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Abstract 

Objectives: To investigate the regulation of sclerostin (SOST) in osteoarthritis (OA) and its 

potential effects on articular cartilage degradation.  

Methods: SOST and other Wnt-β-catenin components were immuno-localised in 

osteochondral sections of surgically-induced OA in knees of sheep and mice, and human OA 

samples obtained at arthroplasty. Regulation of SOST mRNA and protein expression by ovine 

chondrocytes in response to interleukin-1α (IL-1α) or tumor necrosis factor-α (TNFα) was 

examined in explant cultures. The effect of 25 or 250ng/ml recombinant SOST alone or in 

combination with IL-1α, on ovine articular cartilage explant aggrecan degradation, and 

chondrocyte gene expression of Wnt-β-catenin pathway proteins, metalloproteinases and 

their inhibitors, and cartilage matrix proteins was quantified. .  

Results: Contrary to being an osteocyte-specific protein, SOST was expressed by articular 

chondrocytes, and mRNA levels were upregulated in vitro by IL-1α but not TNFα. 

Chondrocyte SOST staining was significantly increased only in the focal area of cartilage 

damage in surgically-induced OA in sheep and mice, as well as end-stage human OA. In 

contrast, osteocyte SOST was focally decreased in the subchondral bone in sheep OA in 

association with bone sclerosis. SOST was biologically active in chondrocytes, inhibiting 

Wnt-β-catenin signalling and catabolic metalloproteinase (MMP and ADAMTS) expression, 

but also decreasing mRNA levels of aggrecan, collagen II and TIMPs. Despite this mixed 

effect, SOST dose-dependently inhibited IL-1α-stimulated cartilage aggrecanolysis in vitro.  

Conclusions: These results implicate SOST in regulating the OA disease processes, but 

suggest opposing effects by promoting disease-associated subchondral bone sclerosis while 

inhibiting degradation of cartilage. 

 

Key words: sclerostin, β-catenin, MMPs, ADAMTS, cartilage, osteoarthritis
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Introduction 

The aetiology of knee osteoarthritis (OA) is multifactorial, and although ageing is strongly 

associated, other factors contribute. In particular altered biomechanics and joint instability  

commonly leads to “post-traumatic OA” within 10-15 years after joint injury in humans [1, 2]. 

The central feature of OA is considered to be the progressive destruction of articular cartilage, 

however change occurs in all joint tissues. Subchondral bone thickening and marginal 

osteophytosis are classic features of OA, and together with synovitis correlate with pain [3]. 

Focal loss of articular cartilage in OA may be linked to changes in the subjacent bone, 

through altered load transmission and/or direct signalling between the adjacent tissues [4].  

The Wnt-β-catenin signalling pathway has well-recognised roles in embryology and 

development, and is emerging as critical regulator of bone and cartilage homeostasis in the 

adult [5-8]. Canonical Wnt signalling is initiated by binding to frizzled receptors and co-

receptors, (low-density lipoprotein receptor (LRP) 5/6), which leads to β-catenin stabilization, 

nuclear translocation, and activation of target genes such as Wnt-induced signalling protein-1 

(WISP1). Wnt signalling is modulated by soluble antagonists including dickkopf-1 (DKK1), 

secreted frizzled-related proteins (sFRPs), and sclerostin (SOST) [6]. There is a large body of 

evidence demonstrating the central role for Wnt signalling in regulating adult bone turnover, 

with increased β-catenin activity inducing bone production, and inhibition of soluble 

antagonists an emerging therapeutic approach for osteoporotic and inflammatory bone loss [7, 

9]. In adult cartilage in contrast, increased Wnt-β-catenin stimulates tissue breakdown rather 

than formation [10]. WISP1 is increased in OA, and when over-expressed induces cartilage 

degradation by upregulating matrix metalloproteinases (MMPs) and aggrecanases [11]. The 

pro-degradative effects of Wnt-β-catenin are also driven through promotion of chondrocyte 

hypertrophy and the associated upregulation of MMPs [6, 8]. Induction of constitutive β-

catenin activity in adult mouse chondrocytes causes progressive cartilage degeneration and 
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increased subchondral bone density [12]. Circulating DKK1 levels negatively correlate with 

biomarkers of cartilage breakdown in OA patients [13] and sFRP3 knockout mice have 

augmented cartilage proteoglycan loss in a collagenase-induced instability model of arthritis  

[14]. 

