IUPAC-NIST Solubility Data Series. 90. Hydroxybenzoic Acid Derivatives in Binary and Ternary Systems. Part II. Hydroxybenzoic Acids, Hydroxybenzoates, and Hydroxybenzoic Acid Salts in Nonaqueous Systems

Avako Goto^{a)}

University of Shizuoka, Shizuoka 422-8526, Japan

Hiroshi Miyamoto

Niigata University, Niigata 950-2181, Japan

Mark Salomon

MaxPower Inc., 141 Christopher Lane, Harleysville, Pennsylvania 19438

Rensuke Goto

University of Shizuoka, Shizuoka 422-8526, Japan

Hiroshi Fukuda

Kitasato University, Kanagawa 252-0373, Japan

Erich Königsberger

Murdoch University, Murdoch, Western Australia 6150, Australia

Lan-Chi Königsberger

Murdoch University, Murdoch, Western Australia 6150, Australia

Pirketta Scharlin

University of Turku, FIN-20014 Turku, Finland

(Received 4 February 2011; accepted 11 February 2011; published online 18 May 2011)

The solid-liquid solubility data for well defined nonaqueous binary and ternary systems are reviewed. One component includes hydroxybenzoic acid, hydroxybenzoate, and hydroxybenzoic acid salt, and another component includes a variety of organic compounds (hydrocarbons, alcohols, halogenated hydrocarbons, carboxylic acids, esters, et al.) and carbon dioxide. The ternary systems include mixtures of organic substances of various classes and carbon dioxide. The total number of compilation sheets is 270 for six types of system. Almost all data are expressed as mass percent and mole fraction as well as the originally reported units, while some data are expressed as molar concentration. Critical evaluation was carried out for the binary nonaqueous systems of 2-, 3-, and 4-hydroxybenzoic acids and hydroxybenzoates (methylparaben, ethylparaben, propylparaben, and butylparaben) in alcohols, 1-heptane, and benzene. © 2011 American Institute of Physics. [doi:10.1063/1.3569816]

Key words: hydroxybenzoic acid; hydroxybenzoic acid salt; nonaqueous systems; paraben; salicylic acid; solubility.

CONTENTS		1.1. Scope of the volume.1.2. Experimental methods.1.3. Procedure used in critical evaluation.	5
1. Preface	4	Hydroxybenzoic Acids, Parabens, and	
a)Electronic mail: aya510@aol.com © 2011 American Institute of Physics.		Hydroxybenzoic Acid Salts in Binary Nonaqueous Systems	6

0047-2689/2011/40(2)/023102/116/\$47.00

023102-1

J. Phys. Chem. Ref. Data, Vol. 40, No. 2, 2011

2.1.	Hydroxybenzoic acid-organic compound			3.2. Hydroxybenzoic acid-organic compound-	
	systems	6		inorganic compound systems	112
	2.1.1. Critical evaluation of the solubility			3.2.1. Salicylic acid	112
	of hydroxybenzoic acids in alkanes.	6		3.2.2. 3-Hydroxybenzoic acid	114
	2.1.1.1. Salicylic acid	6		3.2.3. 4-Hydroxybenzoic acid	115
	2.1.2. Critical evaluation of the solubility		4.	References	115
	of hydroxybenzoic acids in				
	alcohols	8		List of Tables	
	2.1.2.1. Salicylic acid	8		List of Tables	
	2.1.2.2. 3-Hydroxybenzoic acid	11	1	List of committed shoots for colutes in	
	2.1.2.3. 4-Hydroxybenzoic acid	13	1.	List of compiled sheets for solutes in	_
	2.1.3. Critical evaluation of the solubility	13	2	nonaqueous binary and ternary systems	5
	of hydroxybenzoic acids in		2.	Analytical methods of solutes in nonaqueous	_
	aromatic compounds	16	2	systems.	5
	2.1.3.1. Salicylic acid	16	3.	List of evaluation sheets for solutes in binary	
	2.1.3.1. Salicylic acid	19		systems of various solvents	6
		21	4.	Summary of experimental solubility data of	
	2.1.3.3. 4-Hydroxybenzoic acid	21		salicylic acid in heptane	6
	2.1.4. Data for hydroxybenzoic acid—	2.4	5.	Observed data and recommended values	
	organic compound systems	24		calculated according to Eq. (1) for salicylic	
	2.1.4.1. Salicylic acid	24		acid in heptane	7
	2.1.4.2. 3-Hydroxybenzoic acid	40	6.	Summary of experimental solubility data of	
	2.1.4.3. 4-Hydroxybenzoic acid	43		salicylic acid in ethanol	8
	2.1.5. Data for hydroxybenzoic acid-		7.	Observed data and recommended values	
	inorganic compound systems	51		calculated according to Eq. (1) for salicylic	
	2.1.5.1. Salicylic acid	51		acid in ethanol.	8
	2.1.5.2. 3-Hydroxybenzoic acid	52	8.	Summary of experimental solubility data of	
	2.1.5.3. 4-Hydroxybenzoic acid	53		salicylic acid in 1-butanol	10
2.2.	Paraben-organic compound systems	53	9.	Observed data and recommended values	
	2.2.1. Critical evaluation of the solubility			calculated according to Eq. (1) for salicylic	
	of parabens in alcohols	53		acid in 1-butanol	10
	2.2.1.1. Methylparaben	53	10.	Summary of experimental solubility data of	10
	2.2.1.2. Ethylparaben	62	10.	3-hydroxybenzoic acid in ethanol	12
	2.2.1.3. Propylparaben	72	11.	Observed data and recommended values	12
	2.2.1.4. Butylparaben	83	11.	calculated according to Eq. (1) for	
	2.2.2. Data for paraben–organic	02		3-hydroxybenzoic acid in ethanol	12
	compound systems	93	10		12
	2.2.2.1. Methylparaben	93	12.	Summary of experimental solubility data of	1.2
	2.2.2.2. Ethyl-, propyl-, and	75	10	4-hydroxybenzoic acid in ethanol	13
	butylparaben	99	13.	Observed data and recommended values	
	2.2.2.3. Hexyl-, heptyl-, octyl-, and	77		calculated according to Eq. (1) for	
	* * *	101		4-hydroxybenzoic acid in ethanol	13
	decylparaben	101	14.	Summary of experimental solubility data of	
	2.2.2.4. Methylpropyl-, pentyl-,	104		4-hydroxybenzoic acid in 1-butanol	14
	and benzylparaben	104	15.	Observed data and recommended values	
2.3.	Hydroxybenzoic acid salt-organic			calculated according to Eq. (1) for	
	compound systems	104		4-hydroxybenzoic acid in 1-butanol	15
	2.3.1. 2-Hydroxybenzoic acid salt (Na)	104	16.	Summary of experimental solubility data of	
	2.3.2. 2-Hydroxybenzoic acid salt (Ag)	105		salicylic acid in benzene	16
	2.3.3. 2-Hydroxybenzoic acid salt (NH ₄)	106	17.	Observed data and recommended values	
	2.3.4. 4-Hydroxybenzoic acid salt (Ag)	106		calculated according to Eq. (1) for salicylic	
Hvd	lroxybenzoic Acids and Parabens in			acid in benzene	17
-	nary Nonaqueous Systems	107	18.	Summary of experimental solubility data of	
	Hydroxybenzoic acid and paraben–	101	10.	3-hydroxybenzoic acid in benzene	19
٠.1.	organic compound (1)–organic compound		19.	Observed data and recommended values	1)
	(2) systems	107	1).	calculated according to Eq. (1) for	
	3.1.1. Salicylic acid	107		3-hydroxybenzoic acid in benzene	20
		111	20		20
	3.1.2. Methylparaben		20.	Summary of experimental solubility data of	2.1
	3.1.3. Propylparaben	111		4-hydroxybenzoic acid in benzene	21

3.

21.	Observed data and recommended values		44.	ethylparaben in 1-hexanolSummary of experimental solubility data of	68
	calculated according to Eq. (1) for	22	44.	* *	69
22.	4-hydroxybenzoic acid in benzene Summary of experimental solubility data of	22	45.	ethylparaben in 1-octanol Observed data and recommended values	09
22.	methylparaben in methanol	53	45.	calculated according to Eq. (2) for	
23.	Observed data and recommended values	33		ethylparaben in 1-octanol	70
23.	calculated according to Eq. (2) for		46.	Summary of experimental solubility data of	70
	methylparaben in methanol	54	40.	ethylparaben in 1-decanol	71
24.	Summary of experimental solubility data of	J -T	47.	Observed data and recommended values	/ 1
24.	methylparaben in ethanol	55	47.	calculated according to Eq. (2) for	
25.	Observed data and recommended values	33		ethylparaben in 1-decanol	72
20.	calculated according to Eq. (2) for		48.	Summary of experimental solubility data of	, _
	methylparaben in ethanol	55	10.	propylparaben in methanol	72
26.	Summary of experimental solubility data of		49.	Observed data and recommended values	
	methylparaben in 1-propanol	56		calculated according to Eq. (2) for	
27.	Observed data and recommended values			propylparaben in methanol	73
	calculated according to Eq. (2) for		5 0.	Summary of experimental solubility data of	
	methylparaben in 1-propanol	57		propylparaben in ethanol	74
28.	Summary of experimental solubility data of		5 1.	Observed data and recommended values	
	methylparaben in 1-butanol	58		calculated according to Eq. (2) for	
29.	Observed data and recommended values			propylparaben in ethanol	74
	calculated according to Eq. (2) for		52.	Summary of experimental solubility data of	
	methylparaben in 1-butanol	58		propylparaben in 1-propanol	75
30.	Summary of experimental solubility data of		53.	Observed data and recommended values	
	methylparaben in 1-hexanol	59		calculated according to Eq. (2) for	
31.	Observed data and recommended values			propylparaben in 1-propanol	75
	calculated according to Eq. (2) for		54.	Summary of experimental solubility data of	
	methylparaben in 1-hexanol	60		propylparaben in 1-butanol	76
32.	Summary of experimental solubility data of		55.	Observed data and recommended values	
	methylparaben in 1-decanol	61		calculated according to Eq. (2) for	
33.	Observed data and recommended values			propylparaben in 1-butanol	77
	calculated according to Eq. (2) for		56 .	Summary of experimental solubility data of	
	methylparaben in 1-decanol	61		propylparaben in 1-hexanol	78
34.	Summary of experimental solubility data of		57.	Observed data and recommended values	
	ethylparaben in methanol	62		calculated according to Eq. (2) for	
35.	Observed data and recommended values			propylparaben in 1-hexanol	79
	calculated according to Eq. (2) for		58.	Summary of experimental solubility data of	
	ethylparaben in methanol	63		propylparaben in 1-octanol	80
36.	Summary of experimental solubility data of		5 9.	Observed data and recommended values	
	ethylparaben in ethanol	63		calculated according to Eq. (2) for	
37.	Observed data and recommended values			propylparaben in 1-octanol	80
	calculated according to Eq. (2) for		60.	Summary of experimental solubility data of	
	ethylparaben in ethanol	64		propylparaben in 1-decanol	82
38.	Summary of experimental solubility data of		61.	Observed data and recommended values	
	ethylparaben in 1-propanol	65		calculated according to Eq. (2) for	
39.	Observed data and recommended values			propylparaben in 1-decanol	82
	calculated according to Eq. (2) for		62.	Summary of experimental solubility data of	
	ethylparaben in 1-propanol	65		butylparaben in methanol	83
40.	Summary of experimental solubility data of		63.	Observed data and recommended values	
	ethylparaben in 1-butanol	66		calculated according to Eq. (2) for	
41.	Observed data and recommended values			butylparaben in methanol	83
	calculated according to Eq. (2) for	<i>-</i>	64.	Summary of experimental solubility data of	
40	ethylparaben in 1-butanol.	67		butylparaben in ethanol.	84
42.	Summary of experimental solubility data of	60	65.	Observed data and recommended values	
12	ethylparaben in 1-hexanol	68		calculated according to Eq. (2) for	0.7
43.	Observed data and recommended values			butylparaben in ethanol	85
	calculated according to Eq. (2) for		66.	Summary of experimental solubility data of	

67.	Observed data and recommended values	85	16.	Fitting curve of Eq. (2) and the observed data for ethylparaben in methanol
68.	calculated according to Eq. (2) for butylparaben in 1-propanol	86	17. 18.	Fitting curve of Eq. (2) and the observed data for ethylparaben in ethanol
00.	butylparaben in 1-butanol	87	10.	for ethylparaben in 1-propanol
69.	Observed data and recommended values		19.	Fitting curve of Eq. (2) and the observed data for ethylparaben in 1-butanol
	calculated according to Eq. (2) for butylparaben in 1-butanol	87	20.	for ethylparaben in 1-butanol
70.	Summary of experimental solubility data of			for ethylparaben in 1-hexanol
71	butylparaben in 1-hexanol	88	21.	Fitting curve of Eq. (2) and the observed data
71.	Observed data and recommended values calculated according to Eq. (2) for		22.	for ethylparaben in 1-octanol
	butylparaben in 1-hexanol	89		for ethylparaben in 1-decanol
72.	Summary of experimental solubility data of		23.	Fitting curve of Eq. (2) and the observed data
	butylparaben in 1-octanol	90		for propylparaben in methanol
73.	Observed data and recommended values		24.	Fitting curve of Eq. (2) and the observed data
	calculated according to Eq. (2) for	0.1	2.5	for propylparaben in ethanol
74	butylparaben in 1-octanol	91	25.	Fitting curve of Eq. (2) and the observed data
74.	Summary of experimental solubility data of butylparaben in 1-decanol	92	26.	for propylparaben in 1-propanol
75.	Observed data and recommended values)	20.	for propylparaben in 1-butanol
,	calculated according to Eq. (2) for		27.	Fitting curve of Eq. (2) and the observed data
	butylparaben in 1-decanol	93		for propylparaben in 1-hexanol
			28.	Fitting curve of Eq. (2) and the observed data
	List of Figures		20	for propylparaben in 1-octanol
			29.	Fitting curve of Eq. (2) and the observed data
1.	Fitting curve of Eq. (1) and the observed data	7	30.	for propylparaben in 1-decanol
2.	for salicylic acid in heptane	7	50.	for butylparaben in methanol
۷.	Fitting curve of Eq. (1) and the observed data for salicylic acid in ethanol	8	31.	Fitting curve of Eq. (2) and the observed data
3.	Fitting curve of Eq. (1) and the observed data	O		for butylparaben in ethanol
	for salicylic acid in 1-butanol	10	32.	Fitting curve of Eq. (2) and the observed data
4.	Fitting curve of Eq. (1) and the observed data		22	for butylparaben in 1-propanol
_	for 3-hydroxybenzoic acid in ethanol	12	33.	Fitting curve of Eq. (2) and the observed data for butylparaben in 1-butanol
5.	Fitting curve of Eq. (1) and the observed data	1.2	34.	Fitting curve of Eq. (2) and the observed data
6.	for 4-hydroxybenzoic acid in ethanol Fitting curve of Eq. (1) and the observed data	13	51.	for butylparaben in 1-hexanol
0.	for 4-hydroxybenzoic acid in 1-butanol	15	35.	Fitting curve of Eq. (2) and the observed data
7.	Fitting curve of Eq. (1) and the observed data			for butylparaben in 1-octanol
	for salicylic acid in benzene	16	36.	Fitting curve of Eq. (2) and the observed data
8.	Fitting curve of Eq. (1) and the observed data			for butylparaben in 1-decanol
0	for 3-hydroxybenzoic acid in benzene	19		
9.	Fitting curve of Eq. (1) and the observed data	22		1. Preface
10.	for 4-hydroxybenzoic acid in benzene Fitting curve of Eq. (2) and the observed data	22		
10.	for methylparaben in methanol	53		1.1. Scope of the volume
11.	Fitting curve of Eq. (2) and the observed data		W	e have reported the solubilities of hydroxybenzoic acid
	for methylparaben in ethanol	55		vatives in aqueous systems as Part 1 of this volume.1
12.	Fitting curve of Eq. (2) and the observed data			Part 2 reviews experimentally determined solubility
1.0	for methylparaben in 1-propanol	57		of the hydroxybenzoic acid derivatives for well defined
13.	Fitting curve of Eq. (2) and the observed data	5 0		equeous binary and ternary systems of organic com-
14.	for methylparaben in 1-butanol	58	_	nds. The solutes are as follows: Hydroxybenzoic acidesponds to 2-, 3-, and 4-hydroxbenzoic acids.
1→.	for methylparaben in 1-hexanol	60		droxybenzoic acid alkyl ester (paraben) corresponds to
15.	Fitting curve of Eq. (2) and the observed data			ryl-, ethyl-, propyl-, butyl-, hexyl-, heptyl-, octyl-,
	for methylparaben in 1-decanol	61		l-, methylpropyl-, pentyl-, and benzyl esters. Monohy-

droxybenzoic acid salts correspond to sodium, silver, and ammonium salts. All of the solutes are in the solid state at room temperature.

As another component, a variety of organic solvents (alcohols, halogenated hydrocarbons, carboxylic acids, amides, esters, etc.) were examined, along with supercritical carbon dioxide. This volume includes solid-liquid equilibrium of nonaqueous binary and ternary systems, and the goal of the search of Part 2 is to include all published data for nonaqueous systems designated in the title. The list of solutes included is shown in Table 1.

Hydroxybenzoic acids and the related compounds are important substances closely related to daily life, as described in the previous paper. Recently, hydroxybenzoates (parabens) have been widely used as preservatives in the cosmetic, pharmaceutical, and food industries. Their solubilities in nonaqueous solutions as well as in aqueous solutions are important from the viewpoint of their solution states in micellar solutions and the partition coefficients between water and oil phases, as described by Goto. ^{2–8}

The solubility data for six classes of systems were found by an exhaustive search of the chemical literature published prior to 2001, as shown in Table 1. From these, 270 compilation sheets were prepared. Most compilations present the solubility data for one system as reported in one publication. They are the result of an exhaustive search of the chemical literature using Chemical Abstracts.

TABLE 1. List of compiled sheets for solutes in nonaqueous binary and ternary systems

	Binary system	Ternary system
Hydroxybenzoic acid (HA)	136	14
Hydroxybenzoic acid ester (HAE)	112	2
Hydroxybenzoic acid salt (HAS)	6	0

In some original sources, solubility data were reported as incidental or ancillary information to other studies. If, for this or other reasons, details concerning experimental methods, source and purity of materials, or estimated errors were brief or absent, correspondingly short entries appear in the compilations, sometime with the note "No further details were reported" or "Not stated" or "Nothing specified."

For convenience of comparison of experimental data, the compilers and evaluators of this volume, as far as possible, expressed all initial results in mass percent and mole fraction as well as in units reported in the original source. Conversions, where they were made, are clearly attributed to the compiler. Some units require numerical data for the density of pure components and/or the mixtures. Definitions of mass percent and mole fraction as well as their relation to other units of solubility are given in the Introduction to the Solubility Data Series. 9

1.2. Experimental methods

Most solubility measurements of binary and ternary systems containing each solute have been made from

284.2 to 486.2 K at atmospheric pressure. Samples of liquid phases at equilibrium are analyzed by various methods. Table 2 shows the list of various methods for the measurement of the solubilities. The solubility measurements of hydroxybenzoic acids for binary and ternary systems are mainly carried out by UV spectroscopy, titration, gravimetry, and synthetic method. The basic approach to solubility measurement of hydroxybenzoates for binary and ternary systems is UV spectroscopy, but gravimetry is used in limited systems.

TABLE 2. Analytical methods of solutes in nonaqueous systems

	В	Binary system		Ter	Total		
Method	HA ^a	HAE ^b	HAS ^c	НА	HAE	HAS	number ^d
Spectroscopy	46	118(40)	0	0	2	0	166
Titration	22	0	0	5	0	0	27
Gravimetry	29	56(40)	1	9	0	0	95
Synthetic method	11	0	0	0	0	0	11
Other methods ^e	3	1	3	0	0	0	7

^aHA: Hydroxybenzoic acid.

^bHAE: Hydroxybenzoic acid ester.

^cHAS: Hydroxybenzoic acid salt.

^dThe total number of sheets does not correspond with the sum of the different methods because some sheets contain plural analytical methods and some sheets for references whose methods are not described clearly are not counted.

^eOther methods include thermometry, and measurement of radioisotopes, potential difference, and vapor pressure.

System pressure at the solution temperature is seldom reported because it is assumed that the effect of pressure is minor. With the solvent, a correction was made at higher temperatures for the amount present as vapor in the bulb, and carbon dioxide was also affected by the pressure. Sources of error in these methods include gravitational effects and impurities in materials whose solubilities are determined.

1.3. Procedure used in critical evaluation

Data are recommended if the results of independent groups are in good agreement and the evaluators have no doubt of the adequacy of the experimental and computational procedures used. Data determined by an inadequate or ill-defined method are rejected.

Where two or more reliable compilations were found for a system, a critical evaluation was carried out. This was possible for 36 systems of hydroxybenzoic acids and parabens (methyl-, ethyl-, propyl-, and butylparabens) in binary systems of alcohols, alkane and benzene, as shown in Table 3.

023102-6 GOTO *ET AL.*

TABLE 3. List of evaluation sheets for solutes in binary systems of various solvents. O: evaluated, —: not evaluated

	Solute									
	Hydroxy	benzoic A	cid (HA)	Hydrox	kybenzo	oic Acid	Ester			
Organic solvent	2HA	ЗНА	4HA	MP	EP	PP	BP			
Methanol		_		0	0	0	0			
Ethanol	0	0	0	0	0	0	0			
1-Propanol	_	_	_	0	0	0	0			
1-Butanol	0	_	0	0	0	0	0			
1-Hexanol	_	_	_	0	0	0	0			
1-Octanol	_	_	_	_	0	0	0			
1-Decanol	_	_	_	0	0	0	0			
1-Heptane	0	_	_	_	_	_	_			
Benzene	0	0	0	_	_	_	_			

^aMP: methylparaben; EP: ethylparaben; PP: propylparaben; BP: butylparaben.

The data for the solubility of the hydroxybenzoic acids and the parabens in organic solvents were treated as a function of absolute temperature. Data for the solubility of the hydroxybenzoic acids and the parabens were fitted to Eq. (1) or (2), $^{10-12}$

$$\ln x_1 = A/T + B \ln T + C, \tag{1}$$

$$ln x_1 = A/T + C.$$
(2)

The equation parameters statistically calculated by the least squares method are presented in the critical evaluations. The solubilities calculated by the proposed equations are presented in the tables; these values are recommended.

A complete guide to the preparation and use of compilations and evaluations for the *IUPAC-NIST Solubility Data Series* can be found in the articles⁹ jointly published by IUPAC and NIST. These procedures were applied to all the data sources^{2–8,13–45} compiled here.

Of particular interest for the present volume are the uncommon use of the symbols γ for mass concentration and φ for volume fraction. These symbols, defined in Ref. 9, are often found in the pharmaceutical literature, particularly in the older literature.

2. Hydroxybenzoic Acids, Parabens, and Hydroxybenzoic Acid Salts in Binary Nonaqueous Systems

2.1. Hydroxybenzoic acid-organic compound systems

2.1.1. Critical evaluation of the solubility of hydroxybenzoic acids in alkanes

2.1.1.1. Salicylic acid

Components:	Evaluators:
(1) Benzoic acid, 2-hydroxy- (o-hydroxybenzoic acid, salicylic acid); C ₇ H ₆ O ₃ ; [69-72-7] (2) n-Heptane (heptane); C ₇ H ₁₆ ; [142-82-5]	Ayako Goto, University of Shizuoka, Shizuoka, Japan Rensuke Goto, University of Shizuoka, Shizuoka, Japan Hiroshi Fukuda, Kitasato University, Tokyo, Japan

Critical Evaluation

Table 4. Summary of experimental solubility data of salicylic acid in heptane.

T/K	$100m_1/\text{mol kg}^{-1}$	$100w_1$	$100x_1$	Analytical method	Reference
298.2	0.33		0.048	Spectroscopy	13
365.4		2.09	1.52 ^a	Synthetic method	14
385.6		5.37	3.95^{a}	Synthetic method	14
397.9		10.25	7.651 ^a	Synthetic method	14
407.5		20.15	1.55 ^a	Synthetic method	14
415.2		41.6	3.41^{a}	Synthetic method	14
418.7		60.2	5.23 ^a	Synthetic method	14
422.7		81.4	7.60^{a}	Synthetic method	14

^aThe mole-fraction solubilities were calculated based on w_1 .

Solubilities of salicylic acid in heptane were reported in two publications. The measurement was carried out from 298.2 to 422.7 K. The solubilities of salicylic acid in heptane are shown in Table 4, in which molality, mass percent, and mole fraction are expressed as units. The measurement was carried out by the synthetic method and spectroscopy, as shown in Table 4.

Data for the solubility of salicylic acid in heptane expressed by mole fraction were fitted to Eqs. (1) and (2) given in Sec. 1.3. The data points closely agree with Eq. (1) over the whole range of temperatures, as shown in Fig. 1, but they deviated from Eq. (2). The equation parameters were derived by multiple regression analysis using SPSS based on Eq. (1), with the following results:

Multiple correlation coefficient: 0.996

Sample size: 8 data points *p*-value (F test): 0.000

Constants: $A = 24560 \pm 5865$, $B = 89.93 \pm 16.62$, $C = -602.3 \pm 114.3$

White circles in Fig. 1 represent the observed data and the black line corresponds to calculated values according to Eq. (1). $(\ln x_1 = 24560/T + 89.93 \ln T - 602.3)$ The observed data fit closely with the calculated values in the range of 298.2 - 422.7 K, with the multiple correlation coefficient of

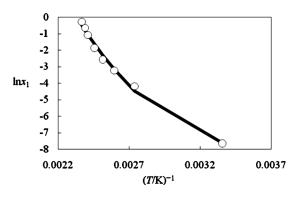


Fig. 1. Fitting curve of Eq. (1) and the observed data for salicylic acid in heptane.

0.996, as shown in Fig. 1. Therefore, the calculated value at each measured temperature is reasonably considered as a recommended value over the whole range of temperature.

Table 5 shows the observed data in the range of 298.2-422.7 K and the recommended values calculated from Eq. (1) at each temperature.

TABLE 5. Observed data and recommended values calculated according to Eq. (1) for salicylic acid in heptane

T/K	$100x_1(\text{obs})$	$100x_1(rec)$
298.2	0.048	0.0497
365.4	1.52	1.14
385.6	3.95	4.25
397.9	7.651	9.99
407.5	15.5	19.9
415.2	34.1	35.1
418.7	52.3	45.5
422.7	76	61.5

Components:

(1) Benzoic acid, 2-hydroxy-(o-hydroxybenzoic acid, salicylic acid); C₇H₆O₃; [69-72-7] (2) *n*-Heptane (heptane); C₇H₁₆; [142-82-5]

Original Measurements:

¹⁴N.V. Sidgwick and E.K. Ewbank, J. Chem. Soc. 1921, 979.

Variables: $t/^{\circ}C=92.2-149.5$

Prepared by:

A. Goto and H. Miyamoto

Solubility of salicylic acid in n-heptane

Cemperature		Solubility
t/°C	w_1	$100x_1$ (compiler)
92.2	2.09	1.52
112.4	5.37	3.95
124.7	10.25	7.651
134.3	20.15	15.5
142.0	41.6	34.1
145.5	60.2	52.3
149.5	81.4	76.0

Auxiliary Information

Methods/Apparatus/Procedure:

The solubility was determined synthetically. Weighed quantities of the acid and the solvent were enclosed in bulbs, which were then sealed and heated in a suitable bath. With the solvent, a correction was made at higher temperatures for the amount present as vapor in the bulb; for this purpose the vapor pressure of the saturated solution was assumed to be half that of the pure solvent at the same temperature. The thermometers had been compared with a standard instrument, and all readings were corrected.

Source and Purity of Materials:

The preparation and the purification of salicylic acid were described in [J. Walker and J.K Wood, J. Chem. Soc. 117, 40 (1920)]. Melting point of the purified acid was 159.0 °C.

n-Heptane was a specimen from Pinus sabiniana, which had been purified by treatment with sulfuric and nitric acids, and distillation [T.E. Thorpe, J. Chem. Soc. 35, 296 (1879)].

Estimated Errors:

Nothing specified.

Components: (1) Benzoic acid, 2-hydroxy- (<i>o</i> -hydroxybenzoic acid, salicylic acid); C ₇ H ₆ O ₃ ; [69-72-7] (2) <i>n</i> -Heptane (heptane); C ₇ H ₁₆ ; [142-82-5]	Original Measurements: ¹³ HL. Fung and T. Higuchi, J. Pharm. Sci. 60 , 1782 (1971).
Variables:	Prepared by:
$t/^{\circ}C=25$	A. Goto and H. Miyamoto

Solubil	ity of salicylic acid in n -heptane at 25 °C
	Solubility
10^4x_1	$10^3 m_1$ /mol kg ⁻¹

Auxiliary Information

3.3

Methods/Apparatus/Procedure:

4.8

An amount of solid at least five times in excess of its solubility was allowed to equilibrate with the solvent in a stoppered and sealed volumetric flask, which was continuously shaken on a wrist-action shaker in a thermostated bath for at least 24 h. An aliquot of the saturated solution was pipetted out and distilled accurately from 10 to 100 times in chloroform. The concentration of salicylic acid was determined by the UV spectrometric method.

Source and Purity of Materials:

n-Heptane of reagent grade was purified by passing the solvent through a column of silica gel followed by distillation from sodium under reduced pressure.

Salicylic acid was recrystallized from hot water.

Estimated Errors:

023102-8 GOTO *ET AL.*

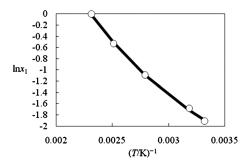


Fig. 2. Fitting curve of Eq. (1) and the observed data for salicylic acid in ethanol

2.1.2. Critical evaluation of the solubility of hydroxybenzoic acids in alcohols

2.1.2.1. Salicylic acid

Components:	Evaluators:
(1) Benzoic acid, 2-hydroxy-	Ayako Goto, University of
(o-hydroxybenzoic acid, salicylic	Shizuoka, Shizuoka, Japan
acid); C ₇ H ₆ O ₃ ; [69-72-7]	Rensuke Goto, University of
(2) Ethyl alcohol (ethanol);	Shizuoka, Shizuoka, Japan
C ₂ H ₆ O; [64-17-5]	Hiroshi Fukuda, Kitasato
	University, Tokyo, Japan

Critical Evaluation

Table 6. Summary of experimental solubility data of salicylic acid in ethanol

T/K	$c_1/\text{mol dm}^{-3}$	$100w_1$	$100x_1$	Analytical method	Reference
293.2	2.041			Gravimetry	15
301.2			14.79	Titration(Ba(OH) ₂)	16
303.8	2.76			Titration(NaOH)	17
314.2		18.6	18.6 ^a	Synthetic method	14
358.4		60.4	33.7^{a}	Synthetic method	14
398.4		81.2	59.0^{a}	Synthetic method	14
432.2		100.0	100.0^{a}	Synthetic method	14

 $[\]overline{}^{a}$ The mole-fraction solubilities were calculated based on w_{1} .

The critical evaluation was carried out as described in Sec. 2.1.1.1 for salicylic acid in n-heptane.

The number of publications: 4

The range of temperature: T/K = 293.2 - 432.2

The units: mass percent, mole fraction, and mol dm⁻³

Analytical methods: gravimetry, synthetic method, and titration

Data for the solubility of salicylic acid in ethanol expressed by mole fraction were fitted to Eqs. (1) and (2) given in Sec. 1.3 (Table 6). The data points closely agree with Eq. (1) over the whole range of temperatures, as shown in Fig. 2, but they deviated from Eq. (2). Multiple regression analysis according to Eq. (1) yielded the following results:

Multiple correlation coefficient: 1.000

Sample size: 5 data points

p-value (F test): 0.001

Constants: $A = 2292 \pm 839$, $B = 11.58 \pm 2.35$, C =

 -75.60 ± 16.18

White circles in Fig. 2 represent the observed data and the black line corresponds to calculated values according to Eq. (1) $(\ln x_1=2292/T+11.58 \ln T-75.60)$. The observed data fit closely with the calculated values in the range of 298.2–432.2 K, with the multiple correlation coefficient of 1.000, as shown in Fig. 2. Therefore, the calculated value at each measured temperature is reasonably considered as a recommended value over the whole range of temperature.

Table 7 shows the observed data in the range of 298.2–432.2 K and the recommended values calculated from Eq. (1) at each temperature.

TABLE 7. Observed data and recommended values calculated according to Eq. (1) for salicylic acid in ethanol

T/K	$100x_1(obs)$	$100x_1(\text{rec})$
301.2	14.79	15.1
314.2	18.6	18.0
358.4	33.7	33.6
398.4	59.0	60.2
432.2	100	98.5

Components:

(1) Benzoic acid, 2-hydroxy-(*o*-hydroxybenzoic acid, salicylic acid); C₇H₆O₃; [69-72-7]

(2) Ethyl alcohol (ethanol); C₂H₆O; [64-17-5]

Original Measurements:

¹⁴S.V. Sidgwick and E.K. Embank, J. Chem. Soc. **1921**, 979.

Variables: Prepared by: $t/^{\circ}C=41.0-159.0$ A. Goto and H. Miyamoto

Solubility of salicylic acid in ethanol

Temperature	Sol	ubility
t/°C	100w ₁	$100x_1$ (compiler)
159.0	100.0	100.0
125.2	81.2	59.0
85.2	60.4	33.7
41.0	40.6	18.6

Auxiliary Information

Methods/Apparatus/Procedure:

The experimental details are given in the compilation of Ref. 14 for the salicylic acid—n-heptane system in Sec. 2.1.1.1.

Source and Purity of Materials:

The preparation and purification methods were described in [J. Walker and J.K. Wood, J. Chem. Soc. 117, 40 (1920)]. Melting point of salicylic acid was $159.0~^{\circ}$ C.

Ethanol was distilled over calcium oxide, and the purity determined from the density was 99.0%.

Estimated Errors:

Components: (1) Benzoic acid, 2-hydroxy(o-hydroxybenzoic acid, salicylic acid); C₇H₆O₃; [69-72-7] (2) Ethyl alcohol (ethanol); C₂H₆O; [64-17-5] Variables: t/°C=28 Original Measurements: 16P.G. Desai and A.M. Patel, J. Indian Chem. Soc. 12, 131 (1935). Prepared by: A. Goto and H. Miyamoto

The solubility of salicylic acid in ethanol at 28 °C was reported as x_1 =0.1479.

Auxiliary Information

Methods/Apparatus/Procedure:

Salicylic acid was saturated in 100 ml of ethanol in a series of flasks, which were kept revolving on a wheel in an air thermostat at 28 °C for 48 h. In order to avoid any error due to the absorption of the solute by the filter paper, a fresh saturated solution was filtered through it before the solution used for the estimation of the acid was passed through. A suitable amount of the filtrate was titrated against barium hydroxide solution using phenolphthalein as an indicator. The stock solution of barium hydroxide was titrated against a standard solution of succinic acid.

Source and Purity of Materials:

Salicylic acid was twice recrystallized.

Ethanol was purified by distillation.

Estimated Errors:

Solubility: Three readings were taken in each case and the mean was taken. It was found by blank experiments (on solute-free solvent) that this method gave reliable results, the precision being less than 0.5%.

Temperature: Nothing specified.

Components: (1) Benzoic acid, 2-hydroxy- (<i>o</i> -hydroxybenzoic acid, salicylic acid); C ₇ H ₆ O ₃ ; [69-72-7] (2) Ethyl alcohol (ethanol); C ₂ H ₆ O; [64-17-5]	Original Measurements: ¹⁵ E. Bergroth, Farm. Aikak. 70 , 91 (1961).
Variables: t/ ° C = 20.0	Prepared by: P. Scharlin
Solubility of salicylic a	acid in ethanol at 20 °C
Solu	bility ^a
γ_1 /g dm ⁻³ (compiler)	$c_1/\mathrm{mol~dm^{-3}}$ (compiler)
281.9	2.041

^aIn the original paper, the solubility was given as grams per 100 ml of solution.

Auxiliary Information

Methods/Apparatus/Procedure:

The solubility apparatus consisted of a 150 ml vessel equipped with a mechanical stirrer and a side tube which connected the vessel to a vacuum filtration system. During the measurements, the apparatus was immersed in a water bath of constant temperature. A known mass of the compound to be studied was introduced into the solubility vessel. The mass varied between 2 and 10 g depending on the expected solubility of the compound. About 20 ml of solvent was added, the apparatus was closed tightly with rubber stoppers and immersed in a water bath so that only the upper part of the solubility vessel stayed above water. Stirring was initiated and the compound allowed to dissolve during 30 min. The solution was vacuum filtered through a stinter and a known volume of filtered solution was transferred to a constant-mass evaporating dish. The solvent was carefully evaporated over a steam bath and the dish was placed in a drying oven. The temperature of the oven did not exceed 100 °C. The dish was allowed to cool to room temperature in a desiccator and weighed. The solubility was calculated as grams per 100 ml of

Source and Purity of Materials:

Salicylic acid was obtained from Shuchardt, DAB6. Ethanol: source and purity not given; relative density d=0.789 (20 °C/4 °C).

Estimated Errors:

Nothing specified. According to the author, the values given are the mean of three independent determinations.

Components: (1) Benzoic acid, 2-hydroxy- (o -hydroxybenzoic acid, salicylic acid); $C_7H_6O_3$; [69-72-7] (2) Ethyl alcohol (ethanol); C_2H_6O ; [64-17-5]	Original Measurements: ¹⁷ A.N. Paruta, B.J. Sciarrone, and N.G. Lordi, J. Pharm. Sci. 53 , 1349 (1964).
Variables:	Prepared by:
t/ °C=30.6	A. Goto, R. Goto, and H. Miyamoto

Solubility of salicylic acid in ethanol at 30.6 °C

	Solu	ubility ^a
Dielectric constant of solvent	$\gamma_1/g \text{ dm}^{-3}$ (compiler)	$c_1/\mathrm{mol}~\mathrm{dm}^{-3}$ (compiler)
20.7	381	2.76

^aIn the original paper, the solubility was given as milligrams per milliliter of solution

Methods/Apparatus/Procedure:

The solubility of salicylic acid was determined in pure solvent using 15~ml screw-capped vials fitted with Teflon liners. The vials were attached to a rotating wheel in a water bath maintained at 30.6 $^{\circ}$ C. Equilibration time of 24 h was sufficient. Samples were withdrawn from the reaction vials using a pipet fitted with a glass wool filtering plug. The solubility of salicylic acid was determined by base titration using freshly prepared 0.1 mol dm $^{-3}$ NaOH solution as titrant and phenolphthalein as an indicator. The dielectric constant of the ethanol were measured by a resonance method at 25 $^{\circ}$ C.

Source and Purity of Materials:

Ethanol was purified by the method described in A. Weissberger *et al.*, *Organic Solvents*, 2nd ed. (Interscience, New York, 1955), Chaps. 4 and 5.

Estimated Errors:

Solubility: Nothing specified.

Temperature: Precision of $\pm 0.2~^{\circ}\text{C}$ (solubility) and $\pm 1.0~^{\circ}\text{C}$ (dielectric constant)

Components:

 $\begin{array}{ll} \text{(1) Benzoic acid, 2-hydroxy-} \\ \text{(o-hydroxybenzoic acid, salicylic acid); $C_7H_6O_3$; [69-72-7] \\ \text{(2) 1-Butanol (butan-1-ol, butyl alcohol); $C_4H_{10}O$; [71-36-3]} \end{array}$

Evaluators:

Ayako Goto, University of Shizuoka, Shizuoka, Japan Rensuke Goto, University of Shizuoka, Shizuoka, Japan Hiroshi Fukuda, Kitasato University, Tokyo, Japan

Critical Evaluation

Table 8. Summary of experimental solubility data of salicylic acid in 1-butanol

T/K	$c_1/\mathrm{mol}\mathrm{dm}^{-3}$	$100w_1$	$100x_1$	Analytical method	Reference
297.2		24.36	14.75 ^a	Synthetic method	14
298.15			16.46	Spectroscopy	18
301.2			15.88	Titration(Ba(OH) ₂)	16
303.8	1.82			Titration(NaOH)	17
311.2		28.88	17.89 ^a	Synthetic method	14
358.8		48.9	33.9^{a}	Synthetic method	14
394.8		79.2	67.1 ^a	Synthetic method	14

^aThe mole-fraction solubilities were calculated based on w_1 .

The critical evaluation was carried out as described in Sec. 2.1.1.1 for salicylic acid in n-heptane.

The number of publications: 4

The range of temperature: T/K = 297.2 - 394.8

The units: mass percent, mole fraction, and mol dm⁻³ Analytical methods: synthetic method, spectroscopy, and

titration

Data for the solubility of salicylic acid in 1-butanol expressed by mole fraction were fitted to Eqs. (1) and (2) given in Sec. 1.3 (Table 8). The data points closely agree with Eq. (1) over the whole range of temperatures, as shown in Fig. 3, but they deviated from Eq. (2). Multiple regression analysis according to Eq. (1) yielded the following results:

Multiple correlation coefficient: 0.998

Sample size: 6 data points

p-value (F test): 0.000

Constants: $A = 6769 \pm 1877$, $B = 24.96 \pm 5.54$, $C = 166.8 \pm 27.8$

 -166.8 ± 37.8

White circles in Fig. 3 represent the observed data and

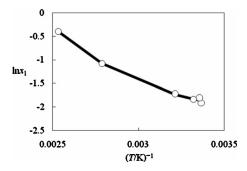


Fig. 3. Fitting curve of Eq. (1) and the observed data for salicylic acid in 1-butanol.

the black line corresponds to calculated values according to Eq. (1) $(\ln x_1 = 6769/T + 24.96 \ln T - 166.8)$. The observed data fit closely with the calculated values in the range of 297.2–394.8 K, with the multiple correlation coefficient of 0.998, as shown in Fig. 3. Therefore, the calculated value at each measured temperature is reasonably considered as a recommended value over the whole range of temperature.

Table 9 shows the observed data in the range of 297.2–394.8 K and the recommended values calculated from Eq. (1) at each temperature.

TABLE 9. Observed data and recommended values calculated according to Eq. (1) for salicylic acid in 1-butanol

T/K	$100x_1(obs)$	$100x_1(\text{rec})$
297.2	14.75	15.5
298.15	16.46	15.6
301.2	15.88	16.0
311.2	17.89	17.6
358.8	33.9	34.3
394.8	67.1	66.7

Components:

(1) Benzoic acid, 2-hydroxy-(o-hydroxybenzoic acid, salicylic acid); $C_7H_6O_3$; [69-72-7] (2) 1-Butanol (butan-1-ol, butyl alcohol); $C_4H_{10}O$; [71-36-3]

Original Measurements:

¹⁴S.V. Sidgwick and E.K. Embank, J. Chem. Soc. **1921**, 979.

Variables: *t*/°C=24.0-121.6

Prepared by: A. Goto and H. Miyamoto

Solubility of salicylic acid in 1-butanol

Temperature	So	lubility
t/°C	$100w_1$	$100x_1$ (compiler)
121.6	79.2	67.1
85.6	48.9	33.9
38.0	28.88	17.89
24.0	24.36	14.75

J. Phys. Chem. Ref. Data, Vol. 40, No. 2, 2011

Methods/Apparatus/Procedure:

The experimental details are given in the compilation of Ref. 14 for the salicylic acid—n-heptane system in Sec. 2.1.1.1.

Source and Purity of Materials:

The preparation and purification methods were described in [J. Walker and J.K. Wood, J. Chem. Soc. 117, 40 (1920)]. Melting point of salicylic acid was $159.0~^{\circ}$ C.

1-Butanol was repeatedly fractionated, and distilled within 0.1 °C.

Estimated Errors:

Nothing specified.

 $t/^{\circ}C=28$

Variables:	Prepared by:
(2) 1-Butanol (butan-1-ol, butyl alcohol); C ₄ H ₁₀ O; [71-36-3]	
acid); C ₇ H ₆ O ₃ ; [69-72-7]	(1935).
(o-hydroxybenzoic acid, salicylic	Indian Chem. Soc. 12 , 131
(1) Benzoic acid, 2-hydroxy-	¹⁶ P.G. Desai and A.M. Patel, J.
Components:	Original Measurements:

The solubility of salicylic acid in 1-butanol at 28 $^{\circ}$ C was reported as x_1 =0.1588.

Auxiliary Information

Methods/Apparatus/Procedure:

The experimental details are given in the compilation of Ref. 16 for the salicylic acid–ethanol system in Sec. 2.1.2.1.

Source and Purity of Materials:

Salicylic acid was twice recrystallized.

1-Butanol was purified by distillation.

Estimated Errors:

Solubility: Three readings were taken in each case and the mean was taken. It was found by blank experiments (on solute-free solvent) that this method gave reliable results, the precision being less than 0.5%.

Temperature: Nothing specified.

Components:

(1) Benzoic acid, 2-hydroxy-(*o*-hydroxybenzoic acid, salicylic acid); C₇H₆O₃; [69-72-7] (2) 1-Butanol (butan-1-ol, butyl

alcohol); C₄H₁₀O; [71-36-3]

Variables:

 $t/^{\circ}$ C=30.6

Original Measurements:

A. Goto and H. Miyamoto

¹⁷A.N. Paruta, B.J. Sciarrone, and N.G. Lordi, J. Pharm. Sci. **53**, 1349 (1964).

Prepared by:

A. Goto and H. Miyamoto

Solubility of salicylic acid in 1-butanol at 30.6 °C

	Solubility ^a	
Dielectric constant of solvent	$\gamma_1/g \text{ dm}^{-3}$ (compiler)	$c_1/\mathrm{mol}~\mathrm{dm}^{-3}$ (compiler)
17.1	251	1.82

^aIn the original paper, the solubility was given as milligrams per milliliter of solution.

Auxiliary Information

Methods/Apparatus/Procedure:

The experimental details are given in the compilation of Ref. 17 for the salicylic acid—ethanol system in Sec. 2.1.2.1.

Source and Purity of Materials:

The solvents were purified by the method described in A. Weissberger *et al.*, *Organic Solvents*, 2nd ed. (Interscience, New York, 1955), Chaps. 4 and 5

Estimated Errors:

Solubility: Nothing specified.

Temperature: Precision of $\pm 0.2~^{\circ}C$ (solubility) and $\pm 1.0~^{\circ}C$ (dielectric constant).

Components:	Original Measurements:
$ \begin{array}{l} \text{(1) Benzoic acid, 2-hydroxy-} \\ \text{(o-hydroxybenzoic acid, salicylic acid); $C_7H_6O_3$; [69-72-7]} \\ \text{(2) 1-Butanol (butan-1-ol, butyl alcohol); $C_4H_{10}O$; [71-36-3]} \\ \end{array} $	¹⁸ K.M. De Fina, T.L. Sharp, L.E. Roy, and W.E. Acree, Jr., J. Chem. Eng. Data 44 , 1262 (1999).
Variables: <i>T</i> /K=298.15	Prepared by: A. Goto and H. Miyamoto

The solubility of salicylic acid in 1-butanol at 298.15 K was reported as x_1 =0.1646.

Auxiliary Information

Methods/Apparatus/Procedure:

Excess solute and solvent were placed in amber glass bottles and allowed to equilibrate in a constant-temperature water bath at $25.0\,^{\circ}\mathrm{C}$ for at least 3 days (often longer). Attainment of equilibrium was verified both by repetitive measurements after several additional days and by approaching equilibrium from supersaturation. Aliquots of saturated salicylic acid solutions were transferred through a coarse filter into a tared volumetric flask to determine the amount of sample and diluted quantitatively with methanol for spectrophotometric analysis. Mole-fraction solubilities were computed from (mass / mass) solubility fraction using the molar masses of the solute and solvent.

Source and Purity of Materials:

Salicylic acid (Aldrich 99+%, ACS Reagent Grade) was dried in an oven for several hours at 80 $^{\circ}$ C and used without further purification. The purity of salicylic acid was 99.86 ± 0.12 mass %, as determined by five volumetric titrations using a freshly standardized sodium hydroxide titrant and phenolphthalein indicator.

1-Butanol (Aldrich, HPLC, 99.8+%) was stored over molecular sieves before use. Gas chromatographic analysis showed solvent purities to be 99.7 mole % or better.

Estimated Errors:

Solubility: Nothing specified. Temperature: Precision of ± 0.1 °C.

2.1.2.2. 3-Hydroxybenzoic acid

Components:	Evaluators:
(1) Benzoic acid, 3-hydroxy-	Ayako Goto, University of
(m-hydroxybenzoic acid);	Shizuoka, Shizuoka, Japan
C ₇ H ₆ O ₃ ; [99-06-9]	Rensuke Goto, University of
(2) Ethyl alcohol (ethanol)	Shizuoka, Shizuoka, Japan
C ₇ H ₆ O; [64-17-5]	Hiroshi Fukuda, Kitasato
	University, Tokyo, Japan

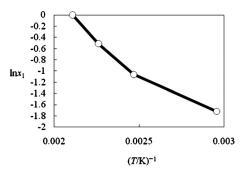


Fig. 4. Fitting curve of Eq. (1) and the observed data for 3-hydroxybenzoic acid in ethanol.

Critical Evaluation

TABLE 10. Summary of experimental solubility data of 3-hydroxybenzoic acid in ethanol

T/K	$c_1/\mathrm{mol}\mathrm{dm}^{-3}$	$100w_1$	$100x_1$	Analytical method	Reference
293.2	1.632			Gravimetry	14
338.2		39.6	17.9 ^a	Synthetic method	15
405.2		61.3	34.6^{a}	Synthetic method	15
442.2		81.7	59.8 ^a	Synthetic method	15
474.5		100.0	100.0^{a}	Synthetic method	15

^aThe mole-fraction solubilities were calculated based on w_1 .

The critical evaluation was carried out as described in Sec. 2.1.1.1 for salicylic acid in *n*-heptane.

The number of publications: 2

The range of temperature: T/K = 293.2 - 474.5

The units: mass percent, mole fraction, and mol dm⁻³ Analytical methods: synthetic method and gravimetry

Data for the solubility of 3-hydroxybenzoic acid in ethanol expressed by mole fraction were fitted to Eqs. (1) and (2) given in Sec. 1.3 (Table 10). The data points closely agree with Eq. (1) over the whole range of temperatures, as shown in Fig. 4, but they deviated from Eq. (2). Multiple regression analysis according to Eq. (1) yielded the following results:

Multiple correlation coefficient: 1.000

Sample size: 4 data points *p*-value (F test): 0.007

Constants: $A = 7204 \pm 281$, $B=23.16\pm0.71$,

 -157.9 ± 5.0

White circles in Fig. 4 represent the observed data and the black line corresponds to calculated values according to Eq. (1) $(\ln x_1 = 7204/T + 23.16 \ln T - 157.9)$. The observed data fit closely with the calculated values in the range of 338.2-474.5 K, with the multiple correlation coefficient of 1.000, as shown in Fig. 4. Therefore, the calculated value at each measured temperature is reasonably considered as a recommended value over the whole range of temperature.

Table 11 shows the observed data in the range of 338.2-474.5 K and the recommended values calculated from Eq. (1) at each temperature.

TABLE 11. Observed data and recommended values calculated according to Eq. (1) for 3-hydroxybenzoic acid in ethanol

T/K	$100x_1(obs)$	$100x_1(rec)$
338.2	17.9	17.9
405.2	34.6	34.8
442.2	59.8	59.5
474.5	100	100

Components:

(1) Benzoic acid, 3-hydroxy-(*m*-hydroxybenzoic acid); C₇H₆O₃; [99-06-9]

C₂H₆O; [64-17-5]

 $t/^{\circ}C = 65.0 - 201.3$

Original Measurements:

¹⁴S.V. Sidgwick and E.K. Embank, J. Chem. Soc. 1921,

(2) Ethyl alcohol (ethanol);

Variables:

Prepared by:

A. Goto and H. Miyamoto

Solubility of 3-hydroxybenzoic acid in ethanol

So	lubility
$100w_1$	$100x_1$ (compiler)
100.0	100.0
81.7	59.8
61.3	34.6
39.6	17.9
	100 <i>w</i> ₁ 100.0 81.7 61.3

Auxiliary Information

Methods/Apparatus/Procedure:

The experimental details are given in the compilation of Ref. 14 for the salicylic acid-*n*-heptane system in Sec. 2.1.1.1.

Source and Purity of Materials:

The preparation and purification methods were described in [J. Walker and J.K. Wood, J. Chem. Soc. 117, 40 (1920)]. Melting point of

3-hydroxybenzoic acid was 201.5 °C.

Ethanol was distilled over calcium oxide, and the purity determined from the density was 99.0%.

Estimated Errors:

Components: (1) Benzoic acid, 3-hydroxy- (m -hydroxybenzoic acid); $C_7H_6O_3$; [99-06-9] (2) Ethyl alcohol (ethanol); C_2H_6O ; [64-17-5]	Original Measurements: 15E. Bergroth, Farm. Aikak. 70, 91 (1961).
Variables:	Prepared by:
t/°C=20.0	P. Scharlin

Solubility of 3-hydroxybenzoic acid in ethanol at 20.0 °C

	Solubility ^a
$\gamma_1/g \text{ dm}^{-3}$ (compiler)	$c_1/\mathrm{mol}\;\mathrm{dm}^{-3}$ (compiler)
225.4	1.632

^aIn the original paper, the solubility was given as grams per 100 ml of solution.

Methods/Apparatus/Procedure:

The experimental details are given in the compilation of Ref. 15 for the salicylic acid–ethanol system in Sec. 2.1.2.1.

Source and Purity of Materials:

3-Hydroxybenzoic acid was obtained from Shuchardt, reinst. Ethanol: source and purity not given; relative density d=0.789 (20 °C/4 °C).

Estimated Errors:

Nothing specified. According to the author, the values given are the mean of three independent determinations.

2.1.2.3. 4-Hydroxybenzoic acid

Components: (1) Benzoic acid, 4-hydroxy-

(p-hydroxybenzoic acid); $C_7H_6O_3$; [99-96-7] (2) Ethyl alcohol (ethanol); C_2H_6O ; [64-17-5]

Evaluators:

Ayako Goto, University of Shizuoka, Shizuoka, Japan Rensuke Goto, University of Shizuoka, Shizuoka, Japan Hiroshi Fukuda, Kitasato University, Tokyo, Japan

Critical Evaluation

Table 12. Summary of experimental solubility data of 4-hydroxybenzoic acid in ethanol

T/K	$c_1/\mathrm{mol}~\mathrm{dm}^{-3}$	$100w_1$	$100x_1$	Analytical method	Reference
293.2	1.699			Gravimetry	15
298.2			12.13	Spectroscopy	19
340.2		38.75	17.4 ^a	Synthetic method	14
409.7		60.9	34.2^{a}	Synthetic method	14
457.2		82.9	61.8 ^a	Synthetic method	14
486.2		100.0	100.0^{a}	Synthetic method	14

^a The mole-fraction solubilities were calculated based on w_1 .

The critical evaluation was carried out as described in Sec. 2.1.1.1 for salicylic acid in n-heptane.

The number of publications: 3

The range of temperature: T/K = 293.2 - 486.2

The units: mass percent, mole fraction, and mol dm⁻³

Analytical methods: synthetic method, spectrophotometry, and gravimetry

Data for the solubility of 4-hydroxybenzoic acid in ethanol expressed by mole fraction were fitted to Eqs. (1) and (2) given in Sec. 1.3 (Table 12). The data points closely agree with Eq. (1) over the whole range of temperatures, as shown in Fig. 5, but they deviated from Eq. (2). Multiple regression analysis according to Eq. (1) yielded the following results:

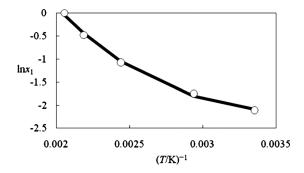


Fig. 5. Fitting curve of Eq. (1) and the observed data for 4-hydroxybenzoic acid in ethanol.

Multiple correlation coefficient: 0.999

Sample size: 5 data points *p*-value (F test): 0.003

Constants: $A = 4107 \pm 938$, $B = 15.07 \pm 2.49$, $C = -101.7 \pm 17.3$

White circles in Fig. 5 represent the observed data and the black line corresponds to calculated values according to Eq. (1) $(\ln x_1=4107/T+15.07 \ln T-101.7)$. The observed data fit closely with the calculated values in the range of 298.2–486.2 K, with the multiple correlation coefficient of 0.999, as shown in Fig. 5. Therefore, the calculated value at each measured temperature is reasonably considered as a recommended value over the whole range of temperature.

Table 13 shows the observed data in the range of 298.2–486.2 K and the recommended values calculated from Eq. (1) at each temperature.

TABLE 13. Observed data and recommended values calculated according to Eq. (1) for 4-hydroxybenzoic acid in ethanol

$100x_1(\text{obs})$	$100x_1(rec)$
12.13	12.4
17.4	16.5
34.2	35.0
61.8	64.6
100	95.6
	12.13 17.4 34.2 61.8

Components: (1) Benzoic acid, 4-hydroxy-(p-hydroxybenzoic acid); C ₇ H ₆ O ₃ ; [99-96-7] (2) Ethyl alcohol (ethanol); C ₂ H ₆ O; [64-17-5]	Original Measurements: ¹⁴ S.V. Sidgwick and E.K. Embank, J. Chem. Soc. 1921 , 979.
Variables:	Prepared by:
$t/^{\circ}C=67.0-213.0$	A. Goto and H. Miyamoto

Solubility of 4-hydroxybenzoic acid in ethanol

Temperature t/°C	Solubility	
	$100w_1$	$100x_1$ (compiler)
67.0	38.75	17.4
136.5	60.9	34.2
184.0	82.9	61.8
213.0	100.0	100.0

Methods/Apparatus/Procedure:

The experimental details are given in the compilation of Ref. 14 for the salicylic acid—n-heptane system in Sec. 2.1.1.1.

Source and Purity of Materials:

The preparation and purification methods were described in [A. Beerbower, A. Martin, and P.L. Wu, J. Pharm. Sci. **73**, 179 (1984)]. Melting point of 4-hydroxybenzoic acid was 213.0 °C.

Ethanol was distilled over calcium oxide, and the purity determined from the density was 99.0%.

Estimated Errors:

Nothing specified.

Components: (1) Benzoic acid, 4-hydroxy- $(p$ -hydroxybenzoic acid); $C_7H_6O_3$; [99-96-7] (2) Ethyl alcohol (ethanol); C_2H_6O ; [64-17-5]	Original Measurements: ¹⁵ E. Bergroth, Farm. Aikak. 70 , 91 (1961).
Variables: $t/^{\circ}$ C=20.0	Prepared by: P. Scharlin

Solubility of 4-hydroxybenzoic acid in ethanol at 20.0 $^{\circ}\text{C}$

Solu	bility ^a
$\gamma_1/g \text{ dm}^{-3}$ (compiler)	$c_1/\mathrm{mol}\mathrm{dm}^{-3}$ (compiler)
243.6	1.699

^aIn the original paper, the solubility was given as grams per 100 ml of solution

Auxiliary Information

Methods/Apparatus/Procedure:

The experimental details are given in the compilation of Ref. 15 for the salicylic acid-ethanol system in Sec. 2.1.2.1.

Source and Purity of Materials:

4-Hydroxybenzoic acid was obtained from Shuchardt, purity of 99.5%. Ethanol source and purity not given; relative density d=0.789 (20 °C/4 °C).

Estimated Errors:

Nothing specified. According to the author, the values given are the mean of three independent determinations.

Components: (1) Benzoic acid, 4-hydroxy- (p-hydroxybenzoic acid); C ₇ H ₆ O ₃ ; [99-96-7] (2) Ethyl alcohol (ethanol); C ₂ H ₆ O; [64-17-5]	Original Measurements: ¹⁹ A. Martin, P.L. Wu, and A. Beerbower, J. Pharm. Sci. 73 , 188 (1984).
Variables: t/°C=25	Prepared by: A. Goto and R. Goto

Solubility of 4-hydroxybenzoic acid in ethanol at 25 °C

Molar volume of solvent	Solubility
$v_2/\mathrm{cm}^3 \mathrm{\ mol}^{-1}$	x_1
58.7	0.1213

Auxiliary Information

Methods/Apparatus/Procedure:

A suitable amount of solvent was introduced into screw-capped vials containing an excess amount of the solute. After being sealed with several turns of plastic tape, the vials were submerged in water at 25 $^{\circ}$ C and shaken. After equilibrium had been attained, each vial was removed, wiped dry, and analyzed. The solutions were transferred to a syringe and filtered using a filter of pore size $<1~\mu m$. After suitable dilution, the solutions were assayed using a spectrophotometer. The solubility was determined at least six times for each solvent.

Source and Purity of Materials:

4-Hydroxybenzoic acid was obtained from Matheson, Coleman, and Bell and the acid was recrystallized from aqueous alcohol and dried at 105 $^{\circ}$ C. Melting point measured by a hot-stage method was 486.85 K.

The solvent was spectrophotometric grade, ACS grade, or redistilled before use.

Estimated Errors:

Nothing specified.

Components:	Evaluators:
(1) Benzoic acid, 4-hydroxy-	Ayako Goto, University of
(p-hydroxybenzoic acid);	Shizuoka, Shizuoka, Japan
C ₇ H ₆ O ₃ ; [99-96-7]	Rensuke Goto, University of
(2) 1-Butanol (butan-1-ol, butyl	Shizuoka, Shizuoka, Japan
alcohol); C ₄ H ₁₀ O; [71-36-3]	Hiroshi Fukuda, Kitasato
	University, Tokyo, Japan

Critical Evaluation

Table 14. Summary of experimental solubility data of 4-hydroxybenzoic acid in 1-butanol

T/K	$100w_1$	$100x_1$	Analytical method	Reference
298.2		11.54	Spectroscopy	19
305.7	19.50	11.50 ^a	Synthetic method	14
335.2	25.08	15.23 ^a	Synthetic method	14
389.3	39.45	25.9 ^a	Synthetic method	14
440.2	62.4	47.1 ^a	Synthetic method	14
467.2	85.5	76.0^{a}	Synthetic method	14

^aThe mole-fraction solubilities were calculated based on w_1 .

The critical evaluation was carried out as described in Sec. 2.1.1.1 for salicylic acid in n-heptane.

The number of publications: 2

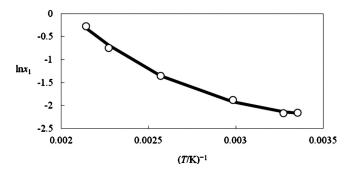


Fig. 6. Fitting curve of Eq. (1) and the observed data for 4-hydroxybenzoic acid in 1-butanol.

The range of temperature: T/K = 298.2 - 467.2

The units: mass percent and mole fraction

Analytical methods: synthetic method and spectrophotometry

Data for the solubility of 4-hydroxybenzoic acid in 1-butanol expressed by mole fraction were fitted to Eqs. (1) and (2) given in Sec. 1.3 (Table 14). The data points closely agree with Eq. (1) over the whole range of temperatures, as shown in Fig. 6, but they deviated from Eq. (2). Multiple regression analysis according to Eq. (1) yielded the following results:

Multiple correlation coefficient: 0.999

Sample size: 6 data points *p*-value (F test): 0.000

Constants: $A = 4384 \pm 858$, $B = 15.96 \pm 2.33$, C =

 -107.8 ± 16.1

White circles in Fig. 6 represent the observed data and the black line corresponds to calculated values according to Eq. (1) $(\ln x_1 = 4384/T + 15.96 \ln T - 107.8)$. The observed data fit closely with the calculated values in the range of 298.2–467.2 K, with the multiple correlation coefficient of 0.999, as shown in Fig. 6. Therefore, the calculated value at each measured temperature is reasonably considered as a recommended value over the whole range of temperature.

Table 15 shows the observed data in the range of 298.2–467.2 K and the recommended values calculated from Eq. (1) at each temperature.

Table 15. Observed data and recommended values calculated according to Eq. (1) for 4-hydroxybenzoic acid in 1-butanol

T/K	$100x_1(obs)$	$100x_1(rec)$
298.2	11.54	11.4
305.7	11.5	11.9
335.2	15.23	14.6
389.3	25.91	25.9
440.2	47.1	50.1
467.2	76.0	72.9

Components: Original Measu

(1) Benzoic acid, 4-hydroxy-(p-hydroxybenzoic acid); C₇H₆O₃; [99-96-7]

(2) 1-Butanol (butan-1-ol, butyl alcohol); $C_4H_{10}O$; [71-36-3]

Original Measurements: ¹⁴S.V. Sidgwick and E.K.

