units.

The mapping we currently employ of OpenCOM capsules
and caplets to the IXP1200 involves a single capsule that
encompasses both the NP and the host workstation, and
contains separate caplets for each of: the host workstation
(actually, a single Linux process on the workstation); the
StrongARM (again, a single Linux process); and the six
microengines. The OpenCOM runtime runs in the StrongARM
caplet; all the other caplets are ‘slaves’ of this ‘central’ runtime
and incur only minimal memory overheads (see below). The
memory footprint of the central runtime itself is of the order
of 300Kb, although we believe that there is considerable scope
for reducing this. The central runtime in the StrongARM caplet
communicates with the other caplets by means of so-called
caplet channels. The role of these is to bootstrap plug-in
loaders and binders associated with non-central caplets, and to
support communication between their two parts: such loaders/
binders are implemented as a ‘delegator’ part that resides in
the central StrongARM caplet, and a (minimal) ‘delegate’ part
that resides in the other caplet. As examples, we now briefly
describe example loader and binder plug-ins that are associated
with the microengine caplets.

The microengine loader plug-inis of interest in that it
provides the illusion of dynamic loading despite the fact
that the microengine hardware only allows modification of
its instruction store when the CPU is stopped [11]. The
basic capability provided by the microengine hardware is to
stop the microengine, read/ write arbitrary instruction store
locations, and then restart it at a hard-wired address. To

achieve transparent loading it is therefore necessary for the
loader to not only load the new component but also to patch
the (hard-wired) restart address so that subsequent execution
resumes at the point it left off. The loader also has the ability
to autonomously move code around within the instruction store
to avoid memory fragmentation as components are loaded and
unloaded. The loader is also of interest in that it constrains
the form of OpenCOM components it is willing to load. The
general notion of particular loaders somehow restricting the
components they can work with is a general and powerful
pattern in OpenCOM. In the present case, the IDL interfaces
of loaded components may only support operations that accept
and return a single integer. This restriction, which is enforced
by inspecting the component’s IDL meta-data at load time,
is imposed partly to simplify the design of the associated
binder (see below), and partly because the assumed model of
component composition on the microengines (borrowed from
above-mentioned NetBind work) is that components are bound
into a more-or-less linear sequence and cooperatively work
on queues of network packets whose addresses are passed as
integer arguments.

The intra-microengine binder plug-inis strongly coupled to
the loader just described. It builds on the above-mentioned
NetBind technique (see section II-B) of creating bindings
by ‘morphing’ jump instructions. However, the binder is
more complex than the NetBind implementation because,
together with the loader, it supports multiple instantiations of
components (unlike NetBind which only supports singleton
components). The single argument and return value are passed
via a designated register, so the binder does not need to
employ stubs or skeletons. The necessary entry and exit
point information is obtained from IDL meta-data attached to
the packaged component, which is transformed from relative
offsets to absolute offsets by the loader. It is important to
notice, by the way, that the IDL-specified interfaces donot
incur performance overhead. In fact, the overhead of the binder
in calling a null operation with no arguments or return values
is only five (1-cycle) instructions. These subsume passing on
the stack a pointer to the per-instance state vector of the called
component, and the return address. Note that NetBind incurs
an overhead of just two 1-cycle jump instructions (for the call
and the return). But this is because NetBind does not support
multiple instantiations of components. However, note that we
could easily retrieve the NetBind performance in the Open-
COM environment simply by implementing and installing an
new binder plug-in that assumes components that observe the
NetBind calling convention and (therefore) does not support
multiple component instantiation. The essential point is that
OpenCOM’s plug-in architecture enables us to support any
appropriate trade-off. More generally, it is crucial to note that
the performance of the OpenCOM programming model as a
whole is almost entirely dependent on the performance of the
binding mechanisms used. Almost all the value-added features
of OpenCOM are confined to the central runtime and do not
‘get in the way’ when components communicate with each
other on the NP’s fast path.

Apart from the microengine loader and binder discussed
above, we are currently implementing loaders that load com-
ponents into StrongARM and host workstation caplets; and
binders that bind components across any pairwise combina-
tions of the three caplet types. Bindings between the micro-
engines and the other two caplet types are considerably more
complex than intra- and inter-microengine bindings as they
require stubs and skeletons to map the parameter and return
value to a bus packet. To minimise memory overhead, the
microengine-side stubs/ skeletons are hand coded rather than
being generated automatically from the IDL specification.

V. CONCLUSIONS ANDFUTURE WORK

In this paper we have characterised the design space of
NPs and proposed a component-based programming model
that, we have argued, can be applied generally within this
design space. The component model, mainly through its plug-
in loaders and binders and its associated notion of caplets,
provides a high degree of design portability and potential
for skill transfer. We have also demonstrated how plug-in
loaders and binders can exploit NP-specific features to provide
both high performance (for example, our microengine binder
incurs comparable overheads to NetBind on the IXP1200), and
value-added behavior (for example, our microengine loader/
binder supports multiple instantiations of components and
transparently optimises instruction store use as components
are dynamically loaded/ instantiated/ destroyed). Most im-
portantly, we have argued that our abstractions aregenerally
applicable. NP-Click also abstracts NP-specific features - e.g.
it provides an API to manage and allocate microengine LIFO
resources on the IXP1200. But this API would make no sense
on an NP that did not support LIFOs. The OpenCOM approach
would be to provide a plug in binder (a generic abstraction)
that internally uses, manages and allocates LIFOs (if present)
to build a reusable binder plug-in.

