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Abstract—As Grid infrastructures become more widely used
by the academic and commercial world, the problem of
resource allocation increases in complexity. Resource trading
markets are one mechanism that allows many resource owners
and resource consumers to trade. To perform efficiently trading
markets for grids require approaches to match consumers
and producers. Solutions for optimal and non-optimal resource
trading exist, but fail to scale effectively to meet the challenges
of large numbers of traders. This paper first defines the
problem of scalable resource trading in grids before describing
and evaluating greedy approaches for scalability.
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I. INTRODUCTION

The vision of Grid computing emerged out of the need

from science for vast on-demand processing resources not

available at a single location [1]. As the underlying technol-

ogy matured added value of remote computational power

for industry was discovered [2]. Both, industry and science,

benefit from leveraging the economics of scale provided

by remotely accessible, aggregated computational resources.

Besides access to resources the infrastructure allows for

offering not utilized capacities to others. However these Grid

infrastructures, often loosely coupled, regionally distributed

and heterogeneous in nature require complex human and tool

interactions to unlock their resource power.

Recent advances in fundamental technologies enable a

seamless and more secure exchange of computational ser-

vices in Grids [3], [4], [5]. This has improved the Grid

platform as a whole, allowing system administrators to

integrate Grids into their IT resources easier. Improvements

to user tools, high level scientific support and application

development has enabled a larger group of technical and

non-technical users to use Grids.

Despite vast improvements in platform development, user

support and infrastructure investment there are still many

issues to be resolved. An open question is how to effi-

ciently share computational resources. In situations in which

resource demand exceeds resource supply, traditional man-

agement techniques based on the maximization of resource

utilization fail to provide a fair utility maximizing alloca-

tion [6]. Because of this resources are often inefficiently

utilized. Market based approaches can be used to allocate

resources more efficiently based on the buyers valuation of

the resources [6], [7]. An overview of approaches for market

based resource allocation in Grids is given in [8].

The focus of this paper is on the multi attribute combina-

torial exchange mechanism [9]. The mechanism allows for

simultaneous trading of buyers and sellers, the submission

of combinatorial, multi attributive bids and supports domain

specific constraints. The main drawback of the mechanism

is the NP-completeness of the underlying multi-attribute

winner determination problem (MWDP). The MWDP can

become computationally intractable for small instances with

less than hundred bidders [9]. However, the nature of Grids

requires a scalable allocation mechanism to increase the size

of the market for computational resources.

In the literature three options to tackle the winner determi-

nation problem (WDP) in combinatorial auctions have been

identified [10]:

1) The restriction of the expressiveness of the bidding

language

2) The design of specialized tree search algorithms that

provably find the optimal solution

3) The design of approximation algorithms

The restriction of the bidding language would sacrifice

the domain requirements. The application of tree search

algorithm was found to become computational intractable

for small scale scenarios. In this paper we investigate the ap-

plication of approximation algorithms in the form of greedy

algorithms to the MWDP. We present a formal definition

of the problem of resource trading and the requirements of

a market based solution. We introduce a representation of

the problem and further present and evaluate three greedy

approaches solving the problem in a scalable way.

The remainder of this paper is structured as follows. In

Section II we discuss related work in the field of heuristic

optimization approaches. Section III describes the MWDP

problem formally. In Section IV we introduce three greedy

algorithm-based solutions to the problem. Section V presents

the results of an experimental evaluation of the different

approaches. Section VI presents some conclusions.

II. RELATED WORK

The MWDP is formulated as a generalization of the NP-

complete combinatorial allocation problem (CAP) [11]. Ap-

proximation algorithms that provide bounds on the quality
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of the solution are not considered because even the CAP as

well as the combinatorial exchange problem are found to

be inapproximable [12], [13]. For inapproximable problems

no reasonable bound can be provided for the quality of the

solution. Thus a scalable solution for many deals requires the

investigation of approaches that provide an approximately

efficient solution to the MWDP.