Embank, J. Chem. Soc. **1921**,

Variables: Prepared by:

t/ °C=32.5–193.8 A. Goto and H. Miyamoto

Solubility of 4-hydroxybenzoic acid in 1-butanol

Temperature	So	lubility
t/°C	100w ₁	$100x_1$ (compiler)
32.5	19.50	11.50
62.0	25.08	15.23
116.1	39.45	25.91
167.0	62.4	47.1
193.8	85.5	76.0

Auxiliary Information

Methods/Apparatus/Procedure:

The experimental details are given in the compilation of Ref. 14 for the salicylic acid—n-heptane system in Sec. 2.1.1.1.

Source and Purity of Materials:

The preparation and purification methods were described in [J. Walker and J.K. Wood, J. Chem. Soc. 117, 40 (1920)]. Melting point of 4-hydroxybenzoic acid was $213.0~^{\circ}$ C.

1-Butanol was repeatedly fractionated, and distilled within 0.1 °C.

Estimated Errors:

Nothing specified.

Components: (1) Benzoic acid, 4-hydroxy(p-hydroxybenzoic acid); Original Measurements: 19A. Martin, P.L. Wu, and A. Beerbower, J. Pharm. Sci. 73

C₇H₆O₃; [99-96-7] (2) 1-Butanol (butan-1-ol, butyl alcohol); C₄H₁₀O; [71-36-3] Beerbower, J. Pharm. Sci. **73**, 188 (1984).

Variables: Prepared by: $t/^{\circ}$ C=25 A. Goto and R. Goto

Solubility of 4-hydroxybenzoic acid in 1-butanol at 25 °C

Molar volume of solvent	Solubility
$v_2/\mathrm{cm}^3 \; \mathrm{mol}^{-1}$	x_1
92.0	0.1154

Methods/Apparatus/Procedure:

The experimental details are given in the compilation of Ref. 19 for the 4-hydroxybenzoic acid-ethanol system in Sec. 2.1.2.3.

Source and Purity of Materials:

The details are given in the compilation of Ref. 19 for the 4-hydroxybenzoic acid-ethanol system in Sec. 2.1.2.3.

Estimated Errors:

Nothing specified.

2.1.3. Critical evaluation of the solubility of hydroxybenzoic acids in aromatic compounds

2.1.3.1. Salicylic acid

Components:

(1) Benzoic acid, 2-hydroxy-(o-hydroxybenzoic acid, salicylic acid); $C_7H_6O_3$; [69-72-7]

(2) Benzene; C₆H₆; [71-43-2]

Evaluators:

Ayako Goto, University of Shizuoka, Shizuoka, Japan Rensuke Goto, University of Shizuoka, Shizuoka, Japan Hiroshi Fukuda, Kitasato University, Tokyo, Japan

Critical Evaluation

TABLE 16. Summary of experimental solubility data of salicylic acid in benzene

T/K	$c_1/\mathrm{mol}~\mathrm{dm}^{-3}$	$m_1/\text{mol kg}^{-1}$	$100w_1$	$100x_1$	Analytical method	Reference
284.9		0.0333	0.458	0.2606 ^a	Titration (Ba(OH) ₂)	20
291.4		0.0419	0.576	0.3281 ^a	Titration (Ba(OH) ₂)	20
298.2	0.057 68				Titration	21
301.2				0.5541	Titration (Ba(OH) ₂)	16
303.7		0.0717	0.981	0.562^{a}	Titration (Ba(OH) ₂)	20
303.8	0.05				Titration (NaOH)	17
307.8		0.0913	1.245	0.717 ^a	Titration (Ba(OH) ₂)	20
309.8		0.1035	1.410	0.814 ^a	Titration (Ba(OH) ₂)	20
317.5			1.92	1.09 ^a	Synthetic method	14
322.6		0.1723	2.325	1.360 ^a	Titration (Ba(OH) ₂)	20
337.4		0.319	4.215	2.540^{a}	Titration (Ba(OH) ₂)	20
338.2			5.27	3.05^{a}	Synthetic method	14
371.7			20.8	12.9 ^a	Synthetic method	14
375.7			5.00	2.89 ^a	Fusion method	22
386.2			8.50	4.99 ^a	Fusion method	22
387.7			41.1	28.3 ^a	Synthetic method	14
400.2			18.95	11.68 ^a	Fusion method	22
404.7			64.5	50.4 ^a	Synthetic method	14
408.2			31.14	20.37 ^a	Fusion method	22
412.7			46.89	33.30^{a}	Fusion method	22
413.2			81.3	71.1 ^a	Synthetic method	14
418.2			70.0	56.89 ^a	Fusion method	22
421.7			84.97	76.17 ^a	Fusion method	22
428.2			100.0	100.0 ^a	Fusion method	22
432.2			100.0	100.0 ^a	Fusion method	14

^aThe mole-fraction solubilities were calculated based on w_1 .

The critical evaluation was carried out as described in Sec. 2.1.1.1 for salicylic acid in n-heptane.

The number of publications: 6

The range of temperature: T/K = 284.9 - 432.2

The units: mass percent, mole fraction, molarity, and $\,\mathrm{mol}\;\mathrm{dm}^{-3}$

Analytical methods: fusion method, synthetic method, and titration

Data for the solubility of salicylic acid in benzene expressed by mole fraction were fitted to Eqs. (1) and (2) given in Sec. 1.3 (Table 16). The data points closely agree with Eq. (1) over the whole range of temperatures, as shown in Fig. 7, but they deviated from Eq. (2). Multiple regression analysis according to Eq. (1) yielded the following results:

Multiple correlation coefficient: 0.972

Sample size: 23 data points

p-value (F test): 0.000

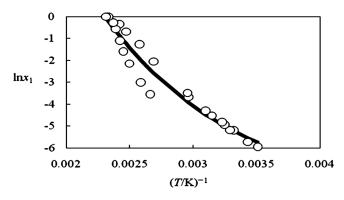


Fig. 7. Fitting curve of Eq. (1) and the observed data for salicylic acid in benzene.

J. Phys. Chem. Ref. Data, Vol. 40, No. 2, 2011

Constants: $A = 8097 \pm 5739$, $B = 36.83 \pm 16.31$, $C = -242.3 \pm 112.1$

White circles in Fig. 7 represent the observed data and the black line corresponds to calculated values according to Eq. (1) $(\ln x_1 = 8097/T + 36.83 \ln T - 242.3)$. The observed data fit closely with the calculated values in the range of 284.9–432.2 K, with the multiple correlation coefficient of 0.972, as shown in Fig. 7. Therefore, the calculated value at each measured temperature is reasonably considered as a recommended value over the whole range of temperature.

Table 17 shows the observed data in the range of 284.9–432.2 K and the recommended values calculated from Eq. (1) at each temperature.

Table 17. Observed data and recommended values calculated according to Eq. (1) for salicylic acid in benzene

1. (-) 3 3 3 3 3 3			
T/K	$100x_1(obs)$	$100x_1(rec)$	
284.9	0.2606	0.323	
291.4	0.3281	0.394	
301.2	0.5541	0.539	
303.7	0.562	0.586	
307.8	0.717	0.673	
309.8	0.814	0.721	
317.5	1.09	0.944	
322.6	1.36	1.13	
337.4	2.54	1.97	
338.2	3.05	2.03	
371.7	12.9	7.60	
375.7	2.89	8.94	
386.2	4.99	13.7	
387.7	28.3	14.6	
400.2	11.68	24.5	
404.7	50.4	29.5	
408.2	20.37	34.1	
412.7	33.3	41.1	
413.2	71.1	42.0	
418.2	56.89	51.8	
421.7	76.17	59.9	
428.2	100.0	78.6	
432.2	100.0	92.9	

Components: (1) Benzoic acid, 2-hydroxy- (o-hydroxybenzoic acid, salicylic acid); C ₇ H ₆ O ₃ ; [69-72-7] (2) Benzene; C ₆ H ₆ ; [71-43-2]	Original Measurements: ²⁰ J. Walker and J.K. Wood, J. Chem. Soc. Trans. 73 , 618 (1898).
Variables:	Prepared by:
$t/^{\circ}C=11.7-64.2$	A. Goto and H. Miyamoto

Solubility of salicylic acid in benzene

Sol	ubility ^a
100w ₁ (compiler)	$m_1/\text{mol kg}^{-1}$ (compiler)
0.460	0.0333
0.579	0.0419
0.991	0.0717
1.261	0.0913
1.430	0.1035
2.380	0.1723
4.40	0.319
	100w ₁ (compiler) 0.460 0.579 0.991 1.261 1.430 2.380

^aIn the original paper, the solubility was given as grams per 100 g of solvent

Auxiliary Information

Methods/Apparatus/Procedure:

Both undersaturation and supersaturation methods were used to obtain the saturated solutions. The solutions were usually agitated by stirrers driven by a small turbine, but at the higher temperature, equilibrium was reached with only occasional agitation by hand. The salicylic acid solutions were titrated directly with barium hydroxide solution using Congo Red as an indicator, after previously diluting with water. The barium hydroxide solution was standardized with pure succinic acid using phenolphthalein as an indicator. In the case of benzene, the solvent was driven off by evaporation under reduced pressure before the titration.

Source and Purity of Materials:

No information was given.

Estimated Errors:

Original Measurements: ¹⁴ N.V. Sidgwick and E.K. Ewbank, J. Chem. Soc. 1921 979.		
Prepared by: A. Goto and H. Miyamoto		

Temperature	So	lubility
t/°C	$100w_1$	$ \begin{array}{c} 100x_1 \\ \text{(compiler)} \end{array} $
44.3	1.92	1.09
65.0	5.27	3.05
98.5	20.8	12.9
114.5	41.1	28.3
131.5	64.5	50.4
140.0	81.3	71.1
159.0	100.0	100.0

Methods/Apparatus/Procedure:

The experimental details are given in the compilation of Ref. 14 for the salicylic acid—n-heptane system in Sec. 2.1.1.1.

Source and Purity of Materials:

The preparation and the purification of salicylic acid were described in [J. Walker and J.K Wood, J. Chem. Soc. 117, 40 (1920)]. Melting point of the purified acid was 159.0 $^{\circ}$ C.

Benzene was freed from thiophene by treatment with sulfuric acid, and frozen out seven times.

Estimated Errors:

Nothing specified.

Components:	Original Measurements:
(1) Benzoic acid, 2-hydroxy-	¹⁶ P.G. Desai and A.M. Patel, J.
(o-hydroxybenzoic acid, salicylic	Indian Chem. Soc. 12, 131
acid); C ₇ H ₆ O ₃ ; [69-72-7]	(1935).
(2) Benzene; C ₆ H ₆ ; [71-43-2]	

Variables: Prepared by: $t/^{\circ}$ C=28 A. Goto and H. Miyamoto

The solubility of salicylic acid in benzene at 28 °C was reported as $10^2x_1=0.5441$.

Auxiliary Information

Methods/Apparatus/Procedure:

The experimental details are given in the compilation of Ref. 16 for the salicylic acid–ethanol system in Sec. 2.1.2.1.

Source and Purity of Materials:

Salicylic acid was twice recrystallized.

Benzene was purified by distillation at its known boiling point.

Estimated Errors:

Solubility: Three readings were taken in each case and the mean was taken. It was found by blank experiments (on solute-free solvent) that this method gave reliable results; the precision being less than 0.5%.

Temperature: Nothing specified.

Components:	Original Measurements:
(1) Benzoic acid, 2-hydroxy-	²¹ P. A. Ongley, J. Chem. Soc.
(o-hydroxybenzoic acid, salicylic	1954 , 3634.
acid); C ₇ H ₆ O ₃ ; [69-72-7]	
(2) Benzene; C ₆ H ₆ ; [71-43-2]	

Variables:	Prepared by:
t/ °C=25	A. Goto and H. Miyamoto

Solubility of	Solubility of salicylic acid in benzene at 25 °C		
	Solubility		
pS	$c_1/\mathrm{mol~dm^{-3}}$ (compiler)		
1.239	0.057 68		

pS: The negative logarithm of the concentration in the saturated solutions in mol/l.

Auxiliary Information

Methods/Apparatus/Procedure:

The solubility was measured by rotating tubes of solvent and solute for at least 8 h at 25 $^{\circ}$ C (preliminary experiments showed that saturation is reached in 2 h). The solutions were concentrated, if necessary, and titrated with standard alkali, bromothymol-blue-neutralred being used as mixed indicator.

Source and Purity of Materials:

The acid was either of AnalaR standard or was recrystallized before use. No information on the purity of the organic solvent was reported.

Estimated Errors:

Nothing specified.

Components:	Original Measurements:
(1) Benzoic acid, 2-hydroxy-	²² I.L. Krupatkin, Zh. Obsh.
(o-hydroxybenzoic acid, salicylic	Khim. 26 , 3240 (1956) [J. Gen.
acid); C ₇ H ₆ O ₃ ; [69-72-7]	Chem. USSR (Engl. Transl.) 26,
(2) Benzene; C ₆ H ₆ ; [71-43-2]	3609 (1956)].
Variables:	Prepared by:
$t/^{\circ}C = 102.5 - 155.0$	H. Miyamoto and A. Goto

Solubility of salicylic acid in benzene

Crystallization temperature	Ве	enzene	Salicy	lic acid
t/°C	$100w_2$	$100x_2$ (compiler)	$\frac{100w_1}{\text{(compiler)}}$	$\frac{100x_1}{\text{(compiler)}}$
102.5	95.00	97.11	5.00	2.89
113.0	91.50	95.01	8.50	4.99
127.0	81.05	88.32	18.95	11.68
135.0	68.14	79.63	31.14	20.37
139.5	53.11	66.70	46.89	33.30
145.0	30.00	43.11	70.00	56.89
148.5	15.03	23.83	84.97	76.17
155.0	0.00	0.00	100.00	100.00

Auxiliary Information

Methods/Apparatus/Procedure:

The system salicylic acid-benzene was investigated by the fusion method.

Source and Purity of Materials:

The melting point of C.P. grade salicylic acid used was 155 $^{\circ}$ C. The benzene fraction boiling in the range 90–120 $^{\circ}$ C was used.

Estimated Errors:

Components: (1) Benzoic acid, 2-hydroxy- (o-hydroxybenzoic acid, salicylic acid); C ₇ H ₆ O ₃ ; [69-72-7] (2) Benzene; C ₆ H ₆ ; [71-43-2]	Original Measurements: ¹⁷ A.N. Paruta, B.J. Sciarrone, and N.G. Lordi, J. Pharm. Sci. 53 , 1349 (1964).
Variables: t/°C=30.6	Prepared by: A. Goto and H. Miyamoto

Solubility of salicylic acid in benzene at 30.6 °C

	Solu	ıbility ^b
Dielectric constant ^a	$\gamma_1/g \text{ dm}^{-3}$ (compiler)	$c_1/\text{mol dm}^{-3}$ (compiler)
2.2	7	0.05

^aThe dielectric constant of the mixture at the maximum solubility of salicylic acid.

Auxiliary Information

Methods/Apparatus/Procedure:

The experimental details are given in the compilation of Ref. 17 for the salicylic acid-ethanol system in Sec. 2.1.2.1.

Source and Purity of Materials:

The solvent was purified by the method described in A. Weissberger et al., Organic Solvents, 2nd ed. (Interscience, New York, 1955), Chaps. 4 and 5.

Auxiliary Information

Estimated Errors:

Solubility: Nothing specified.

Temperature: Precision of $\pm 0.2~^{\circ}\text{C}$ (solubility) and $\pm 1.0~^{\circ}\text{C}$ (dielectric

constant).

2.1.3.2. 3-Hydroxybenzoic acid

Components:

- (1) Benzoic acid, 3-hydroxy-(m-hydroxybenzoic acid); C₇H₆O₃; [99-06-9]
- (2) Benzene; C₆H₆; [71-43-2]

Evaluators:

Ayako Goto, University of Shizuoka, Shizuoka, Japan Rensuke Goto, University of Shizuoka, Shizuoka, Japan Hiroshi Fukuda, Kitasato University, Tokyo, Japan

Critical Evaluation

TABLE 18. Summary of experimental solubility data of 3-hydroxybenzoic acid in benzene

T/K	$c_1/\mathrm{mol}~\mathrm{dm}^{-3}$	$m_1/\mathrm{mol}~\mathrm{kg}^{-1}$	$100w_1$	$100x_1$	Analytical method	Reference
298.2	0.000 633 9				Titration	21
298.2		0.000 731	1.01	0.005 7	Titration(Ba(OH) ₂)	20
303.2				0.005 04	Gravimetry	23
307.3		0.001 02		0.007 97	Titration(Ba(OH) ₂)	20
319.2		0.001 69		0.013 2	Titration(Ba(OH) ₂)	20
331.2		0.003 15		0.024 6	Titration(Ba(OH) ₂)	20
337.2		0.004 29		0.033 5	Titration(Ba(OH) ₂)	20
395.7			1.23	0.699^{a}	Synthetic method	14
414.2			2.95	1.69 ^a	Synthetic method	14
427.7			5.16	2.99^{a}	Synthetic method	14
435.2			10.54	6.24 ^a	Synthetic method	14
446.2			22.4	14.0^{a}	Synthetic method	14
455.7			41.6	28.7 ^a	Synthetic method	14
458.7			62.3	48.3 ^a	Synthetic method	14
465.7			83.3	73.8 ^a	Synthetic method	14
474.5			100.0	100.0^{a}	Synthetic method	14

^aThe mole-fraction solubilities were calculated based on w_1 .

The critical evaluation was carried out as described in Sec. 2.1.1.1 for salicylic acid in *n*-heptane.

The number of publications: 4

The range of temperature: T/K = 298.2 - 474.5

The units: mass percent, molarity, mole fraction, and $\,\mathrm{mol}\;\mathrm{dm}^{-3}$

Analytical methods: synthetic method, titration, and gravimetry

Data for the solubility of 3-hydroxybenzoic acid in benzene expressed by mole fraction were fitted to Eqs. (1) and (2) given in Sec. 1.3 (Table 18). The data points closely agree with Eq. (1) over the whole range of temperatures, as shown in Fig. 8, but they deviated from Eq. (2). Multiple regression analysis according to Eq. (1) yielded the following results:

Multiple correlation coefficient: 0.998

Sample size: 15 data points *p*-value (F test): 0.000

Constants: $A = 18788 \pm 2831$, $B = -71.40 \pm 7.60$, C = -479.6 ± 52.7

White circles in Fig. 8 represent the observed data and the black line corresponds to calculated values according to Eq. (1) $(\ln x_1 = 18788/T - 71.40 \ln T - 479.6)$. The observed

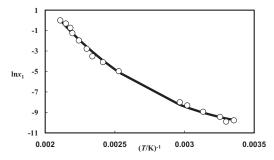


Fig. 8. Fitting curve of Eq. (1) and the observed data for 3-hydroxybenzoic acid in benzene.

^bIn the original paper, the solubility was given as mg/ml of solution.

data fit closely with the calculated values in the range of 298.2–474.5 K, with the multiple correlation coefficient of 0.998, as shown in Fig. 8. Therefore, the calculated value at each measured temperature is reasonably considered as a recommended value over the whole range of temperature.

Table 19 shows the observed data in the range of 298.2–474.5 K and the recommended values calculated from Eq. (1) at each temperature.

Table 19. Observed data and recommended values calculated according to Eq. (1) for 3-hydroxybenzoic acid in benzene

T/K	$100x_1(\text{obs})$	$100x_1(rec)$
298.2	0.0057	0.0059
303.2	0.00504	0.0068
307.3	0.00797	0.0078
319.2	0.0132	0.0120
331.2	0.0246	0.0198
337.2	0.0335	0.0260
395.7	0.699	0.630
414.2	1.69	1.97
427.7	2.99	4.65
435.2	6.24	7.55
446.2	14	15.5
455.7	28.7	28.9
458.7	48.3	35.3
465.7	73.8	56.3
474.5	100	101

Components:
(1) Benzoic acid, 3-hydroxy-
(m-hydroxybenzoic acid);
$C_7H_6O_3$: [99-06-9]

Original Measurements:

²⁰J. Walker and J.K. Wood, J. Chem. Soc. Trans. **73**, 618 (1898).

(2) Benzene; C₆H₆; [71-43-2]

Variables: $t/^{\circ}C = 25.0 - 64.0$

Prepared by:

A. Goto and H. Miyamoto

Solubility of 3-hydroxybenzoic acid in benzene

Temperature	Solubility		
t/°C	100w ₁ ^a (compiler)	$10^3 m_1/\text{mol kg}^{-1}$ (compiler)	
25.0	0.0101	0.731	
34.1	0.0141	1.02	
46.0	0.0234	1.69	
58.0	0.0435	3.15	
64.0	0.0592	4.29	

^aIn the original paper, the solubility was given as grams per 100 g of solvent.

Auxiliary Information

Methods/Apparatus/Procedure:

The experimental details are given in the compilation of Ref. 20 for the binary salicylic acid-benzene system in Sec. 2.1.3.1.

Source and Purity of Materials:

No information was given.

Estimated Errors:

Nothing specified.

Components:	Original Measurements:
(1) Benzoic acid, 3-hydroxy-	¹⁴ N.V. Sidgwick and E.K.
(m-hydroxybenzoic acid);	Ewbank, J. Chem. Soc. 1921,
C ₇ H ₆ O ₃ ; [99-06-9]	979.
(2) Benzene: C _c H _c : [71-43-2]	

Variables:	Prepared by:
$t/^{\circ}$ C=122.5-201.3	A. Goto and H. Miyamoto

Solubility of 3-hydroxybenzoic acid in benzene

Temperature	So	lubility
t/°C	100w ₁	$100x_1$ (compiler)
122.5	1.23	0.699
141.0	2.95	1.69
154.5	5.16	2.99
162.0	10.54	6.24
173.0	22.4	14.0
182.5	41.6	28.7
185.5	62.3	48.3
192.5	83.3	73.8
201.3	100.0	100.0

Auxiliary Information

Methods/Apparatus/Procedure:

The experimental details are given in the compilation of Ref. 14 for the salicylic acid—n-heptane system in Sec. 2.1.1.1.

Source and Purity of Materials:

The details are given in the compilation of Ref. 14 for the binary salicylic acid-benzene system in Sec. 2.1.3.1.

Estimated Errors:

Components: (1) Benzoic acid, 3-hydroxy- (<i>m</i> -hydroxybenzoic acid); C ₇ H ₆ O ₃ ; [99-06-9] (2) Benzene; C ₆ H ₆ ; [71-43-2]	Original Measurements: ²¹ P.A. Ongley, J. Chem. Soc. 1954 , 3634.		
Variables: $t/^{\circ}C=25$	Prepared by: A. Goto and H. Miyamoto		

Solubility of 3-hydroxybenzoic acid in benzene at 25 °C

	Solubility
pS	$10^3 c_1/\text{mol dm}^{-3}$ (compiler)
3.198	0.6339

pS: The negative logarithm of the concentration in the saturated solutions in moles per liter.

Auxiliary Information

Methods/Apparatus/Procedure:

The experimental details are given in the compilation of Ref. 21 for the salicylic acid-benzene system in Sec. 2.1.3.1.

Source and Purity of Materials:

The details are given in the compilation of Ref. 21 for the salicylic acid-benzene system in Sec. 2.1.3.1.

Estimated Errors:

Nothing specified.

 $t/^{\circ}C=30$

Variables:	Prepared by:
(2) Benzene; C ₆ H ₆ ; [71-43-2]	
$C_7H_6O_3$; [99-06-9]	3801 (1966).
(m-hydroxybenzoic acid);	and J.P. Idoux, J. Org. Chem. 31,
(1) Benzoic acid, 3-hydroxy-	²³ C.K. Hancock, J.N. Pawloski,
Components:	Original Measurements:

A. Goto and H. Miyamoto

Solubility of 3-hydroxybenzoic acid in benzene at 30 °C

Sc	olubility
100x ₁	100w ₁ ^a (compiler)
5.04×10^{-3}	8.99×10^{-3}

^aIn the original paper, the solubility was given as grams of acid per 100 g of saturated solution.

Auxiliary Information

Methods/Apparatus/Procedure:

Equilibrium was approached from the sides of both undersaturation and supersaturation. Solvent and excess solute were mixed at about 25 $^{\circ}$ C in a ground-glass stoppered conical flask and left in a 30.00 $^{\circ}$ C water bath, with periodic manual agitation, for several days. In a second flask, solvent and excess solute were mixed and shaken thoroughly at 50 $^{\circ}$ C and then left in the 30.00 $^{\circ}$ C water bath. A Soxhlet thimble equipped with a one-hole cork stopper and an inverted, U-shaped delivery tube extending nearly to the bottom of the thimble, was half immersed in the saturated solution. Gentle suction was applied to transfer a part of the saturated solution, free of excess solute, to a second glass-stoppered flask suspended in the 30.00 $^{\circ}$ C bath. This second flask plus contents were weighed. Successive portions of the contents were evaporated at room temperature in a tared aluminum foil weighing dish under a bell jar through which a slow stream of dry air was passed. The second flask plus unused saturated solution and the aluminum foil dish plus residue were weighed.

Source and Purity of Materials:

Reagent-grade benzene was refluxed over P_2O_5 for 24 h and then distilled. The 3-hydroxybenzoic acid was procured from commercial sources. After two or more recrystallizations from aqueous ethanol, the acid was dried under vacuum over P_2O_5 . The melting point was checked.

Estimated Errors:

Solubility (mole fraction units): The average deviation of the replicate values from the mean exceeded 3%.

Temperature: Precision of ±0.02 °C.

2.1.3.3. 4-Hydroxybenzoic acid

Components: (1) Benzoic acid, 4-hydroxy-, (p-hydroxybenzoic acid); (p-

Critical Evaluation

TABLE 20. Summary of experimental solubility data of 4-hydroxybenzoic acid in benzene

T/K	$c_1/\mathrm{mol}\;\mathrm{dm}^{-3}$	$m_1/\text{mol kg}^{-1}$	$100w_1$	$100x_1$	Analytical method	Reference
284.2		0.000 143	0.001 97	0.001 12	Titration (Ba(OH) ₂)	20
298.2				0.003 3	Spectroscopy	19
298.2	0.003 698				Titration	21
303.2			0.001 04	0.005 88	Gravimetry	23
306.2		0.000 413	0.005 71	0.003 22	Titration (Ba(OH) ₂)	20
322.2		0.001 12	0.015 5	0.008 75	Titration (Ba(OH) ₂)	20
337.2		0.002 53	0.035 0	0.019 8	Titration (Ba(OH) ₂)	20
353.2		0.004 78	0.066 0	0.037 3	Titration (Ba(OH) ₂)	20
405.4			1.04	0.59^{a}	Synthetic method	14
430.1			3.03	1.74 ^a	Synthetic method	14

023102-22 GOTO *ET AL.*

TABLE 20. Summary of experimental solubility data of 4-hydroxybenzoic acid in benzene—Continued

T/K	$c_1/\mathrm{mol}~\mathrm{dm}^{-3}$	$m_1/\mathrm{mol}~\mathrm{kg}^{-1}$	$100w_1$	$100x_1$	Analytical method	Reference
438.5			4.30	2.48 ^a	Synthetic method	14
451.2			10.3	6.10^{a}	Synthetic method	14
464.7			21.0	13.1 ^a	Synthetic method	14
468.9			40.6	27.9^{a}	Synthetic method	14
472			61.3	47.3 ^a	Synthetic method	14
479.2			83.0	73.4 ^a	Synthetic method	14
486.2			100.0	100.0^{a}	Synthetic method	14

^aThe mole-fraction solubilities were calculated based on w_1 .

The critical evaluation was carried out as described in Sec. 2.1.1.1 for salicylic acid in n-heptane.

The number of publications: 5

The range of temperature: T/K = 284.2 - 486.2

The units: mass percent, mole fraction, molarity, and $\,\mathrm{mol}\,\mathrm{dm}^{-3}$

Analytical methods: synthetic method, titration, spectroscopy, and gravimetry

Data for the solubility of 4-hydroxybenzoic acid in benzene expressed by mole fraction were fitted to Eqs. (1) and (2) given in Sec. 1.3 (Table 20). The data points closely agree with Eq. (1) over the whole range of temperatures, as shown in Fig. 9, but they deviated from Eq. (2). Multiple regression analysis according to Eq. (1) yielded the following results:

Multiple correlation coefficient: 0.986

Sample size: 16 data points

p-value (F test): 0.000

Constants: $A = 15140 \pm 3294$, $B = 60.89 \pm 8.85$, $C = -408.1 \pm 61.4$

White circles in Fig. 9 represent the observed data and the black line corresponds to calculated values according to Eq. (1) $(\ln x_1 = 15140/T + 60.89 \ln T - 408.1)$. The observed data fit closely with the calculated values in the range of 284.2–486.2 K, with the multiple correlation coefficient of 0.986, as shown in Fig. 9. Therefore, the calculated value at each measured temperature is reasonably considered as a recommended value over the whole range of temperature.

Table 21 shows the observed data in the range of

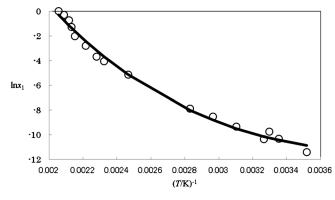


Fig. 9. Fitting curve of Eq. (1) and the observed data for 4-hydroxybenzoic acid in benzene.

284.2–486.2 K and the recommended values calculated from Eq. (1) at each temperature.

TABLE 21. Observed data and recommended values calculated according to Eq. (1) for 4-hydroxybenzoic acid in benzene

T/K	$100x_1 \text{ (obs)}$	$100x_1 \text{ (rec)}$
284.2	0.001 12	0.003 53
298.2	0.003 3	0.004 58
303.2	0.005 88	0.005 19
306.2	0.003 22	0.005 63
322.2	0.008 75	0.009 41
337.2	0.019 8	0.016 9
353.2	0.037 3	0.034 5
405.4	0.59	0.547
430.1	1.74	2.36
438.5	2.48	3.93
451.2	6.1	8.58
464.7	13.1	19.9
468.9	27.9	26.0
472	47.3	31.6
479.2	73.4	49.8
486.2	100	77.7

$t/^{\circ}C = 11.0 - 80.0$	A. Goto and H. Miyamoto
Variables:	Prepared by:
C ₇ H ₆ O ₃ ; [99-96-7] (2) Benzene; C ₆ H ₆ ; [71-43-2]	(1898).
(p-hydroxybenzoic acid);	Chem. Soc. Trans. 73, 618
(1) Benzoic acid, 4-hydroxy-	²⁶ J. Walker and J.K. Wood, J.

Original Measurements:

Solubility of 4-hydroxybenzoic acid in benzene

emperature	Solubility		
t/°C	Original data	100w ₁ ^a (compiler)	$10^3 m_1/\text{mol kg}^{-1}$ (compiler)
11.0	0.001 97	0.001 97	0.143
33.0	0.005 71	0.005 71	0.413
49.0	0.015 5	0.015 5	1.12
64.0	0.035 0	0.035 0	2.53
80.0	0.066 0	0.066 0	4.78

^aIn the original paper, the solubility was given as grams of solute per 100 g of benzene.

J. Phys. Chem. Ref. Data, Vol. 40, No. 2, 2011

Components:

Methods/Apparatus/Procedure:

The experimental details are given in the compilation of Ref. 20 for the binary salicylic acid-benzene system in Sec. 2.1.3.1.

Source and Purity of Materials:

No information was given.

Estimated Errors:

Nothing specified.

Components

Variables:

(1) Benzoic acid, 4-hydroxy-(p-hydroxybenzoic acid); C₇H₆O₃; [99-96-7]

Original Measurements:

¹⁴N.V. Sidgwick and E.K. Ewbank, J. Chem. Soc. **1921**, 979

(2) Benzene; C₆H₆; [71-43-2]

 $t/^{\circ}$ C=132.2-213.0

Prepared by:

A. Goto and H. Miyamoto

Solubility of 4-hydroxybenzoic acid in benzene

Temperature	Solubility	
t/°C	100w ₁	$100x_1$ (compiler)
132.2	1.04	0.59
156.9	3.03	1.74
165.3	4.30	2.48
178.0	10.3	6.10
191.5	21.0	13.1
195.7	40.6	27.9
198.8	61.3	47.3
206.0	83.0	73.4
213.0	100.0	100.0

Auxiliary Information

Methods/Apparatus/Procedure:

The experimental details are given in the compilation of Ref. 14 for the salicylic acid—n-heptane system in Sec. 2.1.1.1.

Source and Purity of Materials:

The preparation and the purification of 4-hydroxybenzoic acid were described in [J. Walker and J.K. Wood, J. Chem. Soc. **117**, 40 (1920)]. Melting point of the purified acid was 213.0 °C.

Benzene was freed from thiophene by treatment with sulfuric acid, and frozen out seven times.

Estimated Errors:

Nothing specified.

Components: (1) Benzoic acid, 4-hydroxy- (<i>p</i> -hydroxybenzoic acid); C ₇ H ₆ O ₃ ; [99-96-7] (2) Benzene; C ₆ H ₆ ; [71-43-2]	Original Measurements: ²¹ P.A. Ongley, J. Chem. Soc. 1954 , 3634.
Variables: t/°C=25	Prepared by: A. Goto and H. Miyamoto

Solubility of 4-hydroxybenzoic acid in benzene at 25 °C

	Solubility
pS	$10^3c_1/\mathrm{mol\ dm^{-3}}$ (compiler)
3.432	0.3698

pS: The negative logarithm of the concentration in the saturated solutions in

Auxiliary Information

Methods/Apparatus/Procedure:

The experimental details are given in the compilation of Ref. 21 for the salicylic acid-benzene system in Sec. 2.1.3.1.

Source and Purity of Materials:

The detail is given in the compilation of Ref. 21 for the salicylic acidbenzene system in Sec. 2.1.3.1.

Estimated Errors:

Nothing specified.

Components:	Original Measurements:
(1) Benzoic acid, 4-hydroxy-	²³ C.K. Hancock, J.N. Pawloski,
(p-hydroxybenzoic acid);	and J.P. Idoux, J. Org. Chem. 31,
C ₇ H ₆ O ₃ ; [99-96-7]	3801 (1966).
(2) Benzene; C_6H_6 ; [71-43-2]	
Variables:	Prepared by:
t/°C=30	A. Goto and H. Miyamoto
Solubility of 4-hydroxyben	zoic acid in benzene at 30 °C
Sol	ubility
$100x_1$	$100w_1^a$
5 88×10 ⁻³	

^aIn the original paper, the solubility was given as grams of acid per 100 g of saturated solution.

Auxiliary Information

Methods/Apparatus/Procedure:

The experimental details are given in the compilation of Ref. 23 for the 3-hydroxybenzoic acid-benzene system in Sec. 2.1.3.2.

Source and Purity of Materials:

The details are given in the compilation of Ref. 23 for the 3-hydroxybenzoic acid-benzene system in Sec. 2.1.3.2.

Estimated Errors:

Solubility (mole fraction units): The average deviation of the replicate values from the mean did not exceed 3%.

Temperature: Precision of ± 0.02 °C.

Components: (1) Benzoic acid, 4-hydroxy- (<i>p</i> -hydroxybenzoic acid); C ₇ H ₆ O ₃ ; [99-96-7] (2) Benzene; C ₆ H ₆ ; [71-43-2]	Original Measurements: 19 A. Martin, P.L. Wu, and A. Beerbower, J. Pharm. Sci. 73, 188 (1984).
Variables:	Prepared by:
t/ °C=25	A. Goto and R. Goto

J. Phys. Chem. Ref. Data, Vol. 40, No. 2, 2011

Solubility of 4-hydroxybenzoic acid in benzene at 25 °C

Molar volume of solvent	Solubility
$v_2/\mathrm{cm}^3 \; \mathrm{mol}^{-1}$	$100x_1$
89.4	0.33×10^{-2}

Auxiliary Information

Methods/Apparatus/Procedure:

The experimental details are given in the compilation of Ref. 19 for the 4-hydroxybenzoic acid-ethanol system in Sec. 2.1.2.3.

Source and Purity of Materials:

The details are given in the compilation of Ref. 19 for the 4-hydroxybenzoic acid-ethanol system in Sec. 2.1.2.3.

Estimated Errors:

Nothing specified.

2.1.4. Data for hydroxybenzoic acid-organic compound systems

2.1.4.1. Salicylic acid

Components:	Original Measurements:
(1) Benzoic acid, 2-hydroxy-	¹⁶ P.G. Desai and A.M. Patel, J.
(<i>o</i> -hydroxybenzoic acid, salicylic acid); C ₆ H ₆ ; [69-72-7]	Indian Chem. Soc. 12 , 131 (1935).
(2) n -Hexane (hexane); C_6H_{14} ;	,
[110-54-3]	
Variables:	Prepared by:
t/°C=28	A. Goto and H. Miyamoto

The solubility of salicylic acid in n-hexane at 28 °C was reported as $10^3 x_1 = 1.11$.

Auxiliary Information

Methods/Apparatus/Procedure:

The experimental details are given in the compilation of Ref. 16 for the salicylic acid-ethanol system in Sec. 2.1.2.1.

Source and Purity of Materials:

Salicylic acid was twice recrystallized.

n-Hexane was purified by distillation.

Estimated Errors:

Solubility: Three readings were taken in each case and the mean was taken. It was found by blank experiments (on solute-free solvent) that this method gave reliable results; the precision being less than 0.5%.

Temperature: Nothing specified.

Components: (1) Benzoic acid, 2-hydroxy- (o-hydroxybenzoic acid, salicylic acid); C ₇ H ₆ O ₃ ; [69-72-7] (2) n-Hexane (hexane); C ₆ H ₁₄ ; [110-54-3]	Original Measurements: ¹³ HL. Fung and T. Higuchi, J. Pharm. Sci. 60 , 1782 (1971).
Variables: $t/^{\circ}C=25$	Prepared by: A. Goto and R. Goto

Solubility of salicylic acid in n-hexane at 25 °C

	Solubility
$10^4 x_1$	$10^3 m_1 / \text{mol kg}^{-1}$
4.8	3.4

Auxiliary Information

Methods/Apparatus/Procedure:

The experimental details are given in the compilation of Ref. 13 for the salicylic acid-*n*-heptane system in Sec. 2.1.1.1.

Source and Purity of Materials:

n-Hexane (ACS) was of reagent grade and used without further purification.

Salicylic acid was recrystallized from hot water.

Estimated Errors:

Nothing specified.

Components:	Original Measurements:	
(1) Benzoic acid, 2-hydroxy-	¹³ HL. Fung and T. Higuchi, J.	
(o-hydroxybenzoic acid, salicylic	Pharm. Sci. 60, 1782 (1971).	

acid); C₇H₆O₃; [69-72-7] (2) *n*-Decane (decane); $C_{10}H_{22}$; [124-18-5]

Variables: Prepared by: $t/^{\circ}C=25$ A. Goto and R. Goto

Solubility of salicylic acid in *n*-decane at 25 °C

	Solubility
$10^4 x_1$	$10^3 m_1 / \text{mol kg}^{-1}$
6.2	3.2

Auxiliary Information

Methods/Apparatus/Procedure:

The experimental details are given in the compilation of Ref. 13 for the salicylic acid-n-heptane system in Sec. 2.1.1.1.

Source and Purity of Materials:

Decane of reagent grade was purified by passing the solvent through a column of silica gel followed by distillation from sodium under reduced pressure.

Salicylic acid was recrystallized from hot water.

Estimated Errors:

Components:	Original Measurements:	
(1) Benzoic acid, 2-hydroxy- (o-hydroxybenzoic acid, salicylic acid); C ₇ H ₆ O ₃ ; [69-72-7] (2) n-Dodecane (dodecane); C ₁₂ H ₂₆ ; [112-40-3]	¹³ HL. Fung and T. Higuchi, J. Pharm. Sci. 60 , 1782 (1971).	
Variables:	Prepared by:	
t/°C=25	A. Goto and R. Goto	

Solubility of salicylic acid in *n*-dodecane at 25 °C

	Solubility
$10^4 x_1$	$10^3 m_1 / \mathrm{mol}\mathrm{kg}^{-1}$
6.4	2.8

Auxiliary Information

Methods/Apparatus/Procedure:

The experimental details are given in the compilation of Ref. 13 for the salicylic acid—n-heptane system in Sec. 2.1.1.1.

Source and Purity of Materials:

Dodecane of reagent grade was passed through a column of silica gel. Salicylic acid was recrystallized from hot water.

Estimated Errors:

Nothing specified.

Components:
(1) Benzoic acid, 2-hydroxy-
(o-hydroxybenzoic acid, salicylic
acid); C ₇ H ₆ O ₃ ; [69-72-7]
(2) <i>n</i> -Hexadecane (hexadecane);
C ₁₆ H ₂₄ : [544-76-3]

Original Measurements:

¹³H.-L. Fung and T. Higuchi, J. Pharm. Sci. **60**, 1782 (1971).

riables: Prepared By:	
°C=25	A. Goto and R. Goto

Solubility of salicylic acid in n-hexadecane at 25 °C

	Solubility
10^4x_1	$10^3 m_1/\mathrm{mol}\mathrm{kg}^{-1}$
10.4	3.0

Auxiliary Information

Methods/Apparatus/Procedure:

The experimental details are given in the compilation of Ref. 13 for the salicylic acid—n-heptane system in Sec. 2.1.1.1.

Source and Purity of Materials:

n-Hexadecane of reagent grade was purified by passing the solvent through a column of silica gel followed by distillation from sodium under reduced pressure.

Salicylic acid was recrystallized from hot water.

Estimated Errors:

Nothing specified.

Components: (1) Benzoic acid, 2-hydroxy- (<i>o</i> -hydroxybenzoic acid, salicylic acid); C ₇ H ₆ O ₃ ; [69-72-7] (2) 2,2,4-Trimethylpentane (isooctane); C ₈ H ₁₈ ; [540-84-1]	Original Measurements: ¹³ HL. Fung and T. Higuchi, J. Pharm. Sci. 60 , 1782 (1971).
Variables: $t/^{\circ}C=25$	Prepared By: A. Goto and R. Goto

Solubility of salicylic acid in isooctane at 25 °C

	Solubility
$10^4 x_1$	$10^3 m_1 / \text{mol kg}^{-1}$
3.8	2.3

Auxiliary Information

Methods/Apparatus/Procedure:

The experimental details are given in the compilation of Ref. 13 for the salicylic acid—n-heptane system in Sec. 2.1.1.1.

Source and Purity of Materials:

Isooctane of reagent grade was distilled over sodium. Salicylic acid was recrystallized from hot water.

Estimated Errors:

Nothing specified.

 $t/^{\circ}C=25$

Components: (1) Benzoic acid, 2-hydroxy- (o-hydroxybenzoic acid, salicylic acid); C ₇ H ₆ O ₃ ; [69-72-7] (2) Cyclohexane; C ₆ H ₁₂ ; [110-82-7]	Original Measurements: ²¹ P.A. Ongley, J. Chem. Soc. 1954 , 3634.
Variables:	Prepared By:

A. Goto and H. Miyamoto

Solubility of salicylic acid in cyclohexane at 25 °C

		Solubility		
	pS		$10^3 c_1/\mathrm{mol~dm^{-3}} \\ \mathrm{(compiler)}$	
_	2.192		6.427	

pS: The negative logarithm of the concentration in the saturated solutions in mol/l.

Auxiliary Information

Methods/Apparatus/Procedure:

The experimental details are given in the compilation of Ref. 21 for the salicylic acid-benzene system in Sec. 2.1.3.1.

Source and Purity of Materials:

The details are given in the compilation of Ref. 21 for the salicylic acid-benzene system in Sec. 2.1.3.1.

Estimated Errors:

Components:	Original Measurements:
(1) Benzoic acid, 2-hydroxy- (o-hydroxybenzoic acid, salicylic acid); C ₇ H ₆ O ₃ ; [69-72-7] (2) Cyclohexane; C ₆ H ₁₂ ; [110-82-7]	¹³ HL. Fung and T. Higuchi, J. Pharm. Sci. 60 , 1782 (1971).
Variables:	Prepared by:
t/°C=25	A. Goto and R. Goto

Solubility of salicylic acid in cyclohexane at 25 °C

Solubility		
$10^4 x_1$	$10^3 m_1 / \text{mol kg}^{-1}$	
4.3	4.0	

Auxiliary Information

Methods/Apparatus/Procedure:

The experimental details are given in the compilation of Ref. 13 for the salicylic acid—n-heptane system in Sec. 2.1.1.1.

Source and Purity of Materials:

Cyclohexane of reagent grade was distilled over phosphorus pentaoxide. Salicylic acid was recrystallized from hot water.

Estimated Errors:

Nothing specified.

Components: (1) Benzoic acid, 2-hydroxy-(*o*-hydroxybenzoic acid, salicylic acid); C₇H₆O₃; [69-72-7] (2) Trichloromethane

(chloroform); CHCl₃; [67-66-3]

Original Measurements:

²⁴W. Herz and W. Rathmann, Z. Elektrochem. **19**, 887 (1913).

Variables: $t/^{\circ}C=25$

Prepared by:

E. Königsberger and L.-C. Königsberger

The solubility of salicylic acid in chloroform at 25 °C was reported as $c_1/\text{mol dm}^{-3}=0.157$.

Auxiliary Information

Methods/Apparatus/Procedure:

Excess solid and solvents were shaken in a thermostat at $25\,^{\circ}$ C until saturation (time not specified). After the solid phase settled, a certain volume of the clear liquid was pipetted, in which the acid concentration was determined by titration (details not given).

Source and Purity of Materials:

Not stated.

Estimated Errors:

Not stated.

Components:
(1) Benzoic acid, 2-hydroxy-
(o-hydroxybenzoic acid, salicylic
acid); C ₇ H ₆ O ₃ ; [69-72-7]
(2) Trichloromethane

Original Measurements:

¹⁶P.G. Desai and A.M. Patel, J. Indian Chem. Soc. **12**, 131 (1935).

(chloroform); CHCl₃; [67-66-3]

Variables:Prepared by:t/ °C=28A. Goto and H. Miyamoto

The solubility of salicylic acid in chloroform at 28 °C was reported as 10^2x_1 =2.679.

Auxiliary Information

Methods/Apparatus/Procedure:

The experimental details are given in the compilation of Ref. 16 for the salicylic acid—ethanol system in Sec. 2.1.2.1.

Source and Purity of Materials:

Salicylic acid was twice recrystallized.

Organic solvents were purified by distillation.

Estimated Errors:

Solubility: Three readings were taken in each case and the mean was taken. It was found by blank experiments (on solute-free solvent) that this method gave reliable results; the precision being less than 0.5%.

Temperature: Nothing specified.

Components:

(1) Benzoic acid, 2-hydroxy-(*o*-hydroxybenzoic acid, salicylic acid); C₇H₆O₃; [69-72-7] (2) Trichloromethane

(chloroform); CHCl₃; [67-66-3]

Variables:

Prepared by:

1954, 3634.

Original Measurements:

²¹P.A. Ongley, J. Chem. Soc.

t/ °C=25 A. Goto and H. Miyamoto

Solubility of salicylic acid in chloroform at 25 °C

Solubility

pS	$c_1/\mathrm{mol}~\mathrm{dm}^{-3}$ (compiler)
0.680	0.2089

pS: The negative logarithm of the concentration in the saturated solutions in mol/l.

Auxiliary Information

Methods/Apparatus/Procedure:

The experimental details are given in the compilation of Ref. 21 for the salicylic acid-benzene system in Sec. 2.1.3.1.

Source and Purity of Materials:

The details are given in the compilation of Ref. 21 for the salicylic acid-benzene system in Sec. 2.1.3.1.

Estimated Errors:

Nothing specified.

Components:

(1) Benzoic acid, 2-hydroxy-(*o*-hydroxybenzoic acid, salicylic acid); C₇H₆O₃; [69-72-7] (2) Trichloromethane **Original Measurements:**

¹³H.-L. Fung and T. Higuchi, J. Pharm. Sci. **60**, 1782 (1971).

(chloroform); CHCl₃; [67-66-3]

Variables:

Prepared by:

t/ °C=30 A. Goto and R. Goto

Solubility of salicylic acid in chloroform at 30 °C

So	lubility
x_1^{a}	$m_1/\mathrm{mol}\mathrm{kg}^{-1}$
1.3×10 ⁻³	1.6×10^{-1}

^aThe value was estimated by the author from A. Seidell, Solubilities of Organic Compounds, Vol. II, 3rd Ed. (Van Nostrand, New York, 1941).

Auxiliary Information

Methods/Apparatus/Procedure:

The experimental details are given in the compilation of Ref. 13 for the salicylic acid–*n*-heptane system in Sec. 2.1.1.1.

Source and Purity of Materials:

Salicylic acid was recrystallized in hot water.

Chloroform was washed with distilled water five to six times, dried over powdered calcium chloride overnight, filtered, and distilled over phosphorous pentoxide.

Estimated Errors:

Not stated.

Components: Original Measurements: ²⁴W. Herz and W. Rathmann, Z. (1) Benzoic acid, 2-hydroxy-(o-hydroxybenzoic acid, salicylic Elektrochem. 19, 887 (1913). acid); C₇H₆O₃; [69-72-7] (2) Methane, tetrachloro-(tetrachloromethane, carbon tetrachloride); CCl₄; [56-23-5] Variables: Prepared by: $t/^{\circ}C=25$ E. Königsberger and L.-C.

The solubility of salicylic acid in carbon tetrachloride at 25 °C was reported as $c_1/\text{mol dm}^{-3} = 0.030$.

Königsberger

Auxiliary Information

Methods/Apparatus/Procedure:

The experimental details are given in the compilation of Ref. 24 for the binary salicylic acid-chloroform system earlier in this section.

Source and Purity of Materials:

Not stated.

Estimated Errors:

Not stated.

Components:

(1) Benzoic acid, 2-hydroxy-(o-hydroxybenzoic acid, salicylic acid); C₇H₆O₃; [69-72-7] (2) Methane, tetrachloro-(tetrachloromethane, carbon

tetrachloride); CCl₄; [56-23-5]

Original Measurements:

¹⁶P.G. Desai and A.M. Patel, J. Indian Chem. Soc. 12, 131 (1935).

Variables:

Prepared by: $t/^{\circ}C=28$ A. Goto and H. Miyamoto

The solubility of salicylic acid in carbon tetrachloride at 28 °C was reported as $100x_1 = 0.3803$.

Auxiliary Information

Methods/Apparatus/Procedure:

The experimental details are given in the compilation of Ref. 16 for the salicylic acid-ethanol system in Sec. 2.1.2.1.

Source and Purity of Materials:

Salicylic acid was twice recrystallized.

Organic solvent was purified by distillation.

Estimated Errors:

Solubility: Three readings were taken in each case and the mean was taken. It was found by blank experiments (on solute-free solvent) that this method gave reliable results; the precision being less than 0.5%.

Temperature: Nothing specified.

Components:

(1) Benzoic acid, 2-hydroxy-(o-hydroxybenzoic acid, salicylic acid); C₇H₆O₃; [69-72-7] (2) Methane, tetrachloro-

(tetrachloromethane, carbon

Original Measurements:

²¹P.A. Ongley, J. Chem. Soc. **1954**, 3634.

tetrachloride); CCl₄; [56-23-5]

Variables: Prepared by:

 $t/^{\circ}C=25$ A. Goto and H. Miyamoto

Solubility of salicylic acid in carbon tetrachloride at 25 °C

Solubility		
pS	$c_1/\mathrm{mol\ dm^{-3}}$ (compiler)	
1.644	0.02270	

pS: The negative logarithm of the concentration in the saturated solutions in

Auxiliary Information

Methods/Apparatus/Procedure:

The experimental details are given in the compilation of Ref. 21 for the salicylic acid-benzene system in Sec. 2.1.3.1.

Source and Purity of Materials:

The details are given in the compilation of Ref. 21 for the salicylic acid-benzene system in Sec. 2.1.3.1.

Estimated Errors:

Components:	Original Measurements:	Components:	Original Measurements:
(1) Benzoic acid, 2-hydroxy- (o-hydroxybenzoic acid, salicylic acid); C ₇ H ₆ O ₃ ; [69-72-7] (2) Ethane, 1,1,2,2-tetrachloro- (1,1,2,2-tetrachloroethane, tetrachloroethane); C ₂ H ₂ Cl ₄ ; [79-34-5]	²⁴ W. Herz and W. Rathmann, Z. Elektrochem. 19 , 887 (1913).	(1) Benzoic acid 2-hydroxy- (o-hydroxybenzoic acid, salicylic acid); C ₇ H ₆ O ₃ ; [69-72-7] (2) Ethene, trichloro- (1,1,2-trichloroethene, trichloroethylene); C ₂ HCl ₃ ; [79-01-6]	²⁴ W. Herz and W. Rathmann, Z Elektrochem. 19 , 887 (1913).
Variables:	Prepared by:	Variables:	Prepared by:
t/°C=25	E. Königsberger and LC. Königsberger	t/°C=25	E. Königsberger and LC. Königsberger

The solubility of salicylic acid in tetrachloroethane at 25 °C was reported as $c_1/\text{mol dm}^{-3}$ =0.151.

Auxiliary Information

Methods/Apparatus/Procedure:

The experimental details are given in the compilation of Ref. 24 for the salicylic acid-chloroform system earlier in this section.

Source and Purity of Materials:

Not stated.

Estimated Errors:

Not stated.

Components:	Original Measurements:
(1) Benzoic acid, 2-hydroxy- (<i>o</i> -hydroxybenzoic acid, salicylic acid); C ₇ H ₆ O ₃ ; [69-72-7] (2) Ethane, pentachloro- (1,1,1,2,2-pentachloroethane, pentachloroethane); C ₂ HCl ₅ ; [76-01-7]	²⁴ W. Herz and W. Rathmann, Z. Elektrochem. 19 , 887 (1913).

Variables:	Prepared by:
t/°C=25	E. Königsberger and LC.
	Königsberger

The solubility of salicylic acid in pentachloroethane at 25 °C was reported as $c_1/\text{mol dm}^{-3}=0.077$.

Auxiliary Information

Methods/Apparatus/Procedure:

The experimental details are given in the compilation of Ref. 24 for the salicylic acid-chloroform system earlier in this section.

Source and Purity of Materials:

Not stated.

Estimated Errors:

Not stated.

25 °C was reported as $c_1/\text{mol dm}^{-3}=0.110$.

Auxiliary Information

Methods/Apparatus/Procedure:

The experimental details are given in the compilation of Ref. 24 for the salicylic acid-chloroform system earlier in this section.

Source and Purity of Materials:

Not stated.

Estimated Errors:

Not stated.

Components:	Original Measurements:	
(1) Benzoic acid, 2-hydroxy-	²⁵ D.H. Wester and A. Bruins,	
(o-hydroxybenzoic acid, salicylic	Pharm. Weekblad. 51, 1443	

acid); C₇H₆O₃; [69-72-7] (2) Ethene, trichloro-(1,1,2-trichloroethene,

trichloroethylene); C₂HCl₃;

[79-01-6]

(1914).

Prepared by:

Variables:

t/ °C=15 E. Königsberger and L.-C. Königsberger

Solubility of salicylic acid in trichloroethylene at 15 $^{\circ}\text{C}$

Solubility		
$100w_1$	$m_1/\text{mol kg}^{-1}$ (compiler)	
0.757	0.0548	

Auxiliary Information

Methods/Apparatus/Procedure:

A large excess of the solid substance was continuously shaken with the solvent in a water bath of 30 $^{\circ}$ C for 1 h. Then, the solution was brought to a cellar with a constant temperature of 15 $^{\circ}$ C and, after keeping it there under repeated shaking for at least 48 h, the quantity of the dissolved substance was determined (details not specified). The undissolved substance was used for a second solubility experiment, and then the remaining substance for a third one. The result of the first experiment was discarded so that the value reported is the average of the other two determinations.

Source and Purity of Materials:

Not stated.

Estimated Errors:

Solubility: Nothing specified. Temperature: Uncertainty of ± 2 K.

Components:

(1) Benzoic acid 2-hydroxy-(o-hydroxybenzoic acid, salicylic acid); C₇H₆O₃; [69-72-7] (2) Ethene, tetrachloro-(1,1,2,2-tetrachloroethene, tetrachloroethylene); C₂Cl₄;

Original Measurements:

²⁴W. Herz and W. Rathmann, Z. Elektrochem. 19, 887 (1913).

[127-18-4] Variables:

 $t/^{\circ}C=25$

Prepared by:

E. Königsberger and L.-C. Königsberger

The solubility of salicylic acid in tetrachloroethylene at 25 °C was reported as $c_1/\text{mol dm}^{-3} = 0.080$.

Auxiliary Information

Methods/Apparatus/Procedure:

The experimental details are given in the compilation of Ref. 24 for the salicylic acid-chloroform system earlier in this section.

Source and Purity of Materials:

Not stated.

Estimated Errors:

Not stated.

Components:

(1) Benzoic acid, 2-hydroxy-(o-hydroxybenzoic acid, salicylic acid); $C_7H_6O_3$; [69-72-7] (2) Methyl alcohol (methanol); CH₄O; [67-56-1]

Original Measurements:

²⁶E. Savorro, Atti accad. sci. Torino 48, 948 (1914) [Chem. Abs. 8, 340 (1914)].

Variables:

 $t/^{\circ}C=15$

Prepared by:

A. Goto and H. Miyamoto

Solubility of salicylic acid in methanol at 15 °C

Solubility ^a			
Original data	100w ₁ (compiler)	m ₁ /mol kg ⁻¹ (compiler)	(compiler)
398.66	28.503	2.8863	0.0846

^aIn the original paper, the solubility was given as grams per 1000 g of methanol

Auxiliary Information

Methods/Apparatus/Procedure:

The solubility of salicylic acid in water was determined in Pawlewski"s apparatus [B. Pawlewski, Ber. Dtsch. Chem. Ges. 32, 1040 (1899)]. The salicylic acid content was determined with standardized sodium hydroxide solution. The water and salicylic acid were placed in the test tube. The tube was equipped with a condenser and a siphon glass tube, and connected with a weighing bottle equipped with a condenser. The apparatus was placed into a large thermostated glass beaker to mix the water and salicylic acid, and air was bubbled through the mixture. After equilibrium was established, the saturated solution in the tube was filtered into the weighing tube through the siphon tube equipped with a cotton wool filter. The apparatus was removed from the large beaker, cooled and/or dried, and the bottle was weighed. Salicylic acid was determined gravimetrically after evaporation of the solvent.

Source and Purity of Materials:

Salicylic acid was recrystallized before use.

Estimated Errors:

Solubility: Precision of $\pm 1.5\%$. Temperature: Nothing specified.

Components:

(1) Benzoic acid, 2-hydroxy-(o-hydroxybenzoic acid, salicylic acid); C₇H₆O₃; [69-72-7] (2) Methyl alcohol (methanol);

Original Measurements:

¹⁶P.G. Desai and A.M. Patel, J. Indian Chem. Soc. 12, 131

CH₄O; [67-56-1]

Variables:

 $t/^{\circ}C=28$

Prepared by:

A. Goto and H. Miyamoto

The solubility of salicylic acid in methanol at 28 °C was reported as $x_1 = 0.1252$.

Auxiliary Information

Methods/Apparatus/Procedure:

The experimental details are given in the compilation of Ref. 16 for the salicylic acid-ethanol system in Sec. 2.1.2.1.

Source and Purity of Materials:

Salicylic acid was twice recrystallized.

Methanol was purified by distillation.

Estimated Errors:

Solubility: Three readings were taken in each case and the mean was taken. It was found by blank experiments (on solute-free solvent) that this method gave reliable results; the precision being less than 0.5%.

Temperature: Nothing specified.

Components:

(1) Benzoic acid, 2-hydroxy-(o-hydroxybenzoic acid, salicylic acid); C₇H₆O₃; [69-72-7]

Original Measurements:

¹⁵E. Bergroth, Farm. Aikak. 70, 91 (1961).

(2) Methyl alcohol (methanol); CH₄O; [67-56-1]

Variables:

 $t/^{\circ}C = 20.0$

Prepared by: P. Scharlin

Solubility of salicylic acid in methanol at 20.0 °C

Solubility ^a		
$\gamma_1/g \ dm^{-3}$ (compiler)	$c_1/\mathrm{mol\ dm^{-3}}$ (compiler)	
331.3	2.398	

^aIn the original paper, the solubility was given as grams per 100 ml of solution.

Auxiliary Information

Methods/Apparatus/Procedure:

The experimental details are given in the compilation of Ref. 15 for the salicylic acid-ethanol system in Sec. 2.1.2.1.

Source and Purity of Materials:

Salicylic acid was obtained from Shuchardt, DAB6.

Methanol: source and purity not given; relative density d=0.792 (20 °C/4 °C).

Estimated Errors:

Nothing specified. The value given was the mean of three independent determinations.

Components: (1) Benzoic acid, 2-hydroxy- (o-hydroxybenzoic acid, salicylic acid); C ₇ H ₆ O ₃ ; [69-72-7] (2) Methyl alcohol (methanol); CH ₄ O; [67-56-1]	Original Measurements: ¹⁷ A.N. Paruta, B.J. Sciarrone, and N.G. Lordi, J. Pharm. Sci. 53 , 1349 (1964).
Variables: t/°C=30.6	Prepared by: A. Goto and R. Goto

Solubility	of salicylic	acid in	methanol	at 30.6	°C

	Solu	ability ^a
Dielectric constant of solvent	$\gamma_1/g \text{ dm}^{-3}$ (compiler)	$c_1/\text{mol dm}^{-3}$ (compiler)
32.6	299	2.16

^aIn the original paper, the solubility was given as mg/ml of solution.

Auxiliary Information

Methods/Apparatus/Procedure:

The experimental details are given in the compilation of Ref. 17 for the salicylic acid-ethanol system in Sec. 2.1.2.1.

The dielectric constant of the solvent was measured by a resonance method at 25 $^{\circ}\mathrm{C}.$

Source and Purity of Materials:

Methanol was purified by the method described in A. Weissberger *et al.*, *Organic Solvents*, 2nd ed. (Interscience, New York, 1955), Chaps. 4 and 5.

Estimated Errors:

Solubility: Nothing specified.

Temperature: Precision of $\pm 0.2~^{\circ}C$ (solubility) and $\pm 1.0~^{\circ}C$ (dielectric constant).

Components:

[71-23-8]

(1) Benzoic acid, 2-hydroxy-(*o*-hydroxybenzoic acid, salicylic acid); C₇H₆O₃; [69-72-7] (2) 1-Propanol (propan-1-ol, propyl alcohol); C₃H₈O;

Original Measurements:

¹⁶P.G. Desai and A.M. Patel, J. Indian Chem. Soc. **12**, 131 (1935).

Variables: Prepared by:

t/ °C=28 A. Goto and H. Miyamoto

The solubility of salicylic acid in 1-propanol at 28 °C was reported as x_1 =0.1438.

Auxiliary Information

Methods/Apparatus/Procedure:

The experimental details are given in the compilation of Ref. 16 for the salicylic acid–ethanol system in Sec. 2.1.2.1.

Source and Purity of Materials:

Salicylic acid was twice recrystallized.

1-Propanol was purified by distillation.

Estimated Errors:

Solubility: Three readings were taken in each case and the mean was taken. It was found by blank experiments (on solute-free solvent) that this method gave reliable results; the precision being less than 0.5%.

Temperature: Nothing specified.

Components:

[71-23-8]

(1) Benzoic acid, 2-hydroxy-(*o*-hydroxybenzoic acid, salicylic acid); C₇H₆O₃; [69-72-7] (2) 1-Propanol (propan-1-ol, propyl alcohol); C₃H₈O;

Original Measurements:

¹⁵E. Bergroth, Farm. Aikak. **70**,91 (1961).

 Variables:
 Prepared by:

 t/ ° C = 20.0
 P. Scharlin

Solubility of salicylic acid in 1-propanol at 20.0 $^{\circ}\text{C}$

Solu	Solubility ^a		
γ_1 /g dm ⁻³ (compiler)	$c_1/\mathrm{mol}~\mathrm{dm}^{-3}$ (compiler)		
222.5	1.611		

^aIn the original paper, the solubility was given as grams per 100 ml of solution.

Auxiliary Information

Methods/Apparatus/Procedure:

The experimental details are given in the compilation of Ref. 15 for the salicylic acid-ethanol system in Sec. 2.1.2.1.

Source and Purity of Materials:

Salicylic acid was obtained from Shuchardt, DAB6.

1-Propanol: source and purity not given; relative density d=0.804 (20 °C/4 °C).

Estimated Errors:

Nothing specified. The value given is the mean of three independent determinations.

