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ABSTRACT 

A literature review on the deportment of trace elements in gold processing by 

cyanidation is presented.  The review compiles the current knowledge in this area and 

highlights the gaps in the current knowledge and understanding. This review, together 

with further research based on gaps in the current knowledge of the thermodynamics 

and kinetics of these systems, will support the development of computer models to 

predict the chemical speciation and deportment of these elements through the various 

stages of the gold cyanidation process.  The review covers lead, cadmium, mercury, 

arsenic, antimony, bismuth, selenium, and tellurium. Presented in this paper is the 

first part of this review which is a collation of the relevant information on trace 

element mineralogy, aqueous solution chemistry and toxicity. 

Although there is much information available about the aqueous solution chemistry of 

the trace elements, their chemistry in cyanide leach solutions remains largely 

unexplored.  Chemical speciation modelling can assist in understanding the chemistry 

of the trace elements in gold cyanidation solutions, however, many significant 

differences exist between the predicted speciation of these trace elements for different 

types of modelling software.  This is due to differences in the thermodynamic data 

used, the paucity of data that exists under appropriate non-ideal conditions, and the 

methods used by the software packages to estimate thermodynamic parameters under 

these conditions. 

The trace elements reviewed, particularly the species that exist in aqueous solutions, 

generally have significant toxicities to humans, and more so to plants and animals.  

Cadmium, mercury and arsenic are classified as human carcinogens whereas selenium 

is an essential trace element for human health, but is toxic in excess.  This review 
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highlights that further understanding of their chemistry during cyanidation is required 

to better understand the health and environmental risks associated with the presence 

of these elements in gold ores. 
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1. INTRODUCTION 

The deportment of trace elements during mineral processing is an area of increasing 

concern to the mining industry because metal extraction processes tend to concentrate 

trace elements to levels that may present hazards to both human health and the 

environment.  The primary focus of this review is the role of the minor trace elements 

in gold processing by cyanidation; in particular lead, cadmium, mercury, arsenic, 

antimony, bismuth, selenium and tellurium; including their mineralogy, aqueous 

solution chemistry, and toxicology.  Copper has been omitted from the review as it is 

not considered to be a trace element in gold ores, but rather a significant impurity that 

has been extensively studied and is the subject of a recent review (Lu et al., 2002).  A 

separate paper will focus on their chemical behaviour during the cyanidation process 

for gold recovery (including carbon adsorption and elution), tailings disposal and also 

capture related information from the treatment of industrial wastes and wastewaters, 

including fixation and encapsