
 

 

RESEARCH REPOSITORY 
 

This is the author’s final version of the work, as accepted for publication  
following peer review but without the publisher’s layout or pagination.  

The definitive version is available at: 
 

 
http://dx.doi.org/10.1016/j.mito.2011.01.011      

 

 
Côté, H.C.F., Gerschenson, M., Walker, U.A., Miro, O., Garrabou, G., 
Hammond, E.L., Villarroya, J., Giralt, M., Villarroya, F., Cinque, P., 
Garcia-Arumi, E., Andreu, A.L., Pinti, M. and Cossarizza, A. (2011) 

Quality assessment of human mitochondrial DNA quantification: 
MITONAUTS, an international multicentre survey. Mitochondrion,  

11 (3). pp. 520-527. 
 
 
 

http://researchrepository.murdoch.edu.au/id/eprint/4316/ 
 
 
 
 
 

 
Copyright: © 2011 Elsevier B.V. and Mitochondria Research Society. 

It is posted here for your personal use. No further distribution is permitted. 
 

 

http://dx.doi.org/10.1016/j.mito.2011.01.011
http://researchrepository.murdoch.edu.au/id/eprint/4316/


�������� ��	
�����

Quality assessment of human mitochondrial DNA quantification: MITO-
NAUTS, an international multicentre survey
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Abstract 
 
Mitochondrial DNA quantification by qPCR is used in the context of many diseases and toxicity 
studies but comparison of results between laboratories is challenging.  Through two multigroup 
distributions of DNA samples from human cell lines, the MITONAUTS group anonymously compared 
mtDNA/nDNA quantification across nine laboratories involved in HIV research worldwide.  Eight of 
the nine sites showed significant correlation between them (mean raw data R2=0.664; log10-
transformed data R2=0.844).  Although mtDNA/nDNA values were well correlated between sites, the 
inter-site variability on the absolute measurements remained high with a mean (range) coefficient of 
variation of 71 (37-212) %.  Some variability appeared cell line-specific, probably due to chromosomal 
alterations or pseudogenes affecting the quantification of certain genes, while within cell line 
variability was likely due to differences in calibration of the standard curves.  The use of two mtDNA 
and two single copy nDNA genes with highly specific primers to quantify each genome would help 
address copy number variants.  Our results indicate that sample shipment must be done frozen and that 
absolute mtDNA/nDNA ratio values cannot readily be compared between laboratories, especially if 
assessing cultured cell mtDNA content.  However, within laboratory and relative mtDNA/nDNA 
comparisons between laboratories should be reliable.  
 
 
Key words: Inter-laboratory variability, mtDNA content by qPCR. 
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1. Introduction 

 

Mammalian mitochondria contain their own genome, a circular 16.5 kb mitochondrial DNA 

(mtDNA) that encodes genes for 13 polypeptides, 22 tRNA, and 2 rRNA.  Mitochondrial DNA is 

replicated by human polymerase γ, and the amount of mtDNA per cell can vary according to 

biogenesis and retrograde regulation.  This regulation is affected by cell type and cellular energy 

demands, but can also be influenced by mitochondrial disease or dysfunction, acquired drug-related 

mitochondrial toxicity (Gerschenson and Brinkman 2004), and oxidative stress from various sources 

such as aging, cancer, and smoking (Cote 2005; Masayesva, Mambo et al. 2006; Higuchi 2007; 

Copeland 2008).  Quantification of the relative ratio between mtDNA and nuclear DNA, the latter 

usually assumed to remain constant in human tissue, is therefore relevant to the study of many diseases 

and conditions, using either clinical, animal or cultured cell derived samples.   

In 2005, representatives from 18 research groups around the world mostly involved in HIV 

drug toxicity research met for the first technical meeting of mtDNA researchers in Boston.  During the 

meeting, methodologies were shared and the usefulness and standardization of mtDNA quantification 

between laboratories were discussed.  Later that year, during a second meeting of the same group in 

Dublin, it was agreed that mtDNA quantity should be expressed as mtDNA/nDNA ratio as opposed to 

mtDNA copies per cell as few assays actually count cells but rather assume 2 copies of nDNA per cell, 

which is not true for all human tissues.  The term MITONAUTS, standing for MITOchondria Network 

for Assay Utilization and Technique Standardization was coined and the present study designed, to 

compare mtDNA quantification between laboratories.  The goal of this study was to assess the 

concordance between laboratories that quantify mtDNA using varied quantitative PCR assays and to 

assess how shipping affected the values.   
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2. Materials and methods 

For ethical and international shipping regulation issues, we elected to use DNA extracted from 

human cell lines as opposed to human clinical samples.  This presented definite advantages but also 

raised some comparison issues as discussed later.  

 

2.1 DNA preparation 

Table 1 summarizes the source of the human DNA samples. For the first shipment, total DNA 

was extracted from cultured human cells (see Table 1, left column) using QiaAmp DNA midi kit 

(Qiagen, Hilden, Germany). The DNA was resuspended in Tris-EDTA buffer and aliquoted (50 µL per 

tube).  For sample #9, a larger volume (200 µL) of DNA was provided, to be used as internal control in 

future experiments.  The first shipment samples’ DNA concentration ranged from 57 to 150 ng/µL.   

For the second shipment, DNA was also extracted from cultured human cells (see Table 1, right 

column) using the QiaAmp DNA mini kit (QIAGEN) and resuspended in Tris-EDTA buffer.  The 

samples’DNA concentration ranged from 11 to 67 ng/µL.   

In several instances, samples were prepared by treating a single cell line with drugs that 

modulate mtDNA content.  For example, in the first shipment, four samples were derived from CEM 

cells exposed to nucleoside reverse transcriptase inhibitors (NRTI) for 7 days (Galluzzi, Pinti et al. 

2005) while in the second shipment, 11 of the 20 samples were DNA extracted from K562 cells 

exposed to the NRTI zidovudine or stavudine (Papp, Gadawski et al. 2008).   