Components: (1) Benzoic acid, 2-hydroxy- (o-hydroxybenzoic acid, salicylic acid); C ₇ H ₆ O ₃ ; [69-72-7] (2) 1-Propanol (propan-1-ol, propyl alcohol); C ₃ H ₈ O; [71-23-8]	Original Measurements: ¹⁷ A.N. Paruta, B.J. Sciarrone, and N.G. Lordi, J. Pharm. Sci. 53 , 1349 (1964).
Variables:	Prepared by:

Solubility of salicylic acid in 1-propanol at 30.6 °C

A. Goto and R. Goto

	Solu	ubility ^a
Dielectric constant of solvent	$\gamma_1/g \text{ dm}^{-3}$ (compiler)	$c_1/\text{mol dm}^{-3}$ (compiler)
20.1	287	2.08

^aIn the original paper, the solubility was given as mg/ml of solution.

Auxiliary Information

Methods/Apparatus/Procedure:

The experimental details are given in the compilation of Ref. 17 for the salicylic acid–ethanol system in Sec. 2.1.2.1.

Source and Purity of Materials:

The solvent was purified by the method described in A. Weissberger *et al.*, *Organic Solvents*, 2nd ed. (Interscience, New York, 1955), Chaps. 4 and 5.

Estimated Errors:

 $t/^{\circ}C = 30.6$

Solubility: Nothing specified.

Temperature: Precision of $\pm 0.2~^{\circ}C$ (solubility) and $\pm 1.0~^{\circ}C$ (dielectric constant).

Components:

(1) Benzoic acid, 2-hydroxy-(o-hydroxybenzoic acid, salicylic acid); C₇H₆O₃; [69-72-7]
(2) 1-Propanol (propan-1-ol, propyl alcohol); C₃H₈O; [71-23-8]

Original Measurements:

¹⁸K.M. De Fina, T.L. Sharp, L.E. Roy, and W.E. Acree Jr., J. Chem. Eng. Data **44**, 1262 (1999).

Variables: Prepared by:

T/K=298.15 A. Goto and H. Miyamoto

The solubility of salicylic acid in 1-propanol at 298.15 K was reported as x_1 =0.1636.

Auxiliary Information

Methods/Apparatus/Procedure:

The experimental details are given in the compilation of Ref. 18 for the salicylic acid-1-butanol system in Sec. 2.1.2.1.

Source and Purity of Materials:

Salicylic acid was described in the compilation of Ref. 18 for the salicylic acid-1-butanol system in Sec. 2.1.2.1.

1-Propanol (Aldrich, 99+%, anhydrous) was stored over molecular sieves before use.

Estimated Errors:

Solubility: Nothing specified. Temperature: Precision of ± 0.1 °C.

Components:

[71-41-0]

(1) Benzoic acid, 2-hydroxy-(*o*-hydroxybenzoic acid, salicylic acid); C₇H₆O₃; [69-72-7] (2) 1-Pentanol (pentan-1-ol, pentyl alcohol); C₅H₁₂O;

Original Measurements:

¹⁸K.M. De Fina, T.L. Sharp, L.E. Roy, and W.E. Acree, Jr., J. Chem. Eng. Data **44**, 1262 (1999).

Variables: Prepared by:

T/K=298.15 A. Goto and H. Miyamoto

The solubility of salicylic acid in 1-pentanol at 298.15 K was reported as x_1 =0.1611.

Auxiliary Information

Methods/Apparatus/Procedure:

The experimental details are given in the compilation of Ref. 18 for the salicylic acid-1-butanol system in Sec. 2.1.2.1.

Source and Purity of Materials:

Salicylic acid was described in the compilation of Ref. 18 for the salicylic acid-1-butanol system in Sec. 2.1.2.1.

1-Pentanol (Aldrich, 99+%) was stored over molecular sieves before use.

Estimated Errors:

Solubility: Nothing specified. Temperature: Precision of ± 0.1 °C.

Components:

(1) Benzoic acid, 2-hydroxy-(o-hydroxybenzoic acid, salicylic acid); C₇H₆O₃; [69-72-7] (2) 1-Octanol (octan-1-ol, octyl alcohol); C₈H₁₈O; [111-87-5]

Original Measurements:

¹⁸K.M. De Fina, T.L. Sharp, L.E. Roy, and W.E. Acree, Jr., J. Chem. Eng. Data **44**, 1262 (1999).

Variables: Prepared by:

T/K=298.15 A. Goto and H. Miyamoto

The solubility of salicylic acid in 1-octanol at 298.15 K was reported as x_1 =0.2143.

Auxiliary Information

Methods/Apparatus/Procedure:

The experimental details are given in the compilation of Ref. 18 for the salicylic acid-1-butanol system in Sec. 2.1.2.1.

Source and Purity of Materials:

Salicylic acid was described in the compilation of Ref. 18 for the salicylic acid-1-butanol system in Sec. 2.1.2.1.

1-Octanol (Aldrich, 99+%, anhydrous) was stored over molecular sieves before use.

Estimated Errors:

Solubility: Nothing specified. Temperature: Precision of ± 0.1 °C.

J. Phys. Chem. Ref. Data, Vol. 40, No. 2, 2011

A. Goto and H. Miyamoto

Components:	Original Measurements:
(1) Benzoic acid, 2-hydroxy- (o-hydroxybenzoic acid, salicylic acid); C ₇ H ₆ O ₃ ; [69-72-7] (2) 2-Propanol (propan-2-ol, isopropyl alcohol); C ₃ H ₈ O;	¹⁸ K.M. De Fina, T.L. Sharp, L.E. Roy, and W.E. Acree, Jr., J. Chem. Eng. Data 44 , 1262 (1999).
[67-63-0] Variables:	Prepared by:

The solubility of salicylic acid in 2-propanol at 298.15 K was reported as x_1 =0.1789.

Auxiliary Information

Methods/Apparatus/Procedure:

The experimental details are given in the compilation of Ref. 18 for the salicylic acid-1-butanol system in Sec. 2.1.2.1.

Source and Purity of Materials:

Salicylic acid was described in the compilation of Ref. 18 for the salicylic acid-1-butanol system in Sec. 2.1.2.1.

2-Propanol (Aldrich, 99+%, anhydrous) was stored over molecular sieves before use.

Estimated Errors:

Variables:

T/K = 298.15

T/K = 298.15

Solubility: Nothing specified. Temperature: Precision of ± 0.1 °C.

Components:	Original Measurements:
(1) Benzoic acid, 2-hydroxy-	¹⁸ K.M. De Fina, T.L. Sharp, L.E
(o-hydroxybenzoic acid, salicylic	Roy, and W.E. Acree Jr., J.
acid); C ₇ H ₆ O ₃ ; [69-72-7]	Chem. Eng. Data 44, 1262
(2) 2-Butanol (butan-2-ol,	(1999).
sec-butyl alcohol); C ₄ H ₁₀ O;	
[78-92-2]	

The solubility of salicylic acid in 2-butanol at 298.15 K was reported as x_1 =0.1869.

Prepared by:

A. Goto and H. Miyamoto

Auxiliary Information

Methods/Apparatus/Procedure:

The experimental details are given in the compilation of Ref. 18 for the salicylic acid-1-butanol system in Sec. 2.1.2.1.

Source and Purity of Materials:

Salicylic acid was described in the compilation of Ref. 18 for the salicylic acid-1-butanol system in Sec. 2.1.2.1.

2-Butanol (Aldrich, 99+ %, anhydrous) was stored over molecular sieves before use.

Estimated Errors:

Solubility: Nothing specified. Temperature: Precision of ± 0.1 °C.

Components:

 $\begin{array}{ll} (1) \ Benzoic \ acid, \ 2-hydroxy-\\ (\emph{o}-hydroxybenzoic \ acid, \ salicylic\\ acid); \ C_7H_6O_3; \ [69-72-7]\\ (2) \ 2-Methyl-1-propanol\\ (2-methylpropan-1-ol, \ isobutyl\\ alcohol); \ C_4H_{10}O; \ [78-83-1] \end{array}$

Original Measurements:

Prepared by:

¹⁸K.M. De Fina, T.L. Sharp, L.E. Roy, and W.E. Acree, Jr., J. Chem. Eng. Data **44**, 1262 (1999).

Variables:

T/K=298.15 A. Goto and H. Miyamoto

The solubility of salicylic acid in 2-methyl-1-propanol at 298.15 K was reported as x_1 =0.1430.

Auxiliary Information

Methods/Apparatus/Procedure:

The experimental details are given in the compilation of Ref. 18 for the salicylic acid-1-butanol system in Sec. 2.1.2.1.

Source and Purity of Materials:

Salicylic acid was described in the compilation of Ref. 18 for the salicylic acid-1-butanol system in Sec. 2.1.2.1.

2-Methyl-1-propanol (Aldrich, 99.5%, anhydrous) was stored over molecular sieves before use.

Estimated Errors:

Solubility: Nothing specified. Temperature: Precision of ± 0.1 °C.

Components:

(1) Benzoic acid, 2-hydroxy-(o-hydroxybenzoic acid, salicylic acid); C₇H₆O₃; [69-72-7] (2) 2-Methyl-2-propanol (2-methylpropan-2-ol, *tert*-butyl

Original Measurements:

¹⁸K.M. De Fina, T.L. Sharp, L.E. Roy, and W.E. Acree Jr., J. Chem. Eng. Data **44**, 1262 (1999).

alcohol); C₄H₁₀O; [75-65-0]

Variables: Prepared by: T/K = 298.15 A. Goto and F

T/K=298.15 A. Goto and H. Miyamoto

The solubility of salicylic acid in 2-methyl-2-propanol at 298.15 K was reported as x_1 =0.2193.

Auxiliary Information

Methods/Apparatus/Procedure:

The experimental details are given in the compilation of Ref. 18 for the salicylic acid-1-butanol system in Sec. 2.1.2.1.

Source and Purity of Materials:

Salicylic acid was described in the compilation of Ref. 18 for the salicylic acid-1-butanol system in Sec. 2.1.2.1.

2-Methyl-2-propanol (Arco Chemical Company, 99+%) was stored over molecular sieves before use.

Estimated Errors:

Solubility: Nothing specified. Temperature: Precision of ± 0.1 °C.

Components: (1) Benzoic acid, 2-hydroxy- (<i>o</i> -hydroxybenzoic acid, salicylic acid); C ₇ H ₆ O ₃ ; [69-72-7] (2) Cyclohexanol; C ₆ H ₁₂ O; [108-93-0]	Original Measurements: ¹⁷ A.N. Paruta, B.J. Sciarrone, and N.G. Lordi, J. Pharm. Sci. 53 , 1349 (1964).
Variables:	Prepared by:

Solubility of salicylic acid in cyclohexanol at 30.6 °C

A. Goto and R. Goto

	Solu	Solubility ^a	
Dielectric constant of solvent	$\gamma_1/g \text{ dm}^{-3}$ (compiler)	$c_1/\text{mol dm}^{-3}$ (compiler)	
15.0	217	1.57	

^aIn the original paper, the solubility was given as mg/ml of solution.

Auxiliary Information

Methods/Apparatus/Procedure:

The experimental details are given in the compilation of Ref. 17 for the salicylic acid—ethanol system in Sec. 2.1.2.1.

Source and Purity of Materials:

The solvent was purified by the method described in A. Weissberger et al., Organic Solvents, 2nd ed. (Interscience, New York, 1955), Chaps. 4 and 5.

Estimated Errors:

Variables:

 $t/^{\circ}C = 30.6$

Solubility: Nothing specified.

Temperature: Precision of $\pm 0.2~^{\circ}C$ (solubility) and $\pm 1.0~^{\circ}C$ (dielectric constant).

Components:	Original Measurements:
(1) Benzoic acid, 2-hydroxy-	¹⁷ A.N. Paruta, B.J. Sciarrone, and
(o-hydroxybenzoic acid, salicylic	N.G. Lordi, J. Pharm. Sci. 53,
acid); C ₇ H ₆ O ₃ ; [69-72-7]	1349 (1964).
(2) Benzyl alcohol	
(phenylmethanol); C ₇ H ₈ O;	
[100-51-6]	

$t/^{\circ}$ C=30.6	A. Goto and R. Goto

Solubility of salicylic acid in benzyl alcohol at 30.6 $^{\circ}\text{C}$

Prepared by:

	Solu	Solubility ^a	
Dielectric constant of solvent	$\gamma_1/g \text{ dm}^{-3}$ (compiler)	$c_1/\text{mol dm}^{-3}$ (compiler)	
13.0	203	1.47	

^aIn the original paper, the solubility was given as mg/ml of solution.

Auxiliary Information

Methods/Apparatus/Procedure:

The experimental details are given in the compilation of Ref. 17 for the salicylic acid-ethanol system in Sec. 2.1.2.1.

Source and Purity of Materials:

Benzyl alcohol was purified by the method described in A. Weissberger *et al.*, *Organic Solvents*, 2nd ed. (Interscience, New York, 1955), Chaps. 4 and 5

Estimated Errors:

Solubility: Nothing specified.

Temperature: Precision of $\pm 0.2~^{\circ}C$ (solubility) and $\pm 1.0~^{\circ}C$ (dielectric constant).

Original Measurements:
¹⁷ A.N. Paruta, B.J. Sciarrone, and
N.G. Lordi, J. Pharm. Sci. 53,
1349 (1964).

Variables:	Prepared by:
$t/^{\circ}$ C=30.6	A. Goto and R. Goto

Solubility of salicylic acid in diols and triol at 30.6 °C

	Solubility ^a		
Solvent	Dielectric constant of solvent	, , ,	$c_1/\text{mol dm}^{-3}$ (compiler)
Propylene glycol	33.0	118	0.854
Ethylene glycol	37.7	42	0.30
Glycerol	42.5	15	0.11

^aIn the original paper, the solubility was given as mg/ml of solution.

Auxiliary Information

Methods/Apparatus/Procedure:

The experimental details are given in the compilation of Ref. 17 for the salicylic acid–ethanol system in Sec. 2.1.2.1.

Source and Purity of Materials:

The solvents were purified by the method described in A. Weissberger *et al.*, *Organic Solvents*, 2nd ed. (Interscience, New York, 1955), Chaps. 4 and 5.

Estimated Errors:

Solubility: Nothing specified.

Temperature: Precision of $\pm 0.2~^{\circ}C$ (solubility) and $\pm 1.0~^{\circ}C$ (dielectric constant).

023102-34 GOTO ET AL.

Components:

(1) Benzoic acid, 2-hydroxy-(o-hydroxybenzoic acid, salicylic acid); C₇H₆O₃; [69-72-7] (2) Ethane, 1,1'-oxybis-(ethoxyethane, diethyl ether); C₄H₁₀O; [60-29-7]

Original Measurements:

²⁰J. Walker and J.K. Wood, J. Chem. Soc. Trans. 73, 618 (1898).

Variables:

 $t/^{\circ}C=17$

Prepared by:

A. Goto and H. Miyamoto

Solubility of salicylic acid in diethyl ether at 17 °C

	Solubility ^a	
Original data	$\gamma_1/g \text{ dm}^{-3}$ (compiler)	$c_1/\text{mol dm}^{-3}$ (compiler)
23.4	234	1.69

^aIn the original paper, the solubility was given as grams of salicylic acid per 100 cm³ of diethyl ether solution at 17 °C. The mass concentration, γ_1 $=m_1/V$, was calculated by the compiler, where m_1 is the mass of component 1 and V is the total volume of solution.

Auxiliary Information

Methods/Apparatus/Procedure:

The experimental details are given in the compilation of Ref. 17 for the salicylic acid-benzene system in Sec. 2.1.2.1.

Source and Purity of Materials:

No information was given.

Estimated Errors:

Nothing specified.

Components:

(1) Benzoic acid, 2-hydroxy-(o-hydroxybenzoic acid, salicylic acid); C₇H₆O₃; [69-72-7] (2) Ethane, 1,1'-oxybis-(ethoxyethane, diethyl ether);

Variables:

C₄H₁₀O; [60-29-7]

 $t/^{\circ}C=20$

Original Measurements:

¹³H.-L. Fung and T. Higuchi, J. Pharm. Sci. 60, 1782 (1971).

Prepared by:

A. Goto and H. Miyamoto

Solubility of salicylic acid in diethyl ether at 20 °C

	Solubility
x_1	$m_1/\mathrm{mol~kg^{-1}}$
2.5×10^{-1a}	2.4 ^b

^aThe value was estimated by the author from A. Seidell, Solubilities of Organic Compounds, 3rd Ed. (Van Nostrand, New York, 1941), Vol. II. ^bThe value was estimated by the author from *The Merck Index*, 8th ed. (Merck, Rahway, NJ, 1968).

Auxiliary Information

Methods/Apparatus/Procedure:

Not stated.

Source and Purity of Materials:

Not stated.

Estimated Errors:

Not stated.

Components:

(1) Benzoic acid, 2-hydroxy-(o-hydroxybenzoic acid, salicylic acid); C₇H₆O₃; [69-72-7] (2) Butane, 1,1'-oxybis-(2-butoxy ethanol, *n*-butyl ether); C₈H₁₈O; [142-96-1]

Original Measurements:

¹⁸K.M. De Fina, T.L. Sharp, L.E. Roy, and W.E. Acree Jr., J. Chem. Eng. Data 44, 1262 (1999).

Variables: Prepared by:

T/K = 298.15A. Goto and H. Miyamoto

The solubility of salicylic acid in n-dibutyl ether at 298.15 K was reported as $x_1 = 0.091 85$.

Auxiliary Information

Methods/Apparatus/Procedure:

The experimental details are given in the compilation of Ref. 18 for the salicylic acid-1-butanol system in Sec. 2.1.2.1.

Source and Purity of Materials:

The details are given in the compilation of Ref. 18 for the salicylic acid-1-butanol system in Sec. 2.1.2.1.

n-Dibutyl ether (Aldrich, 99 %) was stored over molecular sieves before

Estimated Errors:

Solubility: Nothing specified. Temperature: Precision of ± 0.1 °C.

Components:

(1) Benzoic acid, 2-hydroxy-(o-hydroxybenzoic acid, salicylic acid); C₇H₆O₃; [69-72-7] (2) 2-Propanone (propan-2-one, acetone); C₃H₆O; [67-64-1]

Original Measurements:

²⁰J. Walker and J.K. Wood, J. Chem. Soc. Trans. 73, 618 (1898).

Variables:

 $t/^{\circ}C=23$

Prepared by:

A. Goto and H. Miyamoto

Solubility of salicylic acid in acetone at 23 °C

	Solubility ^a	
Original data	$\gamma_1/g \text{ dm}^{-3}$ (compiler)	$c_1/\mathrm{mol}~\mathrm{dm}^{-3}$ (compiler)
31.3	313	2.27

^aIn the original paper, the solubility was given as grams of salicylic acid per 100 cm³ of acetone solution at 23 °C. The mass concentration, $\gamma_1 = m_1/V$, was calculated by the compiler, where m_1 is the mass of component 1 and Vis the total volume of solution.

Methods/Apparatus/Procedure:

The experimental details are given in the compilation of Ref. 20 for the salicylic acid-benzene system in Sec. 2.1.3.1.

Source and Purity of Materials:

No information was given.

Estimated Errors:

Nothing specified.

Components:

(1) Benzoic acid, 2-hydroxy-(o-hydroxybenzoic acid, salicylic acid); C₇H₆O₃; [69-72-7] (2) 2-Propanone (propan-2-one, acetone); C₃H₆O; [67-64-1]

Original Measurements:

¹⁶P.G. Desai and A.M. Patel, J. Indian Chem. Soc. **12**, 131 (1935).

Variables:

 $t/^{\circ}C=28$

Prepared by:

A. Goto and H. Miyamoto

The solubility of salicylic acid in acetone at 28 °C was reported as x_1 =0.1906.

Auxiliary Information

Methods/Apparatus/Procedure:

The experimental details are given in the compilation of Ref. 16 for the salicylic acid—ethanol system in Sec. 2.1.2.1.

Source and Purity of Materials:

Salicylic acid was twice recrystallized.

Acetone was purified by distillation at its known boiling point.

Estimated Errors:

Solubility: Three readings were taken in each case and the mean was taken. It was found by blank experiments (on solute-free solvent) that this method gave reliable results; the precision being less than 0.5~%.

Temperature: Nothing specified.

Components:

(1) Benzoic acid, 2-hydroxy-(o-hydroxybenzoic acid, salicylic acid); C₇H₆O₃; [69-72-7] (2) 2-Propanone (propan-2-one, acetone); C₃H₆O; [67-64-1]

Original Measurements:

¹⁵E. Bergroth, Farm. Aikak. **70**,91 (1961).

Variables:

 $t/^{\circ}C=20$

Prepared by: P. Scharlin

Solubility of salicylic acid in acetone at 20 °C

Solubility ^a		
$\gamma_1/g \text{ dm}^{-3}$ (compiler)	$c_1/\mathrm{mol}\mathrm{dm}^{-3}$ (compiler)	
294.4	2.131	

^aIn the original paper, the solubility was given as grams per 100 ml of solution.

Auxiliary Information

Methods/Apparatus/Procedure:

The experimental details are given in the compilation of Ref. 15 for the salicylic acid-ethanol system in Sec. 2.1.2.1.

Source and Purity of Materials:

Salicylic acid was obtained from Shuchardt, DAB6.

Acetone: source and purity not given; relative density d=0.791 (20 $^{\circ}$ C/4 $^{\circ}$ C)

Estimated Errors:

Nothing specified. The value given is the mean of three independent determinations.

Components:	Original Measurements:
(1) Benzoic acid, 2-hydroxy- (o-hydroxybenzoic acid, salicylic acid); C ₇ H ₆ O ₃ ; [69-72-7] (2) 2-Propanone (propan-2-one, acetone); C ₃ H ₆ O; [67-64-1]	 ¹⁷A.N. Paruta, B.J. Sciarrone, and N.G. Lordi, J. Pharm. Sci. 53, 1349 (1964).
Variables:	Prepared by:
<i>t</i> / °C=30.6	A. Goto and R. Goto

Solubility of salicylic acid in acetone at 30.6 °C

	Solu	ıbility ^a
Dielectric constant of solvent	$\gamma_1/g \text{ dm}^{-3}$ (compiler)	$c_1/\operatorname{mol\ dm}^{-3}$ (compiler)
24.3	377	2.73

^aIn the original paper, the solubility was given as mg/ml of solution.

Auxiliary Information

Methods/Apparatus/Procedure:

The experimental details are given in the compilation of Ref. 17 for the salicylic acid–ethanol system in Sec. 2.1.2.1.

Source and Purity of Materials:

The solvent was purified by the method described in A. Weissberger et al., Organic Solvents, 2nd ed. (Interscience, New York, 1955), Chaps. 4 and 5.

Estimated Errors:

Solubility: Nothing specified.

Temperature: Precision of $\pm 0.2~^{\circ}C$ (solubility) and $\pm 1.0~^{\circ}C$ (dielectric constant).

Components:	Original Measurements:
(1) Benzoic acid, 2-hydroxy- (o-hydroxybenzoic acid, salicylic acid); C ₇ H ₆ O ₃ ; [69-72-7] (2) 2-Propanone (propan-2-one, acetone); C ₃ H ₆ O; [67-64-1]	¹⁸ K.M. De Fina, T.L. Sharp, L.E Roy, and W.E. Acree Jr., J. Chem. Eng. Data 44 , 1262 (1999).
Variables:	Prepared by:
T/K = 298.15	A. Goto and H. Miyamoto

The solubility of salicylic acid in acetone at 298.15 K was reported as x_1 =0.1817.

023102-36 GOTO ET AL.

Auxiliary Information

Methods/Apparatus/Procedure:

The experimental details are given in the compilation of Ref. 18 for the salicylic acid-1-butanol system in Sec. 2.1.2.1.

Source and Purity of Materials:

Salicylic acid is given in the compilation of Ref. 18 for the salicylic acid-1-butanol system in Sec. 2.1.2.1.

Acetone (Aldrich, HPLC, 99.9+%) was stored over molecular sieves before use.

Estimated Errors:

Solubility: Nothing specified. Temperature: Precision of ± 0.1 °C.

Components:

(1) Benzoic acid, 2-hydroxy-(o-hydroxybenzoic acid, salicylic acid); C₇H₆O₃; [69-72-7] (2) 2-Butanone (butan-2-one,

methyl ethyl ketone); C₄H₈O;

[78-93-3]

Variables: $t/^{\circ}C=20$

Prepared by: P. Scharlin

91 (1961).

Original Measurements:

¹⁵E. Bergroth, Farm. Aikak. 70,

Solubility of salicylic acid in 2-butanone at 20 °C

Solubility ^a		
γ_1 /g dm ⁻³ (compiler)	$c_1/\mathrm{mol\ dm^{-3}}$ (compiler)	
235.6	1.706	

^aIn the original paper, the solubility was given as grams per 100 ml of solution.

Auxiliary Information

Methods/Apparatus/Procedure:

The experimental details are given in the compilation of Ref. 15 for the salicylic acid-ethanol system in Sec. 2.1.2.1.

Source and Purity of Materials:

Salicylic acid was obtained from Shuchardt, DAB6.

2-Butanone: source and purity not given; relative density d=0.805(20 °C/4 °C).

Estimated Errors:

Nothing specified. The value given is the mean of three independent determinations.

Components:	Original Measurements:
(1) Benzoic acid, 2-hydroxy- (o-hydroxybenzoic acid, salicylic acid); C ₇ H ₆ O ₃ ; [69-72-7] (2) 2-Butanone (butan-2-one, methyl ethyl ketone); C ₄ H ₈ O; [78-93-3]	¹⁸ K.M. De Fina, T.L. Sharp, L.E. Roy, and W.E. Acree Jr., J. Chem. Eng. Data 44 , 1262 (1999).
Variables:	Prepared by:
T/K = 298.15	A. Goto and H. Miyamoto

The solubility of salicylic acid in 2-butanone at 298.15 K was reported as $x_1 = 0.1852$.

Auxiliary Information

Methods/Apparatus/Procedure:

The experimental details are given in the compilation of Ref. 18 for the salicylic acid-1-butanol system in Sec. 2.1.2.1.

Source and Purity of Materials:

Salicylic acid is given in the compilation of Ref. 18 for the salicylic acid-1-butanol system in Sec. 2.1.2.1.

2-Butanone (Aldrich, HPLC, 99.5 %) was stored over molecular sieves before use.

Estimated Errors:

Solubility: Nothing specified. Temperature: Precision of ±0.1 °C.

Components:

(1) Benzoic acid, 2-hydroxy-(o-hydroxybenzoic acid, salicylic acid); C₇H₆O₃; [69-72-7] (2) 2-Pentanone (pentan-2-one,

methyl propyl ketone); C₅H₁₀O; [107-87-9]

Original Measurements:

¹⁵E. Bergroth, Farm. Aikak. **70**, 91 (1961).

Variables: Prepared by: $t/^{\circ}C=20$ P. Scharlin

Solubility of salicylic acid in 2-pentanone at 20 °C

Solubility ^a		
γ_1 /g dm ⁻³ (compiler)	$c_1/\mathrm{mol\ dm^{-3}}$ (compiler)	
209.2	1.515	

^aIn the original paper, the solubility was given as grams per 100 ml of solution.

Auxiliary Information

Methods/Apparatus/Procedure:

The experimental details are given in the compilation of Ref. 15 for the salicylic acid-ethanol system in Sec. 2.1.2.1.

Source and Purity of Materials:

Salicylic acid was obtained from Shuchardt, DAB6.

2-Pentanone: source and purity not given; relative density d=0.812 (15 °C/15 °C).

Estimated Errors:

Nothing specified. The value given is the mean of three independent determinations.

Components:	Original Measurements:
(1) Benzoic acid, 2-hydroxy-	¹⁸ K. M. De Fina, T. L. Sharp, L.
(o-hydroxybenzoic acid, salicylic	E. Roy, and W. E. Acree Jr., J.
acid); C ₇ H ₆ O ₃ ; [69-72-7]	Chem. Eng. Data 44, 1262
(2) Cyclohexanone; C ₆ H ₁₀ O;	(1999).
[108-94-1]	
Variables:	Prepared By:
T/K = 298.15	A. Goto and H. Miyamoto

The solubility of salicylic acid in cyclohexanone at 298.15 K was reported as $x_1 = 0.2301$.

J. Phys. Chem. Ref. Data, Vol. 40, No. 2, 2011

Original Measurements:

Indian Chem. Soc. 12, 131

(1935).

¹⁶P.G. Desai and A.M. Patel, J.

Auxiliary Information

Methods/Apparatus/Procedure:

The experimental details are given in the compilation of Ref. 18 for the salicylic acid-1-butanol system in Sec. 2.1.2.1.

Source and Purity of Materials:

Salicylic acid is given in the compilation of Ref. 18 for the salicylic acid-1-butanol system in Sec. 2.1.2.1.

Cyclohexanone (Aldrich, 99.8%) was stored over molecular sieves before

Estimated Errors:

Solubility: Nothing specified. Temperature: Precision of ± 0.1 °C.

Components:

Variables:

(1) Benzoic acid, 2-hydroxy-(*o*-hydroxybenzoic acid, salicylic acid); C₇H₆O₃; [69-72-7] (2) Acetates:

Acetic acid, ethyl ester (ethyl acetate); $C_4H_8O_2$; [141-78-6] Acetic acid, butyl ester (butyl acetate); $C_6H_{12}O_2$; [123-86-4]

Original Measurements:

¹⁸K.M. De Fina, T.L. Sharp, L.E. Roy, and W.E. Acree Jr., J. Chem. Eng. Data **44**, 1262 (1999).

Prepared by:

T/K=298.15 A. Goto and H. Miyamoto

Solubility of salicylic acid in acetates at 298.15 K

	Solubility
Solvent	x_1
Ethyl acetate	0.1425
Butyl acetate	0.1363

Auxiliary Information

Methods/Apparatus/Procedure:

The experimental details are given in the compilation of Ref. 18 for the salicylic acid-1-butanol system in Sec. 2.1.2.1.

Source and Purity of Materials:

Salicylic acid is given in the compilation of Ref. 18 for the salicylic acid–1-butanol system in Sec. 2.1.2.1.

Ethyl acetate (Aldrich, HPLC, 99.9 %) and butyl acetate (Aldrich, HPLC, 99.7 %) were stored over molecular sieves before use.

Estimated Errors:

Solubility: Nothing specified. Temperature: Precision of ± 0.1 °C.

Components:

(1) Benzoic acid, 2-hydroxy-(o-hydroxybenzoic acid, salicylic acid); C₇H₆O₃; [69-72-7] (2) Benzene derivatives: Benzene, methyl- (toluene);

C₇H₈; [108-88-3] Benzene, 1,3-dimethyl-

(1,3-xylene, m-xylene); C_8H_{10} ; $\lceil 108-38-3 \rceil$

Benzene, chloro-

(chlorobenzene); C₆H₅Cl;

[108-90-7]

Variables:

Benzene, nitro- (nitrobenzene);

C₆H₅NO₂; [98-95-3]

Prepared by:

t/ °C=28 A. Goto and H. Miyamoto

Solubility of salicylic acid in benzene derivatives at 28 °C

	Solubility	
Solvent	$10^2 x_1$	
Toluene	0.6052	
<i>m</i> -Xylene	0.6554	
Chlorobenzene	0.7903	
Nitrobenzene	2.509	

Auxiliary Information

Methods/Apparatus/Procedure:

The experimental details are given in the compilation of Ref. 16 for the binary salicylic acid-ethanol system in Sec. 2.1.2.1.

Source and Purity of Materials:

Salicylic acid was twice recrystallized.

The organic solvents were purified by distillation.

Estimated Errors:

Solubility: Three readings were taken in each case and the mean was taken. It was found by blank experiments (on solute-free solvent) that this method gave reliable results; the precision being less than $0.5\,\%$.

Temperature: Nothing specified.

Components:

(1) Benzoic acid, 2-hydroxy-(o-hydroxybenzoic acid, salicylic acid); C₇H₆O₃; [69-72-7]

Original Measurements:

²⁷C.R. Bailey, J. Chem. Soc. Trans. **126**, 1951 (1925).

(2) Phenol; C₆H₆O; [108-95-2]

Variables: Prepared by:

t/ °C=38.16–160.4 A. Goto and H. Miyamoto

Solubility of salicylic acid in phenol

Temperature	Solubility		Eutectic temperature ^a	Duration of eutectic halt ^b
t/°C	$100w_1$	$\frac{100x_1}{\text{(compiler)}}$	t/°C	min
40.80	0.0	0.0	_	_
39.95	1.64	1.12	_	_
39.12	3.17	2.18	38.10	18

J. Phys. Chem. Ref. Data, Vol. 40, No. 2, 2011

Solubility of salicylic acid in phenol

Temperature Solu		lubility	Eutectic temperature ^a	Duration of eutectic halt
t/°C	$100w_1$	$100x_1$ (compiler)	t/°C	min
38.47	4.39	3.03	38.16	25
38.16	5.00	3.46	38.16 ^c	28.5
45.9	7.38	5.15	38.18	28
55.6	10.09	7.10	38.07	27.5
65.6	14.2	10.1	37.9	26
89.2	27.5	20.5	38.0	23
113.5	46.0	36.7	_	_
128.7	60.0	50.5	38.0	_
147.2	81.8	75.4	_	_
157.0	94.9	92.7	_	_
160.4	100.0	100.0	_	_

^aThe mixture of salicylic acid and phenol corresponds to a eutectic system and the temperature at which the solid phase begins to appear is called the eutectic temperature.

Methods/Apparatus/Procedure:

The synthetic method was used. At higher temperatures near the melting point of salicylic acid, mixtures of phenol and salicylic acid were sealed in glass tubes, and the temperatures of appearance and disappearance of solid phase were noted. At lower temperature, the eutectic halt times (or arrests) were measured. Salicylic acid was directly estimated with barium hydroxide; the indicator chosen was p-nitrophenol with titration to a color match.

Source and Purity of Materials:

Commercial salicylic acid was recrystallized from water four times. The physiologically pure salicylic acid was dissolved in a hot mixture of phenol and water, and the solution was slowly cooled. After the product was recrystallized twice, the m.p. of the purified product was 158.7 $^{\circ}\text{C}.$ When allowance was made for the exposed stem of the thermometer, the m.p. was reported as 160.4 $^{\circ}\text{C}.$

The phenol crystals were purchased from British Drug Houses and were distilled twice. The m.p. of the product was 40.8 $^{\circ}\text{C}.$

Estimated Errors:

Nothing specified.

Components: (1) Benzoic acid, 2-hydroxy- (o-hydroxybenzoic acid, salicylic acid); C ₇ H ₆ O ₃ ; [69-72-7] (2) Benzoic acid, 2-amino- (2-aminobenzoic acid, anthranilic acid); C ₇ H ₇ NO ₂ ; [118-92-3]	Original Measurements: ²⁸ I.L. Krupatkin, Sbornik Statei Obshchei po Khim., Akad. Naul S.S.S.R. 2 , 1221 (1953)
Variables: Composition and temperature	Prepared by: H. Miyamoto and A. Goto

Solubility of salicylic acid in 2-aminobenzoic acid

Crystallization temperature	Aminober	nzoic acid	Solubility of	salicylic acid
t/°C	100w ₂	100x ₂	$100w_1$	$100x_1$
155.0	0.00	0.00	100.00	100.00
148.0	10.87	10.94	89.13	89.06
141.5	20.91	21.03	79.09	78.97
134.0	29.73	29.88	70.27	70.12
123.0	40.02	40.19	59.98	59.81
113.0	49.34	49.52	50.66	50.48
110.0^{a}	53.00	53.18	47.00	46.82
112.0	55.12	55.30	44.88	44.70
117.0	60.06	60.23	39.94	39.77
122.0	65.15	65.31	34.85	34.69
129.0	74.71	74.85	35.29	25.15
136.0	85.13	85.22	14.87	14.78
145.0	100.00	100.00	0.00	0.00

^aEutectic point

Auxiliary Information

Methods/Apparatus/Procedure:

The experiment was performed by the fusion method.

Source and Purity of Materials:

Chemically pure grade salicylic acid with m.p. of 155 $^{\circ}$ C and chemically pure grade aminobenzoic acid with m.p. of 145 $^{\circ}$ C were used.

Estimated Errors:

Nothing specified.

Components: (1) Benzoic acid, 2-hydroxy- (<i>o</i> -hydroxybenzoic acid, salicylic acid); C ₇ H ₆ O ₃ ; [69-72-7] (2) 1,4-Dioxane; C ₄ H ₈ O ₂ ; [123-91-1]	Original Measurements: ¹⁸ K.M. De Fina, T.L. Sharp, L.E. Roy, and W.E. Acree Jr., J. Chem. Eng. Data 44 , 1262 (1999).
Variables: <i>T</i> /K=298.15	Prepared by: A. Goto and H. Miyamoto

The solubility of salicylic acid in 1,4-dioxane at 298.15 K was reported as x_1 =0.294.

Auxiliary Information

Methods/Apparatus/Procedure:

The experimental details are given in the compilation of Ref. 18 for the salicylic acid-1-butanol system in Sec. 2.1.2.1.

Source and Purity of Materials:

Salicylic acid is given in the compilation of Ref. 18 for the salicylic acid-1-butanol system in Sec. 2.1.2.1.

1,4-Dioxane (Aldrich, 99.8% anhydrous) was stored over molecular sieves before use.

Estimated Errors:

Solubility: Nothing specified. Temperature: Precision of ± 0.1 °C.

^bThe eutectic halt (or arrest) means the time during which the solid phase appears at the eutectic temperature as the mixture is cooled.

 $^{^{\}rm c} {\rm In}$ this paper, the eutectic point was assumed to be 5.0 % salicylic acid and 38.16 $^{\rm o} {\rm C}$ by the eutectic halt.

Components: (1) Benzoic acid, 2-hydroxy- (o-hydroxybenzoic acid, salicylic acid); C ₇ H ₆ O ₃ ; [69-72-7] (2) Furan, tetrahydro- (oxolane, tetrahydrofuran); C ₄ H ₈ O; [109-99-9]	Original Measurements: ¹⁸ K.M. De Fina, T.L. Sharp, L.E. Roy, and W.E. Acree Jr., J. Chem. Eng. Data 44 , 1262 (1999).
Variables: <i>T</i> /K=298.15	Prepared by: A. Goto and H. Miyamoto

The solubility of salicylic acid in tetrahydrofuran at 298.15 K was reported as $x_1 = 0.3642$.

Auxiliary Information

Methods/Apparatus/Procedure:

The experimental details are given in the compilation of Ref. 18 for the salicylic acid-1-butanol system in Sec. 2.1.2.1.

Source and Purity of Materials:

Salicylic acid is given in the compilation of Ref. 18 for the salicylic acid-1-butanol system in Sec. 2.1.2.1.

Tetrahydrofuran (Aldrich, 99.9% anhydrous) was stored over molecular sieves before use.

Estimated Errors:

Solubility: Nothing specified. Temperature: Precision of ± 0.1 °C.

Components:	Original Measurements:
*	
(1) Benzoic acid, 2-hydroxy-	²⁹ I.L. Krupatkin, Zh. Obsh.
(o-hydroxybenzoic acid, salicylic	Khim. 26, 1050 (1956) [J. Gen.
acid); C ₇ H ₆ O ₃ ; [69-72-7]	Chem. USSR (Engl. Transl.) 26,
(2) Aminopyrine	1197 (1956)].
(4-(dimethylamino)-1,5-dimethyl-2-pl	henylpyrazol-3-one);
C ₁₃ H ₁₇ N ₃ O; [58-15-1]	

Variables:	Prepared by:
$t/^{\circ}C = 82.0 - 104.0$	H. Miyamoto and A. Goto

Solubility of salicylic acid in aminopyrine

Crystallization temperature	Solubility	
t/°C	$100w_1$	$100x_1$
82.0	51.5	64.0
83.0	52.0	64.5
84.0	50.0	62.6
87.0	18.0	26.9
88.0	20.0	29.5
90.0	45.0	57.8
90.0	55.0	67.2
91.0	15.0	22.8
91.0	25.0	35.8
92.0	43.0	55.8
93.0	28.0	39.4
93.0	60.0	71.5
93.5	63.0	74.0
94.5	30.0	41.8
95.0	40.0	52.7
96.5	39.0	51.7
97.0	35.0	47.4

Solubility of salicylic acid in aminopyrine

Crystallization temperature	Solubility	
t/°C	$100w_1$	$100x_1$
97.0	37.4	50.0
98.0	10.0	15.7
99.0	64.0	74.9
103.0	65.0	75.7
104.0	5.0	8.1
107.0	66.0	76.5
108.0	0.0	0.0
116.0	38.0	50.6
124.0	70.0	79.6
134.0	75.0	83.4
142.0	80.0	87.0
152.0	90.0	93.8
155.0	100.0	100.0

Auxiliary Information

Methods/Apparatus/Procedure:

The binary aminopyrine-salicylic acid system was studied by the fusion method.

Source and Purity of Materials:

Parmacopoeia aminopyrine with m.p. of 108 °C and c.p. salicylic acid with m.p. of 155 °C were used.

Estimated Errors:

Nothing specified.

Components:	Original Measurements:
(1) Benzoic acid, 2-hydroxy-	¹⁷ A.N. Paruta, B.J. Sciarrone, and
(o-hydroxybenzoic acid, salicylic	N.G. Lordi, J. Pharm. Sci. 53,
acid); C ₇ H ₆ O ₃ ; [69-72-7]	1349 (1964).
(2) Ethanol, 2-ethoxy-	

(2-ethoxyethanol, ethyl cellosolve); $C_4H_{10}O_2$; [110-80-5]

Variables:	Prepared by:
$t/^{\circ}$ C=30.6	A. Goto and R. Goto

Solubility of salicylic acid in ethyl cellosolve at 30.6 °C

	Solu	ıbility ^a
Dielectric constant of solvent	$\gamma_1/g \text{ dm}^{-3}$ (compiler)	$c_1/\operatorname{mol} \operatorname{dm}^{-3}$ (compiler)
14.5	425	3.08

^aIn the original paper, the solubility was given as mg/ml of solution.

Methods/Apparatus/Procedure:

The experimental details are given in the compilation of Ref. 16 for the salicylic acid—ethanol system in Sec. 2.1.2.1.

Source and Purity of Materials:

The solvent was purified by the method described in A. Weissberger *et al.*, *Organic Solvents*, 2nd ed. (Interscience, New York, 1955), Chaps. 4 and 5.

Estimated Errors:

Solubility: Nothing specified.

Temperature: Precision of $\pm 0.2~^{\circ}\text{C}$ (solubility) and $\pm 1.0~^{\circ}\text{C}$ (dielectric

constant).

2.1.4.2. 3-Hydroxybenzoic acid

Components:
(1) Benzoic acid, 3-hydroxy-
(m-hydroxybenzoic acid);
C ₇ H ₆ O ₃ ; [99-06-9]

Original Measurements:

¹⁴N.V. Sidgwick and E.K. Ewbank, J. Chem. Soc. **1921**,

(2) *n*-Heptane; C₇H₁₆; [142-82-5]

Variables: $t/^{\circ}C = 176.0$ and 197.0

Prepared by:

A. Goto and H. Miyamoto

Solubility of 3-hydroxybenzoic acid in n-heptane

Temperature	Solubility	
t/°C	$100w_1$	$100x_1$ (compiler)
197.0(liq.)	2.00	1.46
176.0	0.86	0.63
197.0	Triple point	

Auxiliary Information

Methods/Apparatus/Procedure:

The experimental details are given in the compilation of Ref. 14 for the salicylic acid—n-heptane system in Sec. 2.1.1.1.

Source and Purity of Materials:

The preparation and the purification of 3-hydroxybenzoic acid were described in [J. Walker and J. K. Wood, J. Chem. Soc. 117, 40 (1920)]. Melting point of the purified acid was 201.5 $^{\circ}$ C.

n-Heptane was a specimen from *Pinus sabiniana*, which had been purified by the method of Thorpe [T. E. Thorpe, J. Chem. Soc. **35**, 296 (1879)] by treatment with sulfuric and nitric acids, and distillation.

Estimated Errors:

Nothing specified.

Components: (1) Benzoic acid, 3-hydroxy- (<i>m</i> -hydroxybenzoic acid); C ₇ H ₆ O ₃ ; [99-06-9] (2) Cyclohexane; C ₆ H ₁₂ ; [110-82-7]	Original Measurements: ²¹ P. A. Ongley, J. Chem. Soc. 1954 , 3634.
Variables:	Prepared by:
t/°C=25	A. Goto and H. Miyamoto

Solubility of 3-hydroxybenzoic acid in cyclohexane at 25 °C.

Solubility	
pS	$c_1/\mathrm{mol}\ \mathrm{dm}^{-3}$ (compiler)
>6.000	<1.000×10 ⁻⁶

pS: The negative logarithm of the concentration in the saturated solutions in mol/l.

Auxiliary Information

Methods/Apparatus/Procedure:

The experimental details are given in the compilation of Ref. 21 for the salicylic acid-benzene system in Sec. 2.1.3.1.

Source and Purity of Materials:

The details are given in the compilation of Ref. 21 for the salicylic acid-benzene system in Sec. 2.1.3.1.

Estimated Errors:

Nothing specified.

Components:	Original Measurements:
(1) Benzoic acid, 3-hydroxy-	²³ C.K. Hancock, J.N. Pawloski,
(m-hydroxybenzoic acid);	and J.P. Idoux, J. Org. Chem. 31,
C ₇ H ₆ O ₃ ; [99-06-9]	3801 (1966).
(2) Cyclohexane; C ₆ H ₁₂ ;	
[110-82-7]	

Variables:	Prepared by:
t/ °C=30	A. Goto and H. Miyamoto

Solubility of 3-hydroxybenzoic acid in cyclohexane at 30 $^{\circ}\text{C}$

Solub	ility ^a
(compiler)	$100w_1$ (compiler)
9.73×10 ⁻⁶	1.69×10^{-3}

 $^{^{\}rm a}\! {\rm In}$ the original paper, the solubility was given as grams of acid per 100 g of saturated solution.

Auxiliary Information

Methods/Apparatus/Procedure:

The experimental details are given in the compilation of Ref. 23 for the 3-hydroxybenzoic acid-benzene system in Sec. 2.1.3.2.

Source and Purity of Materials:

The details are given in the compilation of Ref. 23 for the 3-hydroxybenzoic acid-benzene system in Sec. 2.1.3.2.

Estimated Errors:

Solubility (mole fraction units): The average deviation of the replicate values from the mean exceeds 3% only in the case of 5.5% for 3-hydroxybenzoic acid in cyclohexane.

Temperature: Precision of ± 0.02 °C.

Components:	Original Measurements:
(1) Benzoic acid, 3-hydroxy-	²⁶ E. Savarro, Atti Accad. Sci.
(m-hydroxybenzoic acid);	Torino 48, 948 (1914) [Chem.
C ₇ H ₆ O ₃ ; [99-06-9]	Abs. 8, 340 (1914)].
(2) Methyl alcohol (methanol);	
CH ₄ O; [67-56-1]	

Variables:	Prepared by:	
t/ °C=15	A. Goto and H. Miyamoto	

Solubility of 3-hydroxybenzoic acid in methanol at 15 °C

	Solubility ^a	
Original data	$100w_1$ (compiler)	$m_1/\text{mol kg}^{-1}$ (compiler)
535.80	34.887	3.8792

^aIn the original paper, the solubility was given as grams per 1000 g of methanol.

Auxiliary Information

Methods/Apparatus/Procedure:

The experimental details are given in the compilation of Ref. 26 for the binary salicylic acid-methanol system in Sec. 2.1.2.1.

Source and Purity of Materials:

3-Hydroxybenzoic acid was recrystallized.

Estimated Errors:

Solubility: Precision of $\pm 1.5\%$. Temperature: Nothing specified.

Components:	Origi
(1) Benzoic acid, 3-hydroxy-	¹⁵ E. E
(m-hydroxybenzoic acid);	91 (19
C ₇ H ₆ O ₃ ; [99-06-9]	
(2) Methyl alcohol (methanol):	

Original Measurements:

¹⁵E. Bergroth, Farm. Aikak. **70**, 91 (1961).

(2) Methyl alcohol (methanol):

 $CH_4O; [67-56-1]$

Variables:	Prepared by:
$t/^{\circ}$ C=20.0	P. Scharlin

Solubility of 3-hydroxybenzoic acid in methanol at 20.0 °C

	Solubility ^a
$\gamma_1/g \text{ dm}^{-3}$ (compiler)	$c_1/\mathrm{mol\ dm}^{-3}$ (compiler)
278.6	2.017

^aIn the original paper, the solubility was given as grams per 100 ml of solution.

Auxiliary Information

Methods/Apparatus/Procedure:

The experimental details are given in the compilation of Ref. 15 for the salicylic acid-ethanol system in Sec. 2.1.2.1.

Source and Purity of Materials:

3-Hydroxybenzoic acid was obtained from Shuchardt, reinst.

The source and purity of methanol was not given; relative density $d = 0.792 (20 \,^{\circ}\text{C}/4 \,^{\circ}\text{C})$.

Estimated Errors:

Nothing specified. The values given are the mean of three independent determinations.

Components:	Original Measurements:
(1) Benzoic acid, 3-hydroxy- (m-hydroxybenzoic acid); C ₇ H ₆ O ₃ ; [99-06-9] (2) 1-Propanol (propan-1-ol, propyl alcohol); C ₃ H ₈ O; [71-23-8]	¹⁵ E. Bergroth, Farm. Aikak. 70 , 91 (1961).
Variables: t/°C=20.0	Prepared by: P. Scharlin

Solubility of 3-hydroxybenzoic acid in 1-propanol at 20.0 °C

S	olubility ^a
$\gamma_1/g \text{ dm}^{-3}$ (compiler)	$c_1/\mathrm{mol}\ \mathrm{dm}^{-3}$ (compiler)
163.4	1.183

^aIn the original paper, the solubility was given as grams per 100 ml of solution.

Auxiliary Information

Methods/Apparatus/Procedure:

The experimental details are given in the compilation of Ref. 15 for the salicylic acid-ethanol system in Sec. 2.1.2.1.

Source and Purity of Materials:

 $\hbox{$3$-Hydroxybenzoic acid was obtained from Shuchardt, reinst.}$

The source and purity of 1-propanol was not given. Relative density source and purity not given; relative density d=0.804 (20 °C/4 °C).

Estimated Errors:

Nothing specified. The values given are the mean of three independent determinations.

Components:	Original Measurements:
(1) Benzoic acid, 3-hydroxy-	¹⁴ S.V. Sidgwick and E.K.
(m-hydroxybenzoic acid);	Embank, J. Chem. Soc. 1921,
C ₇ H ₆ O ₃ ; [99-06-9]	979.
(2) 1-Butanol (butan-1-ol, butyl	
alcohol); C ₄ H ₁₀ O; [71-36-3]	

Variables: Prepared by: t/ ° C=36.5−180.3 A. Goto and H. Miyamoto

Solubility of 3-hydroxybenzoic acid in 1-butanol

Temperature	Solubility	
t/°C	100w ₁	$100x_1$ (compiler)
180.3	84.7	74.8
151.2	59.2	43.8
115.0	40.8	27.0
36.5	20.7	12.3
30.3	20.7	12.3

Methods/Apparatus/Procedure:

The experimental details are given in the compilation of Ref. 14 for the salicylic acid—n-heptane system in Sec. 2.1.1.1.

Source and Purity of Materials:

The preparation and purification methods were described in [J. Walker and J.K. Wood, J. Chem. Soc. 117, 40 (1920)]. Melting point of 3-hydroxybenzoic acid was 201 $^{\circ}$ C.

1-Butanol was repeatedly fractionated, and distilled within 0.1 °C.

Estimated Errors:

Nothing specified.

Components:	Original Measurements:
(1) Benzoic acid, 3-hydroxy-	²⁰ J. Walker and J.K. Wood, J
(m-hydroxybenzoic acid);	Chem. Soc. Trans. 73, 618
C ₇ H ₆ O ₃ ; [99-06-9]	(1898).
(2) Ethane, 1,1-oxybis-	
(ethoxyethane, diethyl ether);	
$C_4H_{10}O$; [60-29-7]	

Variables: Prepared by:

t/ °C=17.0 A. Goto and H. Miyamoto

Solubility of 3-hydroxybenzoic acid in diethyl ether at 17.0 °C

S	olubility ^a
$\gamma_1/g \text{ dm}^{-3}$ (compiler)	$c_1/\mathrm{mol}~\mathrm{dm}^{-3}$ (compiler)
97.3	0.704

^aThe solubility reported by the authors was expressed in grams per 100 cm³ of acetone solution at 23 °C and in grams per 100 cm³ of ether solution at 17 °C. The mass concentration, $\gamma_1 = m_1/V$, was calculated by the compiler, where m_1 is the mass of component 1 and V is the total volume of solution.

Auxiliary Information

Methods/Apparatus/Procedure:

The experimental details are given in the compilation of Ref. 20 for the salicylic acid-benzene system in Sec. 2.1.3.1.

Source and Purity of Materials:

No information was given.

Estimated Errors:

Nothing specified.

Components: (1) Benzoic acid, 3-hydroxy- (<i>m</i> -hydroxybenzoic acid); C ₇ H ₆ O ₃ ; [99-06-9] (2) 2-Propanone (propan-2-one, acetone); C ₃ H ₆ O; [67-64-1]	Original Measurements: ²⁰ J. Walker and J.K. Wood, J. Chem. Soc. Trans. 73 , 618 (1898).
Variables: t/ ° C=23.0	Prepared by: A. Goto and H. Miyamoto

Solubility of 3-hydroxybenzoic acid in acetone at 23.0 °C

	Solubility ^a
$\gamma_1/g \text{ dm}^{-3}$ (compiler)	$c_1/\mathrm{mol}~\mathrm{dm}^{-3}$ (compiler)
260	1.88

^aThe solubility reported by the authors was expressed in grams per 100 cm³ of acetone solution at 23 °C and in grams per 100 cm³ of ether solution at 17 °C. The mass concentration, $\gamma_1 = m_1/V$, was calculated by the compiler, where m_1 is the mass of component 1 and V is the total volume of the solution

Auxiliary Information

Methods/Apparatus/Procedure:

The experimental details are given in the compilation of Ref. 20 for the salicylic acid-benzene system in Sec. 2.1.3.1.

Source and Purity of Materials:

No information was given.

Estimated Errors:

Nothing specified.

Components:	Original Measurements:
(1) Benzoic acid, 3-hydroxy- (m-hydroxybenzoic acid); C ₇ H ₆ O ₃ ; [99-06-9] (2) 2-Propanone (propan-2-one, acetone); C ₃ H ₆ O; [67-64-1]	¹⁵ E. Bergroth, Farm. Aikak. 70 , 91 (1961).
Variables:	Prepared by:
t/°C=20.0	P. Scharlin

Solubility	of 3-hyd	lroxybenzoic	acid	in	acetone	at	20.0	°C

Sol	ubility ^a
$\gamma_1/g \text{ dm}^{-3}$ (compiler)	$c_1/\mathrm{mol~dm^{-3}}$ (compiler)
207.2	1.500

^aIn the original paper, the solubility was given as grams per 100 ml of solution.

Auxiliary Information

Methods/Apparatus/Procedure:

The experimental details are given in the compilation of Ref. 15 for the salicylic acid-ethanol system in Sec. 2.1.2.1.

Source and Purity of Materials:

3-Hydroxybenzoic acid was obtained from Shuchardt, reinst.

The source and purity of acetone were not given; relative density d=0.791 (20 °C/4 °C).

Estimated Errors:

Nothing specified. According to the author, the values given are the mean of three independent determinations.

Components:

(1) Benzoic acid, 3-hydroxy-(*m*-hydroxybenzoic acid);

C₇H₆O₃; [99-06-9]

(2) Ketones:

2-Butanone (butan-2-one, methyl ethyl ketone); C_4H_8O ; [78-93-3] 2-Pentanone (pentan-2-one, methyl propyl ketone); $C_5H_{10}O$; [107-87-9]

Original Measurements:

¹⁵E. Bergroth, Farm. Aikak. **70**, 91 (1961).

Variables: Prepared by: $t/^{\circ}C=20.0$ P. Scharlin

Solubility of 3-hydroxybenzoic acid in ketones at 20.0 °C

	Solu	ıbility ^a
Solvent	$\gamma_1/g \text{ dm}^{-3}$ (compiler)	$c_1/\text{mol dm}^{-3}$ (compiler)
2-Butanone 2-Pentanone	156.9 126.3	1.136 0.914

^aIn the original paper, the solubility was given as grams per 100 ml of solution.

Auxiliary Information

Methods/Apparatus/Procedure:

The experimental details are given in the compilation of Ref. 15 for the salicylic acid—ethanol system in Sec. 2.1.2.1.

Source and Purity of Materials:

3-Hydroxybenzoic acid was obtained from Shuchardt, reinst.

The source and purity of 2-butanone and 2-pentanone were not given. Relative density d of 2-butanone and 2-pentanone are 0.805 (20 °C/4 °C) and 0.812 (15 °C/15 °C), respectively.

Estimated Errors:

Nothing specified. The values given are the mean of three independent determinations.

2.1.4.3. 4-Hydroxybenzoic acid

Components:

Variables:

(1) Benzoic acid, 4-hydroxy-(p-hydroxybenzoic acid); C₇H₆O₃; [99-96-7]

 $t/^{\circ}$ C=197.0 and 208.5

(2) *n*-Heptane; C₇H₁₆; [142-82-5]

Original Measurements:

¹⁴N.V. Sidgwick and E.K. Ewbank, J. Chem. Soc. **1921**, 979.

Prepared by:

A. Goto and H. Miyamoto

Solubility of 4-hydroxybenzoic acid in n-heptane

Temperature	Solub	ility
t/°C	$100w_1$	$100x_1$ (compiler)
208.5(liq.)	1.80	1.31
197.0	1.06	0.771
208.5	Triple point	

Auxiliary Information

Methods/Apparatus/Procedure:

The experimental details are given in the compilation of Ref. 14 for the salicylic acid—n-heptane system in Sec. 2.1.1.1.

Source and Purity of Materials:

The preparation and the purification of 4-hydroxybenzoic acid were described in [J. Walker and J.K. Wood, J. Chem. Soc. **117**, 40 (1920)]. Melting point of the purified acid was 213.0 °C.

n-Heptane was a specimen from *Pinus sabiniana*, which had been purified by treatment with sulfuric and nitric acids, and distillation.

Estimated Errors:

Nothing specified.

Components: (1) Benzoic acid, 4-hydroxy- (<i>p</i> -hydroxybenzoic acid); C ₇ H ₆ O ₃ ; [99-96-7] (2) Cyclohexane; C ₆ H ₁₂ ;	Original Measurements: ²¹ P.A. Ongley, J. Chem. Soc. 1954 , 3634.
[110-82-7] Variables: t/°C=25	Prepared by: A. Goto and H. Miyamoto

Solubility of 4-hydroxybenzoic acid in cyclohexane at 25 °C

	Solubility
pS	$10^3c_1/\mathrm{mol~dm^{-3}}$ (compiler)
4.398	0.039 99

pS: The negative logarithm of the concentration in the saturated solution in mol/l.

Auxiliary Information

Methods/Apparatus/Procedure:

The experimental details are given in the compilation of Ref. 21 for the salicylic acid-benzene system in Sec. 2.1.3.1.

Source and Purity of Materials:

The details are given in the compilation of Ref. 21 for the salicylic acid-benzene system in Sec. 2.1.3.1. The acid was either of AnarR standard or recrystallized before use.

No information of the purity of cyclohexane was reported.

Estimated Errors:

Nothing specified.

Components:	Original Measurements:
(1) Benzoic acid, 4-hydroxy-	²³ C.K. Hancock, J.N. Pawloski,
(p-hydroxybenzoic acid);	and J.P. Idoux, J. Org. Chem. 31
C ₇ H ₆ O ₃ ; [99-96-7]	3801 (1966).
(2) Cyclohexane; C ₆ H ₁₂ ;	
[110-82-7]	
Variables:	Prepared by:
$t/^{\circ}C=30$	A. Goto and H. Miyamoto

Solubility of 4-hydroxybenzoic acid in cyclohexane at 30 °C

	Solubility ^a
$10^5 x_1$ (compiler)	$100w_1$ (compiler)
3.70	6.08×10^{-3}

^aIn the original paper, the solubility was given as grams of acid per 100 g of saturated solution.

Auxiliary Information

Methods/Apparatus/Procedure:

The experimental details are given in the compilation of Ref. 23 for the 3-hydroxybenzoic acid-benzene system in Sec. 2.1.3.2.

Source and Purity of Materials:

The details are given in the compilation of Ref. 23 for the 3-hydroxybenzoic acid-benzene system in Sec. 2.1.3.2.

Estimated Errors:

Solubility (mole fraction units): The average deviation of the replicate values from the mean did not exceed 3%.

Temperature: Precision of ± 0.02 °C.

Components:

Variables:

(1) Benzoic acid, 4-hydroxy-(p-hydroxybenzoic acid); C₇H₆O₃; [99-96-7] (2) Trichloromethane

Original Measurements:

²¹P.A. Ongley, J. Chem. Soc. 1954, 3634.

(chloroform); CHCl₃; [67-66-3]

Prepared by:

 $t/^{\circ}C=25$ A. Goto and H. Miyamoto

Solubility of 4-hydroxybenzoic acid in chloroform at 25 °C.

	Solubility
pS	$10^3 c_1/\text{mol dm}^{-3}$ (compiler)
2.991	1.021

pS: The negative logarithm of the concentration in the saturated solution in mol/l.

Auxiliary Information

Methods/Apparatus/Procedure:

The experimental details are given in the compilation of Ref. 21 for the salicylic acid-benzene system in Sec. 2.1.3.1.

Source and Purity of Materials:

The details are given in the compilation of Ref. 21 for the salicylic acid-benzene system in Sec. 2.1.3.1.

Estimated Errors:

Nothing specified.

Components:

(1) Benzoic acid, 4-hydroxy-(p-hydroxybenzoic acid); C₇H₆O₃; [99-96-7]

(2) Trichloromethane (chloroform); CHCl₃; [67-66-3] **Original Measurements:**

¹⁹A. Martin, P.L. Wu, and A. Beerbower, J. Pharm. Sci. 73, 188 (1984).

Variables: $t/^{\circ}C=25$

Prepared by:

A. Goto and R. Goto

The solubility of 4-hydroxybenzoic acid in chloroform at 25 °C was reported as $10^4x_1=1.5$.

Auxiliary Information

Methods/Apparatus/Procedure:

The experimental details are given in the compilation of Ref. 19 for the 4-hydroxybenzoic acid-ethanol system in Sec. 2.1.2.3.

Source and Purity of Materials:

The details are given in the compilation of Ref. 19 for the 4-hydroxybenzoic acid-ethanol system in Sec. 2.1.2.3.

Estimated Errors:

Nothing specified.

Components:

(1) Benzoic acid, 4-hydroxy-(p-hydroxybenzoic acid); C₇H₆O₃; [99-96-7]

(2) Methane, tetrachloro-(tetrachloromethane, carbon tetrachloride); CCl₄; [56-23-5]

Original Measurements:

²¹P.A. Ongley, J. Chem. Soc. **1954**, 3634.

Variables: Prepared by:

 $t/^{\circ}C=25$ A. Goto and H. Miyamoto

Solubility of 4-hydroxybenzoic acid in carbon tetrachloride at 25 °C.

Solubility	
pS	$10^3c_1/\mathrm{mol}~\mathrm{dm}^{-3}$ (compiler)
5.000	0.01000

pS: The negative logarithm of the concentration in the saturated solution in

Auxiliary Information

Methods/Apparatus/Procedure:

The experimental details are given in the compilation of Ref. 21 for the salicylic acid-benzene system in Sec. 2.1.3.1.

Source and Purity of Materials:

The details are given in the compilation of Ref. 21 for the salicylic acid-benzene system in Sec. 2.1.3.1.

Estimated Errors:

Nothing specified.

Components:

(1) Benzoic acid, 4-hydroxy-(p-hydroxybenzoic acid); C₇H₆O₃; [99-96-7] (2) Ethane, 1,2-dichloro-

Original Measurements:

¹⁹A. Martin, P.L. Wu, and A. Beerbower, J. Pharm. Sci. 73, 188 (1984).

(1,2-dichloroethane, ethylene dichloride); C₂H₄Cl₂; [107-06-2]

Prepared by: Variables: $t/^{\circ}C=25$ A. Goto and R. Goto

The solubility of 4-hydroxybenzoic acid in ethylene dichloride at 25 °C was reported as $10^4x_1=1.1$.