A survey of optimization approaches reveals no heuristic

approaches to the MWDP, although algorithms for the WDP

in combinatorial auctions exist. In [14], [15] greedy algo-

rithms are proposed to approximate the winner determination

problem in combinatorial auctions based on bid sorting with

the order determining the allocation order. The approach by

Lehmann et al [14] serves as input for a hill climbing and

simulated annealing [16] approach. Hoos and Boutilier [17]

propose an algorithm based on stochastic local search which

is based on scoring search states. [18] formulate WDP as a

multi dimensional knapsack problem. This problem has been

studied extensively in the domain of operations research [19]

including using genetic algorithms [20]. However all of these

approaches can not be applied directly to the MWDP as it

is formulated as a generalization of the WDP.

III. PROBLEM DESCRIPTION

To describe the problem of grid resource trading we

take the multi-attribute combinatorial exchange mechanism

described in [9]. This approach allows for trading multiple

resources which can be described as attributes. In this sce-

nario the unit of trade is computational resources including

CPU cycles, data storage and RAM denoted by g. The set

G = {g1, . . . , g|G|} specifies the computational resources

available in the exchange mechanisms where G denotes all

the goods to be traded in a trading market and a gk is a

specific resource. A bundle Si denotes a subset of all the

resources in G. Therefore the set S = {S1, . . . , S|S|} of

bundles covers all the possible subsets of G. A computa-

tional resource gk itself is defined by a set of cardinal quality

attributes Ak = {a1, . . . , a|Ak|}.

The trading market used in this paper for this scenario is

one in which sellers can sell resource bundles and buyers

can bid on resource bundles. Both sellers and buyers of

resources do this by placing blind orders in the market-

place; buyers specifying what resources are required, and

sellers specifying what resources are available. Potential

buyers n out of the set N = {n1, . . . , n|N |} of buyers

are allowed to submit an order of multiple bundle bids

Bn = {Bn,1(S1) ⊕ . . . ⊕ Bn,u(Si)}. The respective bundle

bids are XOR concatenated.

The submission of bundle bids allows for the expression

of complementarities among bundles of computational re-

sources. A buyer is allocated at maximum one complete

bundle out of the order she placed. A single buyer bundle

bid is of the form:

Bn,f (Si) ={〈vn(Si), sn(Si), en(Si), ln(Si),

qn(Si, g1, ag1,1), . . . , qn(Si, gG, agG,Aj
),

γn(Si, g1), . . . , γn(Si, gG),

ϕn(Si, g1, g2), . . . , ϕn(Si, gG, gG−1)〉}

The valuation vn(Si) is the amount the buyer is willing

to pay for the bundle Si per time slot. The number of slots

the resources are required for is given by sn(Si). A buyer

bid defines a period of time slots within which the required

slots have to be allocated. The period is given by en(Si)
for the earliest possible time slot and ln(Si) for the latest

possible time slot. The minimum quality of the resources

gk contained in a bundle bid Si is specified for each

resource attribute agk,Aj
by qn(Si, gk, agk,Aj

). In addition

bundle bids may contain two types of fulfillment constraints.

A coupling constraint γn(Si, g1) specifies the maximum

number of sellers allowed to allocate a required resource gk.

The co-allocation ϕn(Si, gk, gj) constraint requires a pair of

resources gk, gj to be allocated from the same single seller.

Potential sellers m out of the set of M = {m1, . . . ,m|M |}
may submit an order of multiple bundle bids Bm =
{Bm,1(Si) ∨ . . . ∨ Bm,u(Si)}. The bundle bids are OR

concatenated. Any number of seller orders may be part of

the final allocation. A single seller bundle bid is of the form:

Bm,f (Si) ={〈rm(Si), em(Si), lm(Si),

qm(Si, g1, ag1,1), . . . , qm(Si, gG, agG,Aj
), 〉}

The reservation price rm(Si) specifies the minimum price

a seller is willing to sell the specified bundle of resources

per time slot. It is assumed that a seller bid is valid for the

range of time slots given by em(Si) and lm(Si). The quality

of the resource services gk is given by qm(Si, gk, agk,Aj
).