 

2.2 Shipping 

For the first shipment, two identical sets of 19 DNA samples were shipped by courier (DHL) to 

each participating laboratory from Modena, Italy, at room temperature.  Each site was asked to ship 

one set back to the sender, also at room temperature to evaluate if shipping added to variability.  For 

the second shipment, a single set of 20 DNA samples was shipped on dry ice from Vancouver, Canada, 

by FEDEX. 

  

2.3 MtDNA quantification assays 

Each site used its own mtDNA quantification assay methodology and reagents.  Details on the 

methods used are presented in Table 2, in alphabetical order (unrelated to the order of the other result 

tables).  One site (Barcelona I) used a different nuclear gene when assaying the second shipment as the 
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gene typically used to quantify mtDNA depletion in human clinical samples yielded different results in 

cell line-derived samples.  It was agreed that the data would remain anonymous. For this study, the free 

software Primer-BLAST (http://www.ncbi.nlm.nih.gov/tools/primer-blast/) was used to blast the 

human genome with each set of primer against its intended target, under 55ºC to 63ºC PCR conditions.  

The size of the amplified fragment and the likelihood of amplifying unintended targets with each 

primer pair, based on the Primer-BLAST results, are reported in Table 2. 

 

2.4 Statistical considerations 

For statistical analyses, mtDNA/nDNA values were compared using Pearson’s correlations 

(XLstat 2009). For correlations, data from all sites were included.  However, when analyzing 

variability between sites, data from site #2 were omitted since that site reported relative mtDNA/nDNA 

content and not the absolute ratio as for the other sites.  Statistical analyses were performed on both 

raw and log10-transformed data due to the wide variability of the data.  
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3. Results 

 

3.1 First shipment at room temperature 

3.1.1 Sample mtDNA/nDNA stability 

Globally, eighteen laboratories initially participated in this exercise and were sent two sets of 

19 DNA samples extracted from 12 distinct human derived cell lines (Table 1) from Modena, at room 

temperature.  Of those 18 sites, 11 shipped back one set of samples that were stored frozen until all 

shipments were received.  The mtDNA content of each returned sample was then assayed by the 

Modena laboratory and compared (Pearson’s correlation) with the values obtained for the set that never 

left Modena.  As seen in Table 3, ten of the eleven returned sets of samples gave values that were 

generally higher than those of the reference set, with the traveling set showing an average change in 

mtDNA/nDNA ratio of +88% compared to the non-traveling set.  Of note, the two sets of sample 

showing the lowest correlations between the reference mtDNA/nDNA ratio measured by Modena and 

the returned set of samples (Table 3) also happened to be those that traveled the longest distance.   

 

3.1.2 MtDNA/nDNA concordance between sites 

Eight sites submitted mtDNA/nDNA ratio data for the 19 samples.  Data from one site (#2) were 

expressed as relative rather than absolute mtDNA/nDNA ratios with values approximately 300 times 

lower than all others.  For that reason these data were only included in correlation analyses.  Using 

both raw and log10-transformed data, results from each site were correlated to those of the other 8 sites 

individually (Table 4A).  In this one on one comparison between each of the participating sites, five 

sites showed good correlations between them (#1, 3, 6, 8 and 9, all p<0.0001) while site #7 showed 

weaker correlation with those same five sites (raw data R2
≥0.272, p≤0.022; log10 R

2=0.250, p≤0.029).  

Three sites (#2, 4 and 5) showed poor correlation with the other sites with the exception that site 2 

showed a strong correlation with site 4 (raw data R2=0.485, p=0.001; log10 R
2=0.479, p=0.001) and a 

weak one with site 7 (raw data R2=0.266, p=0.024; log10 R
2=0.204, p=0.052).  This discordance was 

greatly ameliorated by excluding samples extracted from the Molt-4 cell line (samples 15 and 16), 

although site #5 remained poorly correlated to others (Table 4B). 
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3.1.3 MtDNA/nDNA measurement variability 

The mean values and the inter-site coefficient of variation (%CV=mean*100%/standard 

deviation (SD) were calculated for each sample shipped (Table 1).  For this calculation, site #2 was 

omitted since their data was on a relative scale.  The average CV mean ± SD (range) for all samples 

was (raw data 94 ± 23 (50-142) %; log10 15.0 ± 4.8 (7.5-23.6) %).  This decreased to (raw data 44 ± 8 

(32-55) %, log10 10.7 ± 4.2 (4.1-18.1) %) if data from sites 4 and 5 were also omitted.  There was no 

relationship between the samples’ DNA concentration and their inter-site CV.  This remained true with 

or without sites 2, 4 and 5.   

 

3.2 Second shipment on dry ice 

Sets of 20 DNA samples on dry ice were sent from Vancouver to eight laboratories, all were 

confirmed to have arrived still frozen except the shipment to Australia that was cold.  Each site 

determined the mtDNA content of the samples, expressed as the mtDNA/nDNA ratio, and sent data 

back.  As before, site 2 data were on a relative scale rather than an absolute one.  While assaying 

samples from the second shipment, two sites noticed that, for some samples, their mtDNA/nDNA 

measurements showed gene-dependent variability and accordingly, sent back results that they 

considered reliable for 11/20 and 13/20 samples, respectively.  

 

3.2.1 Concordance between duplicate samples 

Within the 20 samples, two were present in duplicate (#6 was a duplicate of #19 and #12 of 

#20) (Table 1), something that was not known by the participants.  Seven sites provided data for these 

samples.  The absolute % difference between the duplicates (∆ between duplicates*100%/mean of 

duplicates) was calculated for each pair and averaged.  Results (mean % difference ± SD (range) raw 

11.7 ± 7.4% (0.8-26.3%); log10 1.8 ± 1.3% (0.2-4.2%) indicated generally good concordance between 

duplicates as six out of seven sites showed less than 15% (raw data) difference between duplicates.   