Collectively this data suggests that elevated β-catenin activity is a common mechanism in the 

excess bone formation and overlying cartilage loss in OA. However, the complexity of Wnt-

β-catenin regulation and effects on joint tissues is demonstrated by the fact that constitutive 

inhibition of chondrocyte β-catenin activity also leads to OA in mice [15]. Increased 

circulating DKK1 (i.e reduced Wnt-β-catenin) is associated with worse cartilage degradation 

in rheumatoid patients [13]. DKK1 promotes chondrocyte apoptosis in vitro [16], which may 

explain the reduction in severity in rat OA models with systemic DKK1 inhibition [17]. The 

conflicting data with DKK1 blockade being chondroprotective while sFRP3 ablation 

augments chondrolysis, may suggest distinct roles for different Wnt inhibitors in different 

tissues and/or disease states (e.g. degree of inflammation). The effect on OA of blocking 

SOST, the other important soluble inhibitor of Wnt signalling, has not been reported.  

Sclerostin, is a member of the DAN/Cerberus protein family and acts to inhibit BMP 

secretion from cells in which it is co-expressed, and as a potent inhibitor of canonical Wnt 

signaling by binding to LRP5/6 [18, 19]. It is the failure to inhibit Wnt-β-catenin signaling 

that accounts for the characteristic high bone density phenotypes in patients with 

homozygous defects in SOST [20], and in Sost knock out mice [21]. Sclerostin expression is 

down regulated by mechanical loading of bone [22] but can be induced by pro-inflammatory 

cytokines [23, 24], indicating that SOST can regulate both mechanical and inflammatory 

bone remodeling. There is little information on changes in SOST in arthritis, with a reduction 

in the number of SOST-positive osteocytes noted in association with increased cortical bone 

density in the femoral neck of patients with hip OA [25], and in zygapophyseal joints with 
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OA and ankylosing spondylitis [26]. Recently it has been demonstrated that SOST is also 

expressed by chondrocytes in mineralized cartilage [27], and in human end-stage OA [28]. 

To date there has been no analysis of changes in SOST in subchondral bone in OA and how 

this relates to the overlying cartilage damage. Furthermore, the regulation of SOST 

expression by chondrocytes, the effects of SOST on chondrocytes and whether SOST plays 

any role in cartilage degradation has not previously been studied. The aim of this study is to 

investigate these questions to better define the role of SOST in OA. 
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Materials and Methods 

Animal models and human specimens 

Four-year-old castrated male Merino sheep underwent unilateral medial meniscectomy (MEN) 

(n=6) or a sham procedure (arthrotomy alone; n=6) three months prior to euthanasia with 

institutional ethics approval (AEC832R/00) [29]. Coronal 5mm-thick osteochondral 

specimens spanning the width of the medial tibial plateau encompassing the region of 

maximal cartilage damage and adjacent unaffected tissues, were fixed for 24 hours (10% 

neutral-buffered formalin), decalcified (10% formic acid/5% formalin) and paraffin 

embedded [30]. 

Ten-week-old male C57BL/6 mice underwent destabilization of the medial meniscus (DMM) 

and sham surgery in right and left knees, respectively [31, 32], with institutional ethics 

approval (protocols 0051-005A and 0506-019A). Four mice were euthanised 1, 2 and 6 

weeks after surgery. Sagittal sections every 40µ across the width of the medial femoro-tibial 

joint were evaluated [33] enabling intervening sections with maximal OA change to be used 

for immunohistochemistry.  

Human specimens were obtained with informed consent and approval of the Northern Sydney 

Health Human Research Ethics Committee, from patients undergoing total knee replacement 

for OA. Sections (4µm) from formalin-fixed, decalcified, paraffin-embedded coronal 

osteochondral specimens spanning the width of the medial tibial plateaus and encompassing 

the focal area of maximal cartilage erosion from 9 patients were immunostained (see below). 

Pooled residual articular cartilage from the tibial plateau was harvested from an additional 6 

patients and RNA extracted [34].  

 

Histopathology and immunohistochemistry 
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Sections from ovine joints were stained with toluidine blue and fast green, and the cartilage 

degradation scored (BC and CBL) using a previously described grading system [30]. The 

cartilage damage was scored in two separate regions (Fig 1A): area 1 = unprotected, and area 

2 = normally protected by the meniscus, the latter experiencing increased loading and 

degeneration following meniscectomy while area 1 remains unaffected (Fig 1A) [35].  The 

density of subchondral bone in area 1 and 2 was quantified from digital images of 

haematoxylin and eosin stained serial sections. A region of interest 1.1 mm wide x 3.4 mm 

deep spanned the maximal depth of the subchondral bone plate (chondro-osseous junction to 

the beginning of trabecular bone). The % of this area containing eosin-stained bone was 

quantified (Image-Pro Plus 5.1; Media Cybernetics, Bethesda, USA), as a measure of 

“subchondral bone density”.  