Given a collection of buyer and seller bundle orders

the MWDP is to identify a set of winning bids out of

the total set of bids. An optimal set of winning buyer

and seller bids determines an allocation that maximizes the

overall surplus while meeting time, capacity, coupling and

co-allocation constraints. An allocation is described by the

variables xn,t(Si) ∈ {0, 1} and yn,m,t(Si) ∈ [0, 1]. The

binary variable xn,t = 1 if buyer n is allocated bundle Si

in time slot t. The real valued variable ym,n,t denotes the

percentage of bundle Si allocated from seller m to buyer n

in time slot t. The surplus of an allocation is given by:

(x, y) ∈ arg max

(

∑

n∈N

∑

Si∈S

∑

t∈T

vn(Si)xn,t−

∑

m∈M

∑

n∈N

∑

Si∈S

∑

t∈T

rm(Si)ym,n,t

|(x, y) is a feasible allocation

)
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This description includes free disposal (buyers do not care

about taking extra units, sellers do not care about keeping

units of winning bids) except when resources are coupled.

IV. GREEDY OPTIMIZATION APPROACHES

Construction heuristics are the fastest kind of heuristic to

identify a feasible solution to a given problem. The con-

struction process can be divided into several phases. After

an initialization phase the construction process is typically

continued by a selection and a placement phase until a

termination condition is met. In this paper we concentrate on

greedy construction heuristics. Greedy heuristics construct a

solution to a problem by making at each construction step a

locally optimal decision. The locally optimal decision must

not necessarily be optimal from a global point of view.

A problem instance is represented as depicted in Figure

1. The buyer orders are split up into the single bundle

bids Bn,f (Si). The single buyer bundle bids are stored in

a sequence. For each buyer bid Bn,f (Si) a list of possible

time slots t is kept. For each of these time slots the available

seller bundle bids Bm,f (Si) are listed. The overall idea is

to reduce the |n| : |m| allocation problem to be scheduled

to into a given number of time slots to a 1 : |m| allocation

problem to be solved for a single time slot t. The 1 : m

allocation problem for a given buyer bundle bid Bn,f (Si)
and a given time slot t can be formalized as follows:

y ∈ arg max

(

vn(Si) −
∑

m∈M

∑

Si∈S

rm(Si)ym,n

|y is a feasible allocation

)

In case of no coupling or collocation constraints the prob-

lem becomes a linear, continuous, optimization problem.

This type of problem can be solved efficiently by a linear

programming solver. If coupling or co-allocation constraints

are present the problem is of combinatorial nature with

complexity reduced significantly compared to the original

|n| : |m| allocation problem.

The problem representation is evaluated by passing

through the sequence of buyer bundle bids starting with the

first bundle bid. The time slots the buyer bid is valid for

(en(Si), ln(Si)) are checked in the given order. A check of

a time slot requires solving the, possibly constrained, 1 : |m|
allocation problem. As soon as the amount of computational

resources requested is available for a sufficient number of

time slots the buyer bid is included into the allocation and

the construction process is continued. A check of a time

slot is valid only if there is a valid solution to the 1 : |m|
allocation problem. Therefore no infeasible solution can be

encoded by the problem representation. In case the buyer

is already part of the allocation with another bid (XOR

constraint) the evaluation of the specific bid is skipped and

the process is continued with the next bid in the sequence.
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Figure 1. Problem representation