J. Phys. Chem. Ref. Data, Vol. 40, No. 2, 2011

Methods/Apparatus/Procedure:

The experimental details are given in the compilation of Ref. 19 for the 4-hydroxybenzoic acid-ethanol system in Sec. 2.1.2.3.

Source and Purity of Materials:

The details are given in the compilation of Ref. 19 for the 4-hydroxybenzoic acid-ethanol system in Sec. 2.1.2.3.

Estimated Errors:

Nothing specified.

 $t/^{\circ}C = 20.0$

Variables:	Prepared by:
CH ₄ O; [67-56-1]	
(2) Methyl alcohol (methanol);	
C ₇ H ₆ O ₃ ; [99-96-7]	
(p-hydroxybenzoic acid);	91 (1961).
(1) Benzoic acid, 4-hydroxy-	¹⁵ E. Bergroth, Farm. Aikak. 70 ,
Components:	Original Measurements:

Solubility of 4-hydroxybenzoic acid in methanol at 20.0 $^{\circ}\text{C}$

P. Scharlin

Solubility ^a	
$\gamma_1/g \text{ dm}^{-3}$ (compiler)	$c_1/\mathrm{mol}~\mathrm{dm}^{-3}$ (compiler)
324.5	2.349

^aIn the original paper, the solubility was given as grams per 100 ml of solution.

Auxiliary Information

Methods/Apparatus/Procedure:

The experimental details are given in the compilation of Ref. 15 for the salicylic acid-ethanol system in Sec. 2.1.2.1.

Source and Purity of Materials:

4-Hydroxybenzoic acid was obtained from Shuchardt, purity of 99.5%. The source and purity of methanol was not given; relative density $d = 0.792 (20 \, ^{\circ}\text{C}/4 \, ^{\circ}\text{C})$.

Estimated Errors:

Nothing specified. The value given is the mean of three independent determinations.

Components:	Original Measurements:
(1) Benzoic acid, 4-hydroxy-	¹⁹ A. Martin, P.L. Wu, and A.
(p-hydroxybenzoic acid);	Beerbower, J. Pharm. Sci. 73,
C ₇ H ₆ O ₃ ; [99-96-7]	188 (1984).
(2) Methyl alcohol (methanol);	
CH ₄ O; [67-56-1]	
Variables:	Prepared by:

Molar volume of solvent Solubility $v_2/\text{cm}^3 \text{ mol}^{-1} \qquad x_1$ $40.7 \qquad 0.1142$

Auxiliary Information

Methods/Apparatus/Procedure:

The experimental details are given in the compilation of Ref. 19 for the 4-hydroxybenzoic acid-ethanol system in Sec. 2.1.2.3.

Source and Purity of Materials:

The details are given in the compilation of Ref. 19 for the 4-hydroxybenzoic acid–ethanol system in Sec. 2.1.2.3.

Estimated Errors:

Nothing specified.

Components: (1) Benzoic acid, 4-hydroxy-(<i>p</i> -hydroxybenzoic acid); $C_7H_6O_3$; [99-96-7] (2) 1-Propanol (propan-1-ol, propyl alcohol); C_3H_8O ; [71-23-8]	Original Measurements: 15 E. Bergroth, Farm. Aikak. 70, 91 (1961).
Variables: $t/^{\circ}C=20.0$	Prepared by: P. Scharlin

Solubility of 4-hydroxybenzoic acid in 1-propanol at 20.0 °C

Solubility ^a	
$\gamma_1/g \text{ dm}^{-3}$ (compiler)	$c_1/\mathrm{mol\ dm^{-3}}$ (compiler)
194.6	1.409

^aIn the original paper, the solubility was given as grams per 100 ml of solution.

Auxiliary Information

Methods/Apparatus/Procedure:

The experimental details are given in the compilation of Ref. 15 for the salicylic acid–ethanol system in Sec. 2.1.2.1.

Source and Purity of Materials:

4-Hydroxybenzoic acid was obtained from Shuchardt, purity of 99.5%. The source and purity of 1-propanol was not given; relative density d =0.804 (20 °C/4 °C).

Estimated Errors:

Nothing specified. The value given is the mean of three independent determinations.

Components:	Original Measurements:
(1) Benzoic acid, 4-hydroxy-	¹⁹ A. Martin, P.L. Wu, and A.
(p-hydroxybenzoic acid);	Beerbower, J. Pharm. Sci. 73,
$C_7H_6O_3$; [99-96-7]	188 (1984).
(2) 1-Propanol (propan-1-ol,	
propyl alcohol); C ₃ H ₈ O;	
[71-23-8]	

023102-46 GOTO *ET AL.*

Variables: Prepared by: $t/^{\circ}$ C=25 A. Goto and R. Goto

Solubility of 4-hydroxybenzoic acid in 1-propanol at 25 °C

Molar volume of solvent	Solubility
$v_2/\mathrm{cm}^3\mathrm{mol}^{-1}$	x_1
75.1	0.1084

Auxiliary Information

Methods/Apparatus/Procedure:

The experimental details are given in the compilation of Ref. 19 for the salicylic acid—ethanol system in Sec. 2.1.2.1.

Source and Purity of Materials:

The details are given in the compilation of Ref. 19 for the salicylic acid–ethanol system in Sec. 2.1.2.1.

Estimated Errors:

Nothing specified.

Original Measurements:
¹⁹ A. Martin, P.L. Wu, and A.
Beerbower, J. Pharm. Sci. 73,
188 (1984).

Variables:	Prepared by:
<i>t</i> / °C=25	A. Goto and R. Goto

Solubility of 4-hydroxybenzoic acid in 1-pentanol at 25 °C	
Molar volume of solvent	Solubility
$v_2/\mathrm{cm}^3\mathrm{mol}^{-1}$	x_1
108.6	0.1145

Auxiliary Information

Methods/Apparatus/Procedure:

The experimental details are given in the compilation of Ref. 19 for the 4-hydroxybenzoic acid-ethanol system in Sec. 2.1.2.3.

Source and Purity of Materials:

The details are given in the compilation of Ref. 19 for the 4-hydroxybenzoic acid-ethanol system in Sec. 2.1.2.3.

Estimated Errors:

Nothing specified.

Components: (1) Benzoic acid, 4-hydroxy- (p-hydroxybenzoic acid); C ₇ H ₆ O ₃ ; [99-96-7] (2) 1-Hexanol (hexan-1-ol, hexyl alcohol); C ₆ H ₁₄ O; [111-27-3]	Original Measurements: ¹⁹ A. Martin, P.L. Wu, and A. Beerbower, J. Pharm. Sci. 73 , 188 (1984).
Variables: t/°C=25	Prepared by: A. Goto and R. Goto

Solubility of 4-hydroxybenzoic acid in 1-hexanol at 25 °C

Molar volume of solvent	Solubility
$v_2/\mathrm{cm}^3\mathrm{mol}^{-1}$	x_1
125.2	0.1121

Auxiliary Information

Methods/Apparatus/Procedure:

The experimental details are given in the compilation of Ref. 19 for the 4-hydroxybenzoic acid-ethanol system in Sec. 2.1.2.3.

Source and Purity of Materials:

The details are given in the compilation of Ref. 19 for the 4-hydroxybenzoic acid-ethanol system in Sec. 2.1.2.3.

Estimated Errors:

Nothing specified.

Components:	Original Measurements:
(1) Benzoic acid, 4-hydroxy-	¹⁹ A. Martin, P.L. Wu, and A.
(p-hydroxybenzoic acid);	Beerbower, J. Pharm. Sci. 73,
C ₇ H ₆ O ₃ ; [99-96-7]	188 (1984).
(2) 1-Octanol (octan-1-ol, octyl	
alcohol); C ₈ H ₁₈ O; [111-87-5]	

Variables:	Prepared by:
t/°C=25	A. Goto and R. Goto

Solubility of 4-hydroxybenzoic acid in 1-octanol at 25 °C

Molar volume of solvent	Solubility
$v_2/\mathrm{cm}^3\ \mathrm{mol}^{-1}$	x_1
158.4	0.1032

Auxiliary Information

Methods/Apparatus/Procedure:

The experimental details are given in the compilation of Ref. 19 for the 4-hydroxybenzoic acid-ethanol system in Sec. 2.1.2.3.

Source and Purity of Materials:

The details are given in the compilation of Ref. 19 for the 4-hydroxybenzoic acid-ethanol system in Sec. 2.1.2.3.

Estimated Errors:

Nothing specified.

Components:	Original Measurements:
(1) Benzoic acid, 4-hydroxy- (p-hydroxybenzoic acid); C ₇ H ₆ O ₃ ; [99-96-7] (2) 2-Propanol (propan-2-ol, isopropyl alcohol); C ₃ H ₈ O; [67-63-0]	¹⁹ A. Martin, P.L. Wu, and A. Beerbower, J. Pharm. Sci. 73 . 188 (1984).
Variables:	Prepared by:
t/ °C=25	A. Goto and R. Goto

J. Phys. Chem. Ref. Data, Vol. 40, No. 2, 2011

Solubility of 4-hydroxybenzoic acid in 2-propanol at 25 °C

Molar volume of solvent	Solubility
$v_2/\mathrm{cm}^3\mathrm{mol}^{-1}$	x_1
76.9	0.1297

Auxiliary Information

Methods/Apparatus/Procedure:

The experimental details are given in the compilation of Ref. 19 for the 4-hydroxybenzoic acid-ethanol system in Sec. 2.1.2.3.

Source and Purity of Materials:

The details are given in the compilation of Ref. 19 for the 4-hydroxybenzoic acid—ethanol system in Sec. 2.1.2.3.

Estimated Errors:

Nothing specified.

Components:

(1) Benzoic acid, 4-hydroxy-(p-hydroxybenzoic acid); C₇H₆O₃; [99-96-7] (2) 2-Methyl-1-propanol (2-methylpropan-1-ol, isobutyl alcohol); C₄H₁₀O; [78-83-1]

Original Measurements:

¹⁹A. Martin, P.L. Wu, and A. Beerbower, J. Pharm. Sci. **73**, 188 (1984).

Variables:

 $t/^{\circ}C=25$

Prepared by:

A. Goto and R. Goto

Solubility of 4-hydroxybenzoic acid in 2-methyl-1-propanol at 25 °C

Molar volume of solvent	Solubility
$v_2/\mathrm{cm}^3\mathrm{mol}^{-1}$	x_1
92.4	0.0901

Auxiliary Information

Methods/Apparatus/Procedure:

The experimental details are given in the compilation of Ref. 19 for the 4-hydroxybenzoic acid-ethanol system in Sec. 2.1.2.3.

Source and Purity of Materials:

The details are given in the compilation of Ref. 19 for the 4-hydroxybenzoic acid—ethanol system in Sec. 2.1.2.3.

Estimated Errors:

Nothing specified.

Components:	Original Measurements:
(1) Benzoic acid, 4-hydroxy-	¹⁹ A. Martin, P.L. Wu, and
(p-hydroxybenzoic acid);	A. Beerbower, J. Pharm. Sci.
C ₇ H ₆ O ₃ ; [99-96-7]	73 , 188 (1984).
(2) Benzyl alcohol	
(phenylmethanol);	
C ₇ H ₈ O; [100-51-6]	
Variables:	Prepared by:
t/ °C=25	A. Goto and R. Goto

Solubility of 4-hydroxybenzoic acid in benzyl alcohol at 25 °C

Molar volume of solvent	Solubility
$v_2/\mathrm{cm}^3\mathrm{mol}^{-1}$	x_1
103.9	0.0784

Auxiliary Information

Methods/Apparatus/Procedure:

The experimental details are given in the compilation of Ref. 19 for the 4-hydroxybenzoic acid-ethanol system in Sec. 2.1.2.3.

Source and Purity of Materials:

The details are given in the compilation of Ref. 19 for the 4-hydroxybenzoic acid-ethanol system in Sec. 2.1.2.3.

Estimated Errors:

Nothing specified.

Components:

(1) Benzoic acid, 4-hydroxy-(p-hydroxybenzoic acid); C₇H₆O₃; [99-96-7] (2) Diols and triols: 1,2-Ethanediol (ethane-1,2-diol, ethylene glycol); C₂H₆O; [107-21-1] 1,2-Propanediol (propane-1,2-diol, propylene glycol); C₃H₈O₂; [57-55-6]

1,2,3-Propanetriol (propane-1,2,3-triol, glycerol); C₃H₈O₃; [56-81-5]

Original Measurements:

¹⁹A. Martin, P.L. Wu, and A. Beerbower, J. Pharm. Sci. **73**, 188 (1984).

Variables:	Prepared by:	
t/°C=25	A. Goto and R. Goto	

Solubility of 4-hydroxybenzoic acid in diols and triols at 25 $^{\circ}\text{C}$

	Molar volume of solvent	Solubility
Solvent	$v_2/\mathrm{cm}^3\mathrm{mol}^{-1}$	x_1
Ethylene glycol	55.9	0.1132
Propylene glycol	73.7	0.1308
Glycerol	73.2	0.0301

Auxiliary Information

Methods/Apparatus/Procedure:

The experimental details are given in the compilation of Ref. 19 for the 4-hydroxybenzoic acid-ethanol system in Sec. 2.1.2.3.

Source and Purity of Materials:

The details are given in the compilation of Ref. 19 for the 4-hydroxybenzoic acid–ethanol system in Sec. 2.1.2.3.

Estimated Errors:

Nothing specified.

Components:Original Measurements:(1) Benzoic acid, 4-hydroxy-
(p-hydroxybenzoic acid); 20 J. Walker and J.K. Wood, J.
Chem. Soc. Trans. 73, 618 $C_7H_6O_3$; [99-96-7]
(2) Ethane, 1,1'-oxybis-
(ethoxyethane, diethyl ether);
 $C_4H_{10}O$; [60-29-7](1898).

Variables:Prepared by:t/ $^{\circ}$ C=17A. Goto and H. Miyamoto

Solubility of 4-hydroxybenzoic acid in diethyl ether at 17 °C

Solu	bility ^a
$\gamma_1/g \text{ dm}^{-3}$ (compiler)	$c_1/\mathrm{mol}~\mathrm{dm}^{-3}$ (compiler)
94.3	0.683

^aIn the original paper, the solubility was given as grams per 100 cm^3 of acetone solution at 23 °C and in grams per 100 cm^3 of ether solution at 17 °C. The mass concentration, $\gamma_1 = m_1/V$, was calculated by the compiler, where m_1 is the mass of component 1 and V is the total volume of the solution.

Auxiliary Information

Methods/Apparatus/Procedure:

The experimental details are given in the compilation of Ref. 20 for the salicylic acid-benzene system in Sec. 2.1.3.1.

Source and Purity of Materials:

No information was given.

Estimated Errors:

Nothing specified.

Components:	Original Measurements:
(1) Benzoic acid, 4-hydroxy-	¹⁹ A. Martin, P.L. Wu, and A.
(p-hydroxybenzoic acid);	Beerbower, J. Pharm. Sci. 73,
C ₇ H ₆ O ₃ ; [99-96-7]	188 (1984).
(2) Ethane, 1,1-oxybis-	
(ethoxyethane, diethyl ether);	
C ₄ H ₁₀ O; [60-29-7]	

Variables:	Prepared by:
t/°C=25	A. Goto and R. Goto

Solubility of 4-hydroxybenzoic acid in diethyl ether at 25 °C

Molar volume of solvent	Solubility
$v_2/\mathrm{cm}^3\mathrm{mol}^{-1}$	10^2x_1
104.8	5.21

Auxiliary Information

Methods/Apparatus/Procedure:

The experimental details are given in the compilation of Ref. 19 for the 4-hydroxybenzoic acid-ethanol system in Sec. 2.1.2.3.

Source and Purity of Materials:

The details are given in the compilation of Ref. 19 for the 4-hydroxybenzoic acid-ethanol system in Sec. 2.1.2.3.

Estimated Errors:

Nothing specified.

Components:

(1) Benzoic acid, 4-hydroxy-(*p*-hydroxybenzoic acid); C₇H₆O₃; [99-96-7]

(2) 2-Propanone (propan-2-one, acetone); C₃H₆O; [67-64-1]

Original Measurements:

²⁰J. Walker and J.K. Wood, J. Chem. Soc. Trans. **73**, 618 (1898).

Variables: Prepared by:

 $t/^{\circ}$ C=23 A. Goto and H. Miyamoto

Solubility of 4-hydroxybenzoic acid in acetone at 23 °C

	Solubility ^a
$\gamma_1/g \text{ dm}^{-3}$ (compiler)	$c_1/\mathrm{mol}~\mathrm{dm}^{-3}$ (compiler)
227	1.64

^aIn the original paper, the solubility was given as grams per 100 cm^3 of the acetone solution at 23 °C and in grams per 100 cm^3 of the ether solution at 17 °C. The mass concentration, $\gamma_1 = m_1/V$, was calculated by the compiler, where m_1 is the mass of component 1 and V is the total volume of the solution.

Auxiliary Information

Methods/Apparatus/Procedure:

The experimental details are given in the compilation of Ref. 20 for the binary salicylic acid-benzene system in Sec. 2.1.3.1.

Source and Purity of Materials:

No information was given.

Estimated Errors:

Nothing specified.

Components: Original Measurements:

(1) Benzoic acid, 4-hydroxy-(p-hydroxybenzoic acid); C₇H₆O₃; [99-96-7] ¹⁵E. Bergroth, Farm. Aikak. **70**,
91 (1961).

(2) 2-Propanone (propan-2-one, acetone); C_3H_6O ; [67-64-1]

Variables: Prepared by: $t/^{\circ}C=20$ P. Scharlin

Solubility of 4-hydroxybenzoic acid in acetone at 20 °C

	Solubility ^a
$\gamma_1/g \text{ dm}^{-3}$ (compiler)	$c_1/\mathrm{mol\ dm^{-3}}$ (compiler)
205.5	1.488

^aIn the original paper, the solubility was given as grams per 100 ml of solution.

Auxiliary Information

Methods/Apparatus/Procedure:

The experimental details are given in the compilation of Ref. 15 for the salicylic acid-ethanol system in Sec. 2.1.2.1.

Source and Purity of Materials:

4-Hydroxybenzoic acid was obtained from Shuchardt, purity of 99.5%. Acetone: source and purity not given; relative density d=0.791 (20 °C/4 °C).

Estimated Errors:

Nothing specified. The value given is the mean of three independent determinations.

Components:

(1) Benzoic acid, 4-hydroxy-(p-hydroxybenzoic acid); C₇H₆O₃; [99-96-7] (2) 2-Propanone (propan-2-one, acetone); C₃H₆O; [67-64-1]

Original Measurements:

¹⁹A. Martin, P.L. Wu, and A. Beerbower, J. Pharm. Sci. **73**, 188 (1984).

Variables:

 $t/^{\circ}C=25$

Prepared by:

A. Goto and R. Goto

Solubility of 4-hydroxybenzoic acid in acetone at 25 $^{\circ}\text{C}$

Molar volume of solvent	Solubility
$v_2/\mathrm{cm}^3\mathrm{mol}^{-1}$	x_1
74.0	0.1185

Auxiliary Information

Methods/Apparatus/Procedure:

The experimental details are given in the compilation of Ref. 19 for the 4-hydroxybenzoic acid-ethanol system in Sec. 2.1.2.3.

Source and Purity of Materials:

The details are given in the compilation of Ref. 19 for the 4-hydroxybenzoic acid—ethanol system in Sec. 2.1.2.3.

Estimated Errors:

Nothing specified.

Components:

(1) Benzoic acid, 4-hydroxy-(p-hydroxybenzoic acid); $C_7H_6O_3$; [99-96-7]

(2) 2-Butanone (butan-2-one, methyl ethyl ketone); C₄H₈O; [78-93-3]

Variables:

 $t/\,^{\circ}\mathrm{C}\!=\!20$

Original Measurements:

¹⁵E. Bergroth, Farm. Aikak. **70**,91 (1961).

les: Prepared by: 20 P. Scharlin

Solubility of 4-hydroxybenzoic acid in 2-butanone at 20 °C

Solu	ıbility ^a
$\gamma_1/g \text{ dm}^{-3}$ (compiler)	$c_1/\mathrm{mol~dm^{-3}}$ (compiler)
205.8	1.490

^aIn the original paper, the solubility was given as grams per 100 ml of solution.

Auxiliary Information

Methods/Apparatus/Procedure:

The experimental details are given in the compilation of Ref. 15 for the salicylic acid-ethanol system in Sec. 2.1.2.1.

Source and Purity of Materials:

4-Hydroxybenzoic acid was obtained from Shuchardt, purity of 99.5%.

2-Butanone; source and purity not given; relative density d=0.805 (20 °C/4 °C).

Estimated Errors:

Nothing specified. The value given is the mean of three independent determinations.

Components:

(1) Benzoic acid, 4-hydroxy-(p-hydroxybenzoic acid); C₇H₆O₃; [99-96-7]

(2) 2-Pentanone (pentan-2-one, methyl propyl ketone); $C_5H_{10}O$;

[107-87-9] Variables:

 $t/^{\circ}C=20.0$

Original Measurements:

¹⁵E. Bergroth, Farm. Aikak. **70**, 91 (1961).

Prepared by:
P. Scharlin

Solubility of 4-hydroxybenzoic acid in 2-pentanone at 20.0 °C

Sol	lubility ^a
$\gamma_1/g \text{ dm}^{-3}$ (compiler)	$c_1/\text{mol dm}^{-3}$ (compiler)
170.9	1.237

^aIn the original paper, the solubility was given as grams per 100 ml of solution

Auxiliary Information

Methods/Apparatus/Procedure:

The experimental details are given in the compilation of Ref. 15 for the salicylic acid-ethanol system in Sec. 2.1.2.1.

Source and Purity of Materials:

4-Hydroxybenzoic acid was obtained from Shuchardt, purity of 99.5%. 2-Pentanone: source and purity not given; relative density

d=0.812 (15 °C/15 °C).

Estimated Errors:

Nothing specified. The value given is the mean of three independent determinations.

Components:

(1) Benzoic acid, 4-hydroxy-(p-hydroxybenzoic acid); C₇H₆O₃; [99-96-7]

(2) Carboxylic acids and their esters:

Acetic acid; C₂H₄O₂; [64-19-7] Propionic acid; C₃H₆O₂;

[79-09-4] Ethyl acetate (ethyl acetate,

acetic acid, ethyl ester); $C_4H_8O_2$; [141-78-6]

Butyl acetate (butyl acetate, acetic acid, butyl ester); C₆H₁₂O₂; [123-86-4]

Variables:

 $t/^{\circ}C=25$

Original Measurements:

¹⁹A. Martin, P.L. Wu, and A. Beerbower, J. Pharm. Sci. **73**, 188 (1984).

Prepared by:

25 A. Goto and R. Goto

023102-50 GOTO *ET AL.*

Solubility of 4-hydroxybenzoic acid in acids and their esters at 25 °C

	Molar volume of solvent	Solubility	
Solvent	$v_2/\text{cm}^3 \text{mol}^{-1}$	$10^2 x_1$	
Acetic acid	57.6	4.44	
Propionic acid	75.0	3.47	
Ethyl acetate	98.5	7.37	
Butyl acetate	132.6	5.74	

Auxiliary Information

Methods/Apparatus/Procedure:

The experimental details are given in the compilation of Ref. 19 for the 4-hydroxybenzoic acid-ethanol system in Sec. 2.1.2.3.

Source and Purity of Materials:

The details are given in the compilation of Ref. 19 for the 4-hydroxybenzoic acid-ethanol system in Sec. 2.1.2.3.

Estimated Errors:

Nothing specified.

Components:	Original Measurements:
(1) Benzoic acid, 4-hydroxy-	¹⁹ A. Martin, P.L. Wu, and A.
(p-hydroxybenzoic acid);	Beerbower, J. Pharm. Sci. 73,
C ₇ H ₆ O ₃ ; [99-96-7]	188 (1984).
(2) Methane, 1,1'-sulfinyl-bis-	
(methylsulfinylmethane, dimethyl sulfoxide); C ₂ H ₆ OS; [67-68-5]	

Variables:	Prepared by:
t/°C=25	A. Goto and R. Goto

The solubility of 4-hydroxybenzoic acid in dimethyl sulfoxide at 25 °C was reported as x_1 =0.3674.

Auxiliary Information

Methods/Apparatus/Procedure:

The experimental details are given in the compilation of Ref. 19 for the 4-hydroxybenzoic acid-ethanol system in Sec. 2.1.2.3.

Source and Purity of Materials:

The details are given in the compilation of Ref. 19 for the 4-hydroxybenzoic acid—ethanol system in Sec. 2.1.2.3.

Estimated Errors:

Nothing specified.

Components:	Original Measurements:
(1) Benzoic acid, 4-hydroxy-	¹⁹ A. Martin, P.L. Wu, and A.
(p-hydroxybenzoic acid);	Beerbower, J. Pharm. Sci. 73,
C ₇ H ₆ O ₃ ; [99-96-7]	188 (1984).
(2) Benzene, methyl- (toluene);	
C ₇ H ₈ ; [108-88-3]	
Variables:	Prepared by:
t/°C=25	A. Goto and R. Goto

Solubility of 4-hydroxybenzoic acid in toluene at 25 °C

Molar volume of solvent	Solubility
$v_2/\mathrm{cm}^3\mathrm{mol}^{-1}$	$100x_1$
106.9	0.29×10^{-2}

Auxiliary Information

Methods/Apparatus/Procedure:

The experimental details are given in the compilation of Ref. 19 for the 4-hydroxybenzoic acid-ethanol system in Sec. 2.1.2.3.

Source and Purity of Materials:

The details are given in the compilation of Ref. 19 for the 4-hydroxybenzoic acid-ethanol system in Sec. 2.1.2.3.

Estimated Errors:

Nothing specified.

Components:	Original Measurements:
(1) Benzoic acid, 4-hydroxy-	¹⁹ A. Martin, P.L. Wu, and A.
(p-hydroxybenzoic acid);	Beerbower, J. Pharm. Sci. 73,
C ₇ H ₆ O ₃ ; [99-96-7]	188 (1984).
(2) Acetophenone	
(1-phenylethanone, methyl	
phenyl ketone); C ₈ H ₈ O;	
[98-86-2]	
Variables:	Prepared by:
<i>t</i> / °C=25	A. Goto and R. Goto

Solubility of 4-hydroxybenzoic acid in acetophenone at 25 °C

Molar volume of solvent	Solubility
$v_2/\text{cm}^3 \text{ mol}^{-1}$	x_1
117.4	0.0223

Auxiliary Information

Methods/Apparatus/Procedure:

The experimental details are given in the compilation of Ref. 19 for the 4-hydroxybenzoic acid-ethanol system in Sec. 2.1.2.3.

Source and Purity of Materials:

The details are given in the compilation of Ref. 19 for the 4-hydroxybenzoic acid-ethanol system in Sec. 2.1.2.3.

Estimated Errors:

Nothing specified.

Components:	Original Measurements:
(1) Benzoic acid, 4-hydroxy-	¹⁹ A. Martin, P.L. Wu, and A.
(p-hydroxybenzoic acid);	Beerbower, J. Pharm. Sci. 73.
C ₇ H ₆ O ₃ ; [99-96-7]	188 (1984).
(2) Pyridine; C ₅ H ₅ N; [110-86-1]	
Variables:	Prepared by:
t/ °C=25	A. Goto and R. Goto

The solubility of 4-hydroxybenzoic acid in pyridine at 25 °C was reported as x_1 =0.1044.

Methods/Apparatus/Procedure:

The experimental details are given in the compilation of Ref. 19 for the 4-hydroxybenzoic acid-ethanol system in Sec. 2.1.2.3.

Source and Purity of Materials:

The details are given in the compilation of Ref. 19 for the 4-hydroxybenzoic acid–ethanol system in Sec. 2.1.2.3.

Estimated Errors:

Nothing specified.

 $t/^{\circ}C=25$

Variables:	Prepared by:
C ₄ H ₈ O ₂ ; [123-91-1]	
(2) 1,4-Dioxane (dioxane);	
C ₇ H ₆ O ₃ ; [99-96-7]	188 (1984).
(p-hydroxybenzoic acid);	Beerbower, J. Pharm. Sci. 73
(1) Benzoic acid, 4-hydroxy-	¹⁹ A. Martin, P.L. Wu, and A.
Components:	Original Measurements:

Solubility of 4-hydroxybenzoic acid in dioxane at 25 °C

A. Goto and R. Goto

Molar volume of solvent	Solubility
$v_2/\mathrm{cm}^3\mathrm{mol}^{-1}$	$10^2 x_1$
85.7	8.44

Auxiliary Information

Methods/Apparatus/Procedure:

The experimental details are given in the compilation of Ref. 19 for the 4-hydroxybenzoic acid-ethanol system in Sec. 2.1.2.3.

Source and Purity of Materials:

The details are given in the compilation of Ref. 19 for the 4-hydroxybenzoic acid-ethanol system in Sec. 2.1.2.3.

Estimated Errors:

Nothing specified.

2.1.5. Data for hydroxybenzoic acid-inorganic compound systems

2.1.5.1. Salicylic acid

Components:	Original Measurements:
(1) Benzoic acid, 2-hydroxy- (o-hydroxybenzoic acid, salicylic acid); C ₇ H ₆ O ₃ ; [69-72-7] (2) Carbon dioxide (supercritical fluid); CO ₂ ; [124-38-9]	³⁰ V.J. Krukonis and R.T. Kurnik J. Chem. Eng. Data 30 , 247 (1985).
Variables:	Prepared by:
Pressure: $207-414 \times 10^5$ Pa	H. Miyamoto and A. Goto

Solubility of salicylic acid in supercritical carbon dioxide at 373.2 K

Pressure ^a	Solubility
10 ⁵ Pa	$10^3 x_1$
207	2.07
276	2.99
345	3.53
414	6.99

^aIn the original paper, the pressure was given as bar. 1 bar= 10^5 Pa.

Auxiliary Information

Methods/Apparatus/Procedure:

The solubility measurement was carried out in a flow system. For each solubility test, about 30 g of oven-dried, powdered solid was charged between layers of glass wool to an extraction vessel, and connected to the system. The experimental setup for measuring solubilities in supercritical carbon dioxide was mainly made up as follows: gas cylinder, compressor, surge tank, pressure gauge, extractor, heating tape, heated valve, U-tube, rotameter, and dry test meter (the experimental setup was shown in the paper). The glass wool served to keep the powder from compacting during passage of gas through the extractor. Carbon dioxide was supplied at about 87 bar pressure and 313 K to the suction side of a double-end diaphragm compressor and was compressed to the measurement pressure. The pressure was controlled by a back-pressure regulator which diverted the bulk of the compressed gas from the surge tank back to the suction side of the compressor, resulting in an almost pulse-free flow of gas to the extractor. The high-pressure gas passing downstream of the compressor was heated in a tube preheater to about 373 K and was passed through the extraction vessel, which was maintained at 373 ± 2 K by a temperature indicator/controller which measured the temperature via an iron-constantan thermocouple positioned in the bed of powder and which regulated power to a heater on the extractor. The solution (consisting of carbon dioxide and dissolved solid) leaving the extraction vessel was passed through a heated, flow-regulating, pressure let-down valve and expanded to ambient pressure. The solid dissolved by the gas passing though the extraction vessel precipitated during the pressure-reduction step and was separated from the gas in the U-tube collector whose exit junction was fitted with a glass wool filter to prevent fine solids from passing through the tube; a second U-tube with a more tightly packed glass wool filter was positioned downstream of the first collector and served to trap any fine particles that might have passed through the first filter. The ambient gas leaving the collection system passed through a rotameter for flow rate measurement and through a dry test meter for flow volume integration. The flow rate of the carbon dioxide through the extractor was maintained at 3 SLPM (standard liters per minute); that flow rate was found to ensure that solubility equilibrium was achieved in the gas at the exit of the extractor. Gravimetric determinations of the amount of solid collected coupled with the integrated volume of gas passing through the system during a solubility test allowed concentration levels of the solute in the gas to be calculated.

Source and Purity of Materials:

Salicylic acid was purchased from Aldrich Chem. Co. and the purity of the acid was more than 99%.

Carbon dioxide of grade 2.8 was purchased from Airco, Inc.

Estimated Errors:

Solubility: Precision of 1%. Temperature: Precision of ±2 K. Pressure: Nothing specified.

Components:

(1) Benzoic acid, 2-hydroxy-(*o*-hydroxybenzoic acid, salicylic acid); C₇H₆O₃; [69-72-7] (2) Carbon dioxide (supercritical fluid); CO₂; [124-38-9]

Original Measurements:

³¹G.S. Gurdial and N.R. Foster, Ind. Eng. Chem. Res. **30**, 575 (1991).

Variables:

Pressure: $81.1-202 \times 10^5$ Pa $t/^{\circ}C=35-55$

Prepared by:

H. Miyamoto and A. Goto

Solubility of salicylic acid in supercritical carbon dioxide

		Temperature, $t/^{\circ}$ C		
Pressure ^a -	35	40	45	55
10 ⁵ Pa		Solubility, 10^4x_1		
81.1	0.34	0.11	0.07	_
86.1	0.75	0.18	_	_
91.2	1.23	0.66	0.17	
96.2	_	0.97	_	
101.3	1.64	1.36	0.83	0.34
111.4	1.86	1.63	1.27	0.73
121.6	2.08	1.92	1.72	1.3
131.7	2.21	2.23	2.27	2.28
141.8	_	2.53	2.59	2.68
152.0	2.41	2.76	3.05	3.34
162.1	_	3.02	3.25	4.01
172.2	2.62	3.15	3.59	4.81
182.4	2.80	3.5	3.85	5.46
192.5	_	3.64	_	5.72
202.6	3.06	3.95	4.32	6.24

^aIn the original paper, the pressure was given as bar. 1 bar=10⁵ Pa.

Auxiliary Information

Methods/Apparatus/Procedure:

Equilibrium solubility data were obtained by using a continuous flow apparatus. Experimental setup was as follows: CO_2 cylinder, pressure gauge, shutoff valves, HPLC pump, temperature controller, surge tank, pressure transducer, equilibrium cell, Jerguson gauge, thermocouple, filter, regulating valve, collection tube, filter, saturator, wet test meter, and constant temperature bath (the experimental setup was shown in the paper). Liquid carbon dioxide was directed to a high-pressure liquid chromatography (HPLC) pump at ambient temperature after passing through a high-pressure 7 μ m in-line filter. The HPLC pump was capable of delivering constant flow rates ranging from 0.1 to 9.9 ml/min at pressures up to 300 bar.

After compression, the carbon dioxide was charged into a 300 cm 3 sample cylinder that acted as a surge tank to dampen any pressure fluctuation. The high-pressure carbon dioxide then passed through a preheated coil, enabling the solvent to reach the desired extraction temperature. After reaching thermal equilibrium within the constant-temperature bath controlled to within ± 0.5 °C, the solvent was introduced into a system of three high-pressure equilibrium cells connected in series.

The first two equilibrium cells were 20 cm in length with an internal volume of 9.5 cm³, while the third cell consisted of a high-pressure reflex Jerguson sight gauge. The sight gauge was considered important to ensure measurement of equilibrium solid solubility, since melting-point depression from interaction of high-pressure carbon dioxide with a solid has been observed [M.A. McHugh and T.J. Yogan, J. Chem. Eng. Data 29, 112 (1984); H. Chang and D.G. Morrell, J. Chem. Eng. Data 30, 74 (1985)]. The equilibrium cells were packed with the solute to be extracted with alternate layers of glass wool to prevent solid compaction. Glass wool was also plugged at the outlet of each column to avoid blockage of the lines connecting the extraction tubes. A 5 μ m filter was installed after the last extraction cell to prevent entrainment of the solid during the experiment.

The system was maintained at the desired temperature and pressure for approximately 30 min before continuous operation commenced. The equilibrium temperature and pressure of the system were measured at the exit of the third equilibrium cell. The system pressure was measured with a Druck digital pressure transducer and indicator.

After achievement of equilibrium, the back-pressure regulating valve was opened slightly and the inlet flow rate was adjusted to maintain a constant system pressure. Upon expansion to ambient conditions, the dissolved solute precipitated out of the fluid phase. The precipitated solid was collected in a 2 μ m filter, and the total flow of the gas was measured with a wet test meter at ambient conditions after bubbling through a saturator. To confirm that equilibrium solubility was being measured, measurements were made at various flow rates ranging from 200 to 400 cm³/min (STP). Variation of the flow rate in this range was found to have no effect on the observed solubilities, thereby confirming that equilibrium solubility was being measured.

The determination of equilibrium solubility was achieved by a gravimetric method. At the end of each experiment, the mass of solid collected in the filter was determined with a Mettler balance. The back-pressure regulating valve and the transfer line were flushed with an organic solvent to recover all the precipitate.

Source and Purity of Materials:

Salicylic acid was purchased from Unilab, and the purity was more than

Liquid carbon dioxide was of food grade, and the minimum purity was 99.8%. All chemicals were used without further purification.

Estimated Errors:

Temperature: Precision of ± 0.2 °C. Pressure: Precision within $\pm 0.5\%$.

2.1.5.2. 3-Hydroxybenzoic acid

Components:

(1) Benzoic acid, 3-hydroxy-(*m*-hydroxybenzoic acid); C₇H₆O₃; [99-06-9]

(2) Carbon dioxide (supercritical fluid); CO₂; [124-38-9]

Original Measurements:

³⁰V.J. Krukonis and R.T. Kurnik, J. Chem. Eng. Data **30**, 247 (1985).

---1

Variables:

Pressure: $207-414 \times 10^5$ Pa

T/K = 373.2

Prepared by:

H. Miyamoto and A. Goto

Solubility of 3-hydroxybenzoic acid in supercritical carbon dioxide at 373.2 K

Pressure ^a	Solubility
10 ⁵ Pa	$10^5 x_1$
207	2.71
276	5.35
345	7.54
414	11.2

^aIn the original paper, the pressure was given as bar. 1 bar=10⁵ Pa.

Methods/Apparatus/Procedure:

The experimental details are given in the compilation of Ref. 30 for the salicylic acid-carbon dioxide system in Sec. 2.1.5.1.

Source and Purity of Materials:

3-Hydroxybenzoic acid was purchased from Aldrich Chem. Co. and the purity of the acid was 99%.

Carbon dioxide of grade 2.8 was purchased from Airco, Inc.

Estimated Errors:

T/K = 373.2

Solubility: Precision of 1%. Temperature: Precision of ± 2 K. Pressure: Nothing specified.

2.1.5.3. 4-Hydroxybenzoic acid

Components:	Original Measurements:
(1) Benzoic acid, 4-hydroxy- (p-hydroxybenzoic acid); C ₇ H ₆ O ₃ ; [99-96-7] (2) Carbon dioxide (supercritical fluid); CO ₂ ; [124-38-9]	³⁰ V.J. Krukonis and R.T. Kurnik, J. Chem. Eng. Data 30 , 247 (1985).
Variables: Pressure: 207–414×10 ⁵ Pa	Prepared by: H. Miyamoto and A. Goto

Solubility of 4-hydroxybenzoic acid in supercritical carbon dioxide at 373.2 K

Pressure ^a	Solubility
10 ⁵ Pa	$10^5 x_1$
207	1.33
276	3.57
345	5.77
414	7.49

 $^{{}^{}a}$ In the original paper, the pressure was given as bar. 1 bar=10⁵ Pa.

Auxiliary Information

Methods/Apparatus/Procedure:

The experimental details are given in the compilation of Ref. 30 for the salicylic acid-carbon dioxide system in Sec. 2.1.5.1.

Source and Purity of Materials:

4-Hydroxybenzoic acid was purchased from Aldrich Chem. Co. and the purity of the acid was more than 99%.

Carbon dioxide of grade 2.8 was purchased from Airco, Inc.

Estimated Errors:

Solubility: Precision of 1%. Temperature: Precision of ± 2 K. Pressure: Nothing specified.

2.2. Paraben-organic compound systems

2.2.1. Critical evaluation of the solubility of parabens in alcohols

2.2.1.1. Methylparaben

Components:

(1) Benzoic acid, 4-hydroxy-, methyl ester (methyl 4-hydroxybenzoate, methylparaben); C₈H₈O₃; [99-76-3]

(2) Methyl alcohol (methanol);

CH₄O; [67-56-1]

Evaluators:

Ayako Goto, University of Shizuoka, Shizuoka, Japan Rensuke Goto, University of Shizuoka, Shizuoka, Japan Hiroshi Fukuda, Kitasato University, Tokyo, Japan

Critical Evaluation

TABLE 22. Summary of experimental solubility data of methylparaben in methanol

T/K	$100w_1$	$100x_1$	Analytical method	Reference
298.2	39.5	12.1	Spectroscopy, Gravimetry	32
298.2	39.5	12.1	Spectroscopy	33
298.2		12.54	Spectroscopy	19
303.2	43.3	13.9	Spectroscopy	33
308.2	47.9	16.2	Spectroscopy	33
313.2	50.8	17.8	Spectroscopy	33

The critical evaluation was carried out as described in Sec. 2.1.1.1 for salicylic acid in *n*-heptane.

The number of publications: 3

The range of temperature: T/K = 298.2 - 313.2The units: mass percent and mole fraction

Analytical methods: spectroscopy and gravimetry

Data in Table 22 for the solubility of methylparaben in methanol expressed by mole fraction were fitted to Eqs. (1) and (2) given in Sec. 1.3. The data points nearly agree with Eq. (2) over the whole range of temperatures, as shown in Fig. 10, but they deviated from Eq. (1). Multiple regression analysis according to Eq. (2) yielded the following results:

Multiple correlation coefficient: 0.995

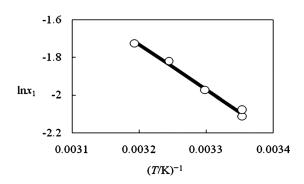


Fig. 10. Fitting curve of Eq. (2) and the observed data for methylparaben in methanol.

Sample size: 6 data points *p*-value (F test): 0.000

Constants: $A = -2392 \pm 122$, $C = 5.921 \pm 0.401$

White circles in Fig. 10 represent the observed data and the black line corresponds to calculated values according to Eq. (2) $(\ln x_1 = -2392/T + 5.921)$. The observed data fit closely with the calculated values in the range of 298.2-313.2 K, with the multiple correlation coefficient of 0.995, as shown in Fig. 10. Therefore, the calculated value at each measured temperature is reasonably considered as a recommended value over the whole range of temperature.

Table 23 shows the observed data in the range of 298.2-313.2 K and the recommended values calculated from Eq. (2) at each temperature.

TABLE 23. Observed data and recommended values calculated according to Eq. (2) for methylparaben in methanol

T/K	$100x_1(obs)$	$100x_1(rec)$
298.2	12.1	12.3
303.2	13.9	14.0
308.2	16.2	15.9
313.2	17.8	18.0

Components:

(1) Benzoic acid, 4-hydroxy-, methyl ester (methyl

4-hydroxybenzoate, methylparaben); C₈H₈O₃;

[99-76-3]

(2) Methyl alcohol (methanol);

CH₄O; [67-56-1]

Variables: $t/^{\circ}C=25$

Prepared by:

216 (1969).

A. Goto and R. Goto

Original Measurements:

³²A.N. Paruta, J. Pharm. Sci. 58,

Solubility of methylparaben in methanol at 25 $^{\circ}\text{C}$

Density	Solubili	Solubility	
$\rho/\mathrm{g~cm}^{-3}$	$100w_1^{a}$ (compiler)	x_1	
0.9166	39.5	0.121	

^aIn the original paper, the solubility was given as milligrams of the ester per gram of solution.

Auxiliary Information

Methods/Apparatus/Procedure:

Screw-capped bottles with the ester in excess and solvent were rotated for 24 h in a constant-temperature bath regulated at 25 °C. Samples were withdrawn through a pledget of glass wool into a pipet, which was wiped clean and allowed to drain into either a tared weighing bottle or a volumetric flask. Solubilities were determined by either a spectrophotometric or gravimetric procedure.

Source and Purity of Materials:

Methanol (Fisher certified) was used.

Methylparaben was obtained from Matheson, Coleman, and Bell.

Estimated Errors:

Solubility: Nothing specified.

Temperature: Precision of ± 0.1 °C.

Components:

(1) Benzoic acid, 4-hydroxy-, methyl ester (methyl 4-hydroxybenzoate, methylparaben); C₈H₈O₃;

[99-76-3]

(2) Methyl alcohol (methanol);

Original Measurements:

33K.S. Alexander, J.W. Mauger, H. Petersen, Jr., and A. N. Paruta, J. Pharm. Sci. 66, 42

(1977).

CH₄O; [67-56-1]

Variables: Prepared by:

 $t/^{\circ}C = 25 - 40$ A. Goto and R. Goto

Solubility of methylparaben in methanol

Temperature	So	lubility
t/°C	x_1	w ₁ ^a (compiler)
25	0.121	0.395
30	0.139	0.433
35	0.162	0.479
40	0.178	0.508

^aIn the original paper, the solubility was given as mg/g of solution.

Auxiliary Information

Methods/Apparatus/Procedure:

The solute and solvent were placed in 15 ml vials attached to a submerged rotating plastic disk [A.N. Paruta, J. Pharm. Sci. 55, 1208 (1966)]. After equilibration for 17 h at 25 °C, the sample of appropriate volume was withdrawn through a fine glass-wool plug fitted to a pipet with a short rubber tube. The sample solution was placed in a volumetric flask and diluted to the appropriate volume for analysis. The concentration of solute in solutions was determined spectrophotometrically. A Beckman DK-2 spectrophotometer was used to determine the absorbance of the solutions. The solubility of each solute was determined at least eight times for each solvent and average values were taken.

Source and Purity of Materials:

Spectrograde methylparaben was purchased from Matheson Coleman and Bell Co.

The source and the purity of methanol were not reported.

Estimated Errors:

Solubility: Precision within 2.5%. Temperature: Precision of ±0.1 °C.

Components:

(1) Benzoic acid, 4-hydroxy-, methyl ester (methyl 4-hydroxybenzoate, methylparaben); C₈H₈O₃; [99-76-3]

(2) Methyl alcohol (methanol); CH₄O; [67-56-1]

Original Measurements:

¹⁹A. Martin, P.L. Wu, and A. Beerbower, J. Pharm. Sci. 73,

188 (1984).

Variables: $t/^{\circ}C=25$

Prepared by: A. Goto and R. Goto

J. Phys. Chem. Ref. Data, Vol. 40, No. 2, 2011

Solubility of methylparaben in methanol at 25 °C

Molar volume of solvent	Solubility
$v_2/\mathrm{cm}^3\mathrm{mol}^{-1}$	x_1
40.7	0.1254

Methods/Apparatus/Procedure:

The experimental details are given in the compilation of Ref. 19 for the 4-hydroxybenzoic acid-ethanol system in Sec. 2.1.2.3.

Source and Purity of Materials:

Methylparaben (Tenneco Chemical Inc.) was used as obtained. Melting point measured by a hot-stage method was 399.65 K.

The solvent was spectrophotometric grade, ACS grade, or redistilled before use.

Estimated Errors:

Solubility: The experimental variation was below 3%.

Temperature: Precision of ± 0.2 °C.

Components:	Evaluators:
(1) Benzoic acid, 4-hydroxy-,	Ayako Goto, University of
methyl ester (methyl	Shizuoka, Shizuoka, Japan
4-hydroxybenzoate,	Rensuke Goto, University of
methylparaben); C ₈ H ₈ O ₃	Shizuoka, Shizuoka, Japan
[99-76-3]	Hiroshi Fukuda, Kitasato
(2) Ethyl alcohol (ethanol);	University, Tokyo, Japan
C ₂ H ₆ O; [64-17-5]	

Critical Evaluation

Table 24. Summary of experimental solubility data of methylparaben in ethanol

T/K	$100w_1$	$100x_1$	Analytical method	Reference
298.2	36.0	14.7	Spectroscopy, Gravimetry	32
298.2	36.7	14.7	Spectroscopy	33
298.2		14.95	Spectroscopy	19
303.2	37.9	15.6	Spectroscopy	33
308.2	41.0	17.4	Spectroscopy	33
313.2	45.4	20.1	Spectroscopy	33

The critical evaluation was carried out as described in Sec. 2.1.1.1 for salicylic acid in n-heptane.

The number of publications: 3

The range of temperature: T/K = 298.2 - 313.2

The units: mass percent and mole fraction

Analytical methods: spectroscopy and gravimetry

Data for the solubility of methylparaben in ethanol expressed by mole fraction were fitted to Eqs. (1) and (2) given in Sec. 1.3 (Table 24). The data points agree with Eq. (2) over the whole range of temperatures, as shown in Fig. 11, but they deviated from Eq. (1). Multiple regression analysis according to Eq. (2) yielded the following results:

Multiple correlation coefficient: 0.980

Sample size: 6 data points

p-value (F test): 0.001

Constants: $A = -1804 \pm 183$, $C = 4.126 \pm 0.602$

White circles in Fig. 11 represent the observed data and the black line corresponds to calculated values according to

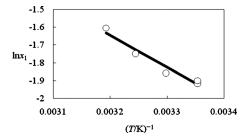


Fig. 11. Fitting curve of Eq. (2) and the observed data for methylparaben in ethanol.

Eq. (2) $(\ln x_1 = -1804/T + 4.126)$. The observed data fit closely with the calculated values in the range of 298.2–313.2 K, with the multiple correlation coefficient of 0.980, as shown in Fig. 11. Therefore, the calculated value at each measured temperature is reasonably considered as a recommended value over the whole range of temperature.

Table 25 shows the observed data in the range of 298.2–313.2 K and the recommended values calculated from Eq. (2) at each temperature.

TABLE 25. Observed data and recommended values calculated according to Eq. (2) for methylparaben in ethanol

T/K	100 <i>x</i> ₁ (obs)	$100x_1(rec)$
298.2	14.7	14.6
303.2	15.6	16.2
308.2	17.4	17.8
313.2	20.1	19.5

Components:	Original Measurements:
(1) Benzoic acid, 4-hydroxy-,	³² A.N. Paruta, J. Pharm. Sci. 58 ,
methyl ester (methyl 4-hydroxybenzoate,	216 (1969).
methylparaben); C ₈ H ₈ O ₃ ;	
[99-76-3] (2) Ethyl alcohol (ethanol);	
C_2H_6O ; [64-17-5]	

Variables:	Prepared by:
$t/^{\circ}$ C=25	A. Goto and R. Goto

Solubility of methylparaben in ethanol at 25 °C

Density	Solubility	
ρ /g cm ⁻³	$100w_1^a$ (compiler)	x_1
0.8970	36.0	0.147

^aIn the original paper, the solubility was given as milligrams of the ester per grams of solution.

Auxiliary Information

Methods/Apparatus/Procedure:

The experimental details are given in the compilation of Ref. 32 for the methylparaben-methanol system in Sec. 2.2.1.1.

Source and Purity of Materials:

Absolute ethanol was obtained from U.S. Industrial Chem. Co. Methylparaben was obtained from Matheson, Coleman and Bell.

Estimated Errors:

Solubility: Nothing specified. Temperature: Precision of ± 0.1 °C.

Com		
Com	DOH	enus:

(1) Benzoic acid, 4-hydroxy-, methyl ester (methyl 4-hydroxybenzoate, methylparaben); C₈H₈O₃; [99-76-3]

(2) Ethyl alcohol (ethanol); C₂H₆O; [64-17-5]

ts: Original Measurements:

³³K.S. Alexander, J.W. Mauger, H. Petersen, Jr., and A.N. Paruta, J. Pharm. Sci. **66**, 42 (1977).

Variables:

 $t/{}^{\circ}C=25-40$

Prepared by:

A. Goto and R. Goto

Solubility of methylparaben in ethanol

Temperature	So	lubility
t/°C	x_1	w_1^a (compiler)
25	0.147	0.367
30	0.156	0.379
35	0.174	0.410
40	0.201	0.454

^aIn the original paper, the solubility was given as mg/g of solution.

Auxiliary Information

Methods/Apparatus/Procedure:

The experimental details are given in the compilation of Ref. 33 for the methylparaben-methanol system in Sec. 2.2.1.1.

Source and Purity of Materials:

Spectrograde methylparaben was purchased from Matheson Coleman and Bell Co. The melting point was within 1 $^{\circ}$ C of the literature value. Ethanol (J.T. Baker) was of absolute reagent quality. The purity of the alcohol was established by refractive-index and dielectric-constant measurements.

Estimated Errors:

Solubility: Precision within 2.5%. Temperature: Precision of ± 0.1 °C.

Components:

(1) Benzoic acid, 4-hydroxy-, methyl ester (methyl 4-hydroxybenzoate, methylparaben); C₈H₈O₃;

(2) Ethyl alcohol (ethanol); C₂H₆O; [64-17-5]

Variables: $t/^{\circ}C=25$

[99-76-3]

Prepared by:

188 (1984).

A. Goto and R. Goto

Original Measurements:

¹⁹A. Martin, P.L. Wu, and A.

Beerbower, J. Pharm. Sci. 73,

Solubility of methylparaben in ethanol at 25 °C

Molar volume of solvent	Solubility
$v_2/\mathrm{cm}^3\mathrm{mol}^{-1}$	x_1
58.7	0.1495

Auxiliary Information

Methods/Apparatus/Procedure:

The experimental details are given in the compilation of Ref. 19 for the 4-hydroxybenzoic acid-ethanol system in Sec. 2.1.2.3.

Source and Purity of Materials:

The details are given in the compilation of Ref. 19 for the 4-hydroxybenzoic acid-ethanol system in Sec. 2.1.2.3.

Estimated Errors:

Components:

Solubility: The experimental variation was below 3%.

Temperature: Precision of ± 0.2 °C.

Evaluators:

(1) Benzoic acid, 4-hydroxy-,
methyl ester (methyl
4-hydroxybenzoate,
methylparaben); C₈H₈O₃;
[99-76-3]
(2) 1-Propanol (propan-1-ol,
propyl alcohol); C₃H₈O;
[71-23-8]

Ayako Goto, University of
Shizuoka, Shizuoka, Japan
Hiroshi Fukuda, Kitasato
University, Tokyo, Japan

Critical Evaluation

TABLE 26. Summary of experimental solubility data of methylparaben in 1-propanol

Analytical method	Reference
Spectroscopy, Gravimetry	32
Spectroscopy	33
Spectroscopy	19
Spectroscopy	33
Spectroscopy	33
Spectroscopy	33
	Spectroscopy, Gravimetry Spectroscopy Spectroscopy Spectroscopy Spectroscopy

The critical evaluation was carried out as described in Sec. 2.1.1.1 for salicylic acid in n-heptane.

The number of publications: 3

The range of temperature: T/K = 298.2 - 313.2

The units: mass percent and mole fraction

Analytical methods: spectroscopy and gravimetry

Data for the solubility of methylparaben in 1-propanol expressed by mole fraction were fitted to Eqs. (1) and (2) given in Sec. 1.3 (Table 26). The data points nearly agree with Eq. (2) over the whole range of temperatures, as shown in Fig. 12, but they deviated from Eq. (1). Multiple regression analysis according to Eq. (2) yielded the following results:

Multiple correlation coefficient: 0.975

Sample size: 6 data points *p*-value (F test): 0.001

Constants: $A = -2146 \pm 246$, $C = 5.235 \pm 0.812$

White circles in Fig. 12 represent the observed data and the black line corresponds to calculated values according to

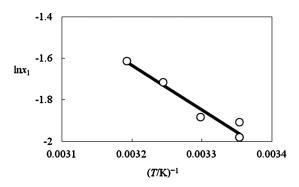


Fig. 12. Fitting curve of Eq. (2) and the observed data for methylparaben in

Eq. (2) $(\ln x_1 = -2146/T + 5.235)$. The observed data fit closely with the calculated values in the range of 298.2-313.2 K, with the multiple correlation coefficient of 0.975, as shown in Fig. 12. Therefore, the calculated value at each measured temperature is reasonably considered as a recommended value over the whole range of temperature.

Table 27 shows the observed data in the range of 298.2-313.2 K and the recommended values calculated from Eq. (2) at each temperature.

TABLE 27. Observed data and recommended values calculated according to Eq. (2) for methylparaben in 1-propanol

T/K	$100x_1(obs)$	$100x_1(rec)$
298.2	13.8	14.0
303.2	15.2	15.8
308.2	18.0	17.7
313.2	19.9	19.8

Components:

(1) Benzoic acid, 4-hydroxy-, methyl ester (methyl 4-hydroxybenzoate,

methylparaben); C₈H₈O₃; [99-76-3]

(2) 1-Propanol (propan-1-ol, propyl alcohol); C₃H₈O;

[71-23-8]

Original Measurements:

³²A.N. Paruta, J. Pharm. Sci. 58, 216 (1969).

Variables: $t/^{\circ}C=25$

Prepared by:

A. Goto and R. Goto

Solubility of methylparaben in 1-propanol at 25 °C

Density	Solubility	
$\rho/\mathrm{g~cm^{-3}}$	$100w_1^a$ (compiler)	x_1
0.8881	29.5	0.138

^aIn the original paper, the solubility was given as milligrams of the ester per gram of solution.

Auxiliary Information

Methods/Apparatus/Procedure:

The experimental details are given in the compilation of Ref. 32 for the methylparaben-methanol system in Sec. 2.2.1.1.

Source and Purity of Materials:

1-Propanol (Baker analyzed) was used.

Methylparaben was obtained from Matheson, Coleman and Bell.

Estimated Errors:

Solubility: Nothing specified. Temperature: Precision of ± 0.1 °C.

Components:

(1) Benzoic acid, 4-hydroxy-, methyl ester (methyl 4-hydroxybenzoate, methylparaben); C₈H₈O₃; [99-76-3]

(2) 1-Propanol (propan-1-ol, propyl alcohol); C₃H₈O;

[71-23-8]

Original Measurements:

33K.S. Alexander, J.W. Mauger, H. Petersen, Jr., and A. N. Paruta, J. Pharm. Sci. 66, 42 (1977).

Variables: $t/^{\circ}C = 25 - 40$

Prepared by:

A. Goto and R. Goto

Solubility of methylparaben in 1-propanol

Temperature	Solubility	
t/°C	x_1	w_1^a (compiler)
25	0.138	0.295
30	0.152	0.309
35	0.180	0.355
40	0.199	0.383

^aIn the original paper, the solubility was given as mg/g of solution.

Auxiliary Information

Methods/Apparatus/Procedure:

The experimental details are given in the compilation of Ref. 33 for the methylparaben-methanol system in Sec. 2.2.1.1.

Source and Purity of Materials:

Spectrograde methylparaben was purchased from Matheson Coleman and Bell Co. Melting point was within 1 °C of literature values.

1-Propanol (J.T. Baker) was of absolute reagent quality. The purity of the alcohol was established by refractive-index and dielectric-constant measurements.

Estimated Errors:

Solubility: Precision within 2.5%. Temperature: Precision of ± 0.1 °C.

Components:

(1) Benzoic acid, 4-hydroxy-, methyl ester (methyl 4-hydroxybenzoate, methylparaben); C₈H₈O₃; [99-76-3]

(2) 1-Propanol (propan-1-ol, propyl alcohol); C₃H₈O; [71-23-8]

¹⁹A. Martin, P.L. Wu, and A. Beerbower, J. Pharm. Sci. 73, 188 (1984).

Original Measurements:

J. Phys. Chem. Ref. Data, Vol. 40, No. 2, 2011

Variables:	Prepared by:
t/°C=25	A. Goto and R. Goto

Solubility	of	methy	vlnaraben	in	1-propanol	at	25	$^{\circ}C$

Molar volume of solvent	Solubility
$v_2/\mathrm{cm}^3\mathrm{mol}^{-1}$	x_1
75.1	0.1486

Methods/Apparatus/Procedure:

The experimental details are given in the compilation of Ref. 19 for the 4-hydroxybenzoic acid-ethanol system in Sec. 2.1.2.3.

Source and Purity of Materials:

The details are given in the compilation of Ref. 19 for the 4-hydroxybenzoic acid-ethanol system in Sec. 2.1.2.3.

Estimated Errors:

Solubility: The experimental variation was below 3%.

Temperature: Precision of ±0.2 °C.

Components:

(1) Benzoic acid, 4-hydroxy-, methyl ester (methyl 4-hydroxybenzoate, methylparaben); C₈H₈O₃; [99-76-3] (2) 1-Butanol (butan-1-ol, butyl alcohol); C₄H₁₀O; [71-36-3]

Evaluators:

Ayako Goto, University of Shizuoka, Shizuoka, Japan Rensuke Goto, University of Shizuoka, Shizuoka, Japan Hiroshi Fukuda, Kitasato University, Tokyo, Japan

Critical Evaluation

Table 28. Summary of experimental solubility data of methylparaben in 1-butanol

T/K	$100w_1$	$100x_1$	Analytical method	Reference
298.2	26.2	14.6	Spectroscopy, Gravimetry	32
298.2	26.2	14.6	Spectroscopy	33
298.2		14.84	Spectroscopy	19
303.2	27.2	15.4	Spectroscopy	33
308.2	29.8	17.2	Spectroscopy	33
313.2	32.6	19.1	Spectroscopy	33

The critical evaluation was carried out as described in Sec. 2.1.1.1 for salicylic acid in n-heptane.

The number of publications: 3

The range of temperature: T/K = 298.2 - 313.2The units: mass percent and mole fraction

Analytical methods: spectroscopy and gravimetry

Data for the solubility of methylparaben in 1-butanol expressed by mole fraction were fitted to Eqs. (1) and (2) given in Sec. 1.3 (Table 28). The data points nearly agree with Eq. (2) over the whole range of temperatures, as shown in Fig. 13, but they deviated from Eq. (1). Multiple regression analysis according to Eq. (2) yielded the following results:

Multiple correlation coefficient: 0.986

Sample size: 6 data points *p*-value (F test): 0.000

Constants: $A = -1590 \pm 135$, $C = 3.405 \pm 0.446$

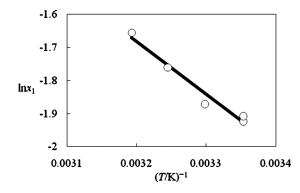


Fig. 13. Fitting curve of Eq. (2) and the observed data for methylparaben in 1-butanol.

White circles in Fig. 13 represent the observed data and the black line corresponds to calculated values according to Eq. (2) ($\ln x_1 = -1590/T + 3.405$). The observed data fit closely with the calculated values in the range of 298.2–313.2 K, with the multiple correlation coefficient of 0.986, as shown in Fig. 13. Therefore, the calculated value at each measured temperature is reasonably considered as a recommended value over the whole range of temperature.

Table 29 shows the observed data in the range of 298.2–313.2 K and the recommended values calculated from Eq. (2) at each temperature.

TABLE 29. Observed data and recommended values calculated according to Eq. (2) for methylparaben in 1-butanol

T/K	$100x_1(\text{obs})$	$100x_1(rec)$
298.2	14.6	14.6
303.2	15.4	15.9
308.2	17.2	17.3
313.2	19.1	18.8

Components:

(1) Benzoic acid, 4-hydroxy-, methyl ester (methyl 4-hydroxybenzoate, methylparaben); C₈H₈O₃; [99-76-3] Original Measurements:

³²A.N. Paruta, J. Pharm. Sci. **58**, 216 (1969).

(2) 1-Butanol (butan-1-ol, butyl alcohol); C₄H₁₀O; [71-36-3]

Variables:Prepared by:t/ °C=25A. Goto and R. Goto

Solubility of methylparaben in 1-butanol at 25 °C

Density	Solubili	ity
ρ /g cm ⁻³	$100w_1^a$ (compiler)	x_1
0.8894	26.2	0.146

^aIn the original paper, the solubility was given as milligrams of the ester per gram of solution.

Methods/Apparatus/Procedure:

The experimental details are given in the compilation of Ref. 32 for the methylparaben—methanol system in Sec. 2.2.1.1.

Source and Purity of Materials:

The source of 1-butanol was not reported.

Methyl 4-hydroxybenzoate was obtained from Matheson, Coleman, and Rell

Estimated Errors:

Solubility: Nothing specified. Temperature: Precision of ± 0.1 °C.

Components:

(1) Benzoic acid, 4-hydroxy-, methyl ester (methyl
4-hydroxybenzoate, methylparaben); C₈H₈O₃;
[99-76-3]
(2) 1-Butanol (butan-1-ol, butyl

alcohol); C₄H₁₀O; [71-36-3]

Original Measurements:

³³K.S. Alexander, J.W. Mauger, H. Petersen, Jr., and A.N. Paruta, J. Pharm. Sci. **66**, 42 (1977).