 

3.2.2 MtDNA/nDNA concordance between sites 

As before, for all 20 samples, results from each site were correlated to those of the other 8 sites 

individually, using both raw and log10-transformed data (Table 5A).  This one on one comparison 

between the sites revealed that all sites showed good correlation between them except one site (#4) that 

showed generally poor correlation with most sites.  However, site #4 was strongly correlated with site 
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#2 (raw data R2=0.872, p<0.0001; log10 R
2=0.736, p=0.001) and weakly so with site #1 (raw data 

R2=0.414, p=0.018; log10 R
2=0.001, p=0.906).  This poor correlation appeared driven in large part by 

two samples derived from the CRL 2061 cell line.  

Among the 20 samples, eleven were derived from the same cell line (K562) that had been 

cultured in the presence of thymidine analogues to alter the mtDNA content.  The limited data sets 

provided by two laboratories both included values for all eleven K562 samples.  If only the K562 

samples were considered, the correlation between the 9 sites was generally more uniform (mean 

[range] R2 = raw data 0.69 [0.29-0.94]; log10 0.61 [0.19-0.88]), despite a tendency toward lower R2 

values given the reduced sample size (N=11 instead of 20) (Table 5B).  Notably, when all samples 

compared were derived from the same cell line, site #4 showed much improved correlations with the 

other sites.   

 

3.2.3 MtDNA/nDNA measurement variability 

The mean of the coefficient of variability between sites for all 20 samples (mean CV ± SD 

[range]) was (raw data 79 ± 48 [37-212] %; log10 24 ± 10 [9-35] %)  (Table 1).  Concordance improved 

if data from site #2 (relative scale) were omitted (raw data 71 ± 50 [37-212] %; log10 11 ± 5 [8-28] %), 

and further improved if site #4 was also omitted (raw data 56 ± 20 [37-125] %; log10 10 ± 2 [8-13] %). 

Interestingly, four of the five samples with the highest overall log10 data variability were extracted from 

the fibroblast rhabdomyosarcoma cell line CRL 2061.  If only samples from a single cell line (K562 

(N=11)) were considered for all sites, the mean CV was (raw data 71 ± 20 [55-126] %; log10 32 ± 2 

[29-35] %), and this decreased to (raw data 56 ± 22 [39-115] %; log10 9 ± 1 [8-11] %) if the relative 

values from site #2 were omitted.  
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4. Discussion 

 

The various assays used in this study were internally reliable.  However, more work is needed 

before absolute quantification of mtDNA is sufficiently reproducible across laboratories to allow direct 

comparison between them, or development of clinically meaningful normal range values for use in 

clinical diagnosis and monitoring.  Although mtDNA is a material of choice for forensic nucleic acid 

analyses and is known for its relative stability, travel at room temperature, though very affordable, did 

not favor mtDNA/nDNA measurement reproducibility.  The apparent increase in mtDNA/nDNA 

content observed was likely caused by partial degradation of the nDNA during transport.  This also 

implies that the standard sample that was distributed for future standardization between laboratories 

cannot be used for this purpose as it was part of the room temperature shipment.  Alternatively, it is 

possible that partial degradation of the DNA linearized the mtDNA, rendering it more accessible to 

polymerases.  From this exercise, it would clearly be recommended that DNA samples be kept frozen 

until analyzed.  Because of this, the correlations between sites presented in Tables 4A and 4B should 

be interpreted with caution, as DNA degradation was likely a factor.  Nevertheless, 6 of the 9 sites 

demonstrated good concordance between them. 

For the second shipment on dry ice, in agreement with observations from a previous smaller 

study (Hammond, Sayer et al. 2003), good correlation was observed between 8 of the 9 sites.  

However, significant variability between sites remained with respect to the absolute mtDNA/nDNA 

values.  This was illustrated by the inter-site CV which was above 200% for some samples derived 

from the CRL 2061 cell line, a high figure considering that intra-site variability (CV) for 

mtDNA/nDNA assay is typically ≤15%. Log10-transforming the data reduced the inter-site variability, 

as could be expected.  A number of factors could influence the variability in mtDNA/nDNA values 

measured between sites.  These include but are not restricted to the specificity of the assay primers and 

the specificity of the detection method used (SYBR green vs. fluorescent probes), the copy number of 

the nuclear gene amplified, potential polymorphisms and DNA rearrangements, the target gene’s PCR 

efficiencies, and the methodology itself.  A total of nine different assays were used among the 

participating sites, and the two sites using the same primer sets did not show higher than average 

correlation between them.  This may be due to the fact that different detection systems were used. 

Each assay uses unique sets of primers targeting a mitochondrial gene and a nuclear DNA gene.  

Some of the variability observed between the sites is intrinsic to the genes and primers they use to 
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amplify the DNA as even within laboratories, some genes can yield more variable results than others.  

Insufficient specificity on the part of the nDNA primers would evidently impact this assay.  Should any 

of the primers amplify unintentional targets such as pseudogenes or nuclear genes that are subject to 

chromosomal rearrangements, the value of the mtDNA/nDNA ratio would be affected.  Nuclear DNA 

primers should ideally be targeted toward single-copy nuclear genes having low incidence of inter-

individual polymorphisms and mutations.  If a high copy number gene is chosen, the exact number of 

copies should be considered if the mtDNA/nDNA ratio is to be compared to that generated using single 

copy nuclear genes.  Of course, the PCR efficiency of both the mtDNA and nDNA amplicons should 

be highly similar and the DNA concentration range yielding stable mtDNA/nDNA should be 

determined.  Nuclear DNA non-coding pseudogenes, although less common than mitochondrial 

pseudogenes (Zhang and Gerstein 2004), are especially prevalent for ribosomal RNA genes (Griffiths-

Jones 2007).  Indeed, based on Primer-BLASTing, some assays used in this study may have 

unintentionally amplified other products including nuclear target pseudogenes with high or even 

complete homology.  These homologous DNA amplicons may be undetectable by the Tm curve often 

used to evaluate PCR primer’s specificity, yet they would significantly decrease mtDNA/nDNA ratio.  