The greed algorithms proposed start with an empty

allocation. In the initialization phase buyer bundle bids and

the respective time slots are sorted according to a set of

criteria. The sorting of the buyer bundle bids is inspired by

the domain of knapsack problems [19, p. 257]. The basic

procedure is to sort the buyer bundle bids in a way that

the currently most promising buyer bundle bid is included

in each construction step of the greedy heuristic. Prior to

introducing the ordering procedures several concepts have

to be introduced. The factor flex = sn(Si)
ln(Si)−en(Si)

measures

the flexibility of a buyer bundle bid in a time scheduling

sense. A bundle bid is considered to be more flexible the

more options there are for time scheduling. The higher the

flexibility the closer flex is to zero. The factor

c(Si) =
(

∑

Si∋gk
maxagk,j∈Aj

qn(Si, gk, agk,j)
)

measures

the average consumption of resources for a given bundle

bid Si by aggregating the maximum quality requirements

for each resource. The set Bsl is defined as the set of all

sellers m that offer the set or a subset of resources bundled

in the bundle Si in time slot t. The parameter

wac(Si) =

P

Si∋gk

Pln(Si)

en(Si)
maxagk,j∈Aj

qn(Si,gk,agk,j)
P

Bsl∋Sj
qm(Sj,gk,agk,j)

ln(Si)−en(Si)
measures the weighted average consumption of resources

of resources per time slot in dependency of the amount of

resources offered.

The attractiveness of a buyer bundle bid can be assessed

by the descending order according to the following criteria:

1) vn(Si): The order of buyer bundle bids is determined

by the respective bundle valuations.

2)
vn(Si)sn(Si)

flex∗c
: The order of buyer bundle bids is based

on the scaled valuations. Valuations are scaled by

the flexibility of a bundle bid and by the average

consumption of resources.

3)
vn(Si)sn(Si)

flex∗wac
: The order of buyer bundle bids is based

on adjusted valuations. In comparison to the previous

ordering procedure the requested amount of resources

is weighted by the available supplies. In consequence

the demand for scarce resources is more significant in

reducing the attractiveness of a buyer bundle bid.

The options for sorting the slots of a buyer bundle bid
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are:

1)

P

Sj∋Bsl

r(Sj)

|gk∈Sj |

|Bsl|
: The time slots are sorted according

to the ascending average seller reservation price (asr)

for a single resource.

2) asr ∗
∑

Si∋gk
maxagk,j∈Aj

qn(Sj ,gk,agk,j)
P

Bsl∋Sj
qm(Si,gk,agk,j)

:

The time slots are sorted according to the ascending

average seller reservation price for a single resource

weighted by the aggregated average resource demand

versus supply ratios. The demand versus supply

ratio for a single resource is defined as the sum of

maximum ratios between demand quality and the

aggregated supply qualities of all resources

3) optimal solution: Sorts the time slots according to the

result of the optimal solution to the 1 : m allocation

problem in a descending order.

Out of the nine possible combinations of bundle bid

and slot sorting procedures the combinations 1/1, 2/2, 3/3

are chosen for evaluation. The combinations are designed

according to the trade off of complexity of evaluation versus

the power of additional information included into the sorting

process. The goal is the analysis of the trade off described.

As a lower bound benchmark a greedy algorithm based

on random sorting procedures for buyer bids and slots is

used. To solve the 1 : m allocation problem optimally

a mixed integer linear programming solver is used. The

random combination is chosen as a benchmark.

V. EXPERIMENTAL EVALUATION

The three greedy heuristics presented in section III are

evaluated by means of stochastic simulation. The approaches

are compared according to the quality of the solution as well

as CPU time required. To assess whether the greedy heuris-

tics are superior to simply random they are benchmarked to a

random greedy solution. In addition the results are compared

to the results of a mixed integer linear programming solver

applied to the analytical benchmark problem [9].

The experiments performed are based on six bidding

scenarios each differing by the number of seller and buyer

bundle bids. For each problem instance the number of

seller bids matches the number of buyer bids. The scenarios

comprise 20, 40, 60, 80, 100 and 120 seller and buyer

bundle bids. The number of goods is set to five and are

characterized by three attributes each. A bundle may contain

any combination of goods. The earliest possible time slots

are of the interval [1, 5]. The latest possible time slots

are distributed between [1, 12]. The number of time slots

required is distributed in the interval of [1, 3]. No coupling

or co-allocation constraints are present. The time limit for

the calculation of a result was set to three minutes.