OpenCOM also supports run-time reconfiguration. In this
paper we have discussed the basic mechanisms behind this
(i.e. receptacles, and the ability to bind and unbind components
at runtime). But we have not elaborated on OpenCOM’s ap-
proach to managing integrity, consistency, safety and security
when performing reconfiguration operations. As mentioned,
we rely on the notion ofcomponent frameworksto support
this. We have already explored the provision of component
frameworks in other domains in which we have applied
OpenCOM (e.g. Middleware [24]); one aspect of our future
work will be to further explore this interesting and demanding
area in the NP domain.

The main thrust of our future work, however, will be to
explore the use of OpenCOM in other NP environments. We
are already looking at the more advanced IXP2400 from Intel
and the IBM PowerNP; but we would also like to provide
further evidence for the generality of our approach by looking
in more detail at NPs elsewhere in the design space outlined
in this paper.

REFERENCES

[1] Ruf L. Pletka R. Erni P. Droz P. Towards high-performance active
networking. Proceedings of the Fifth Annual International Working
Conference on Active Networks (IWAN 2003), December 2003. Kyoto,
Japan.

[2] C. Sauer K. Keutzer C. Kulkarni, M. Gries. Programming Challenges
in Network Processor Deployment. InInt. Conference on Compilers,
Architecture, and Synthesis for Embedded Systems (CASES), October
2003.

[3] Agere Systems Proprietary. The Challenge for Next Generation Network
Processors. April 2001.

[4] Mel Tsai, Chidamber Kulkarni, Christian Sauer, Niraj Shah, and Kurt
Keutzer. A benchmarking methodology for network processors. In
1st Workshop on network processors along with HPCA 2002, February
2002.

[5] Paulin P G. Network processors: A perspective on market requirements,
processor architectures and embedded s/w tools.STMicroelectronics,
2001.

[6] Adiletta M. et al. The next generation of intel network processors.Intel
Technology Journal, Volume 6, issue 3, August 15 2002.

[7] Radisys Corporation. IXP1200 White Paper: Using the Intel IXP1200
Network Processor to optimize Packer-Processing Application Develop-
ment, 2001.

[8] Motorola Research. Architecture guide, C-5e/C-3e network processor,
silicon revision B0, 2003.

[9] EZchip technologies. Network processor designs for next-generation
networking equipment white paper, 2003.

[10] Cisco Systems Inc. Parallel express forwarding on the Cisco 10000
series, 2003.

[11] Intel Press. MicroACE, design document, revision 1.0.Intel Press, Intel
Corporation, 2001.

[12] Akash Deshpande, Kevin Crozier, and Mandeep Baines. The Teja
Software Platform for Network Processors.

[13] James Allen et al. IBM PowerNP Network Processor: Hardware
Software and Applications.IBM Journal of Research and Development,
47(2/3):177–194, March/May 2003.

[14] Campbell A.T., Kounavis M.E., Villela D.A., Vicente J.B., de Meer H.G.,
Miki K., and Kalaichelvan K.S. NetBind: A Binding Tool for Con-
structing Data Paths in Network Processor-based Routers. In5th
IEEE International Conference on Open Architectures and Ne twork
Programming (OPENARCH’02), June 2002.

[15] Kurt Keutzer Niraj Shah, William Plishker. Np-click: A programming
model for the intel ixp1200. In2nd Workshop on Network Processors
(NP-2) at the 9th International Symposium on High Performance Com-
puter Architecture (HPCA-9), Anaheim, CA, February 2003.

[16] Karlin S. and Peterson L. VERA: An Extensible Router Architecture.
In 4th International Conference on Open Architectures and Networ k
Programming (OPENARCH), April 2001.

[17] Tammo Spalink, Scott Karlin, Larry Peterson, and Yitzchak Gottlieb.
Building a Robust Software-Based Router Using Network Processors,
Oct 2001.

[18] Wagner J. Leupers R. C compiler design for an industrial network
processor. Proceedings of the 2001 ACM SIGPLAN workshop on
Optimization of middleware and distributed systems, 2001.

[19] Memik G. Mangione-Smith W H. Hu W. Netbench: A benchmarking
suite for network processors.ICCAD, 2001.

[20] Gries M. Kulkarni C. Sauer C. Keutzer K. Comparing analytical
modeling with simulation for network processors: A case study.Design,
Automation, and Test in Europe (DATE), Munich, Germany, March,
2003.

[21] Network Processing Forum Working Group. Network processing forum
backgrounder, Oct 2002. http://www.npforum.org/.

[22] Geoff Coulson, Gordon Blair, David Hutchison, Ackbar Joolia, Kevin
Lee, Jo Ueyama, Antonio Gomes, and Yimin Ye. NETKIT: A Soft-
ware Component-Based Approach to Programmable Networking . In
ACM SIGCOMM Computer Communication Review, volume 33, No 5,
October 2003.

[23] Object Management Group, Inc. CORBA 3.0 - IDL Syntax and
Semantics chapter, formal/02-06-07.

[24] G. Coulson, Blair G.S., M. Clarke, and N. Parlavantzas. The Design of
a Highly Configurable and Reconfigurable Middleware Platform.ACM
Distributed Computing Journal, 15(2):109–126, April 2002.

	Cover page version IEEE
	towards generic programming