 

Sections for immunostaining were dewaxed and rehydrated, and incubated in Protein-Block-

Serum-Free (X909; DakoCytomation) for ten minutes at room temperature. Sections were 

immunolocalised overnight at 4°C with primary antibody or non-immune serum or IgG as 

negative controls, using conditions optimised from preliminary studies: rabbit anti-sclerostin 

(Abcam, UK) 1.25µg/ml; goat anti-sclerostin (R&D systems, USA) and rabbit anti-WISP1 

(Santa Cruz, USA) 1µg/ml. Secondary antibody incubation and colour development were 

performed as described [35]. Coded digital images were evaluated independently by two 

observers (BC and CBL) and the number of positively stained cells in each region were 

quantified. The specificity of the anti-sclerostin antibody was demonstrated by pre-absorption 

with 10x concentration of recombinant human SOST for 2hr at room temperature before 

routine immunohistochemistry. 

 

Ex-vivo cartilage explants culture 
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Full-depth articular cartilage explants (5-10mm2, ~40mg) from the trochlear groove of 6-12 

month-old ovine knee joints were cultured in serum free media for 24 and 48 hours ± 

10ng/mL IL-1α or 100ng/mL TNFα (PeproTech, Rocky Hill, NJ) [36]. The effect of SOST 

was examined by addition of 25 or 250ng/mL of rhSOST (R&D Systems, Minneapolis, USA) 

for 48 hours ± 10ng/mL IL-1α.  At harvest the explants were blotted dry, weighed, and snap-

frozen in liquid nitrogen for RNA extraction. Release of glycosaminoglycan (GAG) into the 

media was measured using dimethylmethylene blue and normalised to the explant wet weight 

[36].  

 

RNA extraction, reverse transcription and real-time quantitative PCR 

Approximately 100mg of frozen ovine or human cartilage were fragmented in a Mikro-

Dismembrator (Braun Biotech International, Melsungen, Germany). Total RNA was 

extracted with TRIzol and isolated using the RNeasy kit (Qiagen, Australia) including an on-

column DNase I (Qiagen) digestion, quantified with a Nanodrop 1000 spectrophotometer 

(Thermo Scientific, Waltham, USA), and samples with a 260/280 ratio >2.0 used for reverse 

transcription (RT). Changes in mRNA expression were quantified using real time qRT-PCR 

as described [37] using specific primer sets (Table 1). The “housekeeping genes” examined 

(GAPDH, HRPT, β-actin and ubiquitin) were all regulated by one or more of the 

experimental conditions (data not shown), and therefore samples were normalised using equal 

amounts of total RNA as recommended [38, 39], and effects of treatment expressed as fold 

change from control.   

 

Statistical analysis 

Data is reported as mean with 95% confidence intervals (lower, upper). Ordinal data 

(histological scoring) is presented graphically in box plots showing median, upper and lower 
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quartile (box), 10-90th percentile (whiskers) and maximum and minimum values. Changes in 

the number of positively stained cells, and the fold change in gene expression or GAG release 

are presented graphically as mean with 95% confidence intervals. Because some data (e.g. 

gene expression) was not normally distributed, all treatment effects were assessed using non-

parametric analysis (Mann-Whitney U test) with P < 0.05 considered significant.   
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Results 

Sclerostin is increased in cartilage but decreased in subchondral bone in OA 

Medial meniscectomy induced focal OA-like change in the sheep, including loss of cartilage 

proteoglycan, cartilage surface fibrillation and partial thickness erosion, and marginal 

osteophytosis (Fig 1A). Significant cartilage changes were restricted to the region previously 

protected by the meniscus that is subjected to high focal loading in meniscectomised joints 

(Area 2 – score 3.2 (2.4,3.9) vs 10.4 (8.6,12.2); p<0.001), with no change in Area 1 (Fig 1B). 

In association with the overlying cartilage damage there was increased subchondral bone in 

Area 2 in meniscectomised joints (Fig 1C, 80.1% (74.1,86.1) vs 92.8% (86.4,99.2); p=0.018).   