 In addition, it is well recognized that chromosomal rearrangements, resulting in copy number 

variants, occur within the human genome. Although copy number variants have been associated with 

disease and malignancies (Conrad and Antonarakis 2007; Cooper, Nickerson et al. 2007), and are 

known to exist in several of the cell lines used in this study (Cottier, Tchirkov et al. 2004), they are 

also found in healthy individuals and are more common than initially expected (Scherer, Lee et al. 

2007; Perry, Yang et al. 2008).  As the cell lines used for this study are transformed and mostly derived 

from cancer patients, their DNA could bear important chromosomal rearrangements that may or may 

not affect amplification by primers targeting genes that vary from one assay to another.  This could be 

at least partially responsible for the higher inter-site variability observed with some samples.  Given 

that quantification can be nDNA gene-specific, consistent results with two independent nDNA genes 

can help rule out the possibility of unintended nuclear amplification. 

Mitochondrial DNA pseudogenes are very common throughout the nuclear genome 

(Bensasson, Zhang et al. 2001; Yao, Kong et al. 2008) and pose many challenges to mtDNA research.  

As they can vary from one individual to another, from one cell line to another, some of the variability 

observed between the sites could be explained by mitochondrial pseudogenes.  Testing two mtDNA 

genes rather than one or using Rho(o) cell (Hashiguchi and Zhang-Akiyama 2009) DNA as template 
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would confirm the absence of mitochondrial pseudogene amplification.  Using a single type of cultured 

cells when studying mtDNA quantification in would avoid many of the issues raised above. 

Sequencing of the human genome and tools such as BLAST and Primer-BLAST can greatly 

assist in the design of assay primers.  Of note, many primers used in this study were designed before 

the availability of these tools.  Future studies such as this one should consider reporting not only the 

mtDNA/nDNA ratio but rather each gene copy number separately.  This would allow the assessment of 

accuracy and concordance across sites and would give information on whether the source of 

discordance lies with the mitochondrial or the nuclear gene quantification. 

The fact that all sites showed high concordance for the K562-only derived samples reinforces 

the likelihood that single vs. multicopy genes, cell line-specific DNA alterations and/or polymorphisms 

may have affected the performance or applicability of some assays.  As several of the samples were 

extracted from cells exposed to drugs such as zidovudine, stavudine or simvastatin, there is a remote 

possibility that the drugs may affect the primer binding sites, hence the assay.  From this data, it is 

difficult to ascertain how these factors may influence mtDNA measurements in human clinical samples 

from various genetic make-up and for the study of various diseases, however one can assume that 

clinical samples may harbor fewer chromosomal rearrangements than transformed cell lines.  These 

results suggest that mtDNA quantification assays need to be designed carefully and several specific 

recommendations can be made based on this study to increase reproducibility and accuracy of 

mtDNA/nDNA determinations, in addition to the usual qPCR assay design steps.  

 

5. Conclusions 

Our results showed good correlation between laboratories, indicating that within lab 

comparisons or comparison of relative mtDNA/nDNA between labs should be reliable.  However, 

absolute mtDNA/nDNA ratio values were highly variable across sites, something that is probably 

partially due to the fact that samples were derived mostly from transformed cultured cells. 

Furthermore, our results indicated that for such measurement as mtDNA/nDNA ratio, transportation of 

samples must take place under frozen conditions.  Although human clinical samples may have yielded 

less variable results, further efforts in standardization and evaluation of proficiency in reporting 

mtDNA content are clearly needed if the goal is to standardize mtDNA content reporting and establish 

clinically relevant reference ranges for disease states, in order to assist clinical care and research.  
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Table 1.  Description of the two shipments: the cell lines from which the DNA samples were extracted and the variability (CV) of the 
mtDNA/nDNA ratio values provided for each sample by the N participating sites. 

Shipment # 1 (room temperature)   Raw data  Log -transformed data  
sam
ple  

Cell line  Cell Type  # sites  mtDNA/nDNA  Range  CV mtDNA/nDNA  Range  CV 

   (N) (mean ± SD)  (%) (mean ± SD)  (%) 
1 BKT-143 Osteosarcoma 8 337 ± 295 32-885 88 2.89 ± 0.23 2.69-3.39 8 
2 A.301 CD4 T cell line 8 387 ± 348 47-1201 90 2.67 ± 0.43 2.04-3.37 16 
3 CEM-1a Acute T lymphoblastic leukemia 8 418 ± 440 25-1310 105 2.69 ± 0.42 1.95-3.26 16 
4 CEM-2 Acute T lymphoblastic leukemia 8 628 ± 655 90-2091 104 2.61 ± 0.47 1.80-3.26 18 
5 CEM-3 Acute T lymphoblastic leukemia 8 644 ± 657 63-1835 102 2.64 ± 0.47 1.74-3.26 18 
6 CEM-4 Acute T lymphoblastic leukemia 8 667 ± 623 55-1814 94 2.63 ± 0.41 1.95-3.32 16 
7 HepG2 Hepatocellular carcinoma 8 711 ± 645 89-1806 91 3.07 ± 0.28 2.81-3.53 9 
8 HL60 Promyelocytic leukemia 8 719 ± 550 158-1906 76 2.70 ± 0.46 1.94-3.39 17 
9 HL60 Promyelocytic leukemia 8 740 ± 797 109-2328 108 2.67 ± 0.47 2.12-3.39 18 
10 HUT78 T cell lymphoma 8 797 ± 689 309-2418 86 2.80 ± 0.29 2.49-3.38 10 
11 HUT78 T cell lymphoma 8 801 ± 913 133-2447 114 2.75 ± 0.33 2.20-3.28 12 
12 K562 Erythromyeloblastoid leukemia  8 803 ± 842 87-2435 105 2.85 ± 0.37 2.26-3.41 13 
13 MCF7.2 Breast cancer 8 859 ± 478 396-1887 56 2.61 ± 0.62 1.64-3.58 24 
14 MCF7.2 Breast cancer 8 878 ± 436 305-1821 50 2.67 ± 0.53 1.91-3.56 20 
15 Molt-4 Acute T lymphoblastic leukemia 8 899 ± 658 494-2461 73 2.90 ± 0.22 2.48-3.26 8 
16 Molt-4 Acute T lymphoblastic leukemia 8 940 ± 1257 80-3634 134 2.88 ± 0.22 2.60-3.28 7 
17 PBMC Peripheral blood mononuclear cells 8 972 ± 1377 44-3796 142 2.40 ± 0.52 1.40-3.12 21 
18 PBMC Peripheral blood mononuclear cells 8 983 ± 892 180-2560 91 2.36 ± 0.45 1.50-2.95 19 
19 U937 Monocytic leukemia  8 1457 ± 1103 649-3421 76 2.45 ± 0.39 1.67-3.08 16 

Shipment # 2 (dry ice)   Raw data  Log -transformed data  
sam
ple  

Cell line  Cell Type   mtDNA/nDNA  Range  CV mtDNA/nDNA  Range  CV 

   (N) (mean ± SD)  (%) (mean ± SD)  (%) 
1 K562 b Erythromyeloblastoid leukemia  8 832 ± 322 240-1245 39 2.88 ± 0.23 2.38-3.10 7.9 
2 K562 Erythromyeloblastoid leukemia  8 1287 ± 830 359-3046 64 3.03 ± 0.28 2.56-3.48 9.2 
3 CRL 2061c Fibroblast rhabdomyosarcoma 7 51 ± 26 21-101 51 1.66 ± 0.22 1.33-2.00 13 
4 CRL 2061 Fibroblast rhabdomyosarcoma 8 268 ± 568 32-1671 212 1.96 ± 0.55 1.50-3.22 28 
5 K562 Erythromyeloblastoid leukemia  8 805 ± 383 253-1273 48 2.85 ± 0.24 2.40-3.10 8.5 
6 HEK 293 Embryonic Kidney 7 1659 ± 1280 315-3717 77 3.09 ± 0.39 2.50-3.57 13 
7 K562 Erythromyeloblastoid leukemia  8 786 ± 357 304-1431 45 2.85 ± 0.22 2.48-3.16 7.6 
8 K562 Erythromyeloblastoid leukemia  8 797 ± 318 237-1247 40 2.86 ± 0.23 2.38-3.10 7.9 
9 K562 Erythromyeloblastoid leukemia  8 680 ± 298 296-1161 44 2.79 ± 0.22 2.47-3.06 7.8 
10 K562 Erythromyeloblastoid leukemia  8 790 ± 453 240-1661 57 2.83 ± 0.27 2.38-3.22 9.4 
11 CRL 2061 Fibroblast rhabdomyosarcoma 7 45 ± 17 20-66 37 1.62 ± 0.19 1.30-1.82 12 
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12 TF-1 Erythroleukemia 7 415 ± 196 151-658 47 2.56 ± 0.25 2.18-2.82 10 
13 K562 Erythromyeloblastoid leukemia  8 1167 ± 614 375-2210 53 3.01 ± 0.25 2.57-3.34 8.4 
14 K562 Erythromyeloblastoid leukemia  8 949 ± 649 275-2331 68 2.90 ± 0.27 2.44-3.37 9.4 
15 K562 Erythromyeloblastoid leukemia  8 669 ± 321 211-1085 48 2.77 ± 0.25 2.32-3.04 9.2 
16 Panc-1 Pancreatic carcinoma 7 1324 ± 590 340-1801 45 3.06 ± 0.28 2.53-3.26 9.1 
17 CRL 2061 Fibroblast rhabdomyosarcoma 8 354 ± 723 47-2140 204 2.13 ± 0.52 1.68-3.33 24 
18 K562 Erythromyeloblastoid leukemia  8 2873 ± 3293 720-10814 115 3.30 ± 0.36 2.86-4.03 11 
19d HEK 293 Embryonic Kidney 7 1639 ± 1209 320-3588 74 3.10 ± 0.37 2.51-3.55 12 
20e TF-1 Erythroleukemia 7 429 ± 199 151-621 46 2.58 ± 0.25 2.18-2.79 10 

 
a, CEM 1-4 were derived from the same cell line exposed to NRTIs for 7 days (Galluzzi, Pinti et al. 2005) ; b, the K562 samples were all derived 
from the same cell line exposed to various concentrations of zidovudine or stavudine for several weeks (Papp, Gadawski et al. 2008); c, the three 
CRL 2061 samples were derived from the same primary cell line differentiated into muscle cells and exposed to 0.1 µM simvastatin (personal 
communication from Cote); d, sample #19 is a duplicate of sample #6; e, sample #20 is a duplicate of sample #12.