For each of the scenarios described 50 instances are

generated. To generate bids and valuations the combinatorial

auction test suite (CATS) is used [21], [22]. CATS was

designed to generate bids that are realistic in real world

scenarios. Meaningful bundle bids require for example that

certain goods are grouped more likely in a bundle than

others. CATS offers five different options for the generation

of bundle bids. For the paper at hand the arbitrary option

was chosen. This option models the domain of trading

computational resources best as arbitrary but constant com-

plementarities between goods are assumed. If for example a

service offering cpu-cyles is requested it is very likely that

a storage service is requested too. The quality attributes are

drawn from a normal distribution. The according mean and

variance values depend on the valuation or the respective

reservation price as well as the number of resources that are

present in the bundle. The time attributes are drawn from a

uniform distribution within the intervals introduced.

All experiments were performed on a Intel Core 2 CPU

1.86 Ghz with 1.49 GB RAM running Windows XP. The lp-

solve [23] mixed integer linear programming solver version

5.5.0.14 with default parameters was used. The solver was

configured to present intermediary results if the optimum

was not found in time. The maximum time to compute a

solution was set to 180s.

Two types of experiments were performed differing in

the number of buyers submitting bundle bids. For type A

of experiments the number of buyers equals the number

of bundle bids submitted. Type B of experiments contains

XOR concatenated bundle bids. The scenarios of type B

have only half the number of buyers, submitting two bundle

bids each. Therefore the number of bundle bids is equal for

the respective scenarios of both experiments. For each of the

experiments the solution to the MWDP and the time needed

to compute the solution are recorded. Table I and table II

show the results for the runtime of the experiments. The

tables summarize the mean runtime (µ) and the standard

deviation (σ) for each of the scenarios processed with the

different algorithms. For the analytical benchmark solution

an additional column shows the number of KO. A KO

indicates that the analytical benchmark solution ran into

the timeout of 180 seconds. There is no guarantee that the

solution found is the optimal solution. A KO is differentiated

into two subcategories. The first category indicates that a

timeout occurred but a solution is returned. The second

category indicates that the solver was not able to compute

any solution in the given time frame. The Figures 2 and

3 summarize the mean solution quality (surplus) for each

of the experiments. The solution quality is measured in

comparison to analytical benchmark solution (100 percent).

A. Experiment A

The runtime results of experiment A show that show that

within the time frame the optimal solution to the MWDP is

computable for all of the 10/10 instances only. Starting from

the number of 40 agents intermediary results are provided

for some of the problem instances. The number of not

optimal solutions increases from the 20/20 scenarios to the
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Figure 2. Mean Solution Quality Experiment A

60/60 scenarios to nearly 47 which is 94 percent. For all

of these problem instances the execution of the solver has

been cut off after 180 seconds. In comparison none of

the greedy approaches required on average more than 4.6

seconds to compute a solution. The results for the solution

quality show that none of the greedy approaches matched the

solution of the analytical benchmark solution. In comparison

of the greedy approaches the 3/3 algorithm performed best

delivering on average 90 percent of the solution quality

of the analytical benchmark solution. The 2/2 approach

performs similar to the random strategy but requires more

computational effort. The 1/1 approach requires a higher

computational effort than the random algorithm delivering

a results of inferior quality.