Variables:

t/°C=25−40

Prepared by:

A. Goto and R. Goto

Solubility of methylparaben in 1-butanol

Temperature		Solubility	
t/°C	x_1	w_1^a (compiler)	
25	0.146	0.262	
30	0.154	0.272	
35	0.172	0.298	
40	0.191	0.326	

^aIn the original paper, the solubility was given as mg/g of solution.

Auxiliary Information

Methods/Apparatus/Procedure:

The experimental details are given in the compilation of Ref. 33 for the methylparaben–methanol system in Sec. 2.2.1.1.

Source and Purity of Materials:

Spectrograde methylparaben was purchased from Matheson Coleman and Bell Co. Melting point was within 1 $^{\circ}$ C of literature values.

1-Butanol (TDY Mallinckrodt) was of analytical reagent quality. The purity of the alcohol was established by refractive-index and dielectric-constant measurements.

Estimated Errors:

Solubility: Precision within 2.5%. Temperature: Precision of ± 0.1 °C.

Components:

(1) Benzoic acid, 4-hydroxy-, methyl ester (methyl 4-hydroxybenzoate, methylparaben); C₈H₈O₃; [99-76-3] (2) 1-Butanol (butan-1-ol, butyl

alcohol); C₄H₁₀O; [71-36-3]

Original Measurements:

¹⁹A. Martin, P.L. Wu, and A. Beerbower, J. Pharm. Sci. **73**, 188 (1984).

Variables: $t/^{\circ}C=25$

Prepared by:

A. Goto and R. Goto

Solubility of methylparaben in 1-butanol at 25 $^{\circ}\text{C}$

Molar volume of solvent	Solubility
$v_2/\mathrm{cm}^3\mathrm{mol}^{-1}$	x_1
92.0	0.1484

Auxiliary Information

Methods/Apparatus/Procedure:

The experimental details are given in the compilation of Ref. 19 for the 4-hydroxybenzoic acid-ethanol system in Sec. 2.1.2.3.

Source and Purity of Materials:

The details are given in the compilation of Ref. 19 for the 4-hydroxybenzoic acid-ethanol system in Sec. 2.1.2.3.

Estimated Errors:

Solubility: The experimental variation was below 3%.

Temperature: Precision of ±0.2 °C.

Components:

(1) Benzoic acid, 4-hydroxy-, methyl ester (methyl 4-hydroxybenzoate, methylparaben); C₈H₈O₃; [99-76-3] (2) 1-Hexanol (hexan-1-ol, hexyl alcohol); C₆H₁₄O; [111-27-3]

Evaluators:

Ayako Goto, University of Shizuoka, Shizuoka, Japan Rensuke Goto, University of Shizuoka, Shizuoka, Japan Hiroshi Fukuda, Kitasato University, Tokyo, Japan

Critical Evaluation

TABLE 30. Summary of experimental solubility data of methylparaben in 1-hexanol

T/K	$100w_1$	$100x_1$	Analytical method	Reference
298.2	20.5	15.5	Spectroscopy, Gravimetry	32
298.2	20.5	15.5	Spectroscopy	33
298.2		14.77	Spectroscopy	19
303.2	21.2	16.6	Spectroscopy	33
308.2	25.3	18.6	Spectroscopy	33
313.2	26.2	20.5	Spectroscopy	33

The critical evaluation was carried out as described in Sec. 2.1.1.1 for salicylic acid in n-heptane.

The number of publications: 3

The range of temperature: T/K=298.2-313.2The units: mass percent and mole fraction

Analytical methods: spectroscopy and gravimetry

Data for the solubility of methylparaben in 1-hexanol expressed by mole fraction were fitted to Eqs. (1) and (2) given in Sec. 1.3 (Table 30). The data points closely agree with Eq. (2) over the whole range of temperatures, as shown in Fig. 14, but they deviated from Eq. (1). Multiple regression analysis according to Eq. (2) yielded the following results:

Multiple correlation coefficient: 0.989

Sample size: 6 data points *p*-value (F test): 0.000

Constants: $A = -1836 \pm 139$, $C = 4.272 \pm 0.459$

J. Phys. Chem. Ref. Data, Vol. 40, No. 2, 2011

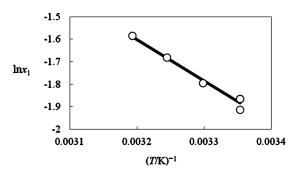


Fig. 14. Fitting curve of Eq. (2) and the observed data for methylparaben in 1-hexanol

White circles in Fig. 14 represent the observed data and the black line corresponds to calculated values according to Eq. (2) ($\ln x_1 = -1836/T + 4.272$). The observed data fit closely with the calculated values in the range of 298.2–313.2 K, with the multiple correlation coefficient of 0.989, as shown in Fig. 14. Therefore, the calculated value at each measured temperature is reasonably considered as a recommended value over the whole range of temperature.

Table 31 shows the observed data in the range of 298.2–313.2 K and the recommended values calculated from Eq. (2) at each temperature.

TABLE 31. Observed data and recommended values calculated according to Eq. (2) for methylparaben in 1-hexanol

T/K	$100x_1(obs)$	$100x_1(rec)$
298.2	15.5	15.2
303.2	16.6	16.8
308.2	18.6	18.6
313.2	20.5	20.4

Components:

(1) Benzoic acid, 4-hydroxy-, methyl ester (methyl 4-hydroxybenzoate,

methylparaben); C₈H₈O₃;

[99-76-3]

(2) 1-Hexanol (hexan-1-ol, hexyl alcohol); C₆H₁₄O; [111-27-3]

Variables: $t/^{\circ}C=25$

Prepared by:

216 (1969).

A. Goto and R. Goto

Original Measurements:

³²A.N. Paruta, J. Pharm. Sci. **58**,

Solubility of methylparaben in 1-hexanol at 25 °C

Density	Solubil	ity
$\rho/\mathrm{g~cm}^{-3}$	100w ₁ ^a (compiler)	x_1
0.8712	20.5	0.155

^aIn the original paper, the solubility was given as milligrams of the ester per gram of solution.

Auxiliary Information

Methods/Apparatus/Procedure:

The experimental details are given in the compilation of Ref. 32 for the methylparaben-methanol system in Sec. 2.2.1.1.

Source and Purity of Materials:

1-Hexanol (Eastman-Kodak No. 50) was used.

Methylparaben was obtained from Matheson, Coleman, and Bell.

Estimated Errors:

Solubility: Nothing specified. Temperature: Precision of ± 0.1 °C.

Components:

 $t/^{\circ}C=25-40$

(1) Benzoic acid, 4-hydroxy-, methyl ester (methyl 4-hydroxybenzoate, methylparaben); C₈H₈O₃; [99-76-3]

(2) 1-Hexanol (hexan-1-ol, hexyl alcohol); $C_6H_{14}O$; [111-27-3]

Original Measurements:

A. Goto and R. Goto

³³K.S. Alexander, J.W. Mauger, H. Petersen, Jr., and A.N. Paruta, J. Pharm. Sci. **66**, 42 (1977).

Variables: Prepared by:

Solubility of methylparaben in 1-hexanol

Temperature	So	lubility
t/°C	x_1	w ₁ ^a (compiler)
25	0.155	0.205
30	0.166	0.212
35	0.186	0.253
40	0.205	0.262

^aIn the original paper, the solubility was given as mg/g of solution.

Auxiliary Information

Methods/Apparatus/Procedure:

The experimental details are given in the compilation of Ref. 33 for the methylparaben—methanol system in Sec. 2.2.1.1.

Source and Purity of Materials:

Spectrograde methylparaben was purchased from Matheson Coleman and Bell Co. Melting points were within 1 $^{\circ}$ C of literature values.

The purity of 1-hexanol was 99 mol %. The purity of the alcohol was established by refractive-index and dielectric-constant measurements.

Estimated Errors:

Solubility: Precision within 2.5%. Temperature: Precision of ± 0.1 °C.

Components:

(1) Benzoic acid, 4-hydroxy-, methyl ester (methyl 4-hydroxybenzoate, methylparaben); C₈H₈O₃; [99-76-3]

(2) 1-Hexanol (hexan-1-ol, hexyl alcohol); C₆H₁₄O; [111-27-3]

Original Measurements:

¹⁹A. Martin, P.L. Wu, and A. Beerbower, J. Pharm. Sci. **73**, 188 (1984).

100 (1904).

Variables:Prepared by:t/ °C=25A. Goto and R. Goto

Solubility of methylparaben in 1-hexanol at 25 °C

Molar volume of solvent	Solubility
$v_2/\mathrm{cm}^3\mathrm{mol}^{-1}$	x_1
125.2	0.1477

Methods/Apparatus/Procedure:

The experimental details are given in the compilation of Ref. 19 for the 4-hydroxybenzoic acid-ethanol system in Sec. 2.1.2.3.

Source and Purity of Materials:

The details are given in the compilation of Ref. 19 for the 4-hydroxybenzoic acid-ethanol system in Sec. 2.1.2.3.

Estimated Errors:

Solubility: The experimental variation was below 3%.

Temperature: Precision of ± 0.2 °C.

Components:

(1) Benzoic acid, 4-hydroxy-, methyl ester (methyl 4-hydroxybenzoate, methylparaben); C₈H₈O₃; [99-76-3]
(2) 1-Decanol (decan-1-ol, decyl

alcohol); C₁₀H₂₂O; [112-30-1]

Evaluators:

Ayako Goto, University of Shizuoka, Shizuoka, Japan Rensuke Goto, University of Shizuoka, Shizuoka, Japan Hiroshi Fukuda, Kitasato University, Tokyo, Japan

Critical Evaluation

Table 32. Summary of experimental solubility data of methylparaben in 1-decanol

T/K	$100w_1$	$100x_1$	Analytical method	Reference
298.2	9.0	8.8	Spectroscopy, Gravimetry	32
298.2	8.8	8.8	Spectroscopy	33
303.2	10.3	10.9	Spectroscopy	33
308.2	12.2	12.8	Spectroscopy	33
313.2	13.9	14.4	Spectroscopy	33

The critical evaluation was carried out as described in Sec. 2.1.1.1 for salicylic acid in n-heptane.

The number of publications: 2

The range of temperature: T/K = 298.2 - 313.2The units: mass percent and mole fraction

Analytical methods: spectroscopy and gravimetry

Data for the solubility of methylparaben in 1-decanol expressed by mole fraction were fitted to Eqs. (1) and (2) given in Sec. 1.3 (Table 32). The data points closely agree with Eq. (2) over the whole range of temperatures, as shown in Fig. 15, but they deviated from Eq. (1). Multiple regression analysis according to Eq. (2) yielded the following results:

Multiple correlation coefficient: 0.995

Sample size: 5 data points *p*-value (F test): 0.000

Constants: $A = -3136 \pm 189$, $C = 8.100 \pm 0.622$

White circles in Fig. 15 represent the observed data and the black line corresponds to calculated values according to Eq. (2) $(\ln x_1 = -3136/T + 8.100)$. The observed data fit

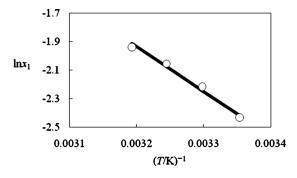


Fig. 15. Fitting curve of Eq. (2) and the observed data for methylparaben in 1-decanol.

closely with the calculated values in the range of 298.2–313.2 K, with the multiple correlation coefficient of 0.995, as shown in Fig. 15. Therefore, the calculated value at each measured temperature is reasonably considered as a recommended value over the whole range of temperature.

Table 33 shows the observed data in the range of 298.2–313.2 K and the recommended values calculated from Eq. (2) at each temperature.

TABLE 33. Observed data and recommended values calculated according to Eq. (2) for methylparaben in 1-decanol

T/K	$100x_1(obs)$	$100x_1(rec)$
298.2	8.8	8.9
303.2	8.8	10.6
308.2	10.9	12.5
313.2	12.8	14.8

Components:

(1) Benzoic acid, 4-hydroxy-, methyl ester (methyl 4-hydroxybenzoate,

methylparaben); C₈H₈O₃;

[99-76-3]

Variables:

 $t/^{\circ}C=25$

(2) 1-Decanol (decan-1-ol, decyl alcohol); C₁₀H₂₂O; [112-30-1]

216 (1969).

Original Measurements:

32A.N. Paruta, J. Pharm. Sci. 58,

Prepared by:
A. Goto and R. Goto

Solubility of methylparaben in 1-decanol at 25 °C

Density	Solubili	ty
ρ /g cm ⁻³	$100w_1^{\ a}$ (compiler)	x_1
0.8658	9.0	0.088

^aIn the original paper, the solubility was given as milligrams of the ester per gram of solution.

Auxiliary Information

Methods/Apparatus/Procedure:

The experimental details are given in the compilation of Ref. 32 for the methylparaben-methanol system in Sec. 2.2.1.1.

Source and Purity of Materials:

The source of 1-decanol was not reported.

Methylparaben was obtained from Matheson, Coleman and Bell.

Estimated Errors:

Solubility: Nothing specified. Temperature: Precision of ± 0.1 °C.

Components:

(1) Benzoic acid, 4-hydroxy-, methyl ester (methyl 4-hydroxybenzoate, methylparaben); $C_8H_8O_3$; [99-76-3]

(2) 1-Decanol (decan-1-ol, decyl alcohol); C₁₀H₂₂O; [112-30-1]

Original Measurements:

33K.S. Alexander, J.W. Mauger,
H. Petersen, Jr., and A.N. Paruta,
J. Pharm. Sci. 66, 42 (1977).

Variables: $t/^{\circ}C=25-40$

Prepared by:

A. Goto and R. Goto

Solubility of methylparaben in 1-decanol				
Temperature	Solu	bility		
t/°C	x_1	w ₁ ^a (compiler)		
25	0.088	0.088		
30	0.109	0.103		
35	0.128	0.122		
40	0.144	0.139		

^aIn the original paper, the solubility was given as mg/g of solution.

Auxiliary Information

Methods/Apparatus/Procedure:

The experimental details are given in the compilation of Ref. 33 for the methylparaben—methanol system in Sec. 2.2.1.1.

Source and Purity of Materials:

Spectrograde methylparaben was purchased from Matheson Coleman and Bell Co. Melting points were within 1 $^{\circ}\text{C}$ of literature values.

The purity of 1-decanol was 99 mol %. The purity of the alcohol was established by refractive-index and dielectric-constant measurements.

Estimated Errors:

Solubility: Precision within 2.5%. Temperature: Precision of ± 0.1 °C.

2.2.1.2. Ethylparaben

Components:

CH₄O; [67-56-1]

(1) Benzoic acid, 4-hydroxy-, ethyl ester (ethyl 4-hydroxybenzoate, ethylparaben); C₉H₁₀O₃; [120-47-8] (2) Methyl alcohol (methanol);

Evaluators:

Ayako Goto, University of Shizuoka, Shizuoka, Japan Rensuke Goto, University of Shizuoka, Shizuoka, Japan Hiroshi Fukuda, Kitasato University, Tokyo, Japan

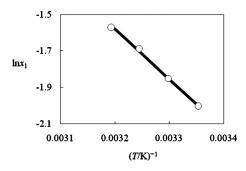


Fig. 16. Fitting curve of Eq. (2) and the observed data for ethylparaben in methanol.

Critical Evaluation

TABLE 34. Summary of experimental solubility data of ethylparaben in methanol

T/K	$100w_1$	$100x_1$	Analytical method	Reference
298.2	45.2	13.5	Spectroscopy, Gravimetry	32
298.2	45.2	13.5	Spectroscopy	33
303.2	49.0	15.7	Spectroscopy	33
308.2	54.1	18.5	Spectroscopy	33
313.2	57.0	20.8	Spectroscopy	33

The critical evaluation was carried out as described in Sec. 2.1.1.1 for salicylic acid in n-heptane.

The number of publications: 2

The range of temperature: T/K = 298.2 - 313.2

The units: mass percent and mole fraction

Analytical methods: spectroscopy and gravimetry

Data for the solubility of ethylparaben in methanol expressed by mole fraction were fitted to Eqs. (1) and (2) given in Sec. 1.3 (Table 34). The data points nearly agree with Eq. (2) over the whole range of temperatures, as shown in Fig. 16, but they deviated from Eq. (1). Multiple regression analysis according to Eq. (2) yielded the following results:

Multiple correlation coefficient: 0.999

Sample size: 5 data points *p*-value (F test): 0.000

Constants: $A = -2740 \pm 75$, $C = 7.188 \pm 0.248$

White circles in Fig. 16 represent the observed data and the black line corresponds to calculated values according to Eq. (2) $(\ln x_1 = -2740/T + 7.188)$. The observed data fit closely with the calculated values in the range of 298.2–313.2 K, with the multiple correlation coefficient of 0.999, as shown in Fig. 16. Therefore, the calculated value at each measured temperature is reasonably considered as a recommended value over the whole range of temperature.

Table 35 shows the observed data in the range of 298.2–313.2 K and the recommended values calculated from Eq. (2) at each temperature.

TABLE 35. Observed data and recommended values calculated according to Eq. (2) for ethylparaben in methanol

T/K	$100x_1(obs)$	$100x_1(rec)$
298.2	13.5	13.5
303.2	15.7	15.7
308.2	18.5	18.2
313.2	20.8	21.0

Components:

(1) Benzoic acid, 4-hydroxy-, ethyl ester (ethyl

4-hydroxybenzoate,

ethylparaben); C₉H₁₀O₃;

[120-47-8]

(2) Methyl alcohol (methanol);

CH₄O; [67-56-1]

Variables: $t/^{\circ}C=25$

Prepared by:

216 (1969).

A. Goto and R. Goto

Original Measurements:

³²A.N. Paruta, J. Pharm. Sci. 58,

Solubility of ethylparaben in methanol at 25 °C

Density	Solubili	ty
ρ /g cm ⁻³	100w ₁ ^a (compiler)	x_1
0.9256	45.2	0.135

^aIn the original paper, the solubility was given as milligrams of the ester per gram of solution.

Auxiliary Information

Methods/Apparatus/Procedure:

The experimental details are given in the compilation of Ref. 32 for the methylparaben-methanol system in Sec. 2.2.1.1.

Source and Purity of Materials:

Methanol (Fisher certified) was used.

Ethylparaben was obtained from Matheson, Coleman and Bell.

Estimated Errors:

Solubility: Nothing specified. Temperature: Precision of ± 0.1 °C.

Components:

(1) Benzoic acid, 4-hydroxy-, ethyl ester (ethyl

4-hydroxybenzoate, ethylparaben); C₉H₁₀O₃;

[120-47-8]

(2) Methyl alcohol (methanol);

CH₄O; [67-56-1]

Variables: $t/^{\circ}C=25-40$

Prepared by:

A. Goto and R. Goto

Original Measurements:

³³K.S. Alexander, J.W. Mauger,

J. Pharm. Sci. 66, 42 (1977).

H. Petersen, Jr., and A.N. Paruta,

Solubility of ethylparaben in methanol

Temperature	So	lubility
t/°C	x_1	w ₁ ^a (compiler)
25	0.135	0.452
30	0.157	0.490
35	0.185	0.541
40	0.208	0.576

^aIn the original paper, the solubility was given as mg/g of solution.

Auxiliary Information

Methods/Apparatus/Procedure:

The experimental details are given in the compilation of Ref. 33 for the methylparaben-methanol system in Sec. 2.2.1.1.

Source and Purity of Materials:

Spectrograde ethylparaben was purchased from Matheson Coleman and Bell Co.

The source and the purity of methanol were not reported.

Estimated Errors:

Solubility: Precision within 2.5%. Temperature: Precision of ± 0.1 °C.

Components:

(1) Benzoic acid, 4-hydroxy-, ethyl ester (ethyl 4-hydroxybenzoate, ethylparaben); C₉H₁₀O₃;

[120-47-8] (2) Ethyl alcohol (ethanol);

C₂H₆O; [64-17-5]

Evaluators:

Ayako Goto, University of Shizuoka, Shizuoka, Japan Rensuke Goto, University of Shizuoka, Shizuoka, Japan Hiroshi Fukuda, Kitasato University, Tokyo, Japan

Critical Evaluation

TABLE 36. Summary of experimental solubility data of ethylparaben in ethanol

<i>T</i> /K	100w ₁	100x ₁	Analytical method	Reference
298.2	41.2	16.5	Spectroscopy, Gravimetry	32
298.2	41.2	16.5	Spectroscopy	33
303.2	44.9	18.4	Spectroscopy	33
308.2	50.1	21.8	Spectroscopy	33
313.2	50.5	22.0	Spectroscopy	33

The critical evaluation was carried out as described in Sec. 2.1.1.1 for salicylic acid in n-heptane.

The number of publications: 2

The range of temperature: T/K = 298.2 - 313.2

The units: mass percent and mole fraction

Analytical methods: spectroscopy and gravimetry

Data for the solubility of ethylparaben in ethanol expressed by mole fraction were fitted to Eqs. (1) and (2) given in Sec. 1.3 (Table 36). The data points nearly agree with Eq. (2) over the whole range of temperatures, as shown in Fig. 17, but they deviated from Eq. (1). Multiple regression analysis according to Eq. (2) yielded the following results:

Multiple correlation coefficient: 0.971

Sample size: 5 data points *p*-value (F test): 0.006

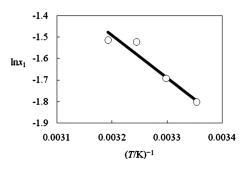


Fig. 17. Fitting curve of Eq. (2) and the observed data for ethylparaben in

Constants: $A = -1974 \pm 282$, $C = 4.823 \pm 0.929$

White circles in Fig. 17 represent the observed data and the black line corresponds to calculated values according to Eq. (2) $(\ln x_1 = -1974/T + 4.823)$. The observed data fit closely with the calculated values in the range of 298.2-313.2 K, with the multiple correlation coefficient of 0.971, as shown in Fig. 17. Therefore, the calculated value at each measured temperature is reasonably considered as a recommended value over the whole range of temperature.

Table 37 shows the observed data in the range of 298.2-313.2 K and the recommended values calculated from Eq. (2) at each temperature.

TABLE 37. Observed data and recommended values calculated according to Eq. (2) for ethylparaben in ethanol

T/K	$100x_1(obs)$	$100x_1(rec)$
298.2	16.5	16.6
303.2	18.4	18.5
308.2	21.8	20.6
313.2	22.0	22.8

Components:

(1) Benzoic acid, 4-hydroxy-, ethyl ester (ethyl

4-hydroxybenzoate,

ethylparaben); C₉H₁₀O₃;

[120-47-8]

(2) Ethyl alcohol (ethanol);

C₂H₆O; [64-17-5]

Variab	les
<i>t</i> / °C=	25

Prepared by:

216 (1969).

A. Goto and R. Goto

Original Measurements:

³²A.N. Paruta, J. Pharm. Sci. **58**,

Solubility of ethylparaben in ethanol at 25 °C

Density	Solubili	ity
$\rho/\mathrm{g~cm}^{-3}$	$100w_1^{a}$ (compiler)	x_1
0.9098	41.2	0.165

^aIn the original paper, the solubility was given as milligrams of the ester per gram of solution.

Auxiliary Information

Methods/Apparatus/Procedure:

The experimental details are given in the compilation of Ref. 32 for the methylparaben-methanol system in Sec. 2.2.1.1.

Source and Purity of Materials:

Absolute ethanol was obtained from U.S. Industrial Chemical Co. Ethylparaben was obtained from Matheson, Coleman and Bell.

Estimated Errors:

Solubility: Nothing specified. Temperature: Precision of ± 0.1 °C.

Components:

(1) Benzoic acid, 4-hydroxy-, ethyl ester (ethyl 4-hydroxybenzoate, ethylparaben); C₉H₁₀O₃;

[120-47-8]

(2) Ethyl alcohol (ethanol);

C₂H₆O; [64-17-5]

Original Measurements:

33K.S. Alexander, J.W. Mauger, H. Petersen, Jr., and A.N. Paruta, J. Pharm. Sci. 66, 42 (1977).

Variables: $t/^{\circ}C = 25 - 40$

Prepared by:

A. Goto and R. Goto

Solubility of ethylparaben in ethanol

Temperature	So	lubility
t/°C	x_1	w ₁ ^a (compiler)
25	0.165	0.412
30	0.184	0.449
35	0.218	0.501
40	0.220	0.505

^aIn the original paper, the solubility was given as mg/g of solution.

Auxiliary Information

Methods/Apparatus/Procedure:

The experimental details are given in the compilation of Ref. 33 for the methylparaben-methanol system in Sec. 2.2.1.1.

Source and Purity of Materials:

Spectrograde ethylparaben was purchased from Matheson Coleman and Bell Co. Melting point was within 1 °C of literature values.

Ethanol (J.T. Baker) was of absolute reagent quality. The purity of the alcohol was established by refractive-index and dielectric-constant measurements.

Estimated Errors:

Solubility: Precision within 2.5%. Temperature: Precision of ± 0.1 °C.

Components:

(1) Benzoic acid, 4-hydroxy-, ethyl ester (ethyl 4-hydroxybenzoate, ethylparaben); C₉H₁₀O₃; [120-47-8]

(2) 1-Propanol (propan-1-ol, propyl alcohol); C₃H₈O;

[71-23-8]

Evaluators:

Ayako Goto, University of Shizuoka, Shizuoka, Japan Rensuke Goto, University of Shizuoka, Shizuoka, Japan Hiroshi Fukuda, Kitasato University, Tokyo, Japan

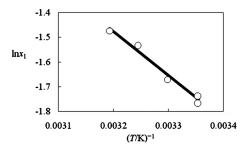


Fig. 18. Fitting curve of Eq. (2) and the observed data for ethylparaben in

Critical Evaluation

TABLE 38. Summary of experimental solubility data of ethylparaben in 1-propanol

T/K	$100w_1$	$100x_1$	Analytical method	Reference
298.2	36.3	17.1	Gravimetry, Spectroscopy	34
298.2	36.2	17.6	Spectroscopy, Gravimetry	32
298.2	36.2	17.6	Spectroscopy	33
303.2	38.8	18.8	Spectroscopy	33
308.2	42.9	21.6	Spectroscopy	33
313.2	44.7	22.9	Spectroscopy	33

The critical evaluation was carried out as described in Sec. 2.1.1.1 for salicylic acid in *n*-heptane.

The number of publications: 3

The range of temperature: T/K = 298.2 - 313.2

The units: mass percent and mole fraction

Analytical methods: spectroscopy and gravimetry

Data for the solubility of ethylparaben in 1-propanol expressed by mole fraction were fitted to Eqs. (1) and (2) given in Sec. 1.3 (Table 38). The data points nearly agree with Eq. (2) over the whole range of temperatures, as shown in Fig. 18, but they deviated from Eq. (1). Multiple regression analysis according to Eq. (2) yielded the following results:

Multiple correlation coefficient: 0.989

Sample size: 6 data points *p*-value (F test): 0.000

Constants: $A = -1768 \pm 133$, $C = 4.180 \pm 0.439$

White circles in Fig. 18 represent the observed data and the black line corresponds to calculated values according to Eq. (2) $(\ln x_1 = -1768/T + 4.180)$. The observed data fit closely with the calculated values in the range of 298.2-313.2 K, with the multiple correlation coefficient of 0.989, as shown in Fig. 18. Therefore, the calculated value at each measured temperature is reasonably considered as a recommended value over the whole range of temperature.

Table 39 shows the observed data in the range of 298.2-313.2 K and the recommended values calculated from Eq. (2) at each temperature.

TABLE 39. Observed data and recommended values calculated according to Eq. (2) for ethylparaben in 1-propanol

T/K	$100x_1(obs)$	$100x_1(rec)$
298.2	17.6	17.4
303.2	18.8	19.2
308.2	21.6	21.1
313.2	22.9	23.1

Components:

(1) Benzoic acid, 4-hydroxy-, ethyl ester (ethyl 4-hydroxybenzoate, ethylparaben); C₉H₁₀O₃;

[120-47-8]

(2) 1-Propanol (propan-1-ol, propyl alcohol); C₃H₈O; [71-23-8]

Original Measurements:

34F.A. Restaino and A.N. Martin, J. Pharm. Sci. 53, 636 (1964).

Variables:	Prepared by:
t/ °C=25	A. Goto and R. Goto

Solubility of ethylparaben in 1-propanol at 25 °C

Density	Solubil	ity
ρ /g cm ⁻³	w_1^a (compiler)	x_1
0.9079	0.3626	0.171

^aIn the original paper, the solubility was given as grams of the ester per gram of saturated solution.

Auxiliary Information

Methods/Apparatus/Procedure:

A slight excess of the ester was added to approximately 40 ml of solvent in a screw-top bottle. A closure was made with aluminum foil, the top fixed tightly over the foil, and the whole sealed with several turns of electrical tape. The bottles were shaken in a constant-temperature bath for 24 h. The equilibrated solutions were removed and filtered. The analysis was carried out gravimetrically and spectrophotometrically.

Source and Purity of Materials:

Fisher certified grade 1-propanol (b.p. 96.9-97.2 °C) was used without further purification.

Estimated Errors:

Solubility: Nothing specified. Temperature: ±0.05 °C.

Components:

(1) Benzoic acid, 4-hydroxy-, ethyl ester (ethyl

4-hydroxybenzoate, ethylparaben); C₉H₁₀O₃;

[120-47-8]

(2) 1-Propanol (propan-1-ol, propyl alcohol); C₃H₈O; [71-23-8]

 $t/^{\circ}C=25$

Original Measurements:

32A.N. Paruta, J. Pharm. Sci. **58**, 216 (1969).

Variables: Prepared by:

J. Phys. Chem. Ref. Data, Vol. 40, No. 2, 2011

A. Goto and R. Goto

Solubility of ethylparaben in 1-propanol at 25 °C

Density $\rho/g \text{ cm}^{-3}$	Solubili	ity
	$\frac{100w_1^a}{\text{(compiler)}}$	x_1
0.9081	36.2	0.176

^aIn the original paper, the solubility was given as milligrams of the ester per gram of solution.

Methods/Apparatus/Procedure:

The experimental details are given in the compilation of Ref. 32 for the methylparaben—methanol system in Sec. 2.2.1.1.

Source and Purity of Materials:

1-Propanol (Baker analyzed) was used.

Ethylparaben was obtained from Matheson, Coleman, and Bell.

Estimated Errors:

Variables:

Solubility: Nothing specified. Temperature: Precision of ± 0.1 °C.

Components: (1) Benzoic acid, 4-hydroxy-, ethyl ester (ethyl 4-hydroxybenzoate, ethylparaben); C₉H₁₀O₃; [120-47-8] (2) 1-Propanol (propan-1-ol, propyl alcohol); C₃H₈O; [71-23-8]

t/°C=25-40	A.	Goto	and R.	Goto

Solubility of ethylparaben in 1-propanol

Prepared by:

Temperature	Solubility	
t/°C	x_1	w ₁ ^a (compiler)
25	0.176	0.362
30	0.188	0.388
35	0.216	0.429
40	0.229	0.447

^aIn the original paper, the solubility was given as mg/g of solution.

Auxiliary Information

Methods/Apparatus/Procedure:

The experimental details are given in the compilation of Ref. 33 for the methylparaben-methanol system in Sec. 2.2.1.1.

Source and Purity of Materials:

Spectrograde ethylparaben was purchased from Matheson Coleman and Bell Co. Melting point was within 1 $^{\circ}$ C of literature value.

1-Propanol (J.T. Baker) was of absolute reagent quality. The purity of the alcohol was established by refractive-index and dielectric-constant measurements.

Estimated Errors:

Solubility: Precision within 2.5%. Temperature: Precision of ± 0.1 °C.

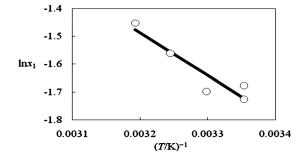


Fig. 19. Fitting curve of Eq. (2) and the observed data for ethylparaben in 1-butanol.

Components:

(1) Benzoic acid, 4-hydroxy-, ethyl ester (ethyl 4-hydroxybenzoate, ethylparaben); C₉H₁₀O₃; [120-47-8]

(2) 1-Butanol (butan-1-ol, butyl alcohol); C₄H₁₀O; [71-36-3]

Evaluators:

Ayako Goto, University of Shizuoka, Shizuoka, Japan Rensuke Goto, University of Shizuoka, Shizuoka, Japan Hiroshi Fukuda, Kitasato University, Tokyo, Japan

Critical Evaluation

TABLE 40. Summary of experimental solubility data of ethylparaben in 1-butanol

T/K	$100w_1$	$100x_1$	Analytical method	Reference
298.2	34.0	18.7	Gravimetry, Spectroscopy	34
298.2	34.0	17.8	Spectroscopy, Gravimetry	32
298.2	34.0	17.8	Spectroscopy	33
303.2	33.5	18.3	Spectroscopy	33
308.2	37.3	21.0	Spectroscopy	33
313.2	40.7	23.4	Spectroscopy	33

The critical evaluation was carried out as described in Sec. 2.1.1.1 for salicylic acid in n-heptane.

The number of publications: 3

The range of temperature: T/K = 298.2 - 313.2

The units: mass percent and mole fraction

Analytical methods: spectroscopy and gravimetry

Data for the solubility of ethylparaben in 1-butanol expressed by mole fraction were fitted to Eqs. (1) and (2) given in Sec. 1.3 (Table 40). The data points nearly agree with Eq. (2) over the whole range of temperatures, as shown in Fig. 19, but they deviated from Eq. (1). Multiple regression analysis according to Eq. (2) yielded the following results:

Multiple correlation coefficient: 0.946

Sample size: 6 data points *p*-value (F test): 0.004

Constants: $A = -1537 \pm 263$, $C = 3.431 \pm 0.867$

White circles in Fig. 19 represent the observed data and the black line corresponds to calculated values according to Eq. (2) ($\ln x_1 = -1537/T + 3.431$). The observed data fit closely with the calculated values in the range of 298.2–313.2 K, with the multiple correlation coefficient of 0.946, as shown in Fig. 19. Therefore, the calculated value at each measured temperature is reasonably considered as a recommended value over the whole range of temperature.

Table 41 shows the observed data in the range of 298.2–313.2 K and the recommended values calculated from Eq. (2) at each temperature.

Table 41. Observed data and recommended values calculated according to Eq. (2) for ethylparaben in 1-butanol

T/K	$100x_1(obs)$	$100x_1(rec)$
298.2	18.7	17.8
303.2	18.3	19.4
308.2	21.0	21.1
313.2	23.4	22.8

Components:

(1) Benzoic acid, 4-hydroxy-, ethyl ester (ethyl 4-hydroxybenzoate,

4-hydroxybenzoate,

ethylparaben); $C_9H_{10}O_3$; [120-47-8]

(2) 1-Butanol (butan-1-ol, butyl alcohol); C₄H₁₀O; [71-36-3]

Variables: $t/^{\circ}C=25$

Prepared by:

A. Goto and R. Goto

Original Measurements:

³⁴F.A. Restaino and A.N. Martin,

J. Pharm. Sci. 53, 636 (1964).

Solubility of ethylparaben in 1-butanol at 25 $^{\circ}\text{C}$

Density	Solubili	ty
ρ /g cm ⁻³	w_1^{a} (compiler)	x_1
0.9071	0.3398	0.187

^aIn the original paper, the solubility was given as grams of the ester per gram of saturated solution.

Auxiliary Information

Methods/Apparatus/Procedure:

The experimental details are given in the compilation of Ref. 34 for the ethylparaben–1-propanol system in Sec. 2.2.1.2.

Source and Purity of Materials:

Fisher certified grade 1-but anol (b.p. 116.6–117.8 $^{\circ}\mathrm{C})$ was used without further purification.

The ester (purified grade) was recrystallized from chloroform until a sharp melting point was reached.

Estimated Errors:

Solubility: Nothing specified. Temperature: ± 0.05 °C.

Components:

(1) Benzoic acid, 4-hydroxy-, ethyl ester (ethyl 4-hydroxybenzoate, ethylparaben); C₉H₁₀O₃;

[120-47-8]

(2) 1-Butanol (butan-1-ol, butyl alcohol); $C_4H_{10}O$; [71-36-3]

Original Measurements:

³²A.N. Paruta, J. Pharm. Sci. **58**, 216 (1969).

Variables: Prepared by: $t/^{\circ}$ C=25 A. Goto and F

A. Goto and R. Goto

Solubility of ethylparaben in 1-butanol at 25 °C

Density	Solubil	ity
ρ /g cm ⁻³	$100w_1$ (compiler)	x_1^{a}
0.9082	34.0	0.178

^aIn the original paper, the solubility was given as milligrams of the ester per gram of solution.

Auxiliary Information

Methods/Apparatus/Procedure:

The experimental details are given in the compilation of Ref. 32 for the methylparaben–methanol system in Sec. 2.2.1.1.

Source and Purity of Materials:

The source and the purity of 1-butanol were not reported.

Ethylparaben was obtained from Matheson, Coleman and Bell.

Estimated Errors:

Solubility: Nothing specified. Temperature: Precision of $\pm 0.1~^{\circ}\text{C}$.

Components:

(1) Benzoic acid, 4-hydroxy-, ethyl ester (ethyl 4-hydroxybenzoate, ethylparaben); C₉H₁₀O₃;

[120-47-8]

Variables:

(2) 1-Butanol (butan-1-ol, butyl alcohol); $C_4H_{10}O$; [71-36-3]

Prepared by: A. Goto and R

Original Measurements:

³³K.S. Alexander, J.W. Mauger, H. Petersen, Jr., and A.N. Paruta,

J. Pharm. Sci. 66, 42 (1977).

 $t/^{\circ}$ C=25-40 A. Goto and R. Goto

Solubility of ethylparaben in 1-butanol

Temperature	So	lubility
t/°C	x_1	w_1^a (compiler)
25	0.178	0.340
30	0.183	0.335
35	0.210	0.373
40	0.234	0.407

^aIn the original paper, the solubility was given as mg/g of solution.

Auxiliary Information

Methods/Apparatus/Procedure:

The experimental details are given in the compilation of Ref. 33 for the methylparaben–methanol system in Sec. 2.2.1.1.

Source and Purity of Materials:

Spectrograde ethylparaben was purchased from Matheson Coleman and Bell Co. Melting point was within 1 $^{\circ}$ C of literature value.

1-Butanol (TDY Mallinckrodt) was of analytical reagent quality. The purity of the alcohol was established by refractive-index and dielectric-constant measurements.

Estimated Errors:

Solubility: Precision within 2.5%. Temperature: Precision of ± 0.1 °C.

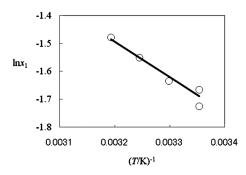


Fig. 20. Fitting curve of Eq. (2) and the observed data for ethylparaben in 1-hexanol.

Components:

(1) Benzoic acid, 4-hydroxy-, ethyl ester (ethyl 4-hydroxybenzoate, ethylparaben); C₉H₁₀O₃; [120-47-8] (2) 1-Hexanol (hexan-1-ol, hexyl

alcohol); C₆H₁₄O; [111-27-3]

Evaluators:

Ayako Goto, University of Shizuoka, Shizuoka, Japan Rensuke Goto, University of Shizuoka, Shizuoka, Japan Hiroshi Fukuda, Kitasato University, Tokyo, Japan

Critical Evaluation

TABLE 42. Summary of experimental solubility data of ethylparaben in 1-hexanol

$100w_1$	$100x_1$	Analytical method	Reference
26.0	17.8	Gravimetry, Spectroscopy	34
26.0	18.9	Spectroscopy, Gravimetry	32
26.0	18.9	Spectroscopy	33
28.2	19.5	Spectroscopy	33
30.5	21.2	Spectroscopy	33
32.5	22.8	Spectroscopy	33
	26.0 26.0 26.0 28.2 30.5	26.0 17.8 26.0 18.9 26.0 18.9 28.2 19.5 30.5 21.2	26.0 17.8 Gravimetry, Spectroscopy 26.0 18.9 Spectroscopy, Gravimetry 26.0 18.9 Spectroscopy 28.2 19.5 Spectroscopy 30.5 21.2 Spectroscopy

The critical evaluation was carried out as described in Sec. 2.1.1.1 for salicylic acid in *n*-heptane.

The number of publications: 3

The range of temperature: T/K = 298.2 - 313.2

The units: mass percent and mole fraction

Analytical methods: spectroscopy and gravimetry

Data for the solubility of ethylparaben in 1-hexanol expressed by mole fraction were fitted to Eqs. (1) and (2) given in Sec. 1.3 (Table 42). The data points nearly agree with Eq. (2) over the whole range of temperatures, as shown in Fig. 20, but they deviated from Eq. (1). Multiple regression analysis according to Eq. (2) yielded the following results:

Multiple correlation coefficient: 0.966

Sample size: 6 data points *p*-value (F test): 0.002

Constants: $A = -1278 \pm 172$, $C = 2.595 \pm 0.566$

White circles in Fig. 20 represent the observed data and the black line corresponds to calculated values according to Eq. (2) $(\ln x_1 = -1278/T + 2.595)$. The observed data fit closely with the calculated values in the range of 298.2-313.2 K, with the multiple correlation coefficient of 0.966, as shown in Fig. 20. Therefore, the calculated value at each measured temperature is reasonably considered as a recommended value over the whole range of temperature.

Table 43 shows the observed data in the range of 298.2-313.2 K and the recommended values calculated from Eq. (2) at each temperature.

TABLE 43. Observed data and recommended values calculated according to Eq. (2) for ethylparaben in 1-hexanol

T/K	$100x_1(obs)$	$100x_1(rec)$
298.2	17.8	18.5
303.2	19.5	19.8
308.2	21.2	21.2
313.2	22.8	22.7

Components:

(1) Benzoic acid, 4-hydroxy-, ethyl ester (ethyl 4-hydroxybenzoate, ethylparaben); C₉H₁₀O₃; [120-47-8]

(2) 1-Hexanol (hexan-1-ol, hexyl alcohol); C₆H₁₄O; [111-27-3]

Original Measurements:

34F.A. Restaino and A.N. Martin. J. Pharm. Sci. 53, 636 (1964).

Variables: $t/^{\circ}C=25$

Prepared by:

A. Goto and R. Goto

Solubility of ethylparaben in 1-hexanol at 25 °C

Density	Solubil	ity
ρ/g cm ⁻³	w ₁ ^a (compiler)	x_1
0.8888	0.2604	0.178

^aIn the original paper, the solubility was given as grams of the ester per gram of saturated solution.

Auxiliary Information

Methods/Apparatus/Procedure:

The experimental details are given in the compilation of Ref. 34 for the ethylparaben-1-propanol system in Sec. 2.2.1.2.

Source and Purity of Materials:

1-Hexanol (b.p. 156.5-157.5 °C) obtained from Eastman Organic Chemicals was redistilled.

The ester (purified grade) was recrystallized from chloroform until a sharp melting point was obtained.

Estimated Errors:

Solubility: Nothing specified.

Temperature: ±0.05 °C.

Components:

(1) Benzoic acid, 4-hydroxy-, ethyl ester (ethyl 4-hydroxybenzoate,

ethylparaben); C₉H₁₀O₃;

[120-47-8]

(2) 1-Hexanol (hexan-1-ol, hexyl alcohol); $C_6H_{14}O$; [111-27-3]

Variables:

Prepared by: A. Goto and R. Goto

216 (1969).

Original Measurements:

³²A.N. Paruta, J. Pharm. Sci. 58,

 $t/^{\circ}C=25$

Solubility of ethylparaben in 1-hexanol at 25 °C

Density	Solubili	ity
$ ho/{ m g~cm^{-3}}$	$100w_1^a$ (compiler)	x_1
0.8860	26.0	0.189

^aIn the original paper, the solubility was given as milligrams of the ester per gram of solution.

Methods/Apparatus/Procedure:

The experimental details are given in the compilation of Ref. 32 for the methylparaben—methanol system in Sec. 2.2.1.1.

Source and Purity of Materials:

1-Hexanol (Eastman-Kodak No. 50) was used.

Ethylparaben was obtained from Matheson, Coleman, and Bell.

Estimated Errors:

Solubility: Nothing specified. Temperature: Precision of ± 0.1 °C.

Components:	Original Measurements:
(1) Benzoic acid, 4-hydroxy-,	33K.S. Alexander, J.W. Mauger,
ethyl ester (ethyl	H. Petersen, Jr., and A.N. Paruta
4-hydroxybenzoate,	J. Pharm. Sci. 66, 42 (1977).
ethylparaben); C ₉ H ₁₀ O ₃ ;	
[120-47-8]	
(2) 1-Hexanol (hexan-1-ol, hexyl	
alcohol); C ₆ H ₁₄ O; [111-27-3]	

Variables:	Prepared by:
$t/^{\circ}C = 25 - 40$	A. Goto and R. Goto

Temperature	So	lubility
t/°C	x_1	w ₁ ^a (compiler)
25	0.189	0.260
30	0.195	0.282
35	0.212	0.305
40	0.228	0.325

Solubility of ethylparaben in 1-hexanol

Auxiliary Information

Methods/Apparatus/Procedure:

The experimental details are given in the compilation of Ref. 33 for the methylparaben-methanol system in Sec. 2.2.1.1.

Source and Purity of Materials:

Spectrograde ethylparaben was purchased from Matheson Coleman and Bell Co. Melting point was within 1 $^{\circ}\text{C}$ of the literature value.

The purity of 1-hexanol was 99 mol %. The purity of the alcohol was established by refractive-index and dielectric-constant measurements.

Estimated Errors:

Solubility: Precision within 2.5%. Temperature: Precision of ± 0.1 °C.

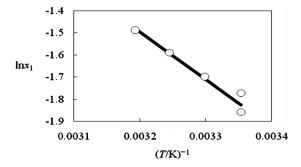


Fig. 21. Fitting curve of Eq. (2) and the observed data for ethylparaben in 1-octanol.

Components:

(1) Benzoic acid, 4-hydroxy-, ethyl ester (ethyl 4-hydroxybenzoate, ethylparaben); C₉H₁₀O₃;
[120-47-8]
(2) 1-Octanol (octan-1-ol, octyl

alcohol); C₈H₁₈O; [111-87-5]

Evaluators:

Ayako Goto, University of Shizuoka, Shizuoka, Japan Rensuke Goto, University of Shizuoka, Shizuoka, Japan Hiroshi Fukuda, Kitasato University, Tokyo, Japan

Critical Evaluation

TABLE 44. Summary of experimental solubility data of ethylparaben in 1-octanol

T/K	$100w_{1}$	$100x_1$	Analytical method	Reference
298.2	20.7	17.0	Gravimetry, Spectroscopy	34
298.2	20.7	15.6	Spectroscopy, Gravimetry	32
298.2	20.7	15.6	Spectroscopy	33
303.2	22.2	18.3	Spectroscopy	33
303.2		15.0	Spectroscopy	35
308.2	24.6	20.4	Spectroscopy	33
313.2	27.1	22.6	Spectroscopy	33

The critical evaluation was carried out as described in Sec. 2.1.1.1 for salicylic acid in n-heptane.

The number of publications: 4

The range of temperature: T/K = 298.2 - 313.2

The units: mass percent and mole fraction

Analytical methods: spectroscopy and gravimetry

Data for the solubility of ethylparaben in 1-octanol expressed by mole fraction were fitted to Eqs. (1) and (2) given in Sec. 1.3 (Table 44). The data points nearly agree with Eq. (2) over the whole range of temperatures, as shown in Fig. 21, but they deviated from Eq. (1). Multiple regression analysis according to Eq. (2) yielded the following results:

Multiple correlation coefficient: 0.977

Sample size: 6 data points (the datum from Ref. 35 of Table 44 was deleted because the multiple correlation coefficient was shown to be 0.865)

p-value (F test): 0.001

Constants: $A = -2149 \pm 234$, $C = 5.380 \pm 0.773$

White circles in Fig. 21 represent the observed data and the black line corresponds to calculated values according to Eq. (2) ($\ln x_1 = -2149/T + 5.380$). The observed data fit closely with the calculated values in the range of 298.2–313.2 K, with the multiple correlation coefficient of

^aIn the original paper, the solubility was given as mg/g of solution.

0.977, as shown in Fig. 21. Therefore, the calculated value at each measured temperature is reasonably considered as a recommended value over the whole range of temperature.

Table 45 shows the observed data in the range of 298.2–313.2 K and the recommended values calculated from Eq. (2) at each temperature.

TABLE 45. Observed data and recommended values calculated according to Eq. (2) for ethylparaben in 1-octanol

T/K	$100x_1(\text{obs})$	100 <i>x</i> ₁ (rec)
298.2	17.0	16.1
303.2	18.3	18.1
308.2	20.4	20.3
313.2	22.6	22.7

Components:

(1) Benzoic acid, 4-hydroxy-, ethyl ester (ethyl

4-hydroxybenzoate,

ethylparaben); C₉H₁₀O₃;

[120-47-8]

(2) 1-Octanol (octan-1-ol, octyl alcohol); $C_8H_{18}O; [111-87-5]$

Original Measurements:

³⁴F.A. Restaino and A.N. Martin, J. Pharm. Sci. **53**, 636 (1964).

Variables:

t/°C=25

Prepared by:

A. Goto and R. Goto

Solubility of ethylparaben in 1-octanol at 25 °C

Density	Solubili	ty
ρ /g cm ⁻³	w_1^a (compiler)	x_1
0.8780	0.2065	0.170

^aIn the original paper, the solubility was given as grams of the ester per gram of saturated solution.

Auxiliary Information

Methods/Apparatus/Procedure:

The experimental details are given in the compilation of Ref. 34 for the ethylparaben–1-propanol system in Sec. 2.2.1.2.

Source and Purity of Materials:

1-Octanol (b.p. 194–195 $^{\circ}\text{C})$ obtained from Eastman Organic Chemicals was redistilled.

The ester (purified grade) was recrystallized from chloroform until a sharp melting point was obtained.

Estimated Errors:

Solubility: Nothing specified. Temperature: ± 0.05 °C.

Components:

(1) Benzoic acid, 4-hydroxy-, ethyl ester (ethyl

4-hydroxybenzoate,

ethylparaben); C₉H₁₀O₃;

[120-47-8]

(2) 1-Octanol (octan-1-ol, octyl alcohol); $C_8H_{18}O$; [111-87-5]

Original Measurements:

³²A.N. Paruta, J. Pharm. Sci. **58**, 216 (1969).

Variables: $t/^{\circ}C=25$

Prepared by:

A. Goto and R. Goto

Solubility of ethylparaben in 1-octanol at 25 °C

Density	Solubili	ty ^a
$ ho/{ m g~cm^{-3}}$	$100w_1$ (compiler)	x_1
0.8791	20.7	0.156

^aIn the original paper, the solubility was given as milligrams of the ester per gram of solution.

Auxiliary Information

Methods/Apparatus/Procedure:

The experimental details are given in the compilation of Ref. 32 for the methylparaben-methanol system in Sec. 2.2.1.1.

Source and Purity of Materials:

1-Octanol (Eastman-Kodak No. 50) was used.

Ethylparaben was obtained from Matheson, Coleman, and Bell.

Estimated Errors:

Solubility: Nothing specified. Temperature: Precision of ± 0.1 °C.

Components:

(1) Benzoic acid, 4-hydroxy-, ethyl ester (ethyl 4-hydroxybenzoate, ethylparaben); C₉H₁₀O₃; [120-47-8]

³³K.S. Alexander, J.W. Mauger,
H. Petersen, Jr., and A.N. Paruta,
J. Pharm. Sci. 66, 42 (1977).

Original Measurements:

 $\begin{array}{l} \text{(2) 1-Octanol (octan-1-ol, octyl} \\ \text{alcohol); } C_8H_{18}O; \\ \text{[111-87-5]} \end{array}$

Variables: $t/^{\circ}C=25-40$

Prepared by:A. Goto and R. Goto

Solubility of ethylparaben in 1-octanol

Temperature	So	lubility ^a
t/°C	x_1	w_1 (compiler)
25	0.156	0.207
30	0.183	0.222
35	0.204	0.246
40	0.226	0.271

^aIn the original paper, the solubility was given as mg/g of solution.

Methods/Apparatus/Procedure:

The experimental details are given in the compilation of Ref. 33 for the methylparaben—methanol system in Sec. 2.2.1.1.

Source and Purity of Materials:

Spectrograde ethylparaben was purchased from Matheson Coleman and Bell Co. Melting point was within 1 $^{\circ}$ C of literature values.

The purity of 1-octanol was 99 mol %. The purity of the alcohol was established by refractive-index and dielectric-constant measurements.

Estimated Errors:

 $t/^{\circ}C=30$

Solubility: Precision within 2.5%. Temperature: Precision of ± 0.1 °C.

Components:	Original Measurements:
(1) Benzoic acid, 4-hydroxy-,	³⁵ S.H. Yalkowsky, S.C. Valvani,
ethyl ester (ethyl	and T.J. Roseman, J. Pharm. Sci
4-hydroxybenzoate,	72 , 866 (1983).
ethylparaben); C ₉ H ₁₀ O ₃ ;	
[120-47-8]	
(2) 1-Octanol (octan-1-ol, octyl	
alcohol); C ₈ H ₁₈ O; [111-87-5]	
Variables:	Prenared by:

A. Goto and R. Goto

	Solubility
$\log_{10} x_1$	x_1 (compiler)
-0.83	0.15

Solubility of ethylparaben in 1-octanol at 30 °C

Auxiliary Information

Methods/Apparatus/Procedure:

An excess amount of solute was allowed to equilibrate with water in a sealed vial for 24 h at 30 $^{\circ}$ C. After equilibration, the samples were filtered through either a 0.22 μm porous or a 1.2 μm silver membrane filter which was preequilibrated at 30 $^{\circ}$ C. Analysis of the filtrate was performed using UV spectrophotometry.

Source and Purity of Materials:

Purest grade ethylparaben was obtained from commercial sources (Aldrich, Eastman, and Fluka), and was used as received.

Reagent-grade octanol was obtained from Aldrich.

Estimated Errors:

Nothing specified.

Components:

(1) Benzoic acid, 4-hydroxy-, ethyl ester (ethyl 4-hydroxybenzoate, ethylparaben); C₉H₁₀O₃; [120-47-8] (2) 1-Decanol (decan-1-ol, decyl alcohol); C₁₀H₂₂O; [112-30-1]

Evaluators:

Ayako Goto, University of Shizuoka, Shizuoka, Japan Rensuke Goto, University of Shizuoka, Shizuoka, Japan Hiroshi Fukuda, Kitasato University, Tokyo, Japan

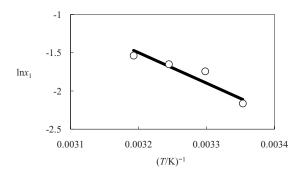


Fig. 22. Fitting curve of Eq. (2) and the observed data for ethylparaben in 1-decanol.

Critical Evaluation

TABLE 46. Summary of experimental solubility data of ethylparaben in 1-decanol

T/K	100w ₁	$100x_1$	Analytical method	Reference
298.2	14.8	11.5	Spectroscopy, Gravimetry	32
298.2	14.8	11.5	Spectroscopy	33
303.2	18.2	17.5	Spectroscopy	33
308.2	20.0	19.2	Spectroscopy	33
313.2	22.3	21.5	Spectroscopy	33

The critical evaluation was carried out as described in Sec. 2.1.1.1 for salicylic acid in n-heptane.

The number of publications: 2

The range of temperature: T/K = 298.2 - 313.2

The units: mass percent and mole fraction

Analytical methods: spectroscopy and gravimetry

Data for the solubility of ethylparaben in 1-decanol expressed by mole fraction were fitted to Eqs. (1) and (2) given in Sec. 1.3 (Table 46). The data points nearly agree with Eq. (2) over the whole range of temperatures, as shown in Fig. 22, but they deviated from Eq. (1). Multiple regression analysis according to Eq. (2) yielded the following results:

Multiple correlation coefficient: 0.952

Sample size: 5 data points *p*-value (F test): 0.013

Constants: $A = -3993 \pm 741$, $C = 11.28 \pm 2.44$

White circles in Fig. 22 represent the observed data and the black line corresponds to calculated values according to Eq. (2) ($\ln x_1 = -3993/T + 11.28$). The observed data fit closely with the calculated values in the range of 298.2–313.2 K, with the multiple correlation coefficient of 0.952, as shown in Fig. 22. Therefore, the calculated value at each measured temperature is reasonably considered as a rec-

Table 47 shows the observed data in the range of 298.2–313.2 K and the recommended values calculated from Eq. (2) at each temperature.

ommended value over the whole range of temperature.

TABLE 47. Observed data and recommended values calculated according to Eq. (2) for ethylparaben in 1-decanol

T/K	$100x_1(obs)$	$100x_1(rec)$
298.2	11.5	12.1
303.2	17.5	15.1
308.2	19.2	18.7
313.2	21.5	23.0

Components:

(1) Benzoic acid, 4-hydroxy-, ethyl ester (ethyl

4-hydroxybenzoate,

ethylparaben); C₉H₁₀O₃; [120-47-8]

(2) 1-Decanol (decan-1-ol, decyl alcohol); C₁₀H₂₂O; [112-30-1]

Variables: $t/^{\circ}C=25$

Prepared by:

216 (1969).

A. Goto and R. Goto

Original Measurements:

³²A.N. Paruta, J. Pharm. Sci. 58,

Solubility of ethylparaben in 1-decanol at 25 °C

Density	Solubili	ty ^a
$\rho/\mathrm{g~cm}^{-3}$	$\frac{100w_1}{\text{(compiler)}}$	x_1
0.8702	14.8	0.115

^aIn the original paper, the solubility was given as milligrams of the ester per gram of solution.

Auxiliary Information

Methods/Apparatus/Procedure:

The experimental details are given in the compilation of Ref. 32 for the methylparaben-methanol system in Sec. 2.2.1.1.

Source and Purity of Materials:

The source of 1-decanol was not reported.

Ethylparaben was obtained from Matheson, Coleman, and Bell.

Estimated Errors:

Solubility: Nothing specified. Temperature: Precision of ± 0.1 °C.

Components:	Original Measurements:
(1) Benzoic acid, 4-hydroxy-,	³³ K.S. Alexander, J.W. Mauger,
ethyl ester (ethyl	H. Petersen, Jr., and A.N. Paruta,
4-hydroxybenzoate,	J. Pharm. Sci. 66, 42 (1977).
ethylparaben); C ₉ H ₁₀ O ₃ ;	
[120-47-8]	
(2) 1-Decanol (decan-1-ol, decyl	
alcohol); C ₁₀ H ₂₂ O; [112-30-1]	
Variables:	Prepared by:
$t/^{\circ}C = 25 - 40$	A. Goto and R. Goto

Solubility of ethylparaben in 1-decanol

Temperature	So	lubility
t/°C	x_1	w_1^a (compiler)
25	0.115	0.148
30	0.175	0.182
35	0.192	0.200
40	0.215	0.223

^aIn the original paper, the solubility was given as mg/g of solution.

Auxiliary Information

Methods/Apparatus/Procedure:

The experimental details are given in the compilation of Ref. 33 for the methylparaben-methanol system in Sec. 2.2.1.1.

Source and Purity of Materials:

Spectrograde ethylparaben was purchased from Matheson Coleman and Bell Co. Melting point was within 1 °C of the literature value. The purity of 1-decanol was 99 mol %. The purity of the alcohol was

established by refractive-index and dielectric-constant measurements.

Estimated Errors:

Solubility: Precision within 2.5%. Temperature: Precision of ± 0.1 °C.

2.2.1.3. Propylparaben

Components:

(1) Benzoic acid, 4-hydroxy-, propyl ester (propyl 4-hydroxybenzoate, propylparaben); C₁₀H₁₂O₃; [94-13-3]

(2) Methyl alcohol (methanol); CH₄O; [67-56-1]

Evaluators:

Ayako Goto, University of Shizuoka, Shizuoka, Japan Rensuke Goto, University of Shizuoka, Shizuoka, Japan Hiroshi Fukuda, Kitasato University, Tokyo, Japan

Critical Evaluation

TABLE 48. Summary of experimental solubility data of propylparaben in methanol

T/K	$100w_1$	$100x_1$	Analytical method	Reference
298.2	54.0	17.2	Spectroscopy, Gravimetry	32
298.2	54.0	17.2	Spectroscopy	33
303.2	59.5	20.7	Spectroscopy	33
308.2	63.9	24.0	Spectroscopy	33
313.2	68.2	27.6	Spectroscopy	33

The critical evaluation was carried out as described in Sec. 2.1.1.1 for salicylic acid in *n*-heptane.

The number of publications: 2

The range of temperature: T/K = 298.2 - 313.2

The units: mass percent and mole fraction

Analytical methods: spectroscopy and gravimetry

Data for the solubility of propylparaben in methanol expressed by mole fraction were fitted to Eqs. (1) and (2) given in Sec. 1.3 (Table 48). The data points nearly agree with Eq. (2) over the whole range of temperatures, as shown in Fig. 23, but they deviated from Eq. (1). Multiple regression analysis according to Eq. (2) yielded the following results:

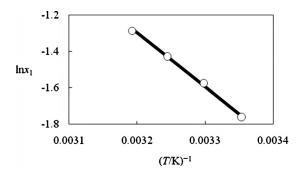


Fig. 23. Fitting curve of Eq. (2) and the observed data for propylparaben in methanol.

Multiple correlation coefficient: 0.999

Sample size: 5 data points *p*-value (F test): 0.000

Constants: $A = -2962 \pm 84$, $C = 8.179 \pm 0.275$

White circles in Fig. 23 represent the observed data and the black line corresponds to calculated values according to Eq. (2) $(\ln x_1 = -2962/T + 8.179)$. The observed data fit closely with the calculated values in the range of 298.2–313.2 K, with the multiple correlation coefficient of 0.999, as shown in Fig. 23. Therefore, the calculated value at each measured temperature is reasonably considered as a recommended value over the whole range of temperature.

Table 49 shows the observed data in the range of 298.2–313.2 K and the recommended values calculated from Eq. (2) at each temperature.

Table 49. Observed data and recommended values calculated according to Eq. (2) for propylparaben in methanol

T/K	$100x_1(obs)$	$100x_1(rec)$
298.2	17.2	17.3
303.2	20.7	20.4
308.2	24.0	23.9
313.2	27.6	27.8

Components:

(1) Benzoic acid, 4-hydroxy-, propyl ester (propyl 4-hydroxybenzoate,

propylparaben); $C_{10}H_{12}O_3$; [94-13-3]

(2) Methyl alcohol (methanol); CH₄O; [67-56-1]

Variables: $t/^{\circ}C=25$

Prepared by:
A. Goto and R. Goto

Original Measurements:

³²A.N. Paruta, J. Pharm. Sci. **58**, 216 (1969).

Solubility of propylparaben in methanol at 25 °C

Density	Solubility	
$\rho/g \text{ cm}^{-3}$	$\frac{100w_1^a}{\text{(compiler)}}$	x_1
0.9318	54.0	0.172

^aIn the original paper, the solubility was given as milligrams of the ester per gram of solution.

Auxiliary Information

Methods/Apparatus/Procedure:

The experimental details are given in the compilation of Ref. 32 for the methylparaben-methanol system in Sec. 2.2.1.1.

Source and Purity of Materials:

Methanol (Fisher certified) was used.

Propylparaben was obtained from Matheson, Coleman, and Bell.

Estimated Errors:

Solubility: Nothing specified. Temperature: Precision of ± 0.1 °C.

Components:

(1) Benzoic acid, 4-hydroxy-, propyl ester (propyl 4-hydroxybenzoate, propylparaben); C₁₀H₁₂O₃; [94-13-3]

(2) Methyl alcohol (methanol);

 $CH_4O; [67-56-1]$

Original Measurements:

33K.S. Alexander, J.W. Mauger,
 H. Petersen, Jr., and A.N. Paruta,
 J. Pharm. Sci. 66, 42 (1977).

Variables: Prepared by: $t/^{\circ}$ C=25-40 A. Goto and R. Goto

Solubility of propylparaben in methanol

Temperature	Sol	ubility
t/°C	x_1	w ₁ ^a (compiler)
25	0.172	0.540
30	0.207	0.595
35	0.240	0.639
40	0.276	0.682

^aIn the original paper, the solubility was given as mg/g of solution.

Auxiliary Information

Methods/Apparatus/Procedure:

The experimental details are given in the compilation of Ref. 33 for the methylparaben-methanol system in Sec. 2.2.1.1.

Source and Purity of Materials:

Spectrograde propylparaben was purchased from Matheson Coleman and Bell Co.

The source and the purity of methanol were not reported.

Estimated Errors:

Solubility: Precision within 2.5%. Temperature: Precision of ± 0.1 °C.

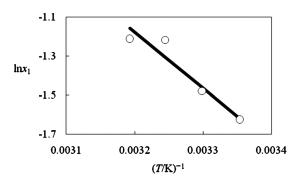


Fig. 24. Fitting curve of Eq. (2) and the observed data for propylparaben in attance.

Components:

C₂H₆O; [64-17-5]

Benzoic acid, 4-hydroxy-, propyl ester (propyl 4-hydroxybenzoate, propylparaben); C₁₀H₁₂O₃; [94-13-3]
 Ethyl alcohol (ethanol);

Evaluators:

Ayako Goto, University of Shizuoka, Shizuoka, Japan Rensuke Goto, University of Shizuoka, Shizuoka, Japan Hiroshi Fukuda, Kitasato University, Tokyo, Japan

Critical Evaluation

Table 50. Summary of experimental solubility data of propylparaben in ethanol

T/K	$100w_{1}$	$100x_1$	Analytical method	Reference
298.2	49.0	19.7	Spectroscopy, Gravimetry	32
298.2	49.0	19.7	Spectroscopy	33
303.2	53.5	22.8	Spectroscopy	33
308.2	62.1	29.6	Spectroscopy	33
313.2	62.4	29.8	Spectroscopy	33

The critical evaluation was carried out as described in Sec. 2.1.1.1 for salicylic acid in n-heptane.

The number of publications: 2

The range of temperature: T/K = 298.2 - 313.2

The units: mass percent and mole fraction

Analytical methods: spectroscopy and gravimetry

Data for the solubility of propylparaben in ethanol expressed by mole fraction were fitted to Eqs. (1) and (2) given in Sec. 1.3 (Table 50). The data points nearly agree with Eq. (2) over the whole range of temperatures, as shown in Fig. 24, but they deviated from Eq. (1). Multiple regression analysis according to Eq. (2) yielded the following results:

Multiple correlation coefficient: 0.935

Sample size: 5 data points *p*-value (F test): 0.007

Constants: $A = -2859 \pm 435$, $C = 7.970 \pm 1.430$

White circles in Fig. 24 represent the observed data and the black line corresponds to calculated values according to Eq. (2) ($\ln x_1 = -2859/T + 7.970$). The observed data fit closely with the calculated values in the range of 298.2–313.2 K, with the multiple correlation coefficient of 0.935, as shown in Fig. 24. Therefore, the calculated value at each measured temperature is reasonably considered as a recommended value over the whole range of temperature.

Table 51 shows the observed data in the range of 298.2–313.2 K and the recommended values calculated from Eq. (2) at each temperature.

Table 51. Observed data and recommended values calculated according to Eq. (2) for propylparaben in ethanol

T/K	$100x_1(obs)$	$100x_1(rec)$
298.2	19.7	19.8
303.2	22.8	23.2
308.2	29.6	27.1
313.2	29.8	31.4

Components:

(1) Benzoic acid, 4-hydroxy-, propyl ester (propyl 4-hydroxybenzoate, propylparaben); C₁₀H₁₂O₃; [94-13-3]

(2) Ethyl alcohol (ethanol); C₂H₆O; [64-17-5]

Variables: $t/^{\circ}C=25$

Original Measurements:

³²A.N. Paruta, J. Pharm. Sci. **58**, 216 (1969).

Prepared by:

A. Goto and R. Goto

Solubility of propylparaben in ethanol at 25 °C

Density	Solubilit	y ^a
ρ /g cm ⁻³	$100w_1^{a}$ (compiler)	x_1
0.9076	49.0	0.197

^aIn the original paper, the solubility was given as milligrams of the ester per gram of solution.

Auxiliary Information

Methods/Apparatus/Procedure:

The experimental details are given in the compilation of Ref. 32 for the methylparaben-methanol system in Sec. 2.2.1.1.

Source and Purity of Materials:

Absolute ethanol was obtained from U.S. Industrial Chemical Co. Propylparaben was obtained from Matheson, Coleman, and Bell.

Estimated Errors:

Solubility: Nothing specified. Temperature: Precision of ± 0.1 °C.

Components:

(1) Benzoic acid, 4-hydroxy-, propyl ester (propyl 4-hydroxybenzoate, propylparaben); C₁₀H₁₂O₃;

[94-13-3] (2) Ethyl alcohol (ethanol);

C₂H₆O; [64-17-5]

Original Measurements:

³³K.S. Alexander, J.W. Mauger, H. Petersen, Jr., and A.N. Paruta, J. Pharm. Sci. **66**, 42 (1977).

Variables: Prepared by:

t/°C=25-40 A. Goto and R. Goto

J. Phys. Chem. Ref. Data, Vol. 40, No. 2, 2011

Solubility of propylparaben in ethanol

Temperature	So	lubility
t/°C	x_1	w ₁ ^a (compiler)
25	0.197	0.490
30	0.228	0.535
35	0.296	0.621
40	0.298	0.624

^aIn the original paper, the solubility was given as mg/g of solution.

Methods/Apparatus/Procedure:

The experimental details are given in the compilation of Ref. 33 for the methylparaben-methanol system in Sec. 2.2.1.1.

Source and Purity of Materials:

Spectrograde propylparaben was purchased from Matheson Coleman and Bell Co. Melting point was within 1 °C of literature value.

Ethanol (J.T. Baker) was of absolute reagent quality. The purity of the alcohol was established by refractive-index and dielectric-constant measurements.

Estimated Errors:

Solubility: Precision within 2.5%. Temperature: Precision of ± 0.1 °C.

Components:

[71-23-8]

(1) Benzoic acid, 4-hydroxy-, propyl ester (propyl 4-hydroxybenzoate, propylparaben); C₁₀H₁₂O₃; [94-13-3] (2) 1-Propanol (propan-1-ol, propyl alcohol); C₃H₈O;

Evaluators:

Ayako Goto, University of Shizuoka, Shizuoka, Japan Rensuke Goto, University of Shizuoka, Shizuoka, Japan Hiroshi Fukuda, Kitasato University, Tokyo, Japan

Critical Evaluation

TABLE 52. Summary of experimental solubility data of propylparaben in 1-propanol

T/K	$100w_1$	$100x_1$	Analytical method	Reference
298.2	43.6	20.5	Spectroscopy, Gravimetry	34
298.2	43.6	19.8	Spectroscopy, Gravimetry	32
298.2	43.6	19.8	Spectroscopy	33
303.2	47.8	23.6	Spectroscopy	33
308.2	52.7	27.3	Spectroscopy	33
313.2	55.7	29.8	Spectroscopy	33

The critical evaluation was carried out as described in Sec. 2.1.1.1 for salicylic acid in n-heptane.

The number of publications: 3

The range of temperature: T/K = 298.2 - 313.2

The units: mass percent and mole fraction

Analytical methods: spectroscopy and gravimetry

Data for the solubility of propylparaben in 1-propanol expressed by mole fraction were fitted to Eqs. (1) and (2) given in Sec. 1.3 (Table 52). The data points nearly agree with Eq. (2) over the whole range of temperatures, as shown

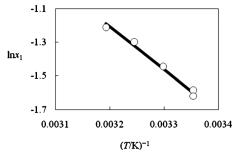


Fig. 25. Fitting curve of Eq. (2) and the observed data for propylparaben in 1-propanol.

in Fig. 25, but they deviated from Eq. (1). Multiple regression analysis according to Eq. (2) yielded the following results:

Multiple correlation coefficient: 0.993

Sample size: 6 data points *p*-value (F test): 0.000

Constants: $A = -2571 \pm 154$, $C = 7.019 \pm 0.509$

White circles in Fig. 25 represent the observed data and the black line corresponds to calculated values according to Eq. (2) $(\ln x_1 = -2571/T + 7.019)$. The observed data fit closely with the calculated values in the range of 298.2–313.2 K, with the multiple correlation coefficient of 0.993, as shown in Fig. 25. Therefore, the calculated value at each measured temperature is reasonably considered as a recommended value over the whole range of temperature.

Table 53 shows the observed data in the range of 298.2–313.2 K and the recommended values calculated from Eq. (2) at each temperature.

TABLE 53. Observed data and recommended values calculated according to Eq. (2) for propylparaben in 1-propanol

T/K	$100x_1(\text{obs})$	$100x_1(rec)$
298.2	20.5	20.2
303.2	23.6	23.2
308.2	27.3	26.7
313.2	29.8	30.5

Components:

(1) Benzoic acid, 4-hydroxy-, propyl ester (propyl 4-hydroxybenzoate, propylparaben); C₁₀H₁₂O₃; [94-13-3]

(2) 1-Propanol (propan-1-ol, propyl alcohol); C₃H₈O; [71-23-8]

Variables: Prepared by: $t/^{\circ}C=25$ A. Goto and R. Goto

Original Measurements:

³⁴F.A. Restaino and A.N. Martin, J. Pharm. Sci. **53**, 636 (1964). Solubility of propylparaben in 1-propanol at 25 °C

Density	Solubili	ty
$\rho/\mathrm{g~cm}^{-3}$	w ₁ ^a (compiler)	x_1
0.9204	0.4363	0.205

^aIn the original paper, the solubility was given as grams of the ester per gram of saturated solution.

Auxiliary Information

Methods/Apparatus/Procedure:

The experimental details are given in the compilation of Ref. 34 for the ethylparaben–1-propanol system in Sec. 2.2.1.2.

Source and Purity of Materials:

Fisher certified grade 1-propanol (b.p. 96.9–97.2 $^{\circ}\text{C})$ was used without further purification.

The ester (purified grade) was recrystallized from chloroform until a sharp melting point was obtained.

Estimated Errors:

Solubility: Nothing specified. Temperature: ± 0.05 °C.

Components:	Original Measurements:
(1) Benzoic acid, 4-hydroxy-,	³² A.N. Paruta, J. Pharm. Sci. 58 ,
propyl ester (propyl	216 (1969).
4-hydroxybenzoate,	
propylparaben); C ₁₀ H ₁₂ O ₃ ;	
[94-13-3]	
(2) 1-Propanol (propan-1-ol,	
propyl alcohol); C ₃ H ₈ O;	
[71-23-8]	

Variables:	Prepared by:
t/°C=25	A. Goto and R. Goto

Solubility of propylparaben in 1-propanol at 25 °C

Density	Solubili	ty
$\rho/\mathrm{g~cm}^{-3}$	$100w_1^{\ a}$ (compiler)	x_1
0.9112	43.6	0.198

^aIn the original paper, the solubility was given as milligrams of the ester per gram of solution.

Auxiliary Information

Methods/Apparatus/Procedure:

The experimental details are given in the compilation of Ref. 32 for the methylparaben-methanol system in Sec. 2.2.1.1.

Source and Purity of Materials:

1-Propanol (Baker analyzed) was used.

Propylparaben was obtained from Matheson, Coleman, and Bell.

Estimated Errors:

Solubility: Nothing specified. Temperature: Precision of $\pm 0.1~^{\circ}C.$

Components:

(1) Benzoic acid, 4-hydroxy-, propyl ester (propyl 4-hydroxybenzoate, propylparaben); C₁₀H₁₂O₃; [94-13-3]

(2) 1-Propanol (propan-1-ol, propyl alcohol); C₃H₈O; [71-23-8]

Original Measurements:

³³K.S. Alexander, J.W. Mauger, H. Petersen, Jr., and A.N. Paruta, J. Pharm. Sci. **66**, 42 (1977).

Variables: Prepared by: $t/^{\circ}$ C=25-40 A. Goto and R. Goto

Solubility of propylparaben in 1-propanol

Temperature	Solubility	
t/°C	x_1	w_1^a (compiler)
25	0.198	0.436
30	0.236	0.478
35	0.273	0.527
40	0.298	0.557

^aIn the original paper, the solubility was given as mg/g of solution.

Auxiliary Information

Methods/Apparatus/Procedure:

The experimental details are given in the compilation of Ref. 33 for the methylparaben-methanol system in Sec. 2.2.1.1.

Source and Purity of Materials:

Spectrograde propylparaben was purchased from Matheson Coleman and Bell Co. Melting point was within 1 $^{\circ}$ C of the literature value.

1-Propanol (J.T. Baker) was of absolute reagent quality. The purity of the alcohol was established by refractive-index and dielectric-constant measurements

Estimated Errors:

Solubility: Precision within 2.5%. Temperature: Precision of ± 0.1 °C.

Components:

(1) Benzoic acid, 4-hydroxy-, propyl ester (propyl 4-hydroxybenzoate, propylparaben); C₁₀H₁₂O₃; [94-13-3]

(2) 1-Butanol (butan-1-ol, butyl alcohol); C₄H₁₀O; [71-36-3]

Evaluators:

Ayako Goto, University of Shizuoka, Shizuoka, Japan Rensuke Goto, University of Shizuoka, Shizuoka, Japan Hiroshi Fukuda, Kitasato University, Tokyo, Japan

Critical Evaluation

TABLE 54. Summary of experimental solubility data of propylparaben in 1-butanol

T/K	$100w_1$	$100x_1$	Analytical method	Reference
298.2	39.4	21.1	Spectroscopy, Gravimetry	34
298.2	39.4	20.6	Spectroscopy, Gravimetry	32
298.2	39.4	20.6	Spectroscopy	33
303.2	44.1	24.5	Spectroscopy	33
308.2	48.4	27.8	Spectroscopy	33
313.2	52.8	31.6	Spectroscopy	33

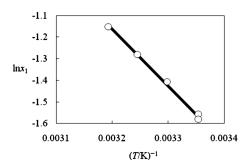


Fig. 26. Fitting curve of Eq. (2) and the observed data for propylparaben in

The critical evaluation was carried out as described in Sec. 2.1.1.1 for salicylic acid in *n*-heptane.

The number of publications: 3

The range of temperature: T/K = 298.2 - 313.2

The units: mass percent and mole fraction

Analytical methods: spectroscopy and gravimetry

Data for the solubility of propylparaben in 1-butanol expressed by mole fraction were fitted to Eqs. (1) and (2) given in Sec. 1.3 (Table 54). The data points nearly agree with Eq. (2) over the whole range of temperatures, as shown in Fig. 26, but they deviated from Eq. (1). Multiple regression analysis according to Eq. (2) yielded the following results:

Multiple correlation coefficient: 0.998

Sample size: 6 data points *p*-value (F test): 0.000

Constants: $A = -2633 \pm 89$, $C = 7.260 \pm 0.293$

White circles in Fig. 26 represent the observed data and the black line corresponds to calculated values according to Eq. (2) $(\ln x_1 = -2633/T + 7.260)$. The observed data fit closely with the calculated values in the range of 298.2-313.2 K, with the multiple correlation coefficient of 0.998, as shown in Fig. 26. Therefore, the calculated value at each measured temperature is reasonably considered as a recommended value over the whole range of temperature.

Table 55 shows the observed data in the range of 298.2-313.2 K and the recommended values calculated from Eq. (2) at each temperature.

TABLE 55. Observed data and recommended values calculated according to Eq. (2) for propylparaben in 1-butanol

T/K	$100x_1(\text{obs})$	$100x_1(rec)$
298.2	21.1	20.8
303.2	24.5	24.1
308.2	27.8	27.8
313.2	31.6	31.8

Components:

(1) Benzoic acid, 4-hydroxy-, propyl ester (propyl 4-hydroxybenzoate, propylparaben); C₁₀H₁₂O₃; [94-13-3]

(2) 1-Butanol (butan-1-ol, butyl alcohol); C₄H₁₀O; [71-36-3]

Original Measurements:

34F.A. Restaino and A.N. Martin, J. Pharm. Sci. 53, 636 (1964).

Variables: $t/^{\circ}C=25$

Prepared by: A. Goto and R. Goto

Solubility of propylparaben in 1-butanol at 25 $^{\circ}\text{C}$

Density	Solubil	ity
$\rho/\mathrm{g~cm}^{-3}$	w_1^a (compiler)	x_1
0.9146	0.3940	0.211

^aIn the original paper, the solubility was given as grams of the ester per gram of saturated solution.

Auxiliary Information

Methods/Apparatus/Procedure:

The experimental details are given in the compilation of Ref. 34 for the ethylparaben-1-propanol system in Sec. 2.2.1.2.

Source and Purity of Materials:

Fisher certified grade 1-butanol (b.p. 116.6-117.8 °C) was used without further purification.

The ester (purified grade) was recrystallized from chloroform until a sharp melting point was obtained.

Estimated Errors:

Solubility: Nothing specified. Temperature: ±0.05 °C.

Components:

(1) Benzoic acid, 4-hydroxy-, propyl ester (propyl 4-hydroxybenzoate, propylparaben); C₁₀H₁₂O₃;

alcohol); C₄H₁₀O; [71-36-3]

(2) 1-Butanol (butan-1-ol, butyl

Original Measurements:

32A.N. Paruta, J. Pharm. Sci. 58, 216 (1969).

Variables: $t/^{\circ}C=25$

[94-13-3]

Prepared by: A. Goto and R. Goto

Solubility of propylparaben in 1-butanol at 25 °C

Density	Solubil	ity
ρ/g cm ⁻³	$\frac{100w_1^a}{\text{(compiler)}}$	x_1
0.9066	39.4	0.206

^aIn the original paper, the solubility was given as milligrams of the ester per gram of solution.

Methods/Apparatus/Procedure:

The experimental details are given in the compilation of Ref. 32 for the methylparaben—methanol system in Sec. 2.2.1.1.

Source and Purity of Materials:

The source of 1-butanol was not reported.

Propylparaben was obtained from Matheson, Coleman, and Bell.

Estimated Errors:

Solubility: Nothing specified. Temperature: Precision of ± 0.1 °C.

Components

 $t/^{\circ}C = 25 - 40$

(1) Benzoic acid, 4-hydroxy-, propyl ester (propyl 4-hydroxybenzoate, propylparaben); C₁₀H₁₂O₃; [94-13-3]

(2) 1-Butanol (butan-1-ol, butyl alcohol); C₄H₁₀O; [71-36-3]

alcohol); C₄H₁₀O; [71-36-3] **Variables:**

Original Measurements:

³³K.S. Alexander, J.W. Mauger, H. Petersen, Jr., and A.N. Paruta, J. Pharm. Sci. **66**, 42 (1977).

Prepared by:

A. Goto and R. Goto

Solubility of propylparaben in 1-butanol

Temperature	Solubility		Solubility	
t/°C	x_1	w_1^a (compiler)		
25	0.206	0.394		
30	0.245	0.441		
35	0.278	0.484		
40	0.316	0.528		

^aIn the original paper, the solubility was given as mg/g of solution.

Auxiliary Information

Methods/Apparatus/Procedure:

The experimental details are given in the compilation of Ref. 33 for the methylparaben–methanol system in Sec. 2.2.1.1.

Source and Purity of Materials:

Spectrograde propylparaben was purchased from Matheson Coleman and Bell Co. The melting point was within 1 °C of the literature value. 1-Butanol (TDY Mallinckrodt) was of analytical reagent quality. The purity of the alcohol was established by refractive-index and dielectric-constant measurements.

Estimated Errors:

Solubility: Precision within 2.5%. Temperature: Precision of ± 0.1 °C.

Components:

(1) Benzoic acid, 4-hydroxy-, propyl ester (propyl 4-hydroxybenzoate, propylparaben); C₁₀H₁₂O₃; [94-13-3] (2) 1-Hexanol (hexan-1-ol, hexyl alcohol); C₆H₁₄O; [111-27-3]

Evaluators:

Ayako Goto, University of Shizuoka, Shizuoka, Japan Rensuke Goto, University of Shizuoka, Shizuoka, Japan Hiroshi Fukuda, Kitasato University, Tokyo, Japan

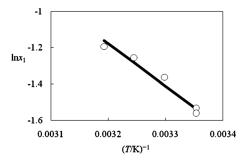


Fig. 27. Fitting curve of Eq. (2) and the observed data for propylparaben in 1-hexanol.

Critical Evaluation

TABLE 56. Summary of experimental solubility data of propylparaben in 1-hexanol

T/K	$100w_1$	$100x_1$	Analytical method	Reference
298.2	32.7	21.6	Spectroscopy, Gravimetry	34
298.2	32.6	21.0	Spectroscopy, Gravimetry	32
298.2	32.6	21.0	Spectroscopy	33
303.2	36.2	25.6	Spectroscopy	33
308.2	41.2	28.5	Spectroscopy	33
313.2	43.4	30.3	Spectroscopy	33

The critical evaluation was carried out as described in Sec. 2.1.1.1 for salicylic acid in n-heptane.

The number of publications: 3

The range of temperature: T/K = 298.2 - 313.2

The units: mass percent and mole fraction

Analytical methods: spectroscopy and gravimetry

Data for the solubility of propylparaben in 1-hexanol expressed by mole fraction were fitted to Eqs. (1) and (2) given in Sec. 1.3 (Table 56). The data points nearly agree with Eq. (2) over the whole range of temperatures, as shown in Fig. 27, but they deviated from Eq. (1). Multiple regression analysis according to Eq. (2) yielded the following results:

Multiple correlation coefficient: 0.981

Sample size: 6 data points *p*-value (F test): 0.001

Constants: $A = -2355 \pm 232$, $C = 6.360 \pm 0.765$

White circles in Fig. 27 represent the observed data and the black line corresponds to calculated values according to Eq. (2) ($\ln x_1 = -2355/T + 6.360$). The observed data fit closely with the calculated values in the range of 298.2–313.2 K, with the multiple correlation coefficient of 0.981, as shown in Fig. 27. Therefore, the calculated value at each measured temperature is reasonably considered as a recommended value over the whole range of temperature.

Table 57 shows the observed data in the range of 298.2–313.2 K and the recommended values calculated from Eq. (2) at each temperature.

TABLE 57. Observed data and recommended values calculated according to Eq. (2) for propylparaben in 1-hexanol

T/K	$100x_1(obs)$	$100x_1(rec)$
298.2	21.6	21.5
303.2	25.6	24.5
308.2	28.5	27.7
313.2	30.3	31.3

Components:

(1) Benzoic acid, 4-hydroxy-, propyl ester (propyl 4-hydroxybenzoate, propylparaben); C₁₀H₁₂O₃; [94-13-3]

(2) 1-Hexanol (hexan-1-ol, hexyl alcohol); C₆H₁₄O; [111-27-3]

Variables: $t/^{\circ}C=25$

Prepared by:

A. Goto and R. Goto

Original Measurements:

³⁴F.A. Restaino and A.N. Martin.

J. Pharm. Sci. 53, 636 (1964).

Solubility of propylparaben in 1-hexanol at 25 °C

Density	Solubili	ty
$\rho/\mathrm{g~cm}^{-3}$	w_1^a (compiler)	x_1
0.8992	0.3265	0.216

^aIn the original paper, the solubility was given as grams of the ester per gram of saturated solution.

Auxiliary Information

Methods/Apparatus/Procedure:

The experimental details are given in the compilation of Ref. 34 for the ethylparaben-1-propanol system in Sec. 2.2.1.2.

Source and Purity of Materials:

1-Hexanol (b.p. 156.5–157.5 $^{\circ}\text{C})$ obtained from Eastman Organic Chemicals was redistilled.

The ester (purified grade) was recrystallized from chloroform until a sharp melting point was obtained.

Estimated Errors:

Solubility: Nothing specified. Temperature: ± 0.05 °C.

Components:

(1) Benzoic acid, 4-hydroxy-, propyl ester (propyl 4-hydroxybenzoate, propylparaben); C₁₀H₁₂O₃; [94-13-3]

(2) 1-Hexanol (hexan-1-ol, hexyl alcohol); C₆H₁₄O; [111-27-3]

Variables: $t/^{\circ}C=25$

Prepared by:

216 (1969).

A. Goto and R. Goto

Original Measurements:

32A.N. Paruta, J. Pharm. Sci. 58,

Solubility of propylparaben in 1-hexanol at 25 °C

Density	Solubil	ity
$\rho/\mathrm{g~cm^{-3}}$	$\frac{100w_1^a}{\text{(compiler)}}$	x_1
0.8981	32.6	0.210

^aIn the original paper, the solubility was given as milligrams of the ester per gram of solution.

Auxiliary Information

Methods/Apparatus/Procedure:

The experimental details are given in the compilation of Ref. 32 for the methylparaben-methanol system in Sec. 2.2.1.1.

Source and Purity of Materials:

1-Hexanol (Eastman-Kodak No. 50) was used.

Propylparaben was obtained from Matheson, Coleman, and Bell.

Estimated Errors:

Solubility: Nothing specified. Temperature: Precision of $\pm 0.1~^{\circ}\text{C}$.

Components:

(1) Benzoic acid, 4-hydroxy-, propyl ester (propyl 4-hydroxybenzoate, propylparaben); C₁₀H₁₂O₃; [94-13-3]

(2) 1-Hexanol (hexan-1-ol, hexyl alcohol); $C_6H_{14}O;$ [111-27-3]

Variables:

 $t/^{\circ}C = 25 - 40$

Original Measurements:

33K.S. Alexander, J.W. Mauger,
 H. Petersen, Jr., and A.N. Paruta,
 J. Pharm. Sci. 66, 42 (1977).

Prepared by:
A. Goto and R. Goto

Solubility of propylparaben in 1-hexanol

Temperature	Solubility	
t/°C	x_1	w_1^a (compiler)
25	0.210	0.326
30	0.256	0.362
35	0.285	0.412
40	0.303	0.434

^aIn the original paper, the solubility was given as mg/g of solution.

Auxiliary Information

Methods/Apparatus/Procedure:

The experimental details are given in the compilation of Ref. 33 for the methylparaben-methanol system in Sec. 2.2.1.1.

Source and Purity of Materials:

Spectrograde propylparaben was purchased from Matheson Coleman and Bell Co. The melting point was within 1 °C of the literature value. The purity of 1-hexanol was 99 mol %. The purity of the alcohol was

established by refractive-index and dielectric-constant measurements.

Estimated Errors:

Solubility: Precision within 2.5%. Temperature: Precision of ± 0.1 °C.

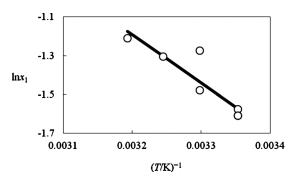


Fig. 28. Fitting curve of Eq. (2) and the observed data for propylparaben in 1-octanol.

Components:

(1) Benzoic acid, 4-hydroxy-, propyl ester (propyl 4-hydroxybenzoate, propylparaben); C₁₀H₁₂O₃; [94-13-3] (2) 1-Octanol (octan-1-ol, octyl

alcohol); C₈H₁₈O; [111-87-5]

Evaluators:

Ayako Goto, University of Shizuoka, Shizuoka, Japan Rensuke Goto, University of Shizuoka, Shizuoka, Japan Hiroshi Fukuda, Kitasato University, Tokyo, Japan

Critical Evaluation

TABLE 58. Summary of experimental solubility data of propylparaben in 1-octanol

T/K	$c_1/\mathrm{mol}~\mathrm{dm}^{-3}$	$100w_1$	$100x_1$	Analytical method	Reference
298.2		26.6	20.7	Spectroscopy, Gravimetry	34
298.2		26.6	20.0	Spectroscopy, Gravimetry	32
298.2		26.6	20.0	Spectroscopy	33
298.2	2.39			Spectroscopy	36
303.2		29.0	22.8	Spectroscopy	33
303.2			28.0	Spectroscopy	35
308.2		33.9	27.1	Spectroscopy	33
313.2		37.0	29.8	Spectroscopy	33

The critical evaluation was carried out as described in Sec. 2.1.1.1 for salicylic acid in n-heptane.

The number of publications: 5

The range of temperature: T/K = 298.2 - 313.2

The units: molar concentration, mass percent, and mole fraction

Analytical methods: spectroscopy and gravimetry

Data for the solubility of propylparaben in 1-octanol expressed by mole fraction were fitted to Eqs. (1) and (2) given in Sec. 1.3 (Table 58). The data points nearly agree with Eq. (2) over the whole range of temperatures, as shown in Fig. 28, but they deviated from Eq. (1). Multiple regression analysis according to Eq. (2) yielded the following results:

Multiple correlation coefficient: 0.903

Sample size: 7 data points *p*-value (F test): 0.005

Constants: $A = -2490 \pm 529$, $C = 6.777 \pm 1.744$

White circles in Fig. 28 represent the observed data and the black line corresponds to calculated values according to Eq. (2) ($\ln x_1 = -2490/T + 6.777$). The observed data fit closely with the calculated values in the range of 298.2–313.2 K, with the multiple correlation coefficient of

0.903, as shown in Fig. 28. Therefore, the calculated value at each measured temperature is reasonably considered as a recommended value over the whole range of temperature.

Table 59 shows the observed data in the range of 298.2–313.2 K and the recommended values calculated from Eq. (2) at each temperature.

TABLE 59. Observed data and recommended values calculated according to Eq. (2) for propylparaben in 1-octanol

T/K	$100x_1(obs)$	$100x_1(rec)$
298.2	20.7	20.7
303.2	22.8	23.8
308.2	27.1	27.2
313.2	29.8	30.9

Components:

(1) Benzoic acid, 4-hydroxy-, propyl ester (propyl 4-hydroxybenzoate, propylparaben); C₁₀H₁₂O₃; [94-13-3]

(2) 1-Octanol (octan-1-ol, octyl alcohol); C₈H₁₈O; [111-87-5]

Original Measurements:

³⁴F.A. Restaino and A.N. Martin, J. Pharm. Sci. **53**, 636 (1964).

Variables: Prepared By: $t/^{\circ}$ C=25 A. Goto and R. Goto

Solubility of propylparaben in 1-octanol at 25 °C

Density	Solut	Solubility	
$\rho/\mathrm{g~cm}^{-3}$	w_1^{a}	x_1	
0.8869	0.2655	0.207	

^aIn the original paper, the solubility was given as grams of the ester per gram of saturated solution.

Auxiliary Information

Methods/Apparatus/Procedure:

The experimental details are given in the compilation of Ref. 34 for the ethylparaben–1-propanol system in Sec. 2.2.1.2.

Source and Purity of Materials:

1-Octanol (b.p. 194–195 $^{\circ}\text{C})$ obtained from Eastman Organic Chemicals was redistilled.

The ester (purified grade) was recrystallized from chloroform until a sharp melting point was obtained.

Estimated Errors:

Solubility: Nothing specified. Temperature: ± 0.05 °C.

Components:

(1) Benzoic acid, 4-hydroxy-, propyl ester (propyl 4-hydroxybenzoate, propylparaben); C₁₀H₁₂O₃; [94-13-3]

(2) 1-Octanol (octan-1-ol, octyl alcohol); C₈H₁₈O; [111-87-5]

Original Measurements:

³²A.N. Paruta, J. Pharm. Sci. **58**, 216 (1969).

Variables: Prepared by: $t/^{\circ}$ C=25 A. Goto and R. Goto

Solubility of propylparaben in 1-octanol at 25 °C

Density	Solubili	ity
ρ /g cm ⁻³	$\frac{100w_1^a}{\text{(compiler)}}$	x_1
0.8809	26.6	0.200

^aIn the original paper, the solubility was given as milligrams of the ester per gram of solution.

Auxiliary Information

Methods/Apparatus/Procedure:

The experimental details are given in the compilation of Ref. 32 for the methylparaben—methanol system in Sec. 2.2.1.1.

Source and Purity of Materials:

1-Octanol (Eastman-Kodak No. 50) was used.

Propylparaben was obtained from Matheson, Coleman, and Bell.

Estimated Errors:

Solubility: Nothing specified. Temperature: Precision of ± 0.1 °C.

Components:

(1) Benzoic acid, 4-hydroxy-, propyl ester (propyl 4-hydroxybenzoate, propylparaben); C₁₀H₁₂O₃; [94-13-3]

(2) 1-Octanol (octan-1-ol, octyl alcohol); $C_8H_{18}O; [111-87-5]$

Variables: $t/^{\circ}C=25-40$

Prepared by:

A. Goto and R. Goto

Original Measurements:

³³K.S. Alexander, J.W. Mauger,

J. Pharm. Sci. 66, 42 (1977).

H. Petersen, Jr., and A.N. Paruta,

Solubility of propylparaben in 1-octanol

Temperature	Solubility	
t/°C	x_1	w_1^a (compiler)
25	0.200	0.266
30	0.228	0.290
35	0.271	0.339
40	0.298	0.370

^aIn the original paper, the solubility was given as mg/g of solution.

Auxiliary Information

Methods/Apparatus/Procedure:

The experimental details are given in the compilation of Ref. 33 for the methylparaben—methanol system in Sec. 2.2.1.1.

Source and Purity of Materials:

Spectrograde propylparaben was purchased from Matheson Coleman and Bell Co. The melting point was within 1 $^{\circ}$ C of the literature value. The purity of 1-octanol established by refractive-index and

Estimated Errors:

Solubility: Precision within 2.5%. Temperature: Precision of ± 0.1 °C.

dielectric-constant measurements was 99 mol %.

Components:

(1) Benzoic acid, 4-hydroxy-, propyl ester (propyl 4-hydroxybenzoate, propylparaben); C₁₀H₁₂O₃; [94-13-3]

(2) 1-Octanol (octan-1-ol, octyl alcohol); C₈H₁₈O; [111-87-5]

Original Measurements:

³⁵S.H. Yalkowsky, S.C. Valvani, and T.J. Roseman, J. Pharm. Sci. **72**, 866 (1983).

Variables: Prepared by:

t/ °C=30 A. Goto and R. Goto

Solubility of propylparaben in 1-octanol at 30 °C

	Solubility
$\log_{10} x_1$	x_1 (compiler)
-0.55	0.28

Auxiliary Information

Methods/Apparatus/Procedure:

The experimental details are given in the compilation of Ref. 35 for the ethylparaben-1-octanol system in Sec. 2.2.1.2.

Source and Purity of Materials:

Propylparaben of purest grade was obtained from commercial sources (Aldrich, Eastman, and Fluka) and was used as received.

Reagent-grade octanol was obtained from Aldrich.

Estimated Errors:

Nothing specified.

Components:

(1) Benzoic acid, 4-hydroxy-, propyl ester (propyl 4-hydroxybenzoate, propylparaben); C₁₀H₁₂O₃;

[94-13-3]

(2) 1-Octanol (octan-1-ol, octyl alcohol); $C_8H_{18}O$; [111-87-5]

Original Measurements:

³⁶A.E. Beezer, S. Forster, W.-B. Park, and G.J. Rimmer, Thermochim. Acta **178**, 59 (1991).

Variables: Prepared by:

T/K=298

A. Goto and R. Goto

The solubility of propylparaben in 1-octanol at 298 K was reported as $c_1/\text{mol dm}^{-3}=2.16$.

Auxiliary Information

Methods/Apparatus/Procedure:

A slight excess of the solute was introduced into 1-octanol, and after 2 days equilibration at 298.2 K, the solute concentrations were determined spectrophotometrically at 258 nm [A.E. Beezer, W.H. Hunter, and D. E. Storey, J. Pharm. Pharmacol. **35**, 350 (1983)].

Source and Purity of Materials:

The propylparaben was the gift of Apin Chemicals Ltd. (Abingdon, Great Britain) and was used as received. The purity was specified as >99.5%. 1-Octanol was of Anala R grade.

Estimated Errors:

Nothing specified.

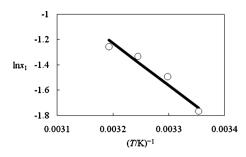


Fig. 29. Fitting curve of Eq. (2) and the observed data for propylparaben in

Components:

(1) Benzoic acid, 4-hydroxy-, propyl ester (propyl 4-hydroxybenzoate, propylparaben); C₁₀H₁₂O₃; [94-13-3] (2) 1-Decanol (decan-1-ol, decyl

alcohol); C₁₀H₂₂O; [112-30-1]

Evaluators:

Ayako Goto, University of Shizuoka, Shizuoka, Japan Rensuke Goto, University of Shizuoka, Shizuoka, Japan Hiroshi Fukuda, Kitasato University, Tokyo, Japan

Critical Evaluation

TABLE 60. Summary of experimental solubility data of propylparaben in 1-decanol

T/K	$100w_1$	$100x_1$	Analytical method	Reference
298.2	21.7	17.1	Spectroscopy, Gravimetry	32
298.2	21.7	17.1	Spectroscopy	33
303.2	24.8	22.5	Spectroscopy	33
308.2	29.0	26.4	Spectroscopy	33
313.2	31.2	28.5	Spectroscopy	33

The critical evaluation was carried out as described in Sec. 2.1.1.1 for salicylic acid in n-heptane.

The number of publications: 2

The range of temperature: T/K = 298.2 - 313.2

The units: mass percent and mole fraction

Analytical methods: spectroscopy and gravimetry

Data for the solubility of propylparaben in 1-decanol expressed by mole fraction were fitted to Eqs. (1) and (2) given in Sec. 1.3 (Table 60). The data points nearly agree with Eq. (2) over the whole range of temperatures, as shown in Fig. 29, but they deviated from Eq. (1). Multiple regression analysis according to Eq. (2) yielded the following results:

Multiple correlation coefficient: 0.978

Sample size: 5 data points *p*-value (F test): 0.004

Constants: $A = -3330 \pm 414$, $C = 9.427 \pm 1.362$

White circles in Fig. 29 represent the observed data and the black line corresponds to calculated values according to Eq. (2) $(\ln x_1 = -3330/T + 9.427)$. The observed data fit closely with the calculated values in the range of 298.2–313.2 K, with the multiple correlation coefficient of 0.978, as shown in Fig. 29. Therefore, the calculated value at each measured temperature is reasonably considered as a recommended value over the whole range of temperature.

Table 61 shows the observed data in the range of

298.2-313.2 K and the recommended values calculated from Eq. (2) at each temperature.

TABLE 61. Observed data and recommended values calculated according to Eq. (2) for propylparaben in 1-decanol

T/K	$100x_1(obs)$	$100x_1(rec)$
298.2	17.1	17.6
303.2	22.5	21.1
308.2	26.4	25.3
313.2	28.5	30.0

Components:

(1) Benzoic acid, 4-hydroxy-, propyl ester (propyl 4-hydroxybenzoate, propylparaben); C₁₀H₁₂O₃; [94-13-3] (2) 1-Decanol (decan-1-ol, decyl

alcohol); C₁₀H₂₂O; [112-30-1]

Original Measurements:

32A.N. Paruta, J. Pharm. Sci. 58, 216 (1969).

Variable	es:

 $t/^{\circ}C=25$

Prepared by:

A. Goto and R. Goto

Solubility of propylparaben in 1-decanol at 25 °C

Density	Solubil	ity
$\rho/\mathrm{g}\mathrm{cm}^{-3}$	$\frac{100w_1^a}{\text{(compiler)}}$	x_1
0.8732	21.7	0.171

^aIn the original paper, the solubility was given as milligrams of the ester per gram of solution.

Auxiliary Information

Methods/Apparatus/Procedure:

The experimental details are given in the compilation of Ref. 32 for the methylparaben-methanol system in Sec. 2.2.1.1.

Source and Purity of Materials:

The source of 1-decanol was not reported.

Propylparaben was obtained from Matheson, Coleman, and Bell.

Estimated Errors:

Solubility: Nothing specified. Temperature: Precision of ±0.1 °C.

Components:

(1) Benzoic acid, 4-hydroxy-, propyl ester (propyl 4-hydroxybenzoate, propylparaben); C₁₀H₁₂O₃; [94-13-3] (2) 1-Decanol (decan-1-ol, decyl

Original Measurements:

³³K.S. Alexander, J.W. Mauger, H. Petersen, Jr., and A.N. Paruta, J. Pharm. Sci. 66, 42 (1977).

alcohol); C₁₀H₂₂O; [112-30-1]

Variables:

Prepared by: $t/^{\circ}C = 25 - 40$ A. Goto and R. Goto

Solubility of propylparaben in 1-decanol

Temperature	Solubility	
t/°C	x_1	w ₁ ^a (compiler)
25	0.171	0.217
30	0.225	0.248
35	0.264	0.290
40	0.285	0.312

^aIn the original paper, the solubility was given as mg/g of solution.

Methods/Apparatus/Procedure:

The experimental details are given in the compilation of Ref. 33 for the methylparaben-methanol system in Sec. 2.2.1.1.

Source and Purity of Materials:

Spectrograde propylparaben was purchased from Matheson Coleman and Bell Co. The melting point was within $1\,^{\circ}$ C of the literature value. The purity of 1-decanol was 99 mol %. The purity of the alcohol was established by refractive-index and dielectric-constant measurements.

Estimated Errors:

Solubility: Precision within 2.5%. Temperature: Precision of ± 0.1 °C.

2.2.1.4. Butylparaben

Components: (1) Benzoic acid, 4-hydroxy-, butyl ester (butyl 4-hydroxybenzoate, butylparaben); C₁₁H₁₄O₃; [94-26-8] (2) Methyl alcohol (methanol); CH₄O; [67-56-1] Evaluators: Ayako Goto, University of Shizuoka, Shizuoka, Japan Hiroshi Fukuda, Kitasato University, Tokyo, Japan

Critical Evaluation

TABLE 62. Summary of experimental solubility data of butylparaben in methanol

T/K	$100w_{1}$	$100x_1$	Analytical method	Reference
298.2	75.5	33.6	Spectroscopy, Gravimetry	32
298.2	75.5	33.6	Spectroscopy	33
303.2	77.9	36.9	Spectroscopy	33
308.2	83.4	45.7	Spectroscopy	33
313.2	85.4	49.1	Spectroscopy	33

The critical evaluation was carried out as described in Sec. 2.1.1.1 for salicylic acid in n-heptane.

The number of publications: 2

The range of temperature: T/K = 298.2 - 313.2

The units: mass percent and mole fraction

Analytical methods: spectroscopy and gravimetry

Data for the solubility of butylparaben in methanol expressed by mole fraction were fitted to Eqs. (1) and (2) given in Sec. 1.3 (Table 62). The data points nearly agree with Eq. (2) over the whole range of temperatures, as shown in Fig. 30, but they deviated from Eq. (1). Multiple regression analysis according to Eq. (2) yielded the following results:

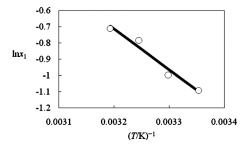


Fig. 30. Fitting curve of Eq. (2) and the observed data for butylparaben in methanol

Multiple correlation coefficient: 0.986

Sample size: 5 data points *p*-value (F test): 0.002

Constants: $A = -2493 \pm 246$, $C = 7.264 \pm 0.808$

White circles in Fig. 30 represent the observed data and the black line corresponds to calculated values according to Eq. (2) $(\ln x_1 = -2493/T + 7.264)$. The observed data fit closely with the calculated values in the range of 298.2–313.2 K, with the multiple correlation coefficient of 0.986, as shown in Fig. 30. Therefore, the calculated value at each measured temperature is reasonably considered as a recommended value over the whole range of temperature.

Table 63 shows the observed data in the range of 298.2–313.2 K and the recommended values calculated from Eq. (2) at each temperature.

TABLE 63. Observed data and recommended values calculated according to Eq. (2) for butylparaben in methanol

T/K	$100x_1(\text{obs})$	$100x_1(rec)$
298.2	33.6	33.4
303.2	36.9	38.3
308.2	45.7	43.8
313.2	49.1	49.8

Components:	Original Measurements:
(1) Benzoic acid, 4-hydroxy-,	³² A.N. Paruta, J. Pharm. Sci. 58 ,
1-butyl ester (butyl	216 (1969).
4-hydroxybenzoate,	
butylparaben); C ₁₁ H ₁₄ O ₃ ;	
[94-26-8]	
(2) Methyl alcohol (methanol);	
CH ₄ O; [67-56-1]	

A. Goto and R. Goto		
of butylparaben in methanol at	25 °C	
Solubility		
$\frac{100w_1^{\ a}}{\text{(compiler)}}$	x_1	
75.5	0.336	
	f butylparaben in methanol at Solubility $100w_1^a$ (compiler)	

^aIn the original paper, the solubility was given as milligrams of the ester per gram of solution.

Propored by

Variables

Methods/Apparatus/Procedure:

The experimental details are given in the compilation of Ref. 32 for the methylparaben-methanol system in Sec. 2.2.1.1.

Source and Purity of Materials:

Methanol (Fisher certified) was used.

Butylparaben was obtained from Matheson, Coleman, and Bell.

Estimated Errors:

Solubility: Nothing specified. Temperature: Precision of ±0.1 °C.

Components:
(1) Benzoic acid, 4-hydroxy
butyl ester (n-butyl
4-hvdroxybenzoate.

butylparaben); C₁₁H₁₄O₃;

[94-26-8]

(2) Methyl alcohol (methanol); CH₄O; [67-56-1]

Variables: $t/^{\circ}C = 25 - 40$

Original Measurements:

³³K.S. Alexander, J.W. Mauger, H. Petersen, Jr., and A.N. Paruta, J. Pharm. Sci. 66, 42 (1977).

Prepared by:

A. Goto and R. Goto

Solubility of	f butylparaben	in	methanol

Temperature	Sol	lubility
t/°C	x_1	w ₁ ^a (compiler)
25	0.336	0.755
30	0.369	0.779
35	0.457	0.834
40	0.491	0.854

^aIn the original paper, the solubility was given as mg/g of solution.

Auxiliary Information

Methods/Apparatus/Procedure:

The experimental details are given in the compilation of Ref. 33 for the methylparaben-methanol system in Sec. 2.2.1.1.

Source and Purity of Materials:

Spectrograde butylparaben was purchased from Matheson Coleman and Bell Co. The melting point was within 1 °C of the literature value.

The source and the purity of methanol were not reported.

Estimated Errors:

Solubility: Precision within 2.5%. Temperature: Precision of ± 0.1 °C.

Components:

(1) Benzoic acid, 4-hydroxy-, butyl ester (butyl 4-hydroxybenzoate, butylparaben); C₁₁H₁₄O₃; [94-26-8] (2) Ethyl alcohol (ethanol); C_2H_6O ; [64-17-5]

Evaluators:

Ayako Goto, University of Shizuoka, Shizuoka, Japan Rensuke Goto, University of Shizuoka, Shizuoka, Japan Hiroshi Fukuda, Kitasato University, Tokyo, Japan

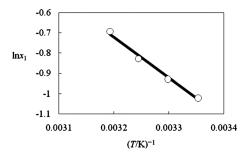


Fig. 31. Fitting curve of Eq. (2) and the observed data for butylparaben in ethanol.

Critical Evaluation

TABLE 64. Summary of experimental solubility data of butylparaben in ethanol

T/K	$100w_1$	$100x_1$	Analytical method	Reference
298.2	70.3	36.0	Spectroscopy, Gravimetry	32
298.2	70.3	36.0	Spectroscopy	33
303.2	73.4	39.5	Spectroscopy	33
308.2	76.6	43.7	Spectroscopy	33
313.2	80.7	50.0	Spectroscopy	33

The critical evaluation was carried out as described in Sec. 2.1.1.1 for salicylic acid in *n*-heptane.

The number of publications: 2

The range of temperature: T/K = 298.2 - 313.2

The units: mass percent and mole fraction

Analytical methods: spectroscopy and gravimetry

Data for the solubility of butylparaben in ethanol expressed by mole fraction were fitted to Eqs. (1) and (2) given in Sec. 1.3 (Table 64). The data points nearly agree with Eq. (2) over the whole range of temperatures, as shown in Fig. 31, but they deviated from Eq. (1). Multiple regression analysis according to Eq. (2) yielded the following results:

Multiple correlation coefficient: 0.996

Sample size: 5 data points

p-value (F test): 0.000

Constants: $A = -1991 \pm 109$, $C = 5.649 \pm 0.359$

White circles in Fig. 31 represent the observed data and the black line corresponds to calculated values according to Eq. (2) $(\ln x_1 = -1991/T + 5.649)$. The observed data fit closely with the calculated values in the range of 298.2–313.2 K, with the multiple correlation coefficient of 0.996, as shown in Fig. 31. Therefore, the calculated value at each measured temperature is reasonably considered as a recommended value over the whole range of temperature.

Table 65 shows the observed data in the range of 298.2-313.2 K and the recommended values calculated from Eq. (2) at each temperature.

Table 65. Observed data and recommended values calculated according to Eq. (2) for butylparaben in ethanol

T/K	$100x_1(obs)$	$100x_1(rec)$
298.2	36.0	35.8
303.2	39.5	39.9
308.2	43.7	44.4
313.2	50.0	49.2

C	omponents:

(1) Benzoic acid, 4-hydroxy-,

1-butyl ester (butyl

4-hydroxybenzoate,

butylparaben); C₁₁H₁₄O₃;

[94-26-8]

(2) Ethyl alcohol (ethanol);

C₂H₆O; [64-17-5]

Variables: $t/^{\circ}C=25$

Prepared by:

216 (1969).

A. Goto and R. Goto

Original Measurements:

³²A.N. Paruta, J. Pharm. Sci. 58,

Solubility of butylparaben in ethanol at 25 °C

Density	Solubility ^a		
$\rho/\mathrm{g~cm}^{-3}$	$100w_1$ (compiler)	x_1	
0.9730	70.3	0.360	

^aIn the original paper, the solubility was given as milligrams of the ester per gram of solution.

Auxiliary Information

Methods/Apparatus/Procedure:

The experimental details are given in the compilation of Ref. 32 for the methylparaben-methanol system in Sec. 2.2.1.1.

Source and Purity of Materials:

Absolute ethanol was obtained from U.S. Industrial Chemical Co. Butylparaben was obtained from Matheson, Coleman, and Bell.

Estimated Errors:

 $t/{}^{\circ}C=25-40$

Solubility: Nothing specified. Temperature: Precision of ± 0.1 °C.

Components:	Original Measurements:
(1) Benzoic acid, 4-hydroxy-,	³³ K.S. Alexander, J.W. Mauger,
butyl ester (n-butyl	H. Petersen, Jr., and A.N. Paruta
4-hydroxybenzoate,	J. Pharm. Sci. 66, 42 (1977).
butylparaben); C ₁₁ H ₁₄ O ₃ ;	
[94-26-8]	
(2) Ethyl alcohol (ethanol);	
C ₂ H ₆ O; [64-17-5]	
Variables:	Prepared by:

A. Goto and R. Goto

Solubility of butylparaben in ethanol

Temperature	Solubility	
t/°C	x_1	w ₁ ^a (compiler)
25	0.360	0.703
30	0.395	0.734
35	0.437	0.766
40	0.500	0.807

^aIn the original paper, the solubility was given as mg/g of solution.

Auxiliary Information

Methods/Apparatus/Procedure:

The experimental details are given in the compilation of Ref. 33 for the methylparaben-methanol system in Sec. 2.2.1.1.

Source and Purity of Materials:

Spectrograde butylparaben was purchased from Matheson Coleman and Bell Co. The melting point was within 1 $^{\circ}$ C of the literature value. Ethanol (J.T. Baker) was of absolute reagent quality. The purity of the alcohol was established by refractive-index and dielectric-constant measurements.

Estimated Errors:

Solubility: Precision within 2.5%. Temperature: Precision of 1 °C.

Components:

(1) Benzoic acid, 4-hydroxy-, butyl ester (butyl 4-hydroxybenzoate, butylparaben); C₁₁H₁₄O₃; [94-26-8] (2) 1-Propanol (propan-1-ol, propyl alcohol); C₁₁H₁₄O₃; [71-23-8]

Evaluators:

Ayako Goto, University of Shizuoka, Shizuoka, Japan Rensuke Goto, University of Shizuoka, Shizuoka, Japan Hiroshi Fukuda, Kitasato University, Tokyo, Japan

Critical Evaluation

TABLE 66. Summary of experimental solubility data of butylparaben in 1-propanol

T/K	$100w_1$	$100x_1$	Analytical method	Reference
298.2	64.7	36.1	Spectroscopy, Gravimetry	34
298.2	64.7	35.5	Spectroscopy, Gravimetry	32
298.2	64.7	35.5	Spectroscopy	33
303.2	68.2	40.2	Spectroscopy	33
308.2	72.9	45.8	Spectroscopy	33
313.2	76.3	50.2	Spectroscopy	33

The critical evaluation was carried out as described in Sec. 2.1.1.1 for salicylic acid in n-heptane.

The number of publications: 3

The range of temperature: T/K = 298.2 - 313.2

The units: mass percent and mole fraction

Analytical methods: spectroscopy and gravimetry

Data for the solubility of butylparaben in 1-propanol expressed by mole fraction were fitted to Eqs. (1) and (2) given in Sec. 1.3 (Table 66). The data points nearly agree with Eq. (2) over the whole range of temperatures, as shown in Fig. 32, but they deviated from Eq. (1). Multiple regression analysis according to Eq. (2) yielded the following results:

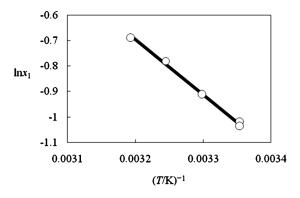


Fig. 32. Fitting curve of Eq. (2) and the observed data for butylparaben in 1-propanol.

Multiple correlation coefficient: 0.998

Sample size: 6 data points *p*-value (F test): 0.000

Constants: $A = -2166 \pm 67$, $C = 6.243 \pm 0.221$

White circles in Fig. 32 represent the observed data and the black line corresponds to calculated values according to Eq. (2) $(\ln x_1 = -2166/T + 6.234)$. The observed data fit closely with the calculated values in the range of 298.2-313.2 K, with the multiple correlation coefficient of 0.998, as shown in Fig. 32. Therefore, the calculated value at each measured temperature is reasonably considered as a recommended value over the whole range of temperature.

Table 67 shows the observed data in the range of 298.2-313.2 K and the recommended values calculated from Eq. (2) at each temperature.

TABLE 67. Observed data and recommended values calculated according to Eq. (2) for butylparaben in 1-propanol

T/K	$100x_1(obs)$	$100x_1(rec)$
298.2	36.1	35.7
303.2	40.2	40.3
308.2	45.8	45.2
313.2	50.2	50.6

Components:

(1) Benzoic acid, 4-hydroxy-, butyl ester (butyl

4-hydroxybenzoate, butylparaben); $C_{11}H_{14}O_3$;

[94-26-8]

(2) 1-Propanol (propan-1-ol, propyl alcohol); C₃H₈O;

[71-23-8]

Variables: Prepared by: $t/^{\circ}C=25$

A. Goto and R. Goto

Original Measurements:

³⁴F.A. Restaino and A.N. Martin,

J. Pharm. Sci. 53, 636 (1964).

Solubility of butylparaben in 1-propanol at 25 °C

Density ρ/g cm ⁻³	Solubil	ity
	w_1^a (compiler)	x_1
0.9724	0.6466	0.361

^aIn the original paper, the solubility was given as grams of the ester per gram of solution.

Auxiliary Information

Methods/Apparatus/Procedure:

The experimental details are given in the compilation of Ref. 34 for the ethylparaben-1-propanol system in Sec. 2.2.1.2.

Source and Purity of Materials:

Fisher certified grade 1-propanol (b.p. 96.9-97.2 °C) was used without further purification.

The ester (purified grade) was recrystallized from chloroform until a sharp melting point was obtained.

Estimated Errors:

Solubility: Nothing specified. Temperature: ±0.05 °C.

Components:

(1) Benzoic acid, 4-hydroxy-,

1-butyl ester (butyl

4-hydroxybenzoate, butylparaben); C₁₁H₁₄O₃;

[94-26-8]

(2) 1-Propanol (propan-1-ol, propyl alcohol); C₃H₈O;

[71-23-8]

Variables: $t/^{\circ}C=25$

Prepared by:

216 (1969).

A. Goto and R. Goto

Original Measurements:

32A.N. Paruta, J. Pharm. Sci. 58,

Solubility of butylparaben in 1-propanol at 25 °C

Density	Solubili	ty
$\rho/\mathrm{g~cm^{-3}}$	$100w_1^a$ (compiler)	x_1
0.9719	64.7	0.355

^aIn the original paper, the solubility was given as milligrams of the ester per gram of solution.

Auxiliary Information

Methods/Apparatus/Procedure:

The experimental details are given in the compilation of Ref. 32 for the methylparaben-methanol system in Sec. 2.2.1.1.

Source and Purity of Materials:

1-Propanol (Baker analyzed) was used.

Butylparaben was obtained from Matheson, Coleman, and Bell.

Estimated Errors:

Solubility: Nothing specified. Temperature: Precision of ± 0.1 °C.

Components:

(1) Benzoic acid, 4-hydroxy-, butyl ester (n-butyl 4-hydroxybenzoate, butylparaben); C₁₁H₁₄O₃; [94-26-8]

(2) 1-Propanol (propan-1-ol, propyl alcohol); C₃H₈O; [71-23-8]

Original Measurements:

³³K.S. Alexander, J.W. Mauger, H. Petersen, Jr., and A.N. Paruta, J. Pharm. Sci. 66, 42 (1977).

Variables: Prepared by: $t/^{\circ}C = 25 - 40$ A. Goto and R. Goto

Solubility of butylparaben in 1-propanol

Temperature	Solubility	
t/°C	x_1	w ₁ ^a (compiler)
25	0.355	0.647
30	0.402	0.682
35	0.458	0.729
40	0.502	0.763

^aIn the original paper, the solubility was given as mg/g of solution

Auxiliary Information

Methods/Apparatus/Procedure:

The experimental details are given in the compilation of Ref. 33 for the methylparaben-methanol system in Sec. 2.2.1.1.

Source and Purity of Materials:

Spectrograde butylparaben was purchased from Matheson Coleman and Bell Co. The melting point was within 1 °C of the literature value. 1-Propanol (J.T. Baker) was of absolute reagent quality. The purity of the alcohol was established by refractive-index and dielectric-constant measurements.

Estimated Errors:

Solubility: Precision within 2.5%. Temperature: Precision of ± 0.1 °C.

Components:

(1) Benzoic acid, 4-hydroxy-, butyl ester (n-butyl 4-hydroxybenzoate, butylparaben); C₁₁H₁₄O₃; [94-26-8] (2) 1-Butanol (butan-1-ol, butyl

alcohol); C₄H₁₀O; [71-36-3]

Evaluators:

Ayako Goto, University of Shizuoka, Shizuoka, Japan Rensuke Goto, University of Shizuoka, Shizuoka, Japan Hiroshi Fukuda, Kitasato University, Tokyo, Japan

Critical Evaluation

TABLE 68. Summary of experimental solubility data of butylparaben in 1-butanol

T/K	$100w_1$	$100x_1$	Analytical method	Reference
298.2	60.1	36.5	Spectroscopy, Gravimetry	34
298.2	60.1	36.4	Spectroscopy, Gravimetry	32
298.2	60.1	36.4	Spectroscopy	33
303.2	62.5	38.8	Spectroscopy	33
308.2	67.2	43.9	Spectroscopy	33
313.2	72.5	50.1	Spectroscopy	33

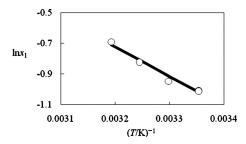


Fig. 33. Fitting curve of Eq. (2) and the observed data for butylparaben in 1-butanol.

The critical evaluation was carried out as described in Sec. 2.1.1.1 for salicylic acid in *n*-heptane.

The number of publications: 3

The range of temperature: T/K = 298.2 - 313.2

The units: mass percent and mole fraction

Analytical methods: spectroscopy and gravimetry

Data for the solubility of butylparaben in 1-butanol expressed by mole fraction were fitted to Eqs. (1) and (2) given in Sec. 1.3 (Table 68). The data points nearly agree with Eq. (2) over the whole range of temperatures, as shown in Fig. 33, but they deviated from Eq. (1). Multiple regression analysis according to Eq. (2) yielded the following results:

Multiple correlation coefficient: 0.989

Sample size: 6 data points *p*-value (F test): 0.000

Constants: $A = -1911 \pm 146$, $C = 5.392 \pm 0.481$

White circles in Fig. 33 represent the observed data and the black line corresponds to calculated values according to Eq. (2) $(\ln x_1 = -1911/T + 5.392)$. The observed data fit closely with the calculated values in the range of 298.2-313.2 K, with the multiple correlation coefficient of 0.989, as shown in Fig. 33. Therefore, the calculated value at each measured temperature is reasonably considered as a recommended value over the whole range of temperature.

Table 69 shows the observed data in the range of 298.2-313.2 K and the recommended values calculated from Eq. (2) at each temperature.

TABLE 69. Observed data and recommended values calculated according to Eq. (2) for butylparaben in 1-butanol

T/K	$100x_1(obs)$	$100x_1(rec)$
298.2	36.5	36.1
303.2	38.8	40.2
308.2	43.9	44.5
313.2	50.1	49.1

Original Measurements:
³⁴ F.A. Restaino and A.N. Martin,
J. Pharm. Sci. 53, 636 (1964).

Variables: $t/^{\circ}C=25$

Prepared by:

A. Goto and R. Goto

Solubility of butylparaben in 1-butanol at 25 °C

Density	Solubili	ity
$\rho/\mathrm{g~cm}^{-3}$	(compiler)	x_1
0.9592	0.6005	0.365

^aIn the original paper, the solubility was given as grams of the ester per gram of solution.

Auxiliary Information

Methods/Apparatus/Procedure:

The experimental details are given in the compilation of Ref. 34 for the ethylparaben-1-propanol system in Sec. 2.2.1.2.

Source and Purity of Materials:

Fisher certified grade 1-butanol (b.p. 116.6-117.8 °C) was used without further purification.

The ester (purified grade) was recrystallized from chloroform until a sharp melting point was obtained.

Estimated Errors:

Solubility: Nothing specified. Temperature: ± 0.05 °C.

Components:

(1) Benzoic acid, 4-hydroxy-, 1-butyl ester (butyl

4-hydroxybenzoate,

butylparaben); C₁₁H₁₄O₃;

[94-26-8]

(2) 1-Butanol (butan-1-ol, butyl

Variables:

Original Measurements:

³²A.N. Paruta, J. Pharm. Sci. 58, 216 (1969).

alcohol); C₄H₁₀O; [71-36-3]

$t/^{\circ}C=25$

Prepared by:

A. Goto and R. Goto

Solubility of butylparaben in 1-butanol at 25 °C

Density $\rho/g \text{ cm}^{-3}$	Solubility	
	$ \begin{array}{c} 100w_1^{\ a} \\ \text{(compiler)} \end{array} $	x_1
0.9612	60.1	0.364

^aIn the original paper, the solubility was given as milligrams of the ester per gram of solution.

Auxiliary Information

Methods/Apparatus/Procedure:

The experimental details are given in the compilation of Ref. 32 for the methylparaben-methanol system in Sec. 2.2.1.1.

Source and Purity of Materials:

The source of 1-butanol was not reported.

Butylparaben was obtained from Matheson, Coleman, and Bell.

Estimated Errors:

Solubility: Nothing specified. Temperature: Precision of ± 0.1 °C.

Components:

(1) Benzoic acid, 4-hydroxy-, butyl ester (n-butyl 4-hydroxybenzoate, butylparaben); C₁₁H₁₄O₃;

[94-26-8]

(2) 1-Butanol (butan-1-ol, butyl alcohol); C₄H₁₀O; [71-36-3]

Original Measurements:

³³K.S. Alexander, J.W. Mauger, H. Petersen, Jr., and A.N. Paruta, J. Pharm. Sci. 66, 42 (1977).

Variables:

 $t/^{\circ}C = 25 - 40$

Prepared by:

A. Goto and R. Goto

Solubility of butylparaben in 1-butanol

Temperature	Solubility	
t/°C	x_1	w_1^a (compiler)
25	0.364	0.601
30	0.388	0.625
35	0.439	0.672
40	0.501	0.725

^aIn the original paper, the solubility was given as mg/g of solution.

Auxiliary Information

Methods/Apparatus/Procedure:

The experimental details are given in the compilation of Ref. 33 for the methylparaben-methanol system in Sec. 2.2.1.1.

Source and Purity of Materials:

Spectrograde butylparaben was purchased from Matheson Coleman and Bell Co. The melting point was within 1 °C of the literature value.

1-Butanol (Mallinckrodt) was of analytical reagent quality. The purity of the alcohol was established by refractive-index and dielectric-constant measurements.

Estimated Errors:

Solubility: Precision within 2.5%. Temperature: Precision of ± 0.1 °C.