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

Table 2.  Characteristics of the various assays used by participating sites.  The sites are listed in alphabetical order according to 
city name and the order does not correspond to the site # used throughout this report. 
Site 
(alphabetic
al order) 

Mitochondrial 
gene 

Size  
(bp) 

Specific to 
single intended 

target? 
Nuclear gene Size  

(bp) 
Specific to single intended 

target? detection Instrum
ent Reference 

Barcelona 
I  

NADH 
dehydrogenase
, subunit 2 
(ND2)  

235 

Likely  
(mismatches 
position 2&7 
from 3’ end) 

18S rRNA  531 

Unlikely 
(several targets with 

single mismatch position 
8 or more from 3’ end) 

SYBR 
green 

LightC
ycler 
1.5 

(Lopez, 
Miro et al. 
2004) 

Barcelona 
I 

NADH 
dehydrogenase
, subunit 2 
(ND2) 

235 

Likely  
(mismatches 
position 2&7 
from 3’ end) 

RNA polymerase II 632  

Likely 
(targets larger with 

mismatch position 6 or 
less from 3’ end) 

SYBR 
green 

LightC
ycler 
1.5 

(Radonic, 
Thulke et 
al. 2004) 

Barcelona 
II  

Cytochrome c 
oxidase subunit 
II (CCOII) 

91 Yes 

CCAAT/enhancer 
binding protein-alpha or 
TFAM? (commercial ABI 
kit) 

N/A Commercial primer 
sequence not available 

Fluorescent 
probes 

ABI 
Prism 
7700 

(Vidal, 
Domingo 
et al. 
2006) 

Barcelona 
III  12S RNA 122 

Likely  
(mismatch at 3’ 

end) 

PDARs, RNAse P 
(commercial ABI kit) 86 

 
Commercial primer 

sequence not available 

Fluorescent 
probes 

ABI 
Prism 
7500 

(Andreu, 
Martinez 
et al. 
2009) 

Freiburg 

ATPase 
subunit VI 
(ATP6) 
 

79 Yes GAPDH exon 8 
 63 

Likely  
(targets identified with 

mismatches position 9 or 
more from 3’ end) 

Fluorescent 
probes 

ABI 
Prism 
7700 

(Setzer, 
Schlesier 
et al. 
2005) 

Honolulu 

NADH 
dehydrogenas, 
subunit 2 
(ND2) 

90 Yes Fas Ligand (FL) 95 Yes SYBR 
green 

LightC
ycler 
480 

(Gerschen
son, 
Shiramizu 
et al. 
2005) 

Milan Cytochrome b 73 
Likely  

(mismatch at 3’ 
end) 

Chemokine (C-C motif) 
receptor 2 (CCR2) 66 

Likely 
(targets identified with 

mismatches position 5 or 
more from 3’ end) 

Fluorescent 
probes 

ABI 
7900 

Personal 
communic
ation 

Modena 

NADH 
dehydrogenase 
subunit 2 
(ND2) 

90 Yes Fas Ligand (FL) 95 Yes Fluorescent 
probes 

BioRad 
iCycler 

(Cossarizz
a, Riva et 
al. 2003) 

Perth 

mtDNA (1592-
1675) 
(mostly 
tRNAVal) 

84 Yes Human growth hormone 
(HGH) 100 Yes Fluorescent 

probes 

ABI 
Prism 
7700 

(Nolan, 
Hammond 
et al. 
2003) 

Vancouve
r 

Cytochrome c 
oxidase subunit 
I (CCOI) 

197 

Likely  
(mismatch 

position 4 from 
3’ end) 

Polymerase gamma 
accessory subunit 
(ASPG or POLG2) 

186 Likely (mismatch(es) at 3’ 
end) 

Fluorescent 
probes 

LightC
ycler 
480  

(Cote, 
Raboud et 
al. 2008) 
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Table 3. Effect of shipping back and forth at room temperature on mtDNA/nDNA quantification: correlations between mtDNA/nDNA 
values measured in Modena for sample sets shipped from each site back to Modena and values determined by the Modena site for their 
set of samples. 

Site  Modena 1 2 3 4 5 6 7 8 9 10 11 
             
Samples a (N) 19 18 18 19 19 18 19 17 18 18 17 19 
mtDNA/nDNA              

      Range 25-775 53-966 95-
1216 65-573 135-

1689 
157-
2063 

193-
1731 93-743 53-395 76-699 68-644 88-

2077 
      % change  N/A +40 +118 +0.6 +165 +244 +200 +68 -27 +26 +16 +118 
Pearson’s b             
      R2 1.0 0.93 0.90 0.62 0.85 0.62 0.82 0.78 0.83 0.68 0.84 0.72 

      Slope 1.0 1.07 1.45 0.42 1.71 1.56 1.66 0.83 0.36 0.55 0.72 1.69 

      p value  --- <0.0001 <0.0001 <0.0001 <0.0001 0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 
a In some instances, the assay did not meet the assay quality control and no value was generated. 
b The correlations were between the measurements made by the Modena laboratory on the set of samples assigned to their site and 
each of the sample sets shipped back from the participating sites. 
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Table 4A. Pearson’s correlations for the mtDNA/nDNA values obtained by each sites for the first shipment at room temperature for all 
samples (N=19).  Correlations of raw data are shown against clear background while those of log10-transformed data are shown against 
a grey background. Bold indicates no significant correlation. 
 

First shipment at room temperature, Pearson’s corre lation  
Site  1 2 3 4 5 6 7 8 9 