 

Sclerostin was immunolocalised to osteocytes and their canaliculi in the subchondral plate 

(Fig 1D) and deeper trabecular bone (not shown) in sham-operated joints. This staining was 

specific as demonstrated by lack of signal when IgG was substituted for the primary antibody 

(not shown) or pre-absorption with rhSOST prior to immunostaining (Fig 1E). There was no 

difference in the number of SOST-positive osteocytes between Area 1 and 2 in sham-

operated joints, although both were greater than trabecular bone (Fig 1F; Area 1 = 71.0% 

(66.8,77.2), Area 2 = 67.9% (65.1,70.7) vs trabecular bone 29.5% (15.9,43), p=0.002 for 

both). There was little SOST staining of chondrocytes in the non-calcified cartilage in sham-

operated joints (Fig 1D), while some hypertrophic chondrocytes in the calcified cartilage 

were positive (not shown). In meniscectomised joints osteocyte SOST staining intensity 

decreased in Area 2 subchondral bone with little change in Area 1 (Fig 1D) or trabecular 

bone (not shown). The percentage of SOST-positive osteocytes in subchondral bone 

decreased in meniscectomised joints  (Fig 1F) in Area 1 (57.9% (49.5,66.3), p=0.019 versus 

sham) and Area 2 (46.2% (32.7,59.8), p=0.012 versus sham). In contrast, there was a marked 

increase in SOST staining intensity (Fig 1D), and the number of positive chondrocytes in the 
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non-calcified cartilage only in Area 2 in meniscectomised joints (Fig 1F; 15.0% (7.2,22.9) vs 

42.3% (23.1,61.4); p=0.001).  

 

We confirmed the positive chondrocyte SOST immunostaining observed in sheep, in DMM-

induced OA in mice and in late stage human OA (Fig. 2). In sham-operated mouse joints, 

there was no SOST staining in non-calcified articular cartilage chondrocytes, although almost 

all chondrocytes in the calcified cartilage were immunopositive (Fig 2A). At 2 weeks post-

DMM, scattered chondrocytes in the non-calcified cartilage became SOST positive, and there 

was an increase in staining intensity in the calcified cartilage (Fig 2A). In 3/9 human OA 

tibial plateaux, chondrocytes in the superficial cartilage zones, often in clusters, stained 

strongly for SOST (Fig 2B). The antibody specificity was confirmed by osteocytes in 

subchondral and trabecular bone having typical SOST staining, and the lack of staining when 

IgG was substituted for the primary antibody (Fig 2B).  

 

Chondrocytes express Sost mRNA and it is regulated by IL-1 

We investigated whether the SOST staining in chondrocytes was associated with local 

synthesis by the chondrocytes rather than diffusion of exogenous protein into the cartilage. 

We detected SOST mRNA in chondrocytes in ovine cartilage, and from 2/6 human patients 

tested (Fig 2C). We examined whether the increase chondrocytes SOST in OA might be due 

to upregulated expression by inflammatory cytokines. In preliminary studies equivalent 

maximal GAG release from cartilage occurred with 10ng/ml IL-1α and 100ng/ml 

TNFαdatanotshownAtthese maximally effective doses, IL-1α induced a 9-fold (6.6,10.7) up-

regulation of SOST compared with control at 24 hours (Fig 3A; p<0.001), and this remained 

elevated at 48 hours (1.8-fold (1.3,2.2); p=0.093). This IL-1-induced increase in SOST 

mRNA was accompanied by increased chondrocyte SOST immuno-localization (Fig 3B). In 
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contrast, TNFα did not alter chondrocyte SOST expression in ovine cartilage explants at 

either 24 or 48 hours (Fig 3A).  

 

Wnt-β-catenin signalling is altered in meniscectomy-induced OA in sheep 

In light of SOST being an antagonist of Wnt-β-catenin signalling in bone, we examined 

whether WISP1, a down-stream indicator of β-catenin activity, was co-ordinately decreased 

in the sheep OA model. In sham-operated joints WISP1 was immunolocalised to osteocytes 

in the subchondral bone plate (Fig 4A) and trabecular bone (not shown). There was no 

difference in the number of WISP1-positive osteocytes between bone regions in sham-

operated joints and no change following meniscectomy (Fig 4B). WISP1 was 

immunolocalised to the chondrocytes in the superficial layer in sham-operated joints (Fig 4A), 

and some hypertrophic chondrocytes in the calcified cartilage (not shown). Following 

meniscectomy there was no change in intensity or distribution of chondrocyte WISP1 

staining in Area 1, however chondrocytes through the depth of the non-calcified cartilage 

showed strong staining in Area 2 (Fig 4A). The percentage of WISP1-positive chondrocytes 

increased only in Area 2 of meniscectomized joints (22.0% (15.5,28.4) versus 56.6% 

(38.0,75.2); p=0.006; Fig 4B).  

 

SOST regulates gene expression in normal cartilage  

The co-localised increase in chondrocyte SOST and WISP1 staining in OA cartilage (Area 2) 

were not consistent with the purported role of SOST as an inhibitor of Wnt-β-catenin 

signalling. We therefore investigated the effect of SOST on chondrocyte expression of 

WISP1 as a marker of β-catenin activity, as well as a number of other Wnt-signalling genes in 

normal ovine cartilage explants. Treatment with 25 or 250ng/mL rhSOST for 24 hours did 

not regulate WISP1 expression (not shown). However, significant suppression of WISP1 as 
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well as CTNNB1, LRP5 and LRP6 was noted after 48 hours incubation with both doses of 

SOST (Fig 5A). Concordant with this inhibition of Wnt signalling at 48 hours, SOST 

decreased COL2, ACAN and TIMP1 mRNA expression by a similar level at both doses (Fig 

5B). MMP1 and ADAMTS4 mRNA levels were not significantly altered by SOST suggesting 

that the effects were not due to generalised cell toxicity. MMP13 expression was decreased 

only at the lowest dose while ADAMTS5 and TIMP3 were dose-dependently decreased.  

 

SOST inhibits IL-1-induced cartilage degradation  

The results in normal cartilage suggest that indeed SOST is a negative regulator of Wnt-β-

catenin signalling and activity in chondrocytes. However SOST had effects on chondrocyte 

gene expression that would be considered “anti-anabolic” (decreased ACAN and COL2), 

“pro-catabolic” (decreased TIMP1 and TIMP3) as well as “anti-catabolic” (decreased 

MMP13 and ADAMTS5).  In order to investigate the effect of SOST in an environment where 

cartilage catabolism is augmented, we co-cultured explants for 48 hours with SOST in the 

presence of 10ng/ml IL-1α. IL-1α induced the expected changes in chondrocyte gene 

expression, decreasing ACAN and COL2 while increasing MMP1, MMP13, ADAMTS4 and 

ADAMTS5 (Fig 6A). These IL-1-induced changes were accompanied by increased GAG 

release and a concordant loss of toluidine blue staining of the cartilage (Fig 6B). Importantly, 

SOST dose-dependently decreased IL-1α-induced GAG release into the media, with over 

50% reduction at 250ng/ml (Fig 6B, p<0.001), albeit that it still remained elevated compared 

with control cultures. SOST still decreased Wnt-β-catenin signalling in the presence of IL-1α 

as indicated by the reduction in WISP1 expression with the 250 ng/ml dose (0.45-fold 

(0.25,0.65), p=0.009). SOST also inhibited expression of other Wnt-β-catenin signalling 

molecules in the presence of IL-1, with CTNNB1 reduced at both 25ng/ml (0.35-fold (0.1,0.6); 

p=0.003) and 250ng/ml (0.4-fold (0.2,0.6); p=0.005), and the other genes at 250ng/ml only 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

 14 

(LRP5 0.4-fold (0.2,0.6), p=0.029; LRP6 0.25-fold (0.01,0.49), p=0.12). This inhibition of 

Wnt-β-catenin signalling and GAG release by SOST was associated with significant down-

regulation of IL-1α-induced chondrocyte expression of MMP1, MMP13, ADAMTS4 and 

ADAMTS5, while the IL-1-induced inhibition of ACAN and COL2 remained unchanged  (Fig 

6C).  
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Discussion 

Canonical Wnt signalling and increased β-catenin activity has been implicated in the process 

of cartilage degradation in OA [11, 40]. The current data from the sheep meniscectomy 

model of OA supports these previous studies, showing elevated chondrocyte WISP-1 staining. 

Our detailed regional analysis enabled us to demonstrate that this increase in WISP-1 was 

restricted to the chondrocytes in the focal area of cartilage degradation, and was unaltered in 

the remaining cartilage or the subjacent bone. Previous studies have suggested conflicting 

roles for DKK1 and sFRP3 in regulating cartilage and bone changes in animal models of OA 

[14, 17]. SOST is also a potent Wnt antagonist and a key regulator of bone metabolism, but 

no previous publications have investigated whether it plays a role in global OA joint 

pathology. We have for the first time demonstrated an increase in SOST in chondrocytes 

restricted to the focal area of cartilage degradation in post-traumatic OA. In addition, we 

found a differential regulation in cartilage and bone, with a decrease in osteocyte SOST 

staining associated with increased subchondral plate thickening. Furthermore, we show that 

chondrocytes themselves express SOST which can be regulated by IL-1α but not TNFα. 

SOST could act as an inhibitor of Wnt-β-catenin signalling in chondrocytes in vitro, and in 

the presence of IL-1α significantly regulate expression of cartilage matrix proteins, MMPs, 

ADAMTS and TIMPs, with a net result of reducing IL-1α-induced aggrecanolysis. Taken 

together, this data suggests that changes in SOST may play a role in the pathological 

progression of OA, promoting subchondral bone sclerosis but potentially inhibiting cartilage 

proteolysis. 