Table I
RUNTIME RESULTS EXPERIMENT A

Analytical bench-

mark solution

Random 1/1 2/2 3/3

Num. Bids µ σ KO µ σ µ σ µ σ µ σ

10/10 2999 19856 0/0 40 17 38 14 44 15 232 47

20/20 49723 72929 11/0 103 27 109 29 129 27 664 120

30/30 133906 72121 33/0 197 42 203 42 239 35 1254 177

40/40 165324 45054 45/0 303 46 315 50 398 47 2065 223

50/50 172540 31068 47/0 460 78 488 103 627 88 3247 477

60/60 176740 23164 49/0 640 94 677 105 882 97 4601 621

B. Experiment B

Experiment B shows that the optimal solution to the

MWDP can not be computed within the given time frame

for 24 problem instances of 40 agents. The number of

non optimal solutions for problem instances of a category

increases to the 30/60 scenarios to 100 percent. Starting

from the 15/30 scenario there are problem instances no

solution is provided for. In comparison non of the greedy

approaches required on average more than 4.2 seconds to

compute a solution. The results for the solution quality

show that the 3/3 and 2/2 algorithms outperform the random

benchmark solution. The 1/1 algorithm performs equal to the

random approach. All of the greedy approaches outperform
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Figure 3. Mean Solution Quality Experiment B

the analytical benchmark solution from different degrees

of scenario complexity on. In comparison of the greedy

algorithms the 3/3 approach is the best in terms of solution

quality. In terms of runtime the 2/2 approach is about the

factor 6.5 faster than the 3/3 algorithm reaching 94 percent

of its solution quality.

Table II
RUNTIME RESULTS EXPERIMENT B

Analytical bench-

mark solution

Random 11 22 33

Num. Bids µ σ KO µ σ µ σ µ σ µ σ

5/10 5253 24212 0/0 27 16 30 16 29 15 197 66

10/20 121401 71390 24/0 67 26 74 29 76 26 593 110

15/30 177898 14975 47/2 120 38 140 36 145 42 1164 176

20/40 180000 0 47/3 193 51 212 57 245 49 1899 276

25/50 173429 30719 45/3 259 58 296 62 355 58 2938 488

30/60 180000 0 47/3 373 92 405 98 480 89 4272 538

C. Summary

The results of both experiments clearly indicate that all

of the greedy solutions presented are less expensive in

terms of computational effort than solving the analytical

benchmark problem. An interesting observation comparing

type A and type B experiments is that the quality of the

greedy random solution highly depends on the type of

experiment. A possible explanation is that in case of XOR

bids the ordering of buyer bids (type B experiments), which

decides about the inclusion into the allocation, becomes

more important. Consequently the technique for ordering

buyer bundle bids matches the problem structure. In turn

the techniques used for ordering the slots may have to be

improved to better fit the problem domain. Comparing the

runtime of both experiments it is to be noted that type

B experiments require more computational effort for the

analytical benchmark solver. In contrast the greedy solutions

provide the results faster than in type A experiment. This is

because in the XOR case the check for inclusion into the

allocation can be skipped for half of the bids.
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In summary the greedy algorithm that performed in terms

of solution quality best is the 3/3 algorithm. The algorithm

outperformed the random greedy algorithm for each of the

scenarios of type A and B experiments. The 2/2 greedy

algorithms outperform the random benchmark for each of the

type B scenarios while performing slightly worse for type

A experiments. The 11 approach is found to perform worse

than the random solution for type A experiments and slightly

superior for type B experiments. The approach turned out to

be not suitable for the approximation of the MWDP. In terms

of computational complexity the random solution requires

least effort followed by 1/1 and 2/2 which require about the

same effort. The runtime of the 3/3 approach was in mean

about the factor 6.5 higher than the one of 1/1 and 2/2.

VI. CONCLUSIONS

The core contribution of our paper is the problem spe-

cific adaption and evaluation of scalable greedy heuristics

addressing the allocation problem in Grids formulated as

a MWDP. Three greedy type algorithms were defined and

tested on specific instances of the problem. In a quantitative

comparison we have demonstrated the effectiveness of the

3/3 greedy algorithm outperforming the random benchmark

solution and the results to the analytical benchmark solution

for complex scenarios.

We plan to test the greedy type algorithms on additional

problem instances to improve the sorting procedures further.

In a next step we plan to use the results of greedy search

as a starting point for a hill climbing approach or more so-

phisticated heuristics as simulated annealing or tabu search.
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