1 - 
R2=0.018 
p=0.579 

R2=0.729 
p<0.0001 

R2=0.022 
p=0.543 

R2=0.069 
p=0.276 

R2=0.746 
p<0.0001 

R2=0.250 
p=0.029 

R2=0.910 
p<0.0001 

R2=0.835 
p<0.0001 

2 R2=0.175 
p=0.074 - 

R2=0.039 
p=0.419 

R2=0.479 
p=0.001 

R2=0.0004 
p=0.936 

R2=0.007 
p=0.732 

R2=0.204 
p=0.052 

R2=0.014 
p=0.626 

R2=0.004 
p=0.806 

3 R2=0.559 
p<0.001 

R2=0.116 
p=0.153 - 

R2=0.004 
p=0.793 

R2=0.029 
p=0.487 

R2=0.637 
p<0.0001 

R2=0.483 
p=0.001 

R2=0.729 
p<0.0001 

R2=0.667 
p<0.0001 

4 R2=0.135 
p=0.122 

R2=0.485 
p=0.001 

R2=0.029 
p=0.484 - 

R2=0.095 
p=0.199 

R2=0.0001 
p=0.969 

R2=0.002 
p=0.857 

R2=0.022 
p=0.548 

R2=0.014 
p=0.633 

5 R2=0.005 
p=0.780 

R2=0.010 
p=0.687 

R2=0.006 
p=0.753 

R2=0.152 
p=0.098 - 

R2=0107 
p=0.171 

R2=0.004 
p=0.803 

R2=0.145 
p=0.107 

R2=0.257 
p=0.027 

6 R2=0.515 
p=0.001 

R2=0.025 
p=0.522 

R2=0.638 
p<0.0001 

R2=0.0003 
p=0.983 

R2=0.008 
p=0.766 - 

R2=0.321 
p=0.011 

R2=0.744 
p<0.0001 

R2=0.864 
p<0.0001 

7 R2=0.272 
p=0.022 

R2=0.266 
p=0.024 

R2=0.652 
p<0.0001 

R2=0.026 
p=0.512 

R2=0.001 
p=0.927 

R2=0.331 
p=0.010 

- 
R2=0.288 
p=0.018 

R2=0.290 
p=0.017 

8 R2=0.864 
p<0.0001 

R2=0.135 
p=0.122 

R2=0.744 
p<0.0001 

R2=0.096 
p=0.197 

R2=0.058 
p=0.323 

R2=0.584 
p=0.0001 

R2=0.412 
p=0.003 - 

R2=0.859 
p<0.0001 

9 R2=0.635 
p<0.0001 

R2=0.039 
p=0.421 

R2=0.764 
p<0.0001 

R2=0.028 
p=0.495 

R2=0.138 
p=0.118 

R2=0.823 
p<0.0001 

R2=0.419 
p=0.003 

R2=0.794 
p<0.0001 

- 
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Table 4B. Pearson’s correlations for the  mtDNA/nDNA values obtained by each sites for the first shipment at room temperature for 
all samples except samples 15 and 16 (N=17).  Correlations of raw data are shown against clear background while those of log10-
transformed data are shown against a grey background.  Bold indicates no significant correlation. 
 

First shipment at room temperature, Pearson’s correlation (minus samples 1 5 and 16)  
Site  1 2 3 4 5 6 7 8 9 

1 - 
R2=0.103 
p=0.210 

R2=0.694 
p<0.0001 

R2=0.169 
p=0.101 

R2=0.063 
p=0.329 

R2=0.808 
p<0.0001 

R2=0.215 
p=0.061 

R2=0.903 
p<0.0001 

R2=0.830 
p<0.0001 

2 R2=0.288 
p=0.026 - 

R2=0.181 
p=0.089 

R2=0.396 
p=0.007 

R2=0.003 
p=0.837 

R2=0.255 
p=0.039 

R2=0.383 
p=0.008 

R2=0.082 
p=0.266 

R2=0.103 
p=0.209 

3 R2=0.571 
p<0.001 

R2=0.348 
p=0.013 - 

R2=0.117 
p=0.180 

R2=0.023 
p=0.563 

R2=0.603 
p<0.001 

R2=0.448 
p=0.003 

R2=0.693 
p<0.0001 

R2=0.593 
P=0.0003 

4 R2=0.289 
p=0.026 

R2=0.430 
p=0.004 

R2=0.222 
p=0.056 - 

R2=0.160 
p=0.111 

R2=0.264 
p=0.035 

R2=0.039 
p=0.450 

R2=0.147 
p=0.128 

R2=0.245 
p=0.044 

5 R2=0.005 
p=0.784 

R2=0.010 
p=0.698 

R2=0.009 
p=0.721 

R2=0.184 
p=0.086 - 

R2=141 
p=0.138 

R2=0.002 
p=0.866 

R2=0.143 
p=0.135 

R2=0.299 
p=0.023 

6 R2=0.795 
p<0.0001 

R2=0.495 
p=0.002 

R2=0.672 
p<0.0001 

R2=0.397 
p=0.007 

R2=0.096 
p=0.226 - 

R2=0.330 
p=0.016 

R2=0.846 
p<0.0001 

R2=0.859 
p<0.0001 

7 R2=0.270 
p=0.032 

R2=0.478 
p=0.002 

R2=0.635 
p<0.0001 

R2=0.113 
p=0.188 

R2=0.001 
p=0.911 

R2=0.436 
p=0.004 

- 
R2=0.246 
p=0.043 

R2=0.242 
p=0.045 

8 R2=0.867 
p<0.0001 

R2=0.255 
p=0.039 

R2=0.743 
p<0.0001 

R2=0.252 
p=0.040 

R2=0.064 
p=0.326 

R2=0.866 
p=0.0001 

R2=0.383 
p=0.008 - 

R2=0.869 
p<0.0001 

9 R2=0.714 
p<0.0001 

R2=0.249 
p=0.042 

R2=0.697 
p<0.0001 

R2=0.330 
p=0.016 

R2=0.218 
p=0.059 

R2=0.843 
p<0.0001 

R2=0.383 
p=0.008 

R2=0.867 
p<0.0001 

- 
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Table 5A. Pearson’s correlations for the mtDNA/nDNA values obtained by each sites for the second shipment on dry ice (N=20*).  
Correlations of raw data are shown against clear background while those of log10-transformed data are shown against a grey 
background.  Bold indicates no significant correlation. 

Second shipment on dry ice, Pearson’s correlation  
Site  1 2 3 4 5 6 7 8 9 

1 - 
R2=0.646 
p=0.003 

R2=0.917 
p<0.0001 

R2=0.001 
p=0.906 

R2=0.892 
p<0.0001 

R2=0.885 
p<0.0001 

R2=0.879 
p<0.0001 

R2=0.901 
p<0.0001 

R2=0.925 
p<0.0001 

2 R2=0.787 
p<0.001 - 

R2=0.780 
p=0.0003 

R2=0.736 
p=0.001 

R2=0.299 
p=0.082 

R2=0.747 
p=0.001 

R2=0.326 
p=0.067 

R2=0.562 
p=0.008 

R2=0.855 
p<0.0001 

3 R2=0.560 
p=0.0001 

R2=0.873 
p<0.0001 

- 
R2=0.007 
p=0.782 

R2=0.936 
p<0.0001 

R2=0.962 
p<0.0001 

R2=0.968 
p<0.0001 

R2=0.975 
p<0.0001 

R2=0.982 
p<0.0001 

4 R2=0.414 
p=0.018 

R2=0.872 
p<0.0001 

R2=0.178 
p=0.151 - 

R2=0.096 
p=0.302 

R2=0.054 
p=0.445 

R2=0.045 
p=0.485 

R2=0.024 
p=0.612 

R2=0.009 
p=0.759 

5 R2=0.352 
p=0.006 

R2=0.478 
p=0.019 

R2=0.673 
p<0.0001 

R2=0.001 
p=0.941 - 

R2=0.913 
p<0.0001 

R2=0.926 
p<0.0001 

R2=0.951 
p<0.0001 

R2=0.927 
p<0.0001 

6 R2=0.650 
p<0.0001 

R2=0.835 
p<0.0001 

R2=0.709 
p<0.0001 

R2=0.076 
p=0.363 

R2=0.457 
p=0.001 

- 
R2=0.865 
p<0.0001 

R2=0.902 
p<0.0001 

R2=0.973 
p<0.0001 

7 R2=0.351 
p=0.006 

R2=0.362 
p=0.050 

R2=0.840 
p<0.0001 

R2=0.022 
p=0.625 

R2=0.659 
p<0.0001 

R2=0.521 
p=0.0003 

- 
R2=0.916 
p<0.0001 

R2=0.893 
p<0.0001 

8 R2=0.557 
p=0.0002 

R2=0.709 
p=0.001 

R2=0.817 
p<0.0001 

R2=0.107 
p=0.276 

R2=0.831 
p<0.0001 

R2=0.622 
p<0.0001 

R2=0.733 
p<0.0001 - 

R2=0.937 
p<0.0001 

9 R2=0.766 
p<0.0001 

R2=0.917 
p<0.0001 

R2=0.806 
p<0.0001 

R2=0.198 
p=0.128 

R2=0.505 
p=0.0004 

R2=0.934 
p<0.0001 

R2=0.559 
p=0.0002 

R2=0.711 
p<0.0001 

- 

* N=20 except for sites #2 for which N=11, and site 4, for which N=13. 
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Table 5B. Pearson’s correlation (R2) and p values between mtDNA/nDNA values obtained by individual sites for the second shipment 
on dry ice, considering only the samples derived from the K562 cell line (N=11).  Correlations of raw data are shown against clear 
background while those of log10-transformed data are shown against a grey background.  Bold indicates no significant correlation. 
 

Second shipment on dry ice,  K562 DNA only, Pearson’s correlation  
Site  1 2 3 4 5 6 7 8 9 

1 - 
R2=0.646 
p=0.003 

R2=0.796 
p=0.0002 

R2=0.567 
p=0.008 

R2=0.423 
p=0.030 

R2=0.613 
p=0.004 

R2=0.487 
p=0.017 

R2=0.469 
p=0.020 

R2=0.693 
p=0.001 

2 R2=0.787 
p=0.0003 - 

R2=0.780 
p=0.0003 

R2=0.736 
p=0.001 

R2=0.299 
p=0.082 

R2=0.747 
p=0.001 

R2=0.326 
p=0.067 

R2=0.562 
p=0.008 

R2=0.855 
p<0.0001 

3 R2=0.901 
p<0.0001 

R2=0.873 
p<0.0001 

- 
R2=0.726 
p=0.001 

R2=0.561 
p=0.008 

R2=0.799 
p=0.0002 

R2=0.488 
p=0.017 

R2=0.677 
p=0.002 

R2=0.880 
p<0.0001 

4 R2=0.706 
p=0.001 

R2=0.872 
p<0.0001 

R2=0.854 
p<0.0001 

- 
R2=0.249 
p=0.119 

R2=0.479 
p=0.018 

R2=0.185 
p=0.187 

R2=0.450 
p=0.024 

R2=0.656 
p=0.002 

5 R2=0.597 
p=0.005 

R2=0.478 
p=0.019 

R2=0.664 
p=0.002 

R2=0.451 
p=0.024 - 

R2=0.431 
p=0.028 

R2=0.368 
p=0.048 

R2=0.431 
p=0.028 

R2=0.567 
p=0.007 

6 R2=0.901 
p<0.0001 

R2=0.835 
p<0.0001 

R2=0.879 
p<0.0001 

R2=0.669 
p=0.002 

R2=0.541 
p=0.010 

- 
R2=0.413 
p=0.033 

R2=0.644 
p=0.003 

R2=0.867 
p<0.0001 

7 R2=0.431 
p=0.028 

R2=0.362 
p=0.050 

R2=0.482 
p=0.018 

R2=0.288 
p=0.089 

R2=0.413 
P=0.033 

R2=0.451 
p=0.024 

- 
R2=0.407 
p=0.035 

R2=0.314 
p=0.073 

8 R2=0.738 
p=0.001 

R2=0.709 
p=0.001 

R2=0.822 
p=0.0001 

R2=0.641 
p=0.003 

R2=0.539 
p=0.010 

R2=0.771 
p=0.0004 

R2=0.494 
p=0.016 - 

R2=0.662 
p=0.002 

9 R2=0.910 
p<0.0001 

R2=0.917 
p<0.0001 

R2=0.941 
p<0.0001 

R2=0.805 
p=0.0002 

R2=0.646 
p=0.003 

R2=0.934 
p<0.0001 

R2=0.379 
p=0.044 

R2=0.795 
p=0.0002 

- 

 
 


	Author Version (with link)
	hammond