 

Given that SOST is a potent antagonist of the Wnt-β-catenin pathway, it is difficult to 

reconcile the coincident increase in SOST and WISP-1 in OA cartilage. One possible 

explanation is that β-catenin is being activated in chondrocytes by prostaglandin-E2, 
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independent of Wnt-signalling as described in other cell types [41]. Canonical regulation of 

β-catenin by Wnts is complex, with levels of different Wnts, receptors, inhibitors and 

intracellular ligands all contributing [42]. A decrease in one of these components may be 

offset by the increase in another, with a net abrogation of the expected action. Nevertheless, 

the increase in SOST in OA chondrocytes should be acting to decrease canonical signalling, 

and most data suggests that elevated chondrocyte β-catenin has a pro-catabolic effect on 

cartilage, stimulating MMP and ADAMTS synthesis via increased WISP-1 [11, 16], and 

promoting chondrocyte hypertrophy which is associated with OA cartilage pathology [6, 8]. 

As such, elevated chondrocyte SOST is likely to be at least partially chondroprotective, and 

in its absence an even greater increase in chondrocyte β-catenin activity, WISP1 and 

associated cartilage degradation would ensue. Our in vitro data support this hypothesis, with 

down regulation of β-catenin signalling, MMP and ADAMTS expression by SOST. 

Consistent with a beneficial effect of Wnt antagonism, elevated circulating levels of DKK1 

are negatively associated with serum markers of cartilage degradation in human OA [13]. 

However, it would appear that some “appropriate” level of chondrocyte β-catenin activity is 

needed to maintain normal cartilage, as excessive inhibition [12] and in vitro treatment with 

DKK1 [16], can induce chondrocyte apoptosis and cartilage breakdown.  

 

The effect of SOST on Wnt signalling in OA cartilage/chondrocytes will be dependent on its 

binding to Lrp5/6. DKK1 can displace SOST from Lrp5/6 [43], and a concurrent increase in 

both of these proteins in OA cartilage could potentiate effects of SOST outside the Lrp5/6-β-

catenin pathway. SOST binds to Lrp4, and hypomorphic mutations in Lrp4 result in skeletal 

abnormalities in mice including polysyndactyly, possibly through interfering with BMP 

signalling [43]. SOST also functions as a BMP antagonist by inhibiting secretion from cells 

in which it is co-expressed [18], and BMPs have potent effects on chondrogenesis, 
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chondrocyte maturation and anabolism [44], as well as increasing DKK1 expression [45]. 

Over expression of human SOST in mice leads not only to decreased bone density through 

inhibition of Wnt-β-catenin signalling, but also syndactyly consistent with inhibition of 

BMPs [46]. SOST can rapidly activate ERK1/2 signalling in osteoblasts by an undefined 

pathway [24]. These non-Wnt-dependent pathways may contribute to the effect of elevated 

SOST in OA chondrocytes, possibly promoting rather than inhibiting cartilage degradation. 

 

Control of SOST expression by different regulatory elements in the proximal promoter is 

dependent on cell type [46]. Our in vitro data demonstrates that, at doses that induce cartilage 

degradation, IL-1α but not TNFα increased SOST expression. The lack of effect of TNFα on 

SOST mRNA levels in chondrocytes is interesting in light of the significant upregulation of 

SOST by TNFα in osteoblasts [24], consistent with cell-specific regulation. Regulation of 

chondrocyte type II collagen and MMP expression by IL-1 have been reported to be 

independent of Wnt-β-catenin signalling [11, 47]. Nevertheless both IL-1 and TNF can 

regulate expression and activity of the Wnt-β-catenin pathway [16, 24]. Our data 

demonstrating a distinct difference between IL-1α and TNFα in SOST regulation while the 

two cytokines have similar effects on ACAN, COL2, MMP and ADAMTS expression (data not 

shown), is consistent with cytokine-driven cartilage catabolism being independent of Wnt-β-

catenin. Chondrocyte-derived IL-1 has been implicated in OA cartilage degradation [48], 

which could potentially account for the increase in SOST in OA cartilage. However, the very 

focal nature of the cartilage changes and altered SOST expression in our sheep OA model, 

suggests a more localized regulatory mechanism such as mechanical loading. In bone, SOST 

expression is strongly regulated by mechanical loading [22, 49], and the decrease in SOST 

protein in the subchondral plate following meniscectomy is consistent with these previous 

studies. Despite the overlying cartilage also experiencing increased focal compressive 
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loading in the meniscectomy model, an increase rather than decrease in chondrocyte SOST 

was seen. This may suggest different mechano-regulation of SOST in osteocytes versus 

chondrocytes. The reason that only ~30% of OA human cartilage samples expressed SOST 

mRNA and protein is unclear but could be associated with differences in the degree of 

synovial inflammation between patients. It may also be associated with disease chronicity 

and activity in end-stage human OA, with the normal SOST staining of osteocytes in human 

samples perhaps indicative of little active remodelling at the time of joint replacement. 