Components:

(1) Benzoic acid, 4-hydroxy-, butyl ester (n-butyl 4-hydroxybenzoate, butylparaben); C₁₁H₁₄O₃;

[94-26-8]

(2) 1-Hexanol (hexan-1-ol, hexyl alcohol); C₆H₁₄O; [111-27-3]

Evaluators:

Ayako Goto, University of Shizuoka, Shizuoka, Japan Rensuke Goto, University of Shizuoka, Shizuoka, Japan Hiroshi Fukuda, Kitasato University, Tokyo, Japan

Critical Evaluation

TABLE 70. Summary of experimental solubility data of butylparaben in 1-hexanol

T/K	$100w_1$	$100x_1$	Analytical method	Reference
298.2	52.9	37.1	Spectroscopy, Gravimetry	34
298.2	52.6	36.9	Spectroscopy, Gravimetry	32
298.2	52.6	36.9	Spectroscopy	33
303.2	55.2	39.5	Spectroscopy	33
308.2	60.3	44.4	Spectroscopy	33
313.2	66.1	50.7	Spectroscopy	33

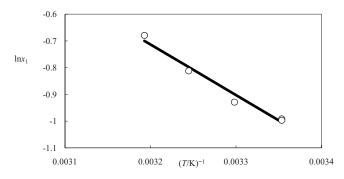


Fig. 34. Fitting curve of Eq. (2) and the observed data for butylparaben in 1-hexanol.

The critical evaluation was carried out as described in Sec. 2.1.1.1 for salicylic acid in n-heptane.

The number of publications: 3

The range of temperature: T/K = 298.2 - 313.2

The units: mass percent and mole fraction

Analytical methods: spectroscopy and gravimetry

Data for the solubility of butylparaben in 1-hexanol expressed by mole fraction were fitted to Eqs. (1) and (2) given in Sec. 1.3 (Table 70). The data points nearly agree with Eq. (2) over the whole range of temperatures, as shown in Fig. 34, but they deviated from Eq. (1). Multiple regression analysis according to Eq. (2) yielded the following results:

Multiple correlation coefficient: 0.990

Sample size: 6 data points *p*-value (F test): 0.000

Constants: $A = -1892 \pm 137$, $C = 5.341 \pm 0.454$

White circles in Fig. 34 represent the observed data and the black line corresponds to calculated values according to Eq. (2) $(\ln x_1 = -1892/T + 5.341)$. The observed data fit closely with the calculated values in the range of 298.2–313.2 K, with the multiple correlation coefficient of 0.990, as shown in Fig. 34. Therefore, the calculated value at each measured temperature is reasonably considered as a recommended value over the whole range of temperature.

Table 71 shows the observed data in the range of 298.2–313.2 K and the recommended values calculated from Eq. (2) at each temperature.

Table 71. Observed data and recommended values calculated according to Eq. (2) for butylparaben in 1-hexanol

$100x_1(obs)$	$100x_1(rec)$
37.1	36.7
39.5	40.7
44.4	45.0
50.7	49.7
	37.1 39.5 44.4

Components:

(1) Benzoic acid, 4-hydroxy-, butyl ester (butyl 4-hydroxybenzoate, butylparaben); C₁₁H₁₄O₃; [94-26-8]

(2) 1-Hexanol (hexan-1-ol, hexyl alcohol); $C_6H_{14}O$; [111-27-3]

Original Measurements:

³⁴F.A. Restaino and A.N. Martin,
 J. Pharm. Sci. **53**, 636 (1964).

Variables:

t/°C=25

Prepared by:

A. Goto and R. Goto

Solubility of butylparaben in 1-hexanol at 25 °C

Density	Solub	oility ^a
ρ/g cm ⁻³	$w_1^{\ a}$ (compiler)	x_1 (compiler)
0.9467	0.5292	0.371

^aIn the original paper, the solubility was given as grams of the ester per gram of solution.

Auxiliary Information

Methods/Apparatus/Procedure:

The experimental details are given in the compilation of Ref. 34 for the ethylparaben-1-propanol system in Sec. 2.2.1.2.

Source and Purity of Materials:

1-Hexanol (b.p. 156.5-157.5 °C) obtained from Eastman Organic

Chemicals was redistilled.

The butylparaben (purified grade) was recrystallized from chloroform until a sharp melting point was obtained.

Estimated Errors:

Solubility: Nothing specified. Temperature: ± 0.05 °C.

Components:

(1) Benzoic acid, 4-hydroxy-,

1-butyl ester (butyl

4-hydroxybenzoate, butylparaben); C₁₁H₁₄O₃;

[94-26-8]

(2) 1-Hexanol (hexan-1-ol, hexyl alcohol); C₆H₁₄O; [111-27-3]

Variables:

 $t/^{\circ}C=25$

Prepared by:

216 (1969).

A. Goto and R. Goto

Original Measurements:

32A.N. Paruta, J. Pharm. Sci. 58,

Solubility of butylparaben in 1-hexanol at 25 °C

Density	Solul	bility
ρ /g cm ⁻³	w_1^a (compiler)	x_1 (compiler)
0.9413	52.6	0.369

^aIn the original paper, the solubility was given as milligrams of the ester per gram of solution.

Methods/Apparatus/Procedure:

The experimental details are given in the compilation of Ref. 32 for the methylparaben—methanol system in Sec. 2.2.1.1.

Source and Purity of Materials:

1-Hexanol (Eastman-Kodak No. 50) was used.

Butylparaben was obtained from Matheson, Coleman and Bell.

Estimated Errors:

Solubility: Nothing specified. Temperature: Precision of ± 0.1 °C.

 $t/^{\circ}C = 25 - 40$

(1) Benzoic acid, 4-hydroxy-, butyl ester (*n*-butyl 4-hydroxybenzoate, butylparaben); C₁₁H₁₄O₃; [94-26-8]

(2) 1-Hexanol (hexan-1-ol, hexyl alcohol); C₆H₁₄O; [111-27-3]

Original Measurements:

³³K.S. Alexander, J.W. Mauger, H. Petersen, Jr., and A.N. Paruta, J. Pharm. Sci. **66**, 42 (1977).

Variables:		

Prepared by: A. Goto and R. Goto

Solubility of butylparaben in 1-hexanol

So	lubility
x_1	w ₁ ^a (compiler)
0.369	0.526
0.395	0.552
0.444	0.603
0.507	0.661
	x ₁ 0.369 0.395 0.444

^aIn the original paper, the solubility was given as mg/g of solution.

Auxiliary Information

Methods/Apparatus/Procedure:

The experimental details are given in the compilation of Ref. 33 for the methylparaben—methanol system in Sec. 2.2.1.1.

Source and Purity of Materials:

Spectrograde butylparaben was purchased from Matheson Coleman and Bell Co. The melting point was within 1 $^{\circ}$ C of the literature value. The purity of 1-hexanol established by refractive-index and dielectric-constant measurements was 99 mol %.

Estimated Errors:

Solubility: Precision within 2.5%. Temperature: Precision of ± 0.1 °C.

Components:

(1) Benzoic acid, 4-hydroxy-, butyl ester (*n*-butyl 4-hydroxybenzoate, butylparaben); C₁₁H₁₄O₃; [94-26-8] (2) 1-Octanol (octan-1-ol, octyl alcohol); C₈H₁₈O; [111-87-5]

Evaluators:

Ayako Goto, University of Shizuoka, Shizuoka, Japan Rensuke Goto, University of Shizuoka, Shizuoka, Japan Hiroshi Fukuda, Kitasato University, Tokyo, Japan

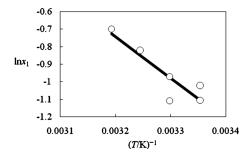


Fig. 35. Fitting curve of Eq. (2) and the observed data for butylparaben in 1-octanol.

Critical Evaluation

TABLE 72. Summary of experimental solubility data of butylparaben in 1-octanol

T/K	$c_1/\mathrm{mol}~\mathrm{dm}^{-3}$	$100w_1$	$100x_1$	Analytical method	Reference
298.2		45.7	36.0	Spectroscopy, Gravimetry	34
298.2		45.7	33.1	Spectroscopy, Gravimetry	32
298.2		45.7	33.1	Spectroscopy	33
298.2	2.39			Spectroscopy	36
303.2		47.6	37.9	Spectroscopy	33
303.2			33.0	Spectroscopy	35
308.2		53.9	44.0	Spectroscopy	33
313.2		59.5	49.7	Spectroscopy	33

The critical evaluation was carried out as described in Sec. 2.1.1.1 for salicylic acid in n-heptane.

The number of publications: 5

The range of temperature: T/K=298.2-313.2

The units: mass percent and mole fraction

Analytical methods: spectroscopy and gravimetry

Data for the solubility of butylparaben in 1-octanol expressed by mole fraction were fitted to Eqs. (1) and (2) given in Sec. 1.3 (Table 72). The data points nearly agree with Eq. (2) over the whole range of temperatures, as shown in Fig. 35, but they deviated from Eq. (1). Multiple regression analysis according to Eq. (2) yielded the following results:

Multiple correlation coefficient: 0.910

Sample size: 7 data points *p*-value (F test): 0.004

Constants: $A = -2349 \pm 478$, $C = 6.774 \pm 1.577$

White circles in Fig. 35 represent the observed data and the black line corresponds to calculated values according to Eq. (2) $(\ln x_1 = -2349/T + 6.774)$. The observed data fit closely with the calculated values in the range of 298.2–313.2 K, with the multiple correlation coefficient of 0.910, as shown in Fig. 35. Therefore, the calculated value at each measured temperature is reasonably considered as a recommended value over the whole range of temperature.

Table 73 shows the observed data in the range of 298.2–313.2 K and the recommended values calculated from Eq. (2) at each temperature.

TABLE 73. Observed data and recommended values calculated according to Eq. (2) for butylparaben in 1-octanol

T/K	$100x_1(obs)$	$100x_1(rec)$
298.2	36.0	33.2
303.2	37.9	37.8
308.2	44.0	42.8
313.2	49.7	48.4

~				
('0	mr	an	an	tc.

(1) Benzoic acid, 4-hydroxy-, butyl ester (butyl 4-hydroxybenzoate, butylparaben); C₁₁H₁₄O₃; [94-26-8] (2) 1-Octanol (octan-1-ol, octyl

alcohol); C₈H₁₈O; [111-87-5]

Original Measurements:

³⁴F.A. Restaino and A.N. Martin,
 J. Pharm. Sci. **53**, 636 (1964).

Variables:

 $t/^{\circ}C=25$

Prepared by:

A. Goto and R. Goto

Solubility of butylparaben in 1-octanol at 25 °C

Density	Solubility		
ρ /g cm ⁻³	$w_1^{\ a}$	x_1	
0.9291	0.4565	0.360	

^aIn the original paper, the solubility was given as grams of the ester per gram of solution.

Auxiliary Information

Methods/Apparatus/Procedure:

The experimental details are given in the compilation of Ref. 34 for the ethylparaben–1-propanol system in Sec. 2.2.1.2.

Source and Purity of Materials:

1-Octanol (b.p. 194–195 $^{\circ}\mathrm{C})$ obtained from Eastman Organic Chemicals was redistilled.

The butylparaben (purified grade) was recrystallized from chloroform until a sharp melting point was obtained.

Estimated Errors:

Solubility: Nothing specified. Temperature: ± 0.05 °C.

Components:

(1) Benzoic acid, 4-hydroxy-,
1-butyl ester (butyl
4-hydroxybenzoate,
butylparaben); C₁₁H₁₄O₃;
[94-26-8]
(2) 1-Octanol (octan-1-ol, octyl

alcohol); $C_8H_{18}O$; [111-87-5]

Variables:

Variables: $t/^{\circ}C=25$

Original Measurements:

³²A.N. Paruta, J. Pharm. Sci. **58**, 216 (1969).

Prepared by:

A. Goto and R. Goto

Solubility of butylparaben in 1-octanol at 25 °C

Density	Solubili	ity
ρ /g cm ⁻³	$100w_1^a$ (compiler)	x_1
0.9346	45.7	0.331

^aIn the original paper, the solubility was given as milligrams of the ester per gram of solution.

Auxiliary Information

Methods/Apparatus/Procedure:

The experimental details are given in the compilation of Ref. 32 for the methylparaben-methanol system in Sec. 2.2.1.1.

Source and Purity of Materials:

1-Octanol (Eastman-Kodak No. 50) was used.

Butylparaben was obtained from Matheson, Coleman, and Bell.

Estimated Errors:

Solubility: Nothing specified. Temperature: Precision of $\pm 0.1~^{\circ}\text{C}.$

Components:

(1) Benzoic acid, 4-hydroxy-, butyl ester (*n*-butyl 4-hydroxybenzoate, butylparaben); C₁₁H₁₄O₃; [94-26-8]

[94-20-8] (2) 1-Octano

(2) 1-Octanol (octan-1-ol, octyl alcohol); C₈H₁₈O; [111-87-5]

Variables: $t/^{\circ}C=25-40$

Prepared by:

A. Goto and R. Goto

Original Measurements:

³³K.S. Alexander, J.W. Mauger,

J. Pharm. Sci. 66, 42 (1977).

H. Petersen, Jr., and A.N. Paruta,

Solubility of butylparaben in 1-octanol

Temperature	Sol	ubility
t/°C	x_1	w ₁ ^a (compiler)
25	0.331	0.457
30	0.379	0.476
35	0.440	0.539
40	0.497	0.595

^aIn the original paper, the solubility was given as mg/g of solution.

Auxiliary Information

Methods/Apparatus/Procedure:

The experimental details are given in the compilation of Ref. 33 for the methylparaben-methanol system in Sec. 2.2.1.1.

Source and Purity of Materials:

Spectrograde butylparaben was purchased from Matheson Coleman and Bell Co. The melting point was within 1 $^{\circ}\text{C}$ of the literature value.

The purity of 1-octanol established by refractive-index and dielectric-constant measurements was 99 mol %.

Estimated Errors:

Solubility: Precision within 2.5%. Temperature: Precision of ± 0.1 °C.

Components:	Original Measurements:
(1) Benzoic acid, 4-hydroxy-,	³⁵ S.H. Yalkowsky, S.C. Valvani,
butyl ester (butyl	and T.J. Roseman, J. Pharm. Sci.
4-hydroxybenzoate,	72 , 866 (1983).
butylparaben); C ₁₁ H ₁₄ O ₃ ;	
[94-26-8]	
(2) 1-Octanol (octan-1-ol, octyl	
alcohol); C ₈ H ₁₈ O; [111-87-5]	

Variables:	Prepared by:
t/ °C=30	A. Goto and R. Goto

=			
		Solubility	
	$\log_{10} x_1$		x_1 (compiler)
	-0.48		0.33

Solubility of butylparaben in 1-octanol at 30 °C

Auxiliary Information

Methods/Apparatus/Procedure:

The experimental details are given in the compilation of Ref. 35 for the ethylparaben-1-octanol system in Sec. 2.2.1.2.

Source and Purity of Materials:

Reagent-grade octanol was obtained from Aldrich.

Butylparaben of purest grade was obtained from commercial sources (Aldrich, Eastman, and Fluka) and was used as received.

Estimated Errors:

Nothing specified.

Components:	Original Measurements:
(1) Benzoic acid, 4-hydroxy-, butyl ester (butyl 4-hydroxybenzoate, butylparaben); C ₁₁ H ₁₄ O ₃ ; [94-26-8] (2) 1-Octanol (octan-1-ol, octyl alcohol); C ₈ H ₁₈ O; [111-87-5]	³⁶ A.E. Beezer, S. Forster, WB. Park, and G.J. Rimmer, Thermochim. Acta 178 , 59 (1991).
Variables:	Prepared by:
T/K = 298.2	A. Goto and R. Goto

The solubility of butylparaben in 1-octanol at 298.2 K was reported as $c_1/\text{mol dm}^{-3}=2.39$.

Auxiliary Information

Methods/Apparatus/Procedure:

The experimental detail is given in the compilation of Ref. 36 for the propylparaben–1-octanol system in Sec. 2.2.1.3.

Source and Purity of Materials:

The butylparaben was the gift of Apin Chemicals Ltd. (Abingdon, Great Britain) and was used as received. The purity was specified as >99.5%. 1-Octanol was of Anala R grade.

Estimated Errors:

Nothing specified.

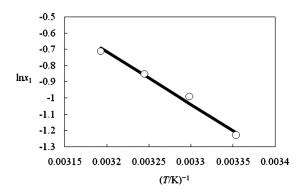


Fig. 36. Fitting curve of Eq. (2) and the observed data for butylparaben in 1-decanol.

Critical Evaluation

TABLE 74. Summary of experimental solubility data of butylparaben in 1-decanol

T/K	$100w_{1}$	$100x_1$	Analytical method	Reference
298.2	39.2	29.3	Spectroscopy, Gravimetry	32
298.2	39.2	29.3	Spectroscopy	33
303.2	42.1	37.1	Spectroscopy	33
308.2	47.7	42.7	Spectroscopy	33
313.2	54.2	49.1	Spectroscopy	33

The critical evaluation was carried out as described in Sec. 2.1.1.1 for salicylic acid in n-heptane.

The number of publications: 2

The range of temperature: T/K = 298.2 - 313.2.

The units: mass percent and mole fraction

Analytical methods: spectroscopy and gravimetry

Data for the solubility of butylparaben in 1-decanol expressed by mole fraction were fitted to Eqs. (1) and (2) given in Sec. 1.3 (Table 74). The data points nearly agree with Eq. (2) over the whole range of temperatures, as shown in Fig. 36, but they deviated from Eq. (1). Multiple regression analysis according to Eq. (2) yielded the following results:

Multiple correlation coefficient: 0.994

Sample size: 5 data points *p*-value (F test): 0.001

Constants: $A = -3246 \pm 212$, $C = 9.672 \pm 0.698$

White circles in Fig. 36 represent the observed data and the black line corresponds to calculated values according to Eq. (2) $(\ln x_1 = -3246/T + 9.672)$. The observed data fit closely with the calculated values in the range of 298.2–313.2 K, with the multiple correlation coefficient of 0.994, as shown in Fig. 36. Therefore, the calculated value at each measured temperature is reasonably considered as a recommended value over the whole range of temperature.

Table 75 shows the observed data in the range of 298.2-313.2 K and the recommended values calculated from Eq. (2) at each temperature.

TABLE 75. Observed data and recommended values calculated according to Eq. (2) for butylparaben in 1-decanol

T/K	$100x_1(obs)$	$100x_1(rec)$
298.2	29.3	29.7
303.2	37.1	35.6
308.2	42.7	42.3
313.2	49.1	50.1

Components:

(1) Benzoic acid, 4-hydroxy-,

1-butyl ester (butyl

4-hydroxybenzoate,

butylparaben); C₁₁H₁₄O₃;

[94-26-8]

(2) 1-Decanol (decan-1-ol, decyl alcohol); C₁₀H₂₂O; [112-30-1]

Variables: $t/^{\circ}C=25$

Prepared by:

216 (1969).

A. Goto and R. Goto

Original Measurements:

32A.N. Paruta, J. Pharm. Sci. 58,

Solubility of butylparaben in 1-decanol at 25 °C

Density	ensity Solubility	
ρ /g cm ⁻³	$100w_1^a$	x_1
0.9313	39.2	0.293

^aIn the original paper, the solubility was given as milligrams of the ester per gram of solution.

Auxiliary Information

Methods/Apparatus/Procedure:

The experimental details are given in the compilation of Ref. 32 for the methylparaben-methanol system in Sec. 2.2.1.1.

Source and Purity of Materials:

The source of 1-decanol was not reported.

Butylparaben was obtained from Matheson, Coleman, and Bell.

Estimated Errors:

Solubility: Nothing specified. Temperature: Precision of ± 0.1 °C.

Components:	Original Measurements:
(1) Benzoic acid, 4-hydroxy-,	³³ K.S. Alexander, J.W. Mauger,
butyl ester (n-butyl	H. Petersen, Jr., and A.N. Paruta,
4-hydroxybenzoate,	J. Pharm. Sci. 66, 42 (1977).
butylparaben); C ₁₁ H ₁₄ O ₃ ;	
[94-26-8]	
(2) 1-Decanol (decan-1-ol, decyl	
alcohol); C ₁₀ H ₂₂ O; [112-30-1]	

Variables:	Prepared by:
$t/^{\circ}C = 25 - 40$	A. Goto and R. Goto

Solubility of butylparaben in 1-decanol

Temperature	Solubility ^a	
t/°C	x_1	w_1 (compiler)
25	0.293	0.392
30	0.371	0.421
35	0.427	0.477
40	0.491	0.542

^aIn the original paper, the solubility was given as mg/g of solution.

Auxiliary Information

Methods/Apparatus/Procedure:

The experimental details are given in the compilation of Ref. 33 for the methylparaben-methanol system in Sec. 2.2.1.1.

Source and Purity of Materials:

Spectrograde butylparaben was purchased from Matheson Coleman and Bell Co. The melting point was within 1 °C of the literature value. The purity of 1-decanol was 99 mol %. The purity of the alcohol was established by refractive-index and dielectric-constant measurements.

Estimated Errors:

Solubility: Precision within 2.5%. Temperature: Precision of ± 0.1 °C.

2.2.2. Data for paraben-organic compound systems

2.2.2.1. Methylparaben

Components:

(1) Benzoic acid, 4-hydroxy-, methyl ester (methyl 4-hydroxybenzoate, methylparaben); C₈H₈O₃;

[99-76-3]

(2) Hydrocarbons (alkanes):

n-Pentane (pentane); C_5H_{12} ;

[109-66-0]

n-Hexane (hexane); C_6H_{14} ;

[110-54-3]

n-Heptane (heptane); C_7H_{16} ;

[142-82-5]

n-Nonane (nonane); C₉H₂₀;

[111-84-2]

n-Decane (decane); C₁₀H₂₂;

[124-18-5]

Original Measurements:

¹⁹A. Martin, P.L. Wu, and A. Beerbower, J. Pharm. Sci. 73, 188 (1984).

Variables: Prepared by: $t/^{\circ}C=25$ A. Goto and R. Goto

Solubility of methylparaben in hydrocarbons at 25 °C

	Molar volume of solvent	Solubility
Solvent	$v_2/\text{cm}^3 \text{ mol}^{-1}$	10^4x_1
<i>n</i> -Pentane	116.1	0.63
n-Hexane	131.6	0.77
n-Heptane	147.5	0.83
<i>n</i> -Nonane	179.7	1.06
n-Decane	195.9	1.21

Methods/Apparatus/Procedure:

The experimental details are given in the compilation of Ref. 19 for the 4-hydroxybenzoic acid-ethanol system in Sec. 2.1.2.3.

Source and Purity of Materials:

The detail is given in the compilation of Ref. 19 for the methylparabenethanol system in Sec. 2.2.1.1.

Estimated Errors:

Solubility: Errors were below 3%. Temperature: Precision of ± 0.2 °C.

Components:

(1) Benzoic acid, 4-hydroxy-, methyl ester (methyl 4-hydroxybenzoate, methylparaben); C₈H₈O₃; [99-76-3]

(2) *n*-Hexane (hexane); C_6H_{14} ; [110-54-3]

Variables:

T/K = 288.2, 293.2, and 298.2

Original Measurements:

³⁶A.E. Beezer, S. Forster, W.-B. Park, and G.J. Rimmer, Thermochim. Acta **178**, 59 (1991).

Prepared by:

A. Goto and R. Goto

Solubility of methylparaben in n-hexane

Temperature	Solubility
T/K	$10^3 c_1/{\rm mol~dm^{-3}}$
288.2	1.09
293.2	2.50
298.2	2.21

Auxiliary Information

Methods/Apparatus/Procedure:

The experimental detail is given in the compilation of Ref. 36 for the propylparaben–1-octanol system in Sec. 2.2.1.3.

Source and Purity of Materials:

The methylparaben was the gift of Apin Chemicals Ltd. (Abingdon, Great Britain) and was used as received. The purity was specified as >99.5%. n-Hexane was of Anala R grade.

Estimated Errors:

Nothing specified.

Components:

(1) Benzoic acid, 4-hydroxy-, methyl ester (methyl 4-hydroxybenzoate, methylparaben); C₈H₈O₃; [99-76-3]

(2) 1-Pentanol (pentan-1-ol, pentyl alcohol); C₅H₁₂O; [71-41-0]

Original Measurements:

Prepared by:

³²A.N. Paruta, J. Pharm. Sci. **58**, 216 (1969).

Variables: t/°C=25

A. Goto and R. Goto

Solubility of methylparaben in 1-pentanol at 25 °C

Density	Solubilit	Solubility	
$\rho/g \text{ cm}^{-3}$	$100w_1^{\ a}$ (compiler)	x_1	
0.8819	24.6	0.149	

^aIn the original paper, the solubility was given as milligrams of the ester per gram of solution.

Auxiliary Information

Methods/Apparatus/Procedure:

The experimental details are given in the compilation of Ref. 32 for the methylparaben—methanol system in Sec. 2.2.1.1.

Source and Purity of Materials:

1-Pentanol (Eastman-Kodak No. 50) was used.

Methylparaben was obtained from Matheson, Coleman, and Bell.

Estimated Errors:

Solubility: Nothing specified. Temperature: Precision of $\pm 0.1~^{\circ}\text{C}.$

Components:

(1) Benzoic acid, 4-hydroxy-, methyl ester (methyl 4-hydroxybenzoate, methylparaben); C₈H₈O₃; [99-76-3]

(2) 1-Pentanol (pentan-1-ol, pentyl alcohol); C₅H₁₂O; [71-41-0]

Variables: $t/^{\circ}C=25$

Prepared by:

188 (1984).

A. Goto and R. Goto

Original Measurements:

¹⁹A. Martin, P.L. Wu, and A.

Beerbower, J. Pharm. Sci. 73,

Solubility of methylparaben in 1-pentanol at 25 °C

Molar volume of solvent	Solubility
$v_2/\mathrm{cm}^3\mathrm{mol}^{-1}$	x_1
108.6	0.1528

Auxiliary Information

Methods/Apparatus/Procedure:

The experimental details are given in the compilation of Ref. 19 for the 4-hydroxybenzoic acid–ethanol system in Sec. 2.1.2.3.

Source and Purity of Materials:

The detail is given in the compilation of Ref. 19 for the 4-hydroxybenzoic acid-ethanol system in Sec. 2.1.2.3.

Estimated Errors:

Solubility: Errors were below 3%. Temperature: Precision of ± 0.2 °C.

Components:

(1) Benzoic acid, 4-hydroxy-, methyl ester (methyl 4-hydroxybenzoate, methylparaben); C₈H₈O₃;

[99-76-3]

(2) 1-Heptanol (heptan-1-ol, heptyl alcohol); C₇H₁₆O; [111-70-6]

Original Measurements:

Original Measurements:

216 (1969).

³²A.N. Paruta, J. Pharm. Sci. **58**,

¹⁹A. Martin, P.L. Wu, and A. Beerbower, J. Pharm. Sci. 73, 188 (1984).

Variables: Prepared by:

 $t/^{\circ}C=25$ A. Goto and R. Goto

Solubility of methylparaben in 1-heptanol at 25 °C

Molar volume of solvent	Solubility
$v_2/\mathrm{cm}^3\mathrm{mol}^{-1}$	x_1
141.9	0.1483

Auxiliary Information

Methods/Apparatus/Procedure:

The experimental details are given in the compilation of Ref. 19 for the 4-hydroxybenzoic acid-ethanol system in Sec. 2.1.2.3.

Source and Purity of Materials:

The details are given in the compilation of Ref. 19 for the 4-hydroxybenzoic acid-ethanol system in Sec. 2.1.2.3.

Estimated Errors:

Solubility: The experimental variation was below 3%.

Temperature: Precision of ± 0.2 °C.

Components:

(1) Benzoic acid, 4-hydroxy-, methyl ester (methyl 4-hydroxybenzoate, methylparaben); C₈H₈O₃; [99-76-3] (2) 1-Octanol (octan-1-ol, octyl

alcohol); C₈H₁₈O; [111-87-5]

Variables: Prepared by:

 $t/^{\circ}C=25$ A. Goto and R. Goto

Solubility of methylparaben in 1-octanol at 25 °C

Density	Solubili	Solubility	
ρ /g cm ⁻³	$\frac{100w_1^{\text{a}}}{\text{(compiler)}}$	x_1	
0.8712	14.7	0.111	

^aIn the original paper, the solubility was given as milligrams of the ester per gram of solution.

Auxiliary Information

Methods/Apparatus/Procedure:

The experimental details are given in the compilation of Ref. 32 for the methylparaben-methanol system in Sec. 2.2.1.1.

Source and Purity of Materials:

1-Octanol (Eastman-Kodak No. 50) was used.

Methylparaben was obtained from Matheson, Coleman, and Bell.

Estimated Errors:

Solubility: Nothing specified. Temperature: Precision of ± 0.1 °C.

Components:

(1) Benzoic acid, 4-hydroxy-, methyl ester (methyl 4-hydroxybenzoate, methylparaben); C₈H₈O₃; [99-76-3]

(2) 1-Octanol (octan-1-ol, octyl alcohol); C₈H₁₈O; [111-87-5]

Original Measurements:

³³K.S. Alexander, J.W. Mauger, H. Petersen, Jr., and A.N. Paruta, J. Pharm. Sci. 66, 42 (1977).

Variables: Prepared by:

 $t/^{\circ}C = 25 - 40$ A. Goto and R. Goto

Solubility of methylparaben in 1-octanol

Temperature	Solubility	
t/°C	x_1	w_1^a (compiler)
25	0.111	0.147
30	0.151	0.172
35	0.166	0.188
40	0.172	0.195

^aIn the original paper, the solubility was given as mg/g of solution.

Auxiliary Information

Methods/Apparatus/Procedure:

The experimental details are given in the compilation of Ref. 33 for the methylparaben-methanol system in Sec. 2.2.1.1.

Source and Purity of Materials:

Spectrograde methylparaben was purchased from Matheson Coleman and Bell Co. Melting point was within 1 °C of literature values.

1-Octanol was 99 mol %. The purity of the alcohol was established by refractive-index and dielectric-constant measurements.

Estimated Errors:

Solubility: Precision within 2.5%. Temperature: Precision of ± 0.1 °C.

Components:

(1) Benzoic acid, 4-hydroxy-, methyl ester (methyl 4-hydroxybenzoate, methylparaben); C₈H₈O₃; [99-76-3] (2) 1-Octanol (octan-1-ol, octyl

alcohol); C₈H₈O₃; [111-87-5]

Original Measurements:

³⁵S.H. Yalkowsky, S.C. Valvani, and T.J. Roseman, J. Pharm. Sci.

72, 866 (1983).

Variables:

 $t/^{\circ}C=30$

Prepared by: A. Goto and R. Goto

J. Phys. Chem. Ref. Data, Vol. 40, No. 2, 2011

Solubility of methylparaben in 1-octanol at 30 °C

Sol	lubility
$\log_{10} x_1$	(compiler)
-0.96	0.11

Auxiliary Information

Methods/Apparatus/Procedure:

The experimental details are given in the compilation of Ref. 35 for the ethylparaben-1-octanol system in Sec. 2.2.1.2.

Source and Purity of Materials:

Methylparaben of purest grade was obtained from commercial sources (Aldrich, Eastman, and Fluka) and was used as received.

1-Octanol was of reagent grade.

Estimated Errors:

Nothing specified.

Components:

(1) Benzoic acid, 4-hydroxy-, methyl ester (methyl 4-hydroxybenzoate, methylparaben); C₈H₈O₃; [99-76-3]

(2) 1-Octanol (octan-1-ol, octyl

alcohol); C₈H₁₈O; [111-87-5] Variables:

Original Measurements:

19A. Martin, P.L. Wu, and A. Beerbower, J. Pharm. Sci. 73, 188 (1984).

Prepared by:

$t/^{\circ}C=25$

A. Goto and R. Goto

Solubility of methylparaben in 1-octanol at 25 °C

Molar volume of solvent	Solubility
$v_2/\mathrm{cm}^3\mathrm{mol}^{-1}$	x_1
158.4	0.1381

Auxiliary Information

Methods/Apparatus/Procedure:

The experimental details are given in the compilation of Ref. 19 for the 4-hydroxybenzoic acid-ethanol system in Sec. 2.1.2.3.

Source and Purity of Materials:

The details are given in the compilation of Ref. 19 for the 4-hydroxybenzoic acid-ethanol system in Sec. 2.1.2.3.

Estimated Errors:

Solubility: The experimental variation was below 3%.

Temperature: Precision of ± 0.2 °C.

Components:

(1) Benzoic acid, 4-hydroxy-, methyl ester (methyl 4-hydroxybenzoate, methylparaben); C₈H₈O₃; [99-76-3]

(2) 1-Octanol (octan-1-ol, octyl alcohol); C₈H₁₈O; [111-87-5]

Original Measurements:

³⁶A.E. Beezer, S. Forster, W.-B. Park, and G.J. Rimmer, Thermochim. Acta 178, 59 (1991).

Variables:

T/K = 298.2

Prepared by:

A. Goto and R. Goto

The solubility of methylparaben in 1-octanol at 298.2 K was reported as $c_1/\text{mol dm}^{-3} = 0.71$.

Auxiliary Information

Methods/Apparatus/Procedure:

The experimental details are given in the compilation of Ref. 36 for the propylparaben-1-octanol system in Sec. 2.2.1.3.

Source and Purity of Materials:

The methylparaben was the gift of Apin Chemicals Ltd. (Abingdon, Great Britain) and was used as received. The purity was specified as >99.5%. 1-Octanol was of Anala R grade.

Estimated Errors:

Nothing specified.

Components:

(1) Benzoic acid, 4-hydroxy-, methyl ester (methyl 4-hydroxybenzoate, methylparaben); C₈H₁₈O; [99-76-3]

(2) Diols and triols:

1,2-Ethandiol (ethane-1,2-diol, ethylene glycol); C₂H₆O₂; [107-21-1]

1,2-Propandiol (propane-1,2-diol, propylene glycol); C₃H₈O₂; [57-55-6]

1,3-Propanediol

(propane-1,3-diol, trimethylene glycol); C₃H₈O₂; [504-63-2]

1,4-Butanediol (butane-1,4-diol, tetramethylene glycol); C₄H₁₀O₂;

[110-63-4]

1,2,3-Propanetriol

(propane-1,2,3-triol, glycerol);

C₃H₈O₃; [56-81-5]

Original Measurements: ¹⁹A. Martin, P.L. Wu, and A. Beerbower, J. Pharm. Sci. 73,

188 (1984).

Variables:

 $t/^{\circ}C=25$

Prepared by:

A. Goto and R. Goto

Solubility of methylparaben in diols and triols at 25 °C

	Molar volume of solvent	Solubility
Solvent	$v_2/\text{cm}^3 \text{ mol}^{-1}$	$\overline{x_1}$
Ethylene glycol	55.9	0.0480
Propylene glycol	73.7	0.0941
Trimethylene glycol	72.5	0.0766
1,4-Butanediol	88.6	0.1202
Glycerol	73.2	0.0064

Auxiliary Information

Methods/Apparatus/Procedure:

The experimental details are given in the compilation of Ref. 19 for the 4-hydroxybenzoic acid-ethanol system in Sec. 2.1.2.3.

Source and Purity of Materials:

The detail is given in the compilation of Ref. 19 for the 4-hydroxybenzoic acid-ethanol system in Sec. 2.1.2.3.

Estimated Errors:

Variables:

 $t/^{\circ}C=25$.

Solubility: The experimental variation was below 3%.

Temperature: Precision of ±0.2 °C.

Components:	Original Measurements:
(1) Benzoic acid, 4-hydroxy-,	¹⁹ A. Martin, P.L. Wu, and A.
methyl ester (methyl	Beerbower, J. Pharm. Sci. 73,
4-hydroxybenzoate,	188 (1984).
methylparaben); C ₈ H ₈ O ₃ ;	
[99-76-3]	
(2) Ethers:	
Ethane, 1,1'-oxybis-	
(ethoxyethane, diethyl ether);	
C ₄ H ₁₀ O; [60-29-7]	
Propane, 1,1'-oxybis-	
(1-propoxypropane, dipropyl	
ether); C ₆ H ₁₄ O; [111-43-3]	
Butane, 1,1'-oxybis-	
(2-butoxyethanol, dibutyl ether);	
C ₈ H ₁₈ O; [142-96-1]	

Solubility of methylparaben in ethers at 25 °C	

	Molar volume of solvent	Solubility
Solvent	$v_2/\text{cm}^3 \text{ mol}^{-1}$	x_1
Diethyl ether	104.8	0.0840
Dipropyl ether	139.4	0.0314
Dibutyl ether	170.4	0.0268

Prepared by:

A. Goto and R. Goto

Auxiliary Information

Methods/Apparatus/Procedure:

The experimental details are given in the compilation of Ref. 19 for the 4-hydroxybenzoic acid-ethanol system in Sec. 2.1.2.3.

Source and Purity of Materials:

The detail is given in the compilation of Ref. 19 for the 4-hydroxybenzoic acid—ethanol system in Sec. 2.1.2.3.

Estimated Errors:

Solubility: The experimental variation was below 3%.

Temperature: Precision of ±0.2 °C

Components:

(1) Benzoic acid, 4-hydroxy-, methyl ester (methyl

4-hydroxybenzoate, methylparaben); C₈H₈O₃; [99-76-3]

(2) Carboxylic acids:

Acetic acid; C₂H₄O₂; [64-19-7] Propionic acid (propanoic acid);

C₃H₆O₂; [79-09-4]

Original Measurements:

¹⁹A. Martin, P.L. Wu, and A. Beerbower, J. Pharm. Sci. **73**,

188 (1984).

Variables: $t/^{\circ}C=25$

Prepared by:

A. Goto and R. Goto

Solubility of methylparaben in carboxylic acids at 25 $^{\circ}\text{C}$

	Molar volume of solvent	Solubility	
Solvent	$v_2/\text{cm}^3 \text{ mol}^{-1}$	$\overline{x_1}$	
Acetic acid	57.6	0.0532	
Propionic acid	75.0	0.0386	

Auxiliary Information

Methods/Apparatus/Procedure:

The experimental details are given in the compilation of Ref. 19 for the 4-hydroxybenzoic acid-ethanol system in Sec. 2.1.2.3.

Source and Purity of Materials:

The detail is given in the compilation of Ref. 19 for the 4-hydroxybenzoic acid-ethanol system in Sec. 2.1.2.3.

Estimated Errors:

Solubility: Errors were below 3%. Temperature: Precision of ± 0.2 °C.

Components:

(1) Benzoic acid, 4-hydroxy-, methyl ester (methyl 4-hydroxybenzoate, methylparaben); C₈H₈O₃; [99-76-3] (2) Acetates: Acetic acid, ethyl ester (ethyl

acetate); C₄H₈O; [141-78-6] Acetic acid, propyl ester (propyl acetate); C₅H₁₀O₂; [109-60-4] Acetic acid, butyl ester (butyl acetate); C₆H₁₂O₂; [123-86-4] Acetic acid, hexyl ester (hexyl

acetate); $C_8H_{16}O_2$; [142-92-7]

Variables: $t/^{\circ}C=25$

Original Measurements:

¹⁹A. Martin, P.L. Wu, and A. Beerbower, J. Pharm. Sci. **73**, 188 (1984).

Prepared by:A. Goto and R. Goto

Solubility of methylparaben in acetates at 25 °C

	Molar volume of solvent	Solubility
Solvent	$v_2/\text{cm}^3 \text{ mol}^{-1}$	$\overline{x_1}$
Ethyl acetate	98.5	0.1270
Propyl acetate	115.7	0.1366
Butyl acetate	132.6	0.1326
Hexyl acetate	164.5	0.1164

Auxiliary Information

Methods/Apparatus/Procedure:

The experimental details are given in the compilation of Ref. 19 for the 4-hydroxybenzoic acid-ethanol system in Sec. 2.1.2.3.

Source and Purity of Materials:

The detail is given in the compilation of Ref. 19 for the 4-hydroxybenzoic acid-ethanol system in Sec. 2.1.2.3.

Estimated Errors:

Solubility: The experimental variation was below 3%.

Temperature: Precision of ± 0.2 °C.

Components:

(1) Benzoic acid, 4-hydroxy-, methyl ester (methyl 4-hydroxybenzoate, methylparaben); C₈H₈O₃; [99-76-3]

(2) Methane, 1,1'-sulfinylbis-(methylsulfinylmethane, dimethyl sulfoxide); C₂H₆OS; [67-68-5]

Original Measurements:

¹⁹A. Martin, P.L. Wu, and A. Beerbower, J. Pharm. Sci. **73**, 188 (1984).

Variables:	Prepared by:
t/°C=25	A. Goto and R. Goto

The solubility of methylparaben in dimethyl sulfoxide at 25 °C was reported as x_1 =0.5839.

Auxiliary Information

Methods/Apparatus/Procedure:

The experimental details are given in the compilation of Ref. 19 for the 4-hydroxybenzoic acid-ethanol system in Sec. 2.1.2.3.

Source and Purity of Materials:

The detail is given in the compilation of Ref. 19 for the 4-hydroxybenzoic acid-ethanol system in Sec. 2.1.2.3.

Estimated Errors:

Solubility: The experimental variation was below 3%.

Temperature: Precision of ± 0.2 °C.

Components:

(1) Benzoic acid, 4-hydroxy-, methyl ester (methyl 4-hydroxybenzoate, methylparaben); C₈H₈O₃; [99-76-3]

(2) Amides: Formamide; CH₃NO; [75-12-7] Formamide, *N*-methyl-

(*N*-methylformamide, methylformamide); C₂H₅NO; [123-39-7]

Formamide, *N*,*N*-dimethyl-(*N*,*N*-dimethylformamide, dimethylformamide); C₃H₇NO; [68-12-2]

Formamide, *N*,*N*-diethyl-(*N*,*N*-diethylformamide, diethylformamide); C₅H₁₁NO;

[617-84-5]
Acetamide, *N*, *N*-dimethyl(*N*, *N*-dimethylacetamide,

dimethylacetamide); C_4H_9NO ; [127-19-5]

Acetamide, N,N-diethyl-(N,N-diethylacetamide, diethylacetamide); C₆H₁₃NO; [685-91-6]

Original Measurements:

¹⁹A. Martin, P.L. Wu, and A. Beerbower, J. Pharm. Sci. **73**, 188 (1984).

Variables:	Prepared by:
$t/^{\circ}C=25$	A. Goto and R. Goto

Solubility of methylparaben in amides at 25 $^{\circ}\text{C}$

	Molar volume of solvent	Solubility
Solvent	$v_2/\text{cm}^3 \text{ mol}^{-1}$	$\overline{x_1}$
Formamide	39.9	0.0765
N-Methylformamide	59.1	0.2981
N, N-Dimethylformamide	77.4	0.4605
N, N-Diethylformamide	112.0	0.4907
N, N-Dimethylacetamide	93.0	0.5418
N,N-Diethylacetamide	126.6	0.5299

Auxiliary Information

Methods/Apparatus/Procedure:

The experimental details are given in the compilation of Ref. 19 for the 4-hydroxybenzoic acid–ethanol system in Sec. 2.1.2.3.

Source and Purity of Materials:

The detail is given in the compilation of Ref. 19 for the 4-hydroxybenzoic acid-ethanol system in Sec. 2.1.2.3.

Estimated Errors:

Solubility: The experimental variation was below 3%.

Temperature: Precision of ± 0.2 °C.

Original Measurements: Components: (1) Benzoic acid, 4-hydroxy-, methyl ester (methyl 4-hydroxybenzoate, methylparaben); C₈H₈O₃; [99-76-3] (2) Pyridine; C₅H₅N; [110-86-1]

¹⁹A. Martin, P.L. Wu, and A. Beerbower, J. Pharm. Sci. 73, 188 (1984).

Variables: Prepared by: $t/^{\circ}C=25$ A. Goto and R. Goto

The solubility of methylparaben in pyridine at 25 °C was reported as $x_1 = 0.3243$.

Auxiliary Information

Methods/Apparatus/Procedure:

The experimental details are given in the compilation of Ref. 19 for the 4-hydroxybenzoic acid-ethanol system in Sec. 2.1.2.3.

Source and Purity of Materials:

The details are given in the compilation of Ref. 19 for the 4-hydroxybenzoic acid-ethanol system in Sec. 2.1.2.3.

Estimated Errors:

Solubility: The experimental variation was below 3%.

Temperature: Precision of ± 0.2 °C.

2.2.2.2. Ethyl-, propyl-, and butylparaben

Components: **Original Measurements:** (1) Benzoic acid, 4-hydroxy-, ³⁶A.E. Beezer, S. Forster, W.-B. ethyl ester (ethyl Park, and G.J. Rimmer, Thermochim. Acta 178, 59 4-hydroxybenzoate, ethylparaben); $C_9H_{10}O_3$; (1991)[120-47-8] (2) *n*-Hexane (hexane); C_6H_{14} ; [110-54-3]

Variables: Prepared by: T/K = 288.2, 293.2, and 298.2 A. Goto and R. Goto

Solubility of ethylparaben in n-hexane

Temperature	Solubility
T/K	$10^4 c_1 / \text{mol dm}^{-3}$
288.2	2.56
293.2	4.38
298.2	5.33

Auxiliary Information

Methods/Apparatus/Procedure:

The experimental details are given in the compilation of Ref. 36 for the propylparaben-1-octanol system in Sec. 2.2.1.3.

Source and Purity of Materials:

The ethylparaben was the gift of Apin Chemicals Ltd. (Abingdon, Great Britain) and was used as received. The purity was specified as >99.5%. n-Hexane was of Anala R grade.

Estimated Errors:

Nothing specified.

Components:

(1) Benzoic acid, 4-hydroxy-, propyl ester (propyl 4-hydroxybenzoate, propylparaben); C₁₀H₁₂O₃; [94-13-3]

(2) n-Hexane (hexane); C₆H₁₄; [110-54-3]

Original Measurements:

³⁶A.E. Beezer, S. Forster, W.-B. Park, and G.J. Rimmer, Thermochim. Acta 178, 59 (1991).

Variables:

T/K = 288.2, 293.2, and 298.2

Prepared by: A. Goto and R. Goto

Solubility of propylparaben in n-hexane

Temperature	Solubility
T/K	$10^3 c_1 / \text{mol dm}^{-3}$
288.2	0.667
293.2	0.867
298.2	1.28

Auxiliary Information

Methods/Apparatus/Procedure:

The experimental details are given in the compilation of Ref. 36 for the propylparaben-1-octanol system in Sec. 2.2.1.3.

Source and Purity of Materials:

The propylparaben was the gift of Apin Chemicals Ltd. (Abingdon, Great Britain) and was used as received. The purity was specified as >99.5%. n-Hexane was of Anala R grade.

Estimated Errors:

Nothing specified.

Components:

[110-54-3]

(1) Benzoic acid, 4-hydroxy-, butyl ester; (n-butyl 4-hydroxybenzoate, butylparaben); $C_{11}H_{14}O_3$; [94-26-8] (2) *n*-Hexane (hexane); C₆H₁₄;

Original Measurements:

³⁶A.E. Beezer, S. Forster, W.-B. Park, and G.J. Rimmer, Thermochim. Acta 178, 59 (1991).

Variables: Prepared by: T/K = 288.2, 293.2, and 298.2 A. Goto and R. Goto

Solubility of butylparaben in n-hexane

Temperature	Solubility
T/K	$10^3 c_1$ /mol dm ⁻³
288.2	1.39
293.2	2.23
298.2	2.54

Methods/Apparatus/Procedure:

The experimental details are given in the compilation of Ref. 36 for the propylparaben-1-octanol system in Sec. 2.2.1.3.

Source and Purity of Materials:

The butylparaben was the gift of Apin Chemicals Ltd. (Abingdon, Great Britain) and was used as received. The purity was specified as >99.5%. n-Hexane was of Anala R grade.

Estimated Errors:

Nothing specified.

Components:

(1) Benzoic acid, 4-hydroxy-, ethyl ester (ethyl 4-hydroxybenzoate, ethylparaben); C₉H₁₀O₃; [120-47-8]

(2) 1-Pentanol (pentan-1-ol, pentyl alcohol); C₅H₁₂O; [71-41-0]

Variables: $t/^{\circ}C=25$

Original Measurements:

34F.A. Restaino and A.N. Martin, J. Pharm. Sci. 53, 636 (1964).

Prepared by:

A. Goto and R. Goto

Original Measurements:

216 (1969).

32A.N. Paruta, J. Pharm. Sci. 58,

Solubility of ethylparaben in 1-pentanol at 25 $^{\circ}\text{C}$

Density	Solub	Solubility	
$\rho/g \text{ cm}^{-3}$	w_1^a	x_1	
0.8961	0.2987	0.184	

^aIn the original paper, the solubility was given as grams of the ester per gram of saturated solution.

Auxiliary Information

Methods/Apparatus/Procedure:

The experimental details are given in the compilation of Ref. 34 for the ethylparaben-1-propanol system in Sec. 2.2.1.2.

Source and Purity of Materials:

The source and the purity of 1-pentanol were not reported.

The ester (purified grade) was recrystallized from chloroform until a sharp melting point was obtained.

Estimated Errors:

Solubility: Nothing specified. Temperature: ±0.05 °C.

Components:

(1) Benzoic acid, 4-hydroxy-, ethyl ester (ethyl 4-hydroxybenzoate, ethylparaben); C₉H₁₀O₃; [120-47-8] (2) 1-Pentanol (pentan-1-ol,

pentyl alcohol); C₅H₁₂O; [71-41-0]

Variables:

Prepared by: $t/^{\circ}C=25$ A. Goto and R. Goto

Solubility of ethylparaben in 1-pentanol at 25 °C

Density	Solubil	ity
ρ /g cm ⁻³	$\frac{100w_1^a}{\text{(compiler)}}$	x_1
0.8911	29.9	0.185

^aIn the original paper, the solubility was given as milligrams of the ester per gram of solution.

Auxiliary Information

Methods/Apparatus/Procedure:

The experimental details are given in the compilation of Ref. 32 for the methylparaben-methanol system in Sec. 2.2.1.1.

Source and Purity of Materials:

1-Pentanol (Eastman-Kodak No. 50) was used.

Ethylparaben was obtained from Matheson, Coleman, and Bell.

Estimated Errors:

Solubility: Nothing specified. Temperature: Precision of ± 0.1 °C.

Components:

(1) Benzoic acid, 4-hydroxy-, propyl ester (propyl 4-hydroxybenzoate, propylparaben); C₁₀H₁₂O₃; [94-13-3]

(2) 1-Pentanol (pentan-1-ol, pentyl alcohol); C₅H₁₂O; [71-41-0]

Variables: $t/^{\circ}C=25$

Prepared by:

A. Goto and R. Goto

Original Measurements:

34F.A. Restaino and A.N. Martin,

J. Pharm. Sci. 53, 636 (1964).

Solubility of propylparaben in 1-pentanol at 25 °C

Density	Solubility	Solubility ^a $w_1^{a} \qquad x_1$	
$\rho/g \text{ cm}^{-3}$	w_1^{a}		
0.9059	0.3623	0.217	

^aIn the original paper, the solubility was given as grams of the ester per gram of saturated solution.

Auxiliary Information

Methods/Apparatus/Procedure:

The experimental details are given in the compilation of Ref. 34 for the ethylparaben-1-propanol system in Sec. 2.2.1.2.

Source and Purity of Materials:

The source and the purity of 1-pentanol were not reported.

The propylparaben (purified grade) was recrystallized from chloroform until a sharp melting point was obtained.

Estimated Errors:

Solubility: Nothing specified. Temperature: ± 0.05 °C.

Components:

(1) Benzoic acid, 4-hydroxy-, propyl ester (propyl 4-hydroxybenzoate, propylparaben); C₁₀H₁₂O₃; [94-13-3]

Original Measurements:

³²A.N. Paruta, J. Pharm. Sci. 58, 216 (1969).

Variables:

 $t/^{\circ}C=25$

(2) 1-Pentanol (pentan-1-ol, pentyl alcohol); C₅H₁₂O; [71-41-0]

Prepared by:

A. Goto and R. Goto

Solubility of propylparaben in 1-pentanol at 25 °C

Density	Solubility ^a	Solubility ^a	
$\rho/\mathrm{g}\mathrm{cm}^{-3}$	$100w_1$ (compiler)	x_1	
0.8994	36.2	0.212	

^aIn the original paper, the solubility was given as milligrams of the ester per gram of solution.

Auxiliary Information

Methods/Apparatus/Procedure:

The experimental details are given in the compilation of Ref. 32 for the methylparaben-methanol system in Sec. 2.2.1.1.

Source and Purity of Materials:

1-Pentanol (Eastman-Kodak No. 50) was used.

Propylparaben was obtained from Matheson, Coleman, and Bell.

Estimated Errors:

Solubility: Nothing specified. Temperature: Precision of ± 0.1 °C.

Components:

(1) Benzoic acid, 4-hydroxy-, butyl ester (butyl 4-hydroxybenzoate, butylparaben); C₁₁H₁₄O₃; [94-26-8] (2) 1-Pentanol (pentan-1-ol, pentyl alcohol); C₅H₁₂O; [71-41-0]

Original Measurements:

34F.A. Restaino and A.N. Martin, J. Pharm. Sci. 53, 636 (1964).

Variables: $t/^{\circ}C=25$

Prepared by:

A. Goto and R. Goto

Solubility of butylparaben in 1-pentanol at 25 °C

Density	Solubi	Solubility ^a	
$\rho/g \text{ cm}^{-3}$	w_1^{a}	x_1	
0.9527	0.5579	0.364	

^aIn the original paper, the solubility was given as grams of the ester per gram of solution.

Auxiliary Information

Methods/Apparatus/Procedure:

The experimental details are given in the compilation of Ref. 34 for the ethylparaben–1-propanol system in Sec. 2.2.1.2.

Source and Purity of Materials:

The source and the purity of 1-pentanol were not reported.

The butylparaben (purified grade) was recrystallized from chloroform until a sharp melting point was obtained.

Estimated Errors:

Solubility: Nothing specified. Temperature: ± 0.05 °C.

Components:

(1) Benzoic acid, 4-hydroxy-, 1-butyl ester (butyl 4-hydroxybenzoate, butylparaben); C₁₁H₁₄O₃;

[94-26-8] (2) 1-Pentanol (pentan-1-ol, pentyl alcohol); C₅H₁₂O;

[71-41-0] Variables:

 $t/^{\circ}C=25$

Original Measurements:

³²A.N. Paruta, J. Pharm. Sci. 58, 216 (1969).

Prepared by:

A. Goto and R. Goto

Solubility of butylparaben in 1-pentanol at 25 °C

Density	Solubi	Solubility	
$\rho/g \text{ cm}^{-3}$	100w ₁ ^a	x_1	
0.9547	55.8	0.363	

^aIn the original paper, the solubility was given as milligrams of the ester per gram of solution.

Auxiliary Information

Methods/Apparatus/Procedure:

The experimental details are given in the compilation of Ref. 32 for the methylparaben-methanol system in Sec. 2.2.1.1.

Source and Purity of Materials:

1-Pentanol (Eastman-Kodak No. 50) was used.

Butylparaben was obtained from Matheson, Coleman, and Bell.

Estimated Errors:

Solubility: Nothing specified. Temperature: Precision of ± 0.1 °C.

2.2.2.3. Hexyl-, heptyl-, octyl-, and decylparaben

Components: (1) Benzoic acid, 4-hydroxy-, hexyl ester (hexyl p-hydroxybenzoate,

hexylparaben); C₁₃H₁₈O₃; [1083-27-8] (2) n-Hexane (hexane); C_6H_{14} ;

[110-54-3]

Original Measurements:

³⁶A.E. Beezer, S. Forster, W.-B. Park, and G.J. Rimmer, Thermochim. Acta 178, 59 (1991).

Variables: Prepared by:

T/K = 288.2, 293.2, and 298.2 A. Goto and R. Goto

Solubility of hexylparaben in n-hexane

Temperature	Solubility
T/K	$10^2 c_1 / \text{mol dm}^{-3}$
288.2	1.90
293.2	3.00
298.2	3.90

Auxiliary Information

Methods/Apparatus/Procedure:

The experimental details are given in the compilation of Ref. 36 for the propylparaben-1-octanol system in Sec. 2.2.1.3.

Source and Purity of Materials:

The hexylparaben was the gift of Apin Chemicals Ltd. (Abingdon, Great Britain) and was used as received. The purity was specified as >99.5%. n-Hexane was of Anala R grade.

Estimated Errors:

Nothing specified.

\sim			
Com	ma	ma	ntco

(1) Benzoic acid, 4-hydroxy-, heptyl ester (heptyl p-hydroxybenzoate, heptylparaben); C₁₄H₂₀O₃;

[1085-12-7] (2) n-Hexane (hexane); C₆H₁₄; [110-54-3]

Variables:

T/K = 288.2, 293.2, and 298.2

Original Measurements:

³⁶A.E. Beezer, S. Forster, W.-B. Park, and G.J. Rimmer, Thermochim. Acta 178, 59 (1991).

Prepared by:

A. Goto and R. Goto

Solubility of heptylparaben in n-hexane

Temperature	Solubility
T/K	$10^2 c_1/{\rm mol~dm^{-3}}$
288.2	1.0
293.2	2.80
298.2	3.20

Auxiliary Information

Methods/Apparatus/Procedure:

The experimental details are given in the compilation of Ref. 36 for the propylparaben–1-octanol system in Sec. 2.2.1.3.

Source and Purity of Materials:

The heptylparaben was the gift of Apin Chemicals Ltd. (Abingdon, Great Britain) and was used as received. The purity was specified as >99.5%. n-Hexane was of Anala R grade.

Estimated Errors:

Nothing specified.

Components:

(1) Benzoic acid, 4-hydroxy-, octyl ester (octyl p-hydroxybenzoate, octylparaben); C₁₅H₂₂O₃; [1219-38-1]

(2) n-Hexane (hexane); C₆H₁₄; [110-54-3]

Original Measurements:

³⁶A.E. Beezer, S. Forster, W.-B. Park, and G.J. Rimmer, Thermochim. Acta 178, 59

(1991).

Variables:

T/K = 288.2, 293.2, and 298.2

Prepared by:

A. Goto and R. Goto

Solubility of octylparaben in n-hexane

Temperature	Solubility
T/K	$10^2 c_1 / \mathrm{mol} \ \mathrm{dm}^{-3}$
288.2	0.678
293.2	1.10
298.2	1.80

Auxiliary Information

Methods/Apparatus/Procedure:

The experimental details are given in the compilation of Ref. 36 for the propylparaben-1-octanol system in Sec. 2.2.1.3.

Source and Purity of Materials:

The octylparaben was the gift of Apin Chemicals Ltd. (Abingdon, Great Britain) and was used as received. The purity was specified as >99.5%. n-Hexane was of Anala R grade.

Estimated Errors:

Nothing specified.

Components:

[110-54-3]

(1) Benzoic acid, 4-hydroxy-, decyl ester (decyl p-hydroxybenzoate, decylparaben); C₁₇H₂₆O₃; [99-76-3] (2) n-Hexane (hexane); C₆H₁₄;

T/K = 288.2, 293.2, and 298.2

Original Measurements:

A. Goto and R. Goto

³⁶A.E. Beezer, S. Forster, W.-B. Park, and G.J. Rimmer, Thermochim. Acta 178, 59

(1991).

Variables: Prepared by:

Solubility of decylparaben in n-hexane

Temperature	Solubility
T/K	$10^3 c_1 / \mathrm{mol} \ \mathrm{dm}^{-3}$
288.2	3.08
293.2	4.57
298.2	7.16

Auxiliary Information

Methods/Apparatus/Procedure:

The experimental details are given in the compilation of Ref. 36 for the propylparaben-1-octanol system in Sec. 2.2.1.3.

Source and Purity of Materials:

The decylparaben was the gift of Apin Chemicals Ltd. (Abingdon, Great Britain) and was used as received. The purity specified as >99.5%. n-Hexane was of Anala R grade.

Estimated Errors:

Nothing specified.

Components:

(1) Benzoic acid, 4-hydroxy-, hexyl ester (hexyl p-hydroxybenzoate, hexylparaben); C₁₃H₁₈O₃; [1083-27-8]

(2) 1-Octanol (octan-1-ol, octyl alcohol); C₈H₁₈O; [111-87-5]

Original Measurements:

³⁶A.E. Beezer, S. Forster, W.-B. Park, and G.J. Rimmer, Thermochim. Acta **178**, 59 (1991).

Variables: T/K=298

Prepared by:

A. Goto and R. Goto

The solubility of hexylparaben in 1-octanol at 298 K was reported as $c_1/\text{mol dm}^{-3}=6.39$.

Auxiliary Information

Methods/Apparatus/Procedure:

The experimental details are given in the compilation of Ref. 36 for the propylparaben–1-octanol system in Sec. 2.2.1.3.

Source and Purity of Materials:

The hexylparaben was the gift of Apin Chemicals Ltd. (Abingdon, Great Britain) and was used as received. The purity was specified as >99.5%. 1-Octanol was of Anala R grade.

Estimated Errors:

Nothing specified.

Components:

(1) Benzoic acid, 4-hydroxy-, heptyl ester (heptyl 4-hydroxybenzoate, heptylparaben); C₁₄H₂₀O₃; [1085-12-7]

(2) 1-Octanol (octan-1-ol, octyl alcohol); $C_8H_{18}O; [111-87-5]$

Original Measurements:

³⁶A.E. Beezer, S. Forster, W.-B. Park, and G.J. Rimmer, Thermochim. Acta **178**, 59 (1991).

Variables:

T/K = 298

Prepared by:

A. Goto and R. Goto

The solubility of heptylparaben in 1-octanol at 298 K was reported as $c_1/\text{mol dm}^{-3}=4.52$.

Auxiliary Information

Methods/Apparatus/Procedure:

The experimental details are given in the compilation of Ref. 36 for the propylparaben–1-octanol system in Sec. 2.2.1.3.

Source and Purity of Materials:

The heptylparaben was the gift of Apin Chemicals Ltd. (Abingdon, Great Britain) and was used as received. The purity was specified as >99.5%. 1-Octanol was of Anala R grade.

Estimated Errors:

Nothing specified.

Components:

(1) Benzoic acid, 4-hydroxy-, octyl ester (octyl *p*-hydroxybenzoate, octylparaben); C₁₅H₂₂O₃; [1219-38-1]

(2) 1-Octanol (octan-1-ol, octyl alcohol); $C_8H_{18}O$; [111-87-5]

Original Measurements:

³⁶A.E. Beezer, S. Forster, W.-B. Park, and G.J. Rimmer, Thermochim. Acta **178**, 59 (1991).

Variables: T/K = 298

Prepared by:

A. Goto and R. Goto

The solubility of octylparaben in 1-octanol at 298 K was reported as $c_1/\text{mol dm}^{-3}=3.67$.

Auxiliary Information

Methods/Apparatus/Procedure:

The experimental details are given in the compilation of Ref. 36 for the propylparaben–1-octanol system in Sec. 2.2.1.3.

Source and Purity of Materials:

The octylparaben was the gift of Apin Chemicals Ltd. (Abingdon, Great Britain) and was used as received. The purity was specified as >99.5%. 1-Octanol was of Anala R grade.

Estimated Errors:

Nothing specified.

Components:

(1) Benzoic acid, 4-hydroxy-, decyl ester (decyl *p*-hydroxybenzoate, decylparaben); C₁₇H₂₆O₃; [2664-60-0]

Original Measurements: ³⁶A.E. Beezer, S. Forster,

³⁶A.E. Beezer, S. Forster, W.-B. Park, and G.J. Rimmer, Thermochim. Acta **178**, 59 (1991).

(2) 1-Octanol (octan-1-ol, octyl alcohol); C₈H₁₈O; [111-87-5]

Variables: T/K=298

A. Goto and R. Goto

Prepared by:

The solubility of decylparaben in 1-octanol at 298 K was reported as $c_1/\text{mol dm}^{-3}=1.96$.

Auxiliary Information

Methods/Apparatus/Procedure:

The experimental details are given in the compilation of Ref. 36 for the propylparaben–1-octanol system in Sec. 2.2.1.3.

Source and Purity of Materials:

The decylparaben was the gift of Apin Chemicals Ltd. (Abingdon, Great Britain) and was used as received. The purity was specified as >99.5%. 1-Octanol was of Anala R grade.

Estimated Errors:

Nothing specified.

2.2.2.4. Methylpropyl-, pentyl-, and benzylparaben

Components:Original Measurements:(1) Benzoic acid, 4-hydroxy-,
2-methylpropyl ester (isobutyl
p-hydroxybenzoate,
isobutylparaben); $C_{11}H_{14}O_3$;
[4247-02-3]
(2) 1-Octanol (octan-1-ol, octyl
alcohol); $C_8H_{18}O$; [111-87-5]Prepared by:

The solubility of isobutylparaben in 1-octanol at 298 K was reported as $c_1/\text{mol dm}^{-3}=2.81$.

A. Goto and R. Goto

Auxiliary Information

Methods/Apparatus/Procedure:

The experimental details are given in the compilation of Ref. 36 for the propylparaben–1-octanol system in Sec. 2.2.1.3.