Nevertheless, the fact that articular chondrocytes expressed SOST in OA in all three species 

suggests it is a common pathophysiological mechanism, and future studies should examine 

the temporal changes in SOST over the course of OA initiation and progression. 

 

In conclusion, we have demonstrated that contrary to being an osteocyte-specific product, 

SOST is expressed by articular chondrocytes and regulated by IL-1α. Importantly, 

chondrocyte SOST is focally increased in cartilage in OA while being decreased in the 

subjacent subchondral bone. While the role of SOST in regulating bone metabolism has been 

well established, we show for the first time that SOST is biologically active in chondrocytes, 

not only inhibiting Wnt-β-catenin signalling and catabolic MMP and ADAMTS expression, 

but also decreasing mRNA levels of key matrix components and enzyme inhibitors. Despite 

this mixed effect, SOST dose-dependently inhibited IL-1α-stimulated cartilage 

aggrecanolysis in vitro. These results implicate SOST in regulating the OA disease processes 

in both bone and cartilage, but suggest opposing effects by promoting disease-associated 

subchondral bone sclerosis while inhibiting degradation of cartilage. Increasing Wnt-β-

catenin activity using antibodies to SOST (and DKK1) has potential in treating osteoporotic 

and inflammatory bone loss [50, 51]. While it is unlikely such therapeutic agents will enter 

cartilage to regulate chondrocyte SOST, given the multiple mechanisms of action of SOST in 
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joint tissues, it will be important to determine what effect its inhibition may have on 

progression of both bone and cartilage changes in OA in vivo. 
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Figure Legends 

Figure 1. (A) Representative toluidine blue fast green stained section of a sheep tibial plateau 

3 months post meniscectomy showing the separate areas of cartilage with adjacent 

subchondral bone (area 1 & 2), and deeper trabecular bone (TB) examined in subsequent 

analyses. The approximate dimensions of the marginal osteophyte is outlined in red and 

indicated with an arrow. High magnification images showing typical cartilage pathological 

changes in Area 1 and 2 in sham versus meniscectomised joints are shown on the right. (B) 

Modified Mankin score of tibial cartilage and (C) percentage of the subchondral region that 

was bone, in area 1 and 2 of sham-operated and meniscectomised (MEN) joints (line = 

median, box = upper and lower quartiles, whiskers = 10-90th percentile, circles = maximum 

and minimum values; n = 6 in both groups). (D) Representative sections showing 

immunlocalization of sclerostin (brown stain) in area 2 articular cartilage and adjacent 

subchondral bone in sham-operated and meniscectomised (MEN) joints. (E) Loss of SOST 

immunostaining in cartilage from MEN and bone from sham-operated joints by pre-

absorption of the antibody with recombinant SOST. (F) The percentage of cells in different 

areas of sham-operated and MEN joints that were immunopositive for sclerostin (mean ± 

95% confidence intervals; n = 6 in both groups). Significant difference between sham and 

MEN joints in different regions are indicated by a bar with the p-value given above. 

  

Figure 2. (A) Sclerostin immunostaining in mouse knee joints 2 weeks after sham surgery or 

destabilization of the medial meniscus (DMM). Positive sclerostin staining (brown) was seen 

in osteocytes (black arrow) and hypertrophic chondrocytes in calcified cartilage (yellow 

arrow) in sham and DMM joints, Chondrocytes in the non-calcified articular cartilage (red 

arrow) were only immunopositive in DMM joints. (B) Representative sections of human 
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osteoarthritic cartilage and trabecular bone showing clusters of chondrocytes in the fibrillated 

surface and osteocytes that were immunopositive for sclerostin (brown stain), with no 

positive staining observed in serial sections with equal concentration of (1.25mg/mL) of IgG 

as a negative control. (C) Ethidium bromide stained gels showing expression of SOST mRNA 

by PCR, in 2 of 6 human OA articular cartilage samples.  

 

Figure 3. (A) Quantitative PCR analysis of SOST gene expression in ovine articular cartilage 

explants cultured for 24 and 48 hours in serum free media alone (Control) or in the presence 

of IL-1α (10ng/ml) or TNFα (100ng/ml). Data is expressed as fold change in expression 

compared with untreated control cultures at each time point (mean ± 95% confidence 

intervals; n = 6 per treatment per time point). Significant differences compared to control 

culture at the same time is indicated by the p-value above the given culture condition. (B) 

Immuno-localization of SOST in ovine articular cartilage explants cultured for 24 hours in 

serum free media alone (Control) or in the presence of IL-1α (10ng/ml).  Chondrocytes with 

positive SOST staining (brown stain) are indicated with red arrows. 

  

Figure 4. Representative sections of ovine tibial plateau area 2 from sham and 

meniscectomised (MEN) joints, showing (A) WISP-1 immunolocalization (brown stain). (B) 

The percentage of cells in different areas of sham-operated and MEN joints that were 

immunopositive for WISP-1 (mean ± 95% confidence intervals; n = 6 in both groups). 

Significant differences between sham and MEN joints in different regions are indicated by a 

bar with the p-value given above. 
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Figure 5. Quantitative PCR analysis in ovine articular cartilage explants cultured for 48 

hours in serum free media ± 25 or 250ng/ml recombinant human sclerostin. Expression of (A) 

Wnt-β-catenin pathway genes, and (B) matrix protein, metalloproteinase and tissue inhibitor 

genes. Data is expressed as fold change in expression compared with untreated control 

cultures (mean ± 95% confidence intervals; n = 22 replicates from 3 individual experiments). 

Significant differences compared to control culture is indicated by the p-value.  

 

Figure 6. Effect of recombinant sclerostin (25 or 250ng/ml) on ovine articular cartilage 

cultured for 48 hours in the presence of 10ng/ml IL-1α. (A) Quantitative PCR analysis 

demonstrating the effect of IL-1 alone on the expression of matrix proteins, metalloproteinase 

and tissue inhibitors. Data is expressed as fold change in expression compared with untreated 

control cultures (mean ± 95% confidence intervals; n = 17 replicates from 3 individual 

experiments). (B) Representative images of toluidine blue stained sections of cartilage 

explants cultured for 48 hours ± 10ng/ml IL-1 ± 25 or 250ng/ml sclerostin. Sulphated 

glygosaminoglycan (GAG) release from the same cartilage cultures expressed as fold change 

in expression compared with untreated control cultures (mean ± 95% confidence intervals; n 

= 18 replicates from 3 individual experiments). (C) Quantitative PCR analysis demonstrating 

the effect of 25 or 250 ng/ml sclerostin in the presence 10ng/ml IL-1, on the expression of 

matrix proteins, metalloproteinase and tissue inhibitors. Data is expressed as fold change in 

expression compared with IL-1 alone (mean ± 95% confidence intervals; n = 17 replicates 

from 3 individual experiments). Significant differences compared to control culture are 

indicated by the p-value above or below the specific treatment. Differences between 

particular treatments connected by a bar are indicated by the p-value.  
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Species Gene Accession # Tm 
(oC) Product Size (bp) Forward Reverse

Ovine

Agn U76615 58 105 TCACCATCCCCTGCTACTTCATC TCTCCTTGGAAATGCGGCTC 

Adamts4 NM181667 60 149 AACTCGAAGCAATGCACTGGT TGCCCGAAGCCATTGTCTA 

Adamts5 AF192771 55 97 GCATTGACGCATCCAAACCC CGTGGTAGGTCCAGCAAACAGTTAC 

Col2 X02420 55 154 TGACCTGACGCCCATTCATC TTTCCTGTCTCTGCCTTGACCC 

Mmp-1 AF267156 55 122 CATTCTACTGACATTGGGGCTCTG TGAGTGGGATTTTGGGAAGGTC 

Mmp-13 AY091604.1 58 113 TGACAGGCAGACTTGATGATAAC CATTTTGGACCACTTGAGAGTTC

Timp1 S67450 57 265 GGT TCAGTGCCTTGAGAGATGC GGGATAGATGAGCAGGGAAACAC 

Timp3 NM174473 57 286 CTTCCTTTGCCCTTCTCTACCC TCTGGTCAACCCAAGCATCG 

Ctnnb1 NM_001076141.
1 58 105 AATGGCTTGGAATGAGACTGCT CCAGAGTGAAAAGAACGATAGC

Dkk1 XM_580572.4 58 116 TCTTCGCTCATCAGACTGTGCTG AGCCTTTTCTCCTGTGCTTGGTG

Wisp1 XM_585338.3 58 290 ATCAAGGTGGGGAAGAAGTG GAGAAGTCAGGGTAGGAGTC

Lrp5 AB257751.1 58 335 ACTTCATCTACTGGACCGACTG CACATCGTTGTTGTTGGTGTC

Lrp6 AB257752.1 58 220 CGTCAAGTAGTTCATCAAGCACC GCATAGTCACTGTCACACACATCTG

Ovine / 
Human Sost NM008078.1/X

M588605.3 58 71 ACCACCCCTTTGAGACCAAAG GGTCACGTAGCGGGTGAAGT
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