Source and Purity of Materials:

The isobutylparaben was the gift of Apin Chemicals Ltd. (Abingdon, Great Britain) and was used as received. The purity was specified as >99.5%.

1-Octanol was of Anala R grade.

Estimated Errors:

T/K=298

Nothing specified.

Components:	Original Measurements:
(1) Benzoic acid, 4-hydroxy-,	³⁶ A.E. Beezer, S. Forster, WB.
pentyl ester (pentyl	Park, and G.J. Rimmer,
<i>p</i> -hydroxybenzoate,	Thermochim. Acta 178, 59
pentylparaben); C ₁₂ H ₁₆ O ₃ ;	(1991).
[6521-29-5]	
(2) 1-Octanol (octan-1-ol, octyl	
alcohol): C ₀ H ₁₀ O: [111-87-5]	

Variables:Prepared by:T/K=298A. Goto and R. Goto

The solubility of pentylparaben in 1-octanol at 298 K was reported as $c_1/\text{mol dm}^{-3}=3.96$.

Auxiliary Information

Methods/Apparatus/Procedure:

The experimental details are given in the compilation of Ref. 36 for the propylparaben–1-octanol system in Sec. 2.2.1.3.

Source and Purity of Materials:

The pentylparaben was the gift of Apin Chemicals Ltd. (Abingdon, Great Britain) and was used as received. The purity was specified as >99.5%. 1-Octanol was of Anala R grade.

Estimated Errors:

Nothing specified.

Components:

(1) Benzoic acid, 4-hydroxy-, phenylmethyl ester (benzyl *p*-hydroxybenzoate, benzylparaben); C₁₄H₁₂O₃; [94-18-8]

(2) 1-Octanol (octan-1-ol, octyl alcohol); C₈H₁₈O; [111-87-5]

Original Measurements:

³⁶A.E. Beezer, S. Forster, W.-B. Park, and G.J. Rimmer, Thermochim. Acta **178**, 59 (1991).

Variables: Prepared by: T/K = 298 A. Goto and R. Goto

The solubility of benzylparaben in 1-octanol at 298 K was reported as $c_1/\text{mol dm}^{-3}=9.76$.

Auxiliary Information

Methods/Apparatus/Procedure:

The experimental details are given in the compilation of Ref. 36 for the propylparaben–1-octanol system in Sec. 2.2.1.3.

Source and Purity of Materials:

The benzylparaben was the gift of Apin Chemicals Ltd. (Abingdon, Great Britain) and was used as received. The purity specified as >99.5%. 1-Octanol was of Anala R grade.

Estimated Errors:

Nothing specified.

2.3. Hydroxybenzoic acid salt-organic compound systems

2.3.1. 2-Hydroxybenzoic acid salt (Na)

Components: Original Measurements: 37 H. Henstock, J. Chem. Soc. monosodium salt (sodium salicylate); $C_7H_5NaO_3$; [54-21-7] (2) Methyl alcohol (methanol); CH_4O ; [67-56-1]

Variables:

 $t/^{\circ}$ C=15 and 67.2 (boiling point of solution)

Prepared by:

H. Miyamoto and A. Goto

Solubility of sodium salicylate in methanol

Temperature	Solubility		
t/°C	Original data ^a	w_1^b (compiler)	$m_1/\text{mol kg}^{-1}$ (compiler)
15 67.2 (boiling point)	26.28 34.73	0.2081 0.2578	1.641 2.169

^aIn the original paper, the solubility was given as grams of salt per 100 g of solvent

 $^{{}^{}b}w_{1}=m_{1}/\Sigma m_{i}$, where w_{1} is the mass fraction of sodium salicylate. m_{1} and Σm_{i} are mass of sodium salicylate and mass of solution, respectively.

Methods/Apparatus/Procedure:

The apparatus used for the measurements at 15 °C was similar to that described in [J.N. Bronsted and A. Petersen, J. Am. Chem. Soc. 43, 2265 (1921)]. It was immersed in a thermostat. At boiling temperature, the solutions were made in a wide flask under reflux. To determine the quantities of solutes, portions of the saturated solutions were weighed at 15 °C in a graduated pipette of the type used by [F.D. Chattaway and W.J. Lambert, J. Chem. Soc. 107, 1766 (1915)]; a filter thimble was introduced into the solution to separated undissolved salt. The contents being discharged into a weighing bottle, the pipette was washed with the boiling solvent, and the residue was weighed after evaporation of solvent; thus the weights of solute and solvent were both obtained.

Source and Purity of Materials:

Sodium salicylate was recrystallized twice from boiling methanol. Methanol was purified by first removing acetone by Minuses' method, aldehyde was abstracted by treatment with iodine, and distillation with concentrated sulfuric acid removed basic substance as well as most of the water. Acid substances were removed by distillation from caustic potash, and the alcohol was distilled over metallic sodium; b.p. 66 °C at 758 mmHg.

Estimated Errors:

Solubility: Precision of $\pm 1\%$. Temperature: Precision of ± 0.1 °C.

2.3.2. 2-Hydroxybenzoic acid salt (Ag)

Components:

(1) Benzoic acid, 2-hydroxy-, silver salt (silver salicylate); C₇H₅O₃Ag; [35959-19-4]

(2) Alcohols:

Methyl alcohol (methanol);

CH₄O; [67-56-1]

Ethyl alcohol (ethanol); C₂H₆O;

[64-17-5]

Original Measurements:

³⁸I.M. Kolthoff, J.J. Lingane, and W.D. Larson, J. Am. Chem. Soc. 60, 2512 (1938).

Variables:	Prepared by:
t/°C=25	H. Miyamoto

Solubility of silver salicylate in alcohols at 25 °C

	Solubility
Solvent	$10^4 c_1 / \text{mol dm}^{-3}$
Methanol Ethanol	5.69 3.10

Auxiliary Information

Methods/Apparatus/Procedure:

Saturated solution of the silver salt was prepared in conductance cells through which a stream of previously dried nitrogen, saturated with the vapor of the solvent, was led to provide stirring. When the conductance had become constant, samples of the saturated aqueous solutions were withdrawn and analyzed for silver by the potentiometric method. The solubilities in ethanol and methanol were determined by the conductance method. The conductance cells were of the type used by [I.M. Kolthoff and A. Willman, J. Am. Chem. Soc. 56, 1008 (1934)]. Their cell constants were determined in the usual way. The conductance of methanol at 25 °C varied from 2.9 to 5.0 and the range in the corresponding values for ethanol was from 0.4 to 1.2×10^{-4} S cm⁻¹. The conductance of the pure alcohol was subtracted from the observed conductivities where necessary.

Source and Purity of Materials:

Ethanol and methanol were refluxed over silver oxide, distilled and dehydrated with magnesium. The water content of methanol ranged from 0% to 0.03%, while that of ethanol varied from 0.01% to 0.07%.

The silver salt of the acid was precipitated from solutions of the corresponding sodium salt with a slight excess of silver nitrate. The precipitates were washed and recrystallized from hot water. The product was washed with water, then with ethanol, and air dried.

Estimated Errors:

Nothing specified.

Components:

(1) Benzoic acid, 2-hydroxy-, silver salt (silver salicylate); C₇H₅O₃Ag (Merck), 2(OH)C₆H₄CO₂Ag (Aldrich), C₇H₆O₃Ag (CA); [35959-19-4] (2) Alcohols:

Methyl alcohol (methanol); CH₄O; [67-56-1]

Ethyl alcohol (ethanol); C₂H₆O; [64-17-5]

1-Butanol (butan-1-ol, butyl

alcohol); C₄H₁₀O; [71-36-3]

1-Butanol, 3-methyl-(3-methylbutan-1-ol, isoamyl

alcohol); C₅H₁₂O; [123-51-3]

1-Hexanol (hexan-1-ol, hexyl

alcohol); C₆H₁₄O; [111-27-3] 1-Heptanol (n-heptan-1-ol, heptyl alcohol); C₇H₁₆O; [111-70-6]

Original Measurements:

³⁹N.A. Izmailov and V.S. Chernyi, Zh. Fiz. Khim. 34, 319 (1960) [Russ. J. Phys. Chem. (Engl. Transl.) 34, 149 (1960)].

Variables: Prepared by: $t/^{\circ}C=25$ H. Miyamoto

Solubility of silver salicylate in alcohols at 25 °C

	Solubility	
Solvent	$10^4 m_1 / \text{mol kg}^{-1}$	
Methanol	6.54	
Ethanol	5.15	
1-Butanol	1.11	
Isoamyl alcohol	1.09	
n-Hexyl alcohol	1.91	
n-Heptyl alcohol	1.64	

Auxiliary Information

Methods/Apparatus/Procedure:

The solubility determination of the silver salt used the radioactive isotope ¹¹⁰Ag. The silver salt with solvent was placed in a tube, sealed and placed in an air thermostat. Equilibrium was reached in 16-18 h. The solution removed from the tube was centrifuged. The samples were withdrawn by a micropipette and run on to a disk of filter paper, dried, and sealed in tracing cloth or Cellophane. The prepared specimens were found on a cylindrical counter and their radioactivity was measured. The methods of preparing saturated solutions, sampling, and the radioactive measurement are described in [N.A. Izmailov and V.S. Chernyi, Zh. Fiz. Khim. 34, 127 (1960); Russ. J. Phys. Chem. (Engl. Transl.) 34, 59 (1960)]. The concentration of silver salicylate was analyzed for silver content.

Source and Purity of Materials:

The silver salt of salicylic acid was prepared from silver nitrate labeled with radioactive ¹¹⁰Ag and the sodium or potassium salts of the acid. The solvents were carefully purified.

Estimated Errors:

Solubility: Relative accuracy was 1%–3% at a confidence limit of 0.95. Temperature: Precision of ± 0.5 °C.

Components:

(1) Benzoic acid, 2-hydroxy-, silver salt (silver salicylate); C_7H_5OAg (Merck), $2(OH)C_6H_4CO_2Ag$ (Aldrich), $C_7H_6O_3Ag$ (CA); [35959-19-4] (2) Ketones: 2-Propanone (propan-2-one, acetone); C_3H_6O ; [67-64-1] 2-Butanone (butan-2-one, methyl

ethyl ketone); C_4H_8O ; [78-93-3]

4-Heptanone (heptan-4-one,

dipropyl ketone); C₇H₁₄O;

Original Measurements:

³⁹N.A. Izmailov and V.S.
 Chernyi, Zh. Fiz. Khim. **34**, 319 (1960) [Russ. J. Phys. Chem.
 (Engl. Transl.) **34**, 149 (1960)].

[123-19-3] **Variables:**

 $t/^{\circ}C=25$

Prepared by:

H. Miyamoto

Solubility of silver salicylate in ketones at 25 °C

	Solubility
Solvent	$10^4 m_1 / \text{mol kg}^{-1}$
Acetone	1.35
2-Butanone	0.996
Dipropyl ketone	0.431

Auxiliary Information

Methods/Apparatus/Procedure:

The experimental details are given in the compilation of Ref. 39 for the binary silver salicylate—methanol system earlier in this section.

Source and Purity of Materials:

The silver salt of salicylic acid was prepared from silver nitrate labeled with radioactive ¹¹⁰Ag and the sodium or potassium salts of the acid. The solvents were carefully purified.

Estimated Errors:

Solubility: Relative accuracy is 1%–3% at a confidence limit of 0.95. Temperature: Precision of ± 0.5 °C.

2.3.3. 2-Hydroxybenzoic acid salt (NH₄)

Components:
(1) Benzoic acid, 2-hydroxy-,
monoammonium salt (ammonium
salicylate); C ₇ H ₉ NO ₃ ; [528-94-9]
(2) 2-Propanone (propan-2-one,
acetone); C ₃ H ₆ O; [67-64-1]

Original Measurements:

³⁷H. Henstock, J. Chem. Soc. **1934**, 1340.

Variables: Prepared by: $t/^{\circ}C=15$ H. Miyamoto

Solubility of ammonium salicylate in acetone at 15 °C

	Solubility	
Original data ^a	w ₁ ^b (compiler)	$m_1/\text{mol kg}^{-1}$ (compiler)
69.65	0.4105	4.489

^aThe solubility was originally reported as grams of ammonium salicylate per 100 g of solvent.

 ${}^{b}w_1 = m_1/\Sigma m_i$, where w_1 is the mass fraction of sodium salicylate. m_1 and Σm_i are the mass of sodium salicylate and mass of solution, respectively.

Auxiliary Information

Methods/Apparatus/Procedure:

The experimental details are given in the compilation of Ref. 37 for the binary sodium salicylate—methanol system in Sec. 2.3.1.

Source and Purity of Materials:

Ammonium salicylate was recrystallized from boiling methanol. Acetone was purified by way of its sodium iodide compound, dried over calcium chloride and redistilled; b.p. 56.2 °C at 759 mmHg.

Estimated Errors:

Solubility: Accuracy of 1%. Temperature: Precision of ± 0.1 °C.

2.3.4. 4-Hydroxybenzoic acid salt (Ag)

Components:	Original Measurements:
(1) Benzoic acid, 4-hydroxy-,	³⁹ N.A. Izmailov and V.S.
monosilver salt (silver	Chernyi, Zh. Fiz. Khim. 34, 319
4-hydroxybenzoate); C ₇ H ₅ O ₃ Ag;	(1960) [Russ. J. Phys. Chem.
	(Engl. Transl.) 34, 149 (1960)].
(2) Alcohols:	
Methyl alcohol (methanol);	
CH ₄ O; [67-56-1]	
Ethyl alcohol (ethanol); C ₂ H ₆ O;	
[64-17-5]	

Variables:Prepared by:t/ °C=25H. Miyamoto and A. Goto

Solubility of silver 4-hydroxybenzoate in alcohols at 25 °C

	Solubility
Solvent	$10^3 m_1 / \text{mol kg}^{-1}$
Methanol	1.51
Ethanol	0.371

Auxiliary Information

Methods/Apparatus/Procedure:

The experimental details are given in the compilation of Ref. 39 for the binary silver salicylate—methanol system in Sec. 2.3.2.

Source and Purity of Materials:

The silver salt of 4-hydroxybenzoic acid was prepared from silver nitrate labeled with radioactive $^{110}\mathrm{Ag}$ and the sodium or potassium salts of the acid.

The solvents were carefully purified.

Estimated Errors:

Solubility: Relative accuracy is 1%–3% at a confidence limit of 0.95. Temperature: Precision of ± 0.5 °C.

3. Hydroxybenzoic Acids and Parabens in Ternary Nonaqueous Systems

3.1. Hydroxybenzoic acid and paraben-organic compound (1)-organic compound (2) systems

3.1.1. Salicylic acid

Components:

- (1) Benzoic acid, 2-hydroxy-(o-hydroxybenzoic acid, salicylic acid); C₇H₆O₃; [69-72-7]
- (2) Benzene; C₆H₆; [71-43-2]
- (3) Second component of organic solvent:

Methyl alcohol (methanol);

CH₄O; [67-56-1]

Ethyl alcohol (ethanol); C₂H₆O;

[64-17-5]

1-Propanol (propan-1-ol, propyl alcohol); C₃H₈O; [71-23-8]

2-Propanone (propan-2-one, acetone); C₃H₆O; [67-64-1]

Ethanol, 2-ethoxy-(2-ethoxyethanol, ethyl

cellosolve); $C_4H_{10}O_2$; [110-80-5]

Original Measurements:

¹⁷A.N. Paruta, B.J. Sciarrone, and N.G. Lordi, J. Pharm. Sci. **53**, 1349 (1964).

Variables:	Prepared by:
t/°C=30.6	H. Miyamoto and A. Goto

Solubility of salicylic acid in benzene-alcohol mixtures at 30.6 °C

		Solubility ^b	
Solvent system	Dielectric constant ^a	$\gamma_1/g \text{ dm}^{-3}$ (compiler)	$c_1/\text{mol dm}^{-3}$ (compiler)
Benzene	2.2	7	0.05
Benzene-methanol	16.0	390	2.82
Benzene-ethanol	15.8	430	3.11
Benzene-1-propanol	15.3	315	2.28
Benzene-ethyl cellosolve	14.5	425	3.08
Benzene–2-propanone (acetone)	15.6	510	2.69

^aThe dielectric constant of the solvent mixtures at the maximum solubility of salicylic acid.

Auxiliary Information

Methods/Apparatus/Procedure:

The experimental details are given in the compilation of Ref. 17 for the salicylic acid—ethanol system in Sec. 2.1.2.1.

Source and Purity of Materials:

The solvents were purified by the method described in A. Weissberger *et al.*, *Organic Solvents*, 2nd ed. (Interscience, New York, 1955), Chaps. 4 and 5.

Estimated Errors:

Solubility: Nothing specified.

Temperature: Precision of $\pm 0.2~^{\circ}C$ (solubility) and $\pm 1.0~^{\circ}C$ (dielectric constant).

Components:

- (1) Benzoic acid, 2-hydroxy-(*o*-hydroxybenzoic acid, salicylic acid); C₇H₆O₃; [69-72-7] (2) 2-Propanone (propan-2-one,
- acetone); C₃H₆O; [67-64-1] (3) Benzene; C₆H₆; [71-43-2]

Original Measurements:

⁴⁰J.W. Marden and M.V. Dover, J. Am. Chem. Soc. **39**, 1 (1917).

Variables:

Concentration of acetone $t/^{\circ}C=25$

Prepared by:

H. Miyamoto and A. Goto

Solubility of salicylic acid in acetone-benzene mixtures at 25 °C

Concentrat	tion of acetone		Solubility ^a	
100w ₂	$100x_2$ (compiler)	Original data	$100w_1$ (compiler)	$m_1/\text{mol kg}^{-1}$ (compiler)
100	100.0	55.5	35.7	4.02
90	92.3	51.1	33.8	3.70
80	84.3	46.4	31.7	3.36
70	75.8	(42.3)	29.7	3.06
60	64.7	36.7	26.8	2.66
50	57.4	(31.0)	23.7	2.24
40	47.3	25.3	20.2	1.83
30	36.6	(20.0)	16.7	1.45
20	25.2	15.0	13.0	1.08
10	13.0	7.1	6.6	0.51
0	0.0	0.92	0.91	0.067

^aIn the original paper, the solubility was given as grams per 100 g of the mixed solvent. The values enclosed in parentheses were taken from the curve by the authors.

Auxiliary Information

Methods/Apparatus/Procedure:

The solvents, with a large excess of solid salicylic acid, were shaken in a thermostat for $8-12\,h$ at $25\,^{\circ}$ C. The solutions were forced out of the bottles through glass wool filters into a weighing pipet, from which the solutions were weighed directly into small glass evaporating dishes and dried on a steam bath and in sulfuric acid desiccators.

Source and Purity of Materials:

Salicylic acid was completely volatilized on heating, leaving no weighable residue. The melting point of the purified acid was 126 $^{\circ}\text{C}.$

Estimated Errors:

Nothing specified.

Components:

- (1) Benzoic acid, 2-hydroxy- (o-hydroxybenzoic acid, salicylic acid); $C_7H_6O_3$; [69-72-7]
- (2) Acetic acid, ethyl ester (ethyl acetate); C₄H₈O₂; [141-78-6]
 (3) Benzene; C₆H₆; [71-43-2]

Variables:

Concentration of ethyl acetate $t/^{\circ}C=25$

Original Measurements:

⁴⁰J.W. Marden and M.V. Dover,

J. Am. Chem. Soc. 39, 1 (1917).

Prepared by:

H. Miyamoto and A. Goto

^bIn the original paper, the solubility was given as mg/ml of solution.

Solubility of salicylic acid in ethyl acetate-benzene mixtures at 25 °C

	ation of ethyl cetate		Solubility ^a	
100w ₂	$100x_2$ (compiler)	Original data	$100w_1$ (compiler)	$m_1/\text{mol kg}^{-1}$ (compiler)
100	100.0	38.0	27.5	2.75
90	88.9	24.2	19.5	1.75
80	78.0	22.7	18.5	1.64
70	67.4	(19.5)	16.3	1.41
60	57.1	16.6	14.2	1.20
50	47.0	(14.5)	12.7	1.05
40	37.1	12.8	11.3	0.927
30	27.5	(9.6)	8.8	0.695
20	18.1	6.2	5.8	0.449
10	9.0	3.42	3.3	0.248
0	0.0	0.92	0.91	0.067

^aIn the original paper, the solubility was given as grams per 100 g of the mixed solvent. The values enclosed in parentheses were taken from the curve by the authors.

Auxiliary Information

Methods/Apparatus/Procedure:

The experimental details are given in the compilation of Ref. 40 for the ternary salicylic acid-acetone-benzene system earlier in this section.

Source and Purity of Materials:

Salicylic acid was completely volatilized on heating, leaving no weighable residue.

Estimated Errors:

Nothing specified.

Components: (1) Benzoic acid 2-hydroxy- (o-hydroxybenzoic acid, salicylic acid); C ₇ H ₆ O ₃ ; [69-72-7] (2) Methane, tetrachloro- (tetrachloromethane, carbon tetrachloride); CCl ₄ ; [56-23-5] (3) Benzene; C ₆ H ₆ ; [71-43-2]	Original Measurements: 41 W. Herz and M. Levi, Kolloid Z. 50 , 21 (1930).
Variables: Concentration of benzene $t/^{\circ}$ C=25	Prepared by: E. Königsberger and LC. Königsberger

Solubility of salicylic acid in benzene–tetrachloromethane mixtures at $25\ ^{\circ}\mathrm{C}$

Concentration of benzene	Solubility
$arphi_2$	$c_1/\mathrm{mmol~dm^{-3}}$
100	50.0
80	47.3
60	44.9
40	42.2
20	37.1
0	29.7

Auxiliary Information

Methods/Apparatus/Procedure:

The solubility of salicylic acid was determined according to the method of Herz and Lorenz [W. Herz and L. Lorenz, Kolloid Z. 47, 331 (1929)]. Concentrations of saturated solutions were determined by a titrimetric method.

Source and Purity of Materials:

"Best commercial quality" of salicylic acid was purified by recrystallization.

Estimated Errors:

Not stated.

Components: (1) Benzoic acid, 2-hydroxy(o-hydroxybenzoic acid, salicylic acid); C₇H₆O₃; [69-72-7] (2) 2 3-Dimethyl-1-phenyl-3-pyrazolin-5-one

2,3-Dimethyl-1-phenyl-3-pyrazolin-5-one (1,5-dimethyl-2-phenylpyrazol-3-one,

antipyrine); $C_{11}H_{12}N_2O$;

[60-80-0]

(3) Gasoline

Prepared by:	
H. Miyamoto and A.	Goto

Variables: $t/^{\circ}C=76.0-178.0$ Composition

Solubility of salicylic acid in antipyrine-gasoline mixtures

	Composition	Demixing		
	Salicylic acid	Antipyrine	Gasoline	temperature
Section number	100w ₁ (compiler)	100w ₂ (compiler)	100w ₃	t/°C
1	13.95	79.05	7.00	86.0
Salicylic acid 15%	13.37	75.40	10.90	117.0
Antipyrine 85%	13.20	74.80	12.00	128.0
	12.02	68.09	19.90	164.0
	2.10	11.90	86.00	162.0
	1.50	8.50	90.00	149.0
	0.75	4.25	95.00	114.0
	0.45	2.55	97.00	96.0
2	27.75	64.75	7.50	84.0
Salicylic acid 30%	27.00	63.00	10.00	111.0
Antipyrine 70%	25.50	59.50	15.00	145.0
	24.60	57.40	18.00	161.0
	3.60	8.40	88.00	159.0
	2.40	5.60	9.20	134.0
	1.50	3.50	9.60	120.0
	0.90	2.10	9.70	99.0
3	40.21	53.30	6.50	76.0
Salicylic acid 43%	39.17	51.93	8.90	100.0
Antipyrine 57%	38.70	51.30	10.00	111.0
	36.55	48.45	15.00	139.0
	34.40	45.60	20.00	160.0
	4.30	5.70	90.00	159.0
	2.15	2.85	95.00	125.0
	1.29	1.71	97.00	94.0

Solubility of salicylic acid in antipyrine-gasoline mixtures

	Composition of saturated solutions			Demixing
	Salicylic acid	Antipyrine	Gasoline	temperature
Section number	$100w_1$ (compiler)	$100w_2$ (compiler)	$100w_3$	t/°C
4	46.25	46.25	7.50	84.0
Salicylic acid 50%	45.00	45.00	10.00	102.0
Antipyrine 50%	43.40	43.40	13.20	138.0
	40.50	40.50	19.00	163.0
	5.00	5.00	90.00	155.0
	2.50	2.50	95.00	117.0
	2.00	2.00	96.00	114.0
	1.50	1.50	97.00	98.0
5	55.20	36.80	8.00	85.0
Salicylic acid 60%	54.00	36.00	10.00	100.0
Antipyrine 40%	53.22	35.48	11.30	110.0
1,0	51.00	34.00	15.00	135.0
	48.00	32.00	20.00	160.0
	6.00	4.00	90.00	156.0
	3.00	2.00	95.00	121.0
	1.80	1.20	93.00	96.0
6	60.90	26.10	13.00	95.0
Salicylic acid 70%	59.50	25.50	15.00	120.0
Antipyrine 30%		24.00		
Timepytime 50 /c	56.00		20.00	145.0
	53.90	23.10	23.00	154.0
	51.10	21.90	27.00	162.0
	14.00	6.00	80.00	178.0
	7.00	3.00	90.00	154.0
	3.50	1.50	95.00	120.0
7	2.10	0.90	97.00	98.0
7	63.20	15.8	21.00	99.0
Salicylic acid 80% Antipyrine 20%	62.40	15.6	22.00	109.0
Antipyrnie 20%	60.00	15.0	25.00	122.0
	56.00	14.0	30.00	130.0
	52.00	13.0	35.00	149.0
	41.12	10.28	48.60	151.5
	36.00	9.00	55.00	154.0
	28.00	7.30	65.00	163.0
	20.00	5.00	75.00	163.0
	16.00	4.00	80.00	152.0
	12.00	3.00	85.00	139.0
	8.00	2.00	90.00	123.0
	4.80	1.20	94.00	109.0
8	49.50	5.00	45.00	95.0
Salicylic acid 90%	45.00	5.00	50.00	110.0
Antipyrine 10%	36.00	4.00	60.00	123.0
	27.00	3.00	70.00	128.0
	18.00	2.00	80.00	132.0
	13.50	1.50	85.00	125.0
	9.00	1.00	90.00	103.0

Auxiliary Information

Methods/Apparatus/Procedure:

The experiment was performed by the polythermic method in sealed glass ampoules. The three-component system was studied by polythermic sections through their prisms taken from the edge for gasoline to the plane for the binary system antipyrine–salicylic acid.

Source and Purity of Materials:

Pharmaceutical antipyrine and chemically pure grade salicylic acid were

A gasoline fraction boiling in the 120-140 °C range was used.

Estimated Errors:

Nothing specified.

Components:	Original Measurements:
(1) Benzoic acid, 2-hydroxy-	¹⁷ A.N. Paruta, B.J. Sciarrone, and
(o-hydroxybenzoic acid, salicylic	N.G. Lordi, J. Pharm. Sci. 53,
acid); C ₇ H ₆ O ₃ ; [69-72-7]	1349 (1964).
(2) Acetic acid, ethyl ester (ethyl	
acetate); C ₄ H ₈ O ₂ ; [141-78-6]	
(3) Second component of organic	
solvent:	
Methyl alcohol (methanol);	
CH ₄ O; [67-56-1]	
Ethyl alcohol (ethanol); C ₂ H ₆ O;	
[64-17-5]	
1-Propanol (propan-1-ol, propyl	
alcohol); C ₃ H ₈ O; [71-23-8]	
1-Butanol (butan-1-ol, butyl	
alcohol); C ₄ H ₁₀ O; [71-36-3]	
Ethanol, 2-ethoxy-	
(2-ethoxyethanol, ethyl	
cellosolve); C ₄ H ₁₀ O ₂ ; [110-80-5]	
2-Propanone (propan-2-one,	
acetone); C ₃ H ₆ O; [67-64-1]	
1,2-Propanediol	
(propane-1,2-diol, propylene	
glycol); C ₃ H ₈ O ₂ ; [57-55-6]	
Variables:	Prepared by:
$t/^{\circ}$ C=30.6	H. Miyamoto and A. Goto

Solubility of salicylic acid in ethyl acetate–alcohol mixtures at 30.6 $^{\circ}\text{C}$

		Solubility ^b		
Solvent system	Dielectric constant ^a	$\frac{\gamma_1/g \text{ dm}^{-3}}{\text{(compiler)}}$		
Ethyl acetate	6.0	23	0.17	
Ethyl acetate-methanol	16.0	335	2.43	
Ethyl acetate-ethanol	15.7	390	2.82	
Ethyl acetate–1-propanol (n-propanol)	15.3	355	2.57	
Ethyl acetate–1-butanol (<i>n</i> -butanol)	14.0	330	2.39	
Ethyl acetate-ethanol, 2-ethoxy- (ethyl cellosolve)	14.5	425	3.08	
Ethyl acetate-2-propanone (acetone)	16.1	415	3.00	
Ethyl acetate–1,2-propanediol (propylene glycol)	16.2	160	1.16	

^aThe dielectric constant of the binary mixtures at the maximum solubility of salicylic acid.

Auxiliary Information

Methods/Apparatus/Procedure:

The experimental details are given in the compilation of Ref. 17 for the salicylic acid-ethanol system in Sec. 2.1.2.1.

Source and Purity of Materials

The solvents were purified by the method described in A. Weissberger *et al.*, *Organic Solvents*, 2nd ed. (Interscience, New York, 1955), Chaps. 4 and 5.

^bIn the original paper, the solubility was given as mg/ml of solution.

Estimated Errors:

Solubility: Nothing specified.

Temperature: Precision of $\pm 0.2~^{\circ}\text{C}$ (solubility) and $\pm 1.0~^{\circ}\text{C}$ (dielectric

constant).

Components:

(1) Benzoic acid, 2-hydroxy-(o-hydroxybenzoic acid, salicylic acid); C₇H₆O₃; [69-72-7]

(2) Chloroform; CHCl₃;

[67-66-3]

(3) Second component of organic solvent:

Methyl alcohol (methanol);

CH₄O; [67-56-1]

Ethyl alcohol (ethanol); C₂H₆O;

[64-17-5]

1-Propanol (propan-1-ol, propyl alcohol); C₃H₈O; [71-23-8]

1-Butanol (butan-1-ol, butyl

alcohol); $C_4H_{10}O$; [71-36-3]

Ethanol, 2-ethoxy-

(2-ethoxyethanol, ethyl

cellosolve); $C_4H_{10}O_2$; [110-80-5]

2-Propanone (propan-2-one, acetone); C₃H₆O; [67-64-1]

1,2-Propanediol

(propane-1,2-diol, propylene glycol); C₃H₈O₂; [57-55-6]

Variables:

 $t/{^{\circ}C} = 30.6$

Prepared by:

H. Miyamoto and A. Goto

Original Measurements:

1349 (1964).

¹⁷A.N. Paruta, B.J. Sciarrone, and

N.G. Lordi, J. Pharm. Sci. 53.

Solubility of salicylic acid in chloroform-alcohol mixtures at 30.6 °C

		Solubility ^b	
Solvent system	Dielectric constant ^a	$\gamma_1/g \text{ dm}^{-3}$ (compiler)	$c_1/\text{mol dm}^{-3}$ (compiler)
Chloroform	4.8	2	0.014
Chloroform-methanol	16.0	348	2.52
Chloroform-ethanol	15.7	595	4.31
Chloroform-1-propanol	15.3	315	2.28
Chloroform-1-butanol	14.0	425	2.04
Chloroform-ethyl cellosolve	14.5	425	3.08
Chloroform-acetone	16.1	445	3.22
Chloroform-propylene glycol	15.2	292	2.11

^aThe dielectric constant of the binary mixtures at the maximum solubility of

Auxiliary Information

Methods/Apparatus/Procedure:

The experimental details are given in the compilation of Ref. 17 for the salicylic acid-ethanol system in Sec. 2.1.2.1.

Source and Purity of Materials:

The solvents were purified by the method described in A. Weissberger et al., Organic Solvents, 2nd ed. (Interscience, New York, 1955), Chaps. 4 and 5.

Estimated Errors:

Solubility: Nothing specified.

Temperature: Precision of ±0.2 °C (solubility) and ±1.0 °C (dielectric

constant).

Components:

(1) Benzoic acid, 2-hydroxy-(o-hydroxybenzoic acid, salicylic acid); C₇H₆O₃; [69-72-7]

(2) 1,4-Dioxane; C₄H₈O₂;

[123-91-1]

(3) Second component of organic

solvent:

Methyl alcohol (methanol);

CH₄O; [67-56-1]

Ethyl alcohol (ethanol); C₂H₆O;

[64-17-5]

1-Propanol (propan-1-ol, propyl

alcohol); C₃H₈O; [71-23-8]

1-Butanol (butan-1-ol, butyl

alcohol); C₄H₁₀O; [71-36-3] Ethanol, 2-ethoxy-

(2-ethoxyethanol, ethyl

cellosolve); $C_4H_{10}O_2$; [110-80-5]

2-Propanone (propan-2-one,

acetone); C₃H₆O; [67-64-1]

1,2-Ethanediol (ethane-1,2-diol,

ethylene glycol); C₂H₆O₂;

[107-21-1]

Variables:

 $t/^{\circ}C = 30.6$

1,2-Propanediol

(propane-1,2-diol, propylene glycol); C₃H₈O₂; [57-55-6]

Prepared by:

H. Miyamoto and A. Goto

Original Measurements:

1349 (1964).

¹⁷A.N. Paruta, B.J. Sciarrone, and

N.G. Lordi, J. Pharm. Sci. 53.

Solubility of salicylic acid in dioxane-alcohols mixtures at 30.6 °C

		Solu	lubility ^b	
Solvent system	Dielectric constant ^a	$\gamma_1/g \text{ dm}^{-3}$ (compiler)	$c_1/\text{mol dm}^{-3}$ (compiler)	
1,4-Dioxane	2.2	40	0.29	
1,4-Dioxane-methanol	16.3	440	3.19	
1,4-Dioxane-ethanol	15.0	495	3.58	
1,4-Dioxane-propanol	14.8	305	2.21	
1,4-Dioxane-1-butanol	14.5	268	1.94	
1,4-Dioxane-ethyl cellosolve	14.5	425	3.08	
1,4-Dioxane-acetone	15.6	475	3.44	
1,4-Dioxane-ethylene glycol	17.5	89	0.64	
1,4-Dioxane–propylene glycol	15.1	290	2.10	

^aThe dielectric constant of the solvent mixtures at the maximum solubility of salicylic acid.

^bIn the original paper, the solubility was given as mg/ml of solution.

^bIn the original paper, the solubility was given as mg/ml of solution.

Methods/Apparatus/Procedure:

The experimental details are given in the compilation of Ref. 17 for the salicylic acid—ethanol system in Sec. 2.1.2.1.

Source and Purity of Materials:

The solvents were purified by the method described in A. Weissberger *et al.*, *Organic Solvents*, 2nd ed. (Interscience, New York, 1955), Chaps. 4 and 5.

Estimated Errors:

Solubility: Nothing specified.

Temperature: Precision of $\pm 0.2~^{\circ}C$ (solubility) and $\pm 1.0~^{\circ}C$ (dielectric constant).

3.1.2. Methylparaben

Components:

(1) Benzoic acid, 4-hydroxy-, methyl ester (methyl 4-hydroxybenzoate, methylparaben); C₈H₈O₃; [99-76-3]

(2) Ethyl alcohol (ethanol);

C₂H₆O; [64-17-5] (3) Cyclohexane; C₆H₁₂;

[110-82-7]

Variables:

Concentration of cyclohexane $t/^{\circ}C=15-50$

Original Measurements:

⁴³R.H. Manzo and A.A. Ahumada, J. Pharm. Sci. **79**, 1109 (1990).

Prepared by:

A. Goto and R. Goto

Solubility of methylparaben in ethanol-cyclohexane mixtures

Temperature	Concentration of cyclohexane	Solubility	
t/°C	$100\varphi_3$	$10^3 x_3$	
15	100	0.0441	
	96	6.85	
	92	15.9	
	83	32.4	
25	100	0.0726	
	96	8.33	
	92	19.4	
	85	42.9	
40	100	0.247	
	96	13.3	
	92	30.8	
	85	62.6	
50	100	0.425	
	96	18.0	
	92	41.2	
	85	75.0	

Auxiliary Information

Methods/Apparatus/Procedure:

Solvent mixtures were prepared by mixing exactly measured volumes of absolute ethanol and cyclohexane. A suitable amount of solvent was introduced into a stoppered test tube containing an excess amount of solute, and was kept at least 24 h in a constant-temperature bath with adequate shaking. Samples were taken with a small diameter tube having a piece of sintered glass in its end to avoid contamination with the solid. Pipettes and filter devices were previously heated in an oven to reach the same temperature as that of the experiment. The ester concentration was determined spectrophotometrically.

Source and Purity of Materials:

Methylparaben was obtained from Aldrich and purified by recrystallization, m.p. 398.4 K [R.H. Manzo, A.A. Ahumada, and E. Luna, J. Pharm. Sci. 73, 1094 (1984); R.H. Manzo, A.A. Ahumada, and E. Luna, J. Pharm. Sci. 73, 1869 (1984)].

Ethanol was analytical grade obtained from Merck.

Cyclohexane (analytical grade) was obtained from Mallinckrodt.

Estimated Errors:

Nothing specified.

3.1.3. Propylparaben

Components:

[110-82-7]

(1) Benzoic acid, 4-hydroxy-, propyl ester (propyl *p*-hydroxybenzoate, propylparaben); C₁₀H₁₂O₃; [94-13-3]

(2) Ethyl alcohol (ethanol);

C₂H₆O; [64-17-5] (3) Cyclohexane; C₆H₁₂;

Variables:

Concentration of cyclohexane $t/{}^{\circ}C=15-50$

Original Measurements: ⁴³R.H. Manzo and A.A.

⁴³R.H. Manzo and A.A. Ahumada, J. Pharm. Sci. **79**, 1109 (1990).

Prepared by:

A. Goto and R. Goto

Solubility of propylparaben in ethanol-cyclohexane mixtures

Temperature	Concentration of cyclohexane	Solubility
t/°C	$100\varphi_3$	$10^3 x_1$
15	100	0.0944
	96	17.0
	92	38.1
	83	68.3
25	100	0.224
	96	23.8
	92	46.8
	85	91.3
40	100	0.682
	96	43.4
	92	92.9
	85	155
50	100	1.59
	96	64.8
	92	171
	85	249

Methods/Apparatus/Procedure:

The experimental details are given in the compilation of Ref. 43 for the methylparaben-ethanol-cyclohexane system in Sec. 3.1.2.

Source and Purity of Materials:

Propylparaben was obtained from Aldrich and purified by recrystallization, m.p. 369.2 K [R.H. Manzo, A.A. Ahumada, and E. Luna, J. Pharm. Sci. 73, 1094 (1984); R.H. Manzo, A.A. Ahumada, and E. Luna, J. Pharm. Sci. 73, 1869 (1984)].

Ethanol was analytical grade obtained from Merck.

Cyclohexane (analytical grade) was obtained from Mallinckrodt.

Estimated Errors:

Nothing specified.

3.2. Hydroxybenzoic acid-organic compound-inorganic compound systems 3.2.1. Salicylic acid

Components:

(1) Benzoic acid, 2-hydroxy-(o-hydroxybenzoic acid, salicylic acid); C₇H₆O₃; [69-72-7] (2) Carbon dioxide (supercritical fluid); CO₂; [124-38-9] (3) Methyl alcohol (methanol); CH₄O; [67-56-1]

Original Measurements:

⁴⁴G.S. Gurdial, S.J. Macnaughton, D.L. Tomasko, and N.R. Foster, Ind. Eng. Chem. Res. **32**, 1488 (1993).

Variables:

T/K=318.2, 323.2, and 328.2 Pressure: $91-201 \times 10^5$ Pa

Prepared by:

H. Miyamoto and A. Goto

Solubility of salicylic acid in supercritical carbon dioxide-methanol (3.5 mol %) mixture

Temperature	Pressure ^a	Density	Solubility ^b
T/K	10 ⁵ Pa	ρ /g dm ⁻³	$10^3 x_1$
318.2	96	432.3	1.25
	101	514.1	1.62
	111	611.5	2.49
	121	663.4	2.97
	131	697.9	3.28
	141	724.0	3.51
	161	762.6	3.93
	181	791.4	4.26
	201	814.5	4.48
323.2	101	397.3	1.21
	111	514.4	2.11
	121	592.5	2.68
	141	676.6	3.59
	161	725.1	4.07
	201	786.3	4.76
328.2	101	333.3	1.12
	111	425.5	1.66
	121	513.9	2.52
	141	623.9	3.64
	161	684.7	4.28
	201	756.8	5.12

^aIn the original paper, the pressure was given as "bar." 1 bar= 10^5 Pa.

Auxiliary Information

Methods/Apparatus/Procedure:

The solubilities were determined using a continuous flow apparatus [G.S. Gurdial and N.R. Foster, Ind. Eng. Chem. Res. **30**, 575 (1991)]. The high-pressure liquid chromatography pump was replaced with a high-pressure syringe pump to facilitate preparation of the $\rm CO_2$ -cosolvent mixtures.

The binary mixtures of CO₂ with methanol were prepared directly by loading a high-pressure syringe pump with a known volume of the organic solvent and then adding the liquid CO₂ at about 50 bar. The total volume of the syringe pump was 260 ± 5 cm³. The pump was calibrated with N₂ gas at various pressures. To facilitate the flow of liquid CO2 from the cylinder to the syringe pump, a cooling jacket was installed around the barrel of the syringe. Cooling water at approximately 274 K was recirculating through the jacket with a magnetic pump during the preparation stage. The temperature of the recirculating water was determined with a thermometer located at the exit of the cooling jacket. The pressure in the syringe pump was adjusted to yield the desired value of CO₂ density. After the solvent mixture was prepared, the contents were heated to approximately 313 K by recirculating warm water in the cooling/heating jacket for duration of 10 min. The contents were cooled to about 280 K for approximately 10 min. The heating and cooling sequence was repeated several times, after which the contents were allowed to further mix and equilibrate for 6 h at ambient temperature.

A given mixture of CO₂-cosolvent was prepared, the equilibrium cells were charged with the binary mixture and the system temperature was raised to the desired value. Extraction of the solid was initially performed at the desired pressure until the entire content of the syringe pump was used. Solubilities were determined at temperatures and pressures above the mixture critical point to ensure operation in the supercritical region. The minimum extraction temperature and pressure used were 318 K and 90 bar, respectively. The solubility measurements in these ternary systems were determined using the same procedure [G. S. Gurdial and N. R. Foster, Ind. Eng. Chem. Res. 30, 575 (1991)]. The procedure involved flushing the regulating valve with an organic solvent and measuring the amount of solute deposited in a Petri dish after drying its contents. The amount of solute collected in the 2 mm filter used as a collection device was determined gravimetrically. In order to remove traces of cosolvent, the in-line filter was placed in an oven at a temperature of 318 K for approximately 1 h.

The solubility was determined from the total mass of the solute collected and the total volume of gas measured with a wet test meter at ambient conditions. Each reported data point represents an average of three trials.

Source and Purity of Materials:

Carbon dioxide was purchased from Liquid Air, and the purity was 99.8%.

Methanol was from GDH, and the purity was 99.8%.

Salicylic acid was from Ajax Chemicals, and the purity of the acid was 99.0%.

These materials were used without further purification.

Estimated Errors:

Solubility: Precision less than 5% CO_2 . Pressure: Uncertainty within $\pm 2\%$. Temperature: Nothing specified.

b3.5 mol % cosolvent concentration on a solute-free basis.

Components:

(1) Benzoic acid, 2-hydroxy-(*o*-hydroxybenzoic acid, salicylic acid); C₇H₆O₃; [69-72-7] (2) Carbon dioxide (supercritical fluid); CO₂; [124-38-9]

(3) 2-Propanone (propan-2-one,

acetone); C₃H₆O; [67-64-1]

Original Measurements:

⁴⁴G.S. Gurdial, S.J. Macnaughton, D.L. Tomasko, and N.R. Foster, Ind. Eng. Chem. Res. **32**, 1488 (1993).

Variables:

T/K=318.2, 323.2, and 328.2 Pressure: $86-201 \times 10^5$ Pa

Prepared by:

H. Miyamoto and A. Goto

Solubility of salicylic acid in supercritical carbon dioxide–acetone (3.5 mol %) mixture

Temperature	Pressure ^a	Density	Solubility ^b
T/K	10 ⁵ Pa	$\rho/\mathrm{g}~\mathrm{dm}^{-3}$	$10^3 x_1$
318.2	86	302.4	0.68
	91	352.2	0.80
	101	514.1	1.25
	111	611.5	1.48
	121	663.4	1.72
	141	724.0	1.85
	161	762.6	1.94
	201	814.5	2.10
323.2	91	293.2	0.72
	96	340.2	0.83
	101	397.3	1.09
	111	514.4	1.46
	121	592.5	1.70
	141	676.6	2.02
	161	725.1	2.13
	201	786.3	2.33
328.2	101	333.3	0.93
	111	425.5	1.22
	121	513.9	1.54
	141	623.9	2.10
	161	684.7	2.33
	201	756.8	2.52

^aIn the original paper, the pressure was given as "bar." 1 bar=10⁵ Pa. ^b3.5 mol % cosolvent concentration on a solute-free basis.

Auxiliary Information

Methods/Apparatus/Procedure

The experimental details are given in the compilation of Ref. 44 for the salicylic acid–carbon dioxide (supercritical)–methanol system earlier in this section.

Source and Purity of Materials:

Carbon dioxide was purchased from Liquid Air, and the purity was 99.8%.

Acetone was from BDH, and the purity was 99.5%.

Salicylic acid was from Ajax Chemicals and the purity of the acid was

These materials were used without further purification.

Estimated Errors:

Solubility: Precision less than 5%.

 CO_2 pressure: Uncertainty within $\pm 2\%$ (relative).

Temperature: Nothing specified.

Components:

(1) Benzoic acid, 2-hydroxy-(*o*-hydroxybenzoic acid, salicylic acid); C₇H₆O₃; [69-72-7] (2) Carbon dioxide (supercritical fluid); CO₂; [124-38-9] (3) Acetic acid, ethyl ester (ethyl

acetate); C₄H₈O₂; [141-78-6]

Original Measurements:

⁴⁵Z. Liu, D. Li, G. Yang, and B. Han, J. Supercrit. Fluids **18**, 111 (2000).

Variables:

Concentration of CO_2 T/K=308.15 and 318.15 p/MPa=2.22-8.02

Prepared by:

H. Miyamoto and A. Goto

Solubility of salicylic acid in supercritical carbon dioxide-ethyl acetate mixtures

Temperature	Pressure	Concentration of CO ₂	Solubility	Molar volume of the liquid solution
T/K	MPa	x_2	<i>x</i> ₁	$V_{\rm m}({\rm ml/mol})$
308.15	2.22	0.3502	0.091 8	79.9
	3.01	0.4548	0.070 7	73.5
	3.54	0.5231	0.049 6	70.3
	4.02	0.5992	0.038 5	67.4
	4.35	0.6381	0.032 3	65.8
	4.63	0.6750	0.025 2	64.5
	4.90	0.7265	0.0198	63.6
	5.40	0.7895	0.0118	62.5
	5.93	0.8581	0.006 27	59.0
	6.32	0.8939	0.003 84	58.8
	6.68	0.9140	0.001 19	61.2
318.15	2.51	0.3498	0.099 8	81.1
	3.07	0.4177	0.086 1	77.6
	3.41	0.4549	0.072 6	74.9
	4.16	0.5366	0.058 3	69.4
	4.79	0.6087	0.038 2	66.1
	5.32	0.6646	0.029 6	68.1
	5.56	0.6825	0.024 2	65.9

Auxiliary Information

Methods/Apparatus/Procedure:

The apparatus for determining the solubility of a solute in a liquid solvent expanded with high-pressure gas or supercritical fluid was used. It is mainly composed of a gas cylinder, a high-pressure syringe pump, a solenoid-operated circulating pump, a liquid sample bomb, a view cell, a pressure gauge, a constant-temperature bath, and valves and fitting of different kinds. All metallic parts in direct contact with the chemicals were made of stainless steel (the experimental setup was shown in the paper). The volume of the view cell in which the liquid solution was allowed to contact with antisolvent carbon dioxide was about 200 ml. The solenoid-operated pump was used to circulate the vapor phase in order to equilibrate the system quickly. The system pressure was monitored through the pressure gauge, which was composed of a transducer and an indicator

The ethyl acetate solution saturated with a solute at ambient temperature

equilibrium was reached, carbon dioxide was charged into the system until

was sucked into the view cell by evacuating the system. After thermal

the desired pressure was reached. The solenoid-operated pump was started to circulate the vapor phase through valve V4 and the bottom of the view cell. All experiments were conducted with V-L-S three phases. After the pressure and the vapor-liquid interface had been unchanged for 2 h, the solid-liquid-vapor equilibrium was considered reached. The solenoid-operated pump was stopped and the system was maintained at static conditions to allow the solid to deposit until the solution became completely clear. Then valves V3 and V7 were opened. The liquid solution in the view cell began to flow into the sample bomb to replace the vapor in it, which resulted from hydraulic pressure. When the vapor-liquid interface in the view cell was the same as that in the V3, V5, V6, V8, V7 loop, it remained unchanged with time. At this time, the liquid sample bomb was full of liquid solution. Valves (V5-V8) were closed and the sample bomb was removed for composition analysis. The mass of the sample in the sample bomb was determined by a balance. The sample bomb was connected to an analysis system. The experimental setup consisted of a pressure gauge, liquid sample bomb, flush vessel, and constant-temperature bath (the experimental setup was shown in the paper). Then the apparatus was put into ice water. After evacuating the system, the solution in the sample bomb was flushed into the vessel and vapor-liquid equilibrium was reached at low pressure (<0.5 MPa). The amount of carbon dioxide in the vapor phase was calculated from the Huang equation of state on the basis of the pressure, temperature, volume of the system, and the saturated vapor pressure of ethyl acetate. The amount of carbon dioxide in the liquid phase was relatively small and was estimated from a solubility versus pressure curve in the pressure range from 0 to 0.5 MPa at the analysis temperature, which was determined experimentally in this study. The solute in the analysis system was washed into a beaker using ethyl acetate and dried and its mass was determined gravimetrically. The amount of the ethyl acetate in the sample was known from the total mass of the sample, the mass of carbon dioxide, and the mass of the solute. Thus, the moles of the three components were calculated. From the volume of the sample bomb and the total moles of the three components, the molar volumes of the mixture were easily obtained.

Source and Purity of Materials:

Carbon dioxide with a purity of 99.95% was supplied by Haunxin Gas Company.

Beijing Chemical Reagent Plant supplied ethyl acetate with a purity of 99.9%.

Salicylic acid with purity of 99.9% was purchased from Beijing Chemical Reagent Plant, and was not purified further.

Estimated Errors:

The accuracy of the pressure gauge was ± 0.025 MPa in the pressure range 0-20 MPa.

The accuracy of the temperature was within ± 0.1 K.

The accuracy of the method for the amount of carbon dioxide was better than $\pm 0.5\%$.

The accuracy of the solute mass was $\pm 0.2\%$.

3.2.2. 3-Hydroxybenzoic acid

Components:

(1) Benzoic acid, 3-hydroxy-(m-hydroxybenzoic acid); C₇H₆O₃; [99-06-9] (2) Carbon dioxide (supercritical

fluid); CO₂; [124-38-9] (3) Methyl alcohol (methanol);

CH₄O; [67-56-1]

Original Measurements:

44G.S. Gurdial, S.J. Macnaughton, D.L. Tomasko, and N.R. Foster, Ind. Eng. Chem. Res. 32, 1488 (1993).

Variables:

T/K = 318.2, 323.2, and 328.2 Pressure: $91-201 \times 10^5$ Pa

Prepared by:

H. Miyamoto and A. Goto

Solubility of 3-hydroxybenzoic acid in supercritical carbon dioxidemethanol (3.5 mol %) mixture

Temperature	Pressure ^a	Density	Solubility ^b
T/K	10 ⁵ Pa	$\rho/\mathrm{g}~\mathrm{dm}^{-3}$	$10^5 x_1$
318.2	91	352.2	1.59
	101	514.1	2.63
	111	611.5	3.07
	121	663.4	3.26
	141	724.0	3.49
	161	762.6	3.76
	201	814.5	3.99
323.2	101	397.3	2.04
	111	514.4	2.81
	121	592.5	3.22
	141	676.6	3.59
	161	725.1	3.98
	201	786.3	4.19
328.2	101	333.3	1.78
	111	425.5	2.65
	121	513.9	3.18
	141	623.9	3.86

 a In the original paper, the pressure was given as "bar." 1 bar= 10^{5} Pa. b3.5 mol % cosolvent concentration on a solute-free basis.

Auxiliary Information

Methods/Apparatus/Procedure:

The experimental details are given in the compilation of Ref. 44 for the salicylic acid-carbon dioxide (supercritical)-methanol system in Sec. 3.2.1.

Source and Purity of Materials:

Carbon dioxide was purchased from Liquid Air, and the purity was

Methanol was from BDH, and the purity was 99.8%.

3-Hydroxybenzoic acid was from BDH and the purity of the acid was 99.0%.

These materials were used without further purification.

Estimated Errors:

Solubility: Precision less than 5%. CO_2 pressure: Uncertainty within $\pm 2\%$.

Temperature: Nothing specified.

Components:

(1) Benzoic acid, 3-hydroxy-(m-hydroxybenzoic acid); C₇H₆O₃; [99-06-9]

(2) Carbon dioxide (supercritical fluid); CO₂; [124-38-9] (3) 2-Propanone (propan-2-one,

acetone); C_3H_6O ; [67-64-1]

Original Measurements:

44G.S. Gurdial, S.J. Macnaughton, D.L. Tomasko, and N.R. Foster, Ind. Eng. Chem. Res. 32, 1488 (1993).

Variables:

T/K = 318.2, 323.2, and 328.2 Pressure: $86-201 \times 10^5$ Pa

Prepared by:

H. Miyamoto and A. Goto

J. Phys. Chem. Ref. Data, Vol. 40, No. 2, 2011

Solubility of 3-hydroxybenzoic acid in supercritical carbon dioxideacetone (3.5 mol %) mixture

Temperature	Pressure ^a	Density	Solubility ^b
T/K	10 ⁵ Pa	$ ho/\mathrm{g}~\mathrm{dm}^{-3}$	$10^5 x_1$
318.2	91	352.2	1.50
	101	514.1	2.56
	111	611.5	3.26
	121	663.4	3.73
	141	724.0	4.28
	161	762.6	4.49
	181	791.4	4.58
	201	814.5	4.83
323.2	96	340.2	1.67
	106	459.0	2.47
	111	514.4	2.85
	121	592.5	3.36
	141	676.6	4.37
	161	725.1	4.72
	201	786.3	5.16
328.2	101	333.3	1.77
	111	425.5	2.40
	121	513.9	3.14
	131	578.4	3.95
	141	623.9	4.45

In the original paper, the pressure was given as "bar." 1 bar= 10^5 Pa. b3.5 mol % cosolvent concentration on a solute-free basis.

Methods/Apparatus/Procedure:

The experimental details are given in the compilation of Ref. 44 for the salicylic acid-carbon dioxide-methanol system in Sec. 3.2.1.

Source and Purity of Materials:

Carbon dioxide was purchased from Liquid Air, and the purity was 99.8%

Acetone was from BDH, and the purity was 99.5%.

3-Hydroxybenzoic acid was from BDH and the purity of the acid was 99.0%.

These materials were used without further purification.

Estimated Errors:

Concentration of CO2

T/K = 308.15 and 318.15 p/MPa=2.33-8.18

Solubility: Precision less than 5%. CO_2 pressure: Uncertainty within $\pm 2\%$. Temperature: Nothing specified.

3.2.3. 4-Hydroxybenzoic acid

Components: Original Measurements: ⁴⁵Z. Liu, D. Li, G. Yang, and B. (1) Benzoic acid, 4-hydroxy-Han, J. Supercrit. Fluids 18, 111 (p-hydroxybenzoic acid); C₇H₆O₃; [99-96-7] (2000).(2) Carbon dioxide (supercritical fluid); CO₂; [124-38-9] (3) Acetic acid, ethyl ester (ethyl acetate); C₄H₈O₂; [141-78-6] Prepared by: Variables:

H. Miyamoto and A. Goto

Solubility of 4-hydroxybenzoic acid in supercritical carbon dioxide-ethyl acetate mixtures

Temperature	Pressure	Concentration of CO ₂	Solubility	Molar volume of the liquid solution
T/K	MPa	x_2	x_1	V _m (ml/mol)
308.15	2.33	0.3871	0.024 9	78.7
	2.57	0.4323	0.021 6	73.6
	2.97	0.4724	0.018 0	73.9
	3.05	0.5090	0.015 5	71.8
	4.08	0.6394	0.0106	64.7
	4.59	0.6957	0.006 67	63.7
	5.17	0.7862	0.002 92	59.0
	5.80	0.8374	0.001 69	58.7
	6.66	0.9063	0.000 30	57.0
	6.78	0.9397	0.000 17	56.2
	6.96	0.9528	0.000 070	56.0
318.15	2.58	0.3544	0.032 5	80.7
	3.74	0.5055	0.018 2	72.5
	5.05	0.6377	0.0128	67.4
	5.21	0.6753	0.009 46	59.1
	5.94	0.7423	0.005 64	60.0
	6.72	0.8251	0.003 51	63.4
	7.58	0.9037	0.000 55	62.2
	7.91	0.9175	0.000 21	62.0
	8.00	0.9404	0.000 082	60.6
	8.18	0.9546	0.000 013	59.0

Auxiliary Information

Methods/Apparatus/Procedure:

The apparatus and procedure for determining the solubility of 4-hydroxybenzoic acid in supercritical carbon dioxide with ethyl acetate were identical with that used for the solubility determination of salicylic acid in supercritical carbon dioxide with ethyl acetate; see the compilation of Ref. 45 in Sec. 3.2.1.

Source and Purity of Materials:

Carbon dioxide with a purity of 99.95% was supplied by Haunxin Gas

Beijing Chemical Reagent Plant supplied ethyl acetate with a purity of 99.9%.

4-Hydroxybenzoic acid with purity of 99.9% was purchased from Beijing Chemical Reagent Plant, and was not purified further.

Estimated Errors:

The accuracy of the pressure gauge was ± 0.025 MPa in the pressure range 0-20 MPa.

The accuracy of the temperature was within ± 0.1 K.

The accuracy of the method for the amount of carbon dioxide was better than $\pm 0.5\%$.

The accuracy of the solute mass was $\pm 0.2\%$.

4. References

- ¹A. Goto, H. Miyamoto, M. Salomon, R. Goto, H. Fukuda, E. Königsberger, and L.-C. Königsberger, J. Phys. Chem. Ref. Data 40, 013101 (2011).
- ²A. Goto, F. Endo, and K. Ito, Chem. Pharm. Bull. (Tokyo) 25, 1165 (1977).
- ³ A. Goto and F. Endo, J. Colloid Interface Sci. 66, 26 (1978).
- ⁴A. Goto and F. Endo, J. Colloid Interface Sci. 68, 163 (1979).
- ⁵ A. Goto, R. Sakura, and F. Endo, Chem. Pharm. Bull. (Tokyo) 28, 14
- ⁶A. Goto, M. Takemoto, and F. Endo, J. Phys. Chem. **84**, 2268 (1980).

- ⁷ A. Goto, F. Endo, and T. Higashino, Chem. Pharm. Bull. (Tokyo) **32**, 2905 (1984).
- ⁸ A. Goto, F. Endo, and T. Higashino, Bull. Chem. Soc. Jpn. 58, 773 (1986).
- ⁹ H. Gamsjäger, J. W. Lorimer, M. Salomon, D. G. Shaw, and R. P. T. Tomkins, Pure Appl. Chem. 82, 1137 (2010); H. Gamsjäger, J. W. Lorimer, M. Salomon, D. G. Shaw, and R. P. T. Tomkins, J. Phys. Chem. Ref. Data 39, 023101 (2010).
- ¹⁰ A. Apelblat and E. Manzulora, J. Chem. Thermodyn. **21**, 1005 (1989).
- ¹¹ A. Apelblat and E. Manzulora, J. Chem. Thermodyn. **29**, 1527 (1997).
- ¹² A. T. Williamson, Trans. Faraday Soc. **40**, 421 (1944).
- ¹³ H.-L. Fung and T. Higuchi, J. Pharm. Sci. **60**, 1782 (1971).
- ¹⁴N. V. Sidgwick and E. K. Ewbank, J. Chem. Soc. **1921**, 979.
- ¹⁵E. Bergroth, Farm. Aikak. **70**, 91 (1961).
- ¹⁶P. G. Desai and A. M. Patel, J. Indian Chem. Soc. **12**, 131 (1935).
- ¹⁷ A. N. Paruta, B. J. Sciarrone, and N. G. Lordi, J. Pharm. Sci. **53**, 1349 (1964).
- ¹⁸ K. M. De Fina, T. L. Sharp, L. E. Roy, and W. E. Acree, Jr., J. Chem. Eng. Data 44, 1262 (1999).
- ¹⁹ A. Martin, P. L. Wu, and A. Beerbower, J. Pharm. Sci. **73**, 188 (1984).
- ²⁰ J. Walker and J. K. Wood, J. Chem. Soc. Trans. **73**, 618 (1898).
- ²¹P. A. Ongley, J. Chem. Soc. **1954**, 3634.
- ²²I. L. Krupatkin, Zh. Obshch. Khim. **26**, 3240 (1956).
- ²³ C. K. Hancock, J. N. Pawloski, and J. P. Idoux, J. Org. Chem. 31, 3801 (1966).
- ²⁴ W. Hertz and W. Rathmann, Z. Elektrochem. **19**, 887 (1913).
- ²⁵D. H. Wester and A. Bruins, Pharm. Weekbl **51**, 1443 (1914).

- ²⁶ E. Savorro, Atti Accad. Sci. Torino, Cl. Sci. Fis., Mat. Nat. 48, 948 (1914).
- ²⁷C. R. Bailey, J. Chem. Soc. Trans. **126**, 1951 (1925).
- ²⁸ I. L. Krupatkin, Sbornik Statei po Obshchei Khim., Akad. Nauk S. S. S. R. 2, 1221 (1953).
- ²⁹ I. L. Krupatkin, Zh. Obshch. Khim. **26**, 1050 (1956).
- ³⁰V. J. Krukonis and R. T. Kurnik, J. Chem. Eng. Data **30**, 247 (1985).
- ³¹G. S. Gurdial and N. R. Foster, Ind. Eng. Chem. Res. **30**, 575 (1991).
- ³² A. N. Paruta, J. Pharm. Sci. **58**, 216 (1969).
- ³³ K. S. Alexander, J. W. Mauger, H. Petersen, Jr., and A. N. Paruta, J. Pharm. Sci. 66, 42 (1977).
- ³⁴F. A. Restaino and A. N. Martin, J. Pharm. Sci. **53**, 636 (1964).
- ³⁵ S. H. Yalkowsky, S. C. Valvani, and T. J. Roseman, J. Pharm. Sci. 72, 866 (1983).
- ³⁶ E. Beezer, S. Forster, W.-B. Park, and G. J. Rimmer, Thermochim. Acta 178, 59 (1991).
- ³⁷ H. Henstock, J. Chem. Soc. **1934**, 1340.
- ³⁸I. M. Kolthoff, J. J. Lingane, and W. D. Larson, J. Am. Chem. Soc. 60, 2512 (1938).
- ³⁹ N. A. Izmailov and V. S. Hernyi, Zh. Fiz. Khim. **34**, 319 (1960).
- ⁴⁰ J. W. Marden and M. V. Dover, J. Am. Chem. Soc. **39**, 1 (1917).
- ⁴¹ W. Herz and M. Levi, Kolloid-Z. **50**, 21 (1930).
- ⁴²I. L. Krupatkin, Zh. Obshch. Khim. **25**, 2189 (1955).
- ⁴³R. H. Manzo and A. A. Ahumada, J. Pharm. Sci. **79**, 1109 (1990).
- ⁴⁴G. S. Gurdial, S. J. Macnaughton, D. L. Tomasko, and N. R. Foster, Ind. Eng. Chem. Res. 32, 1488 (1993).
- ⁴⁵Z. Liu, D. Li, G. Yang, and B. Han, J. Supercrit. Fluids 18, 111 (2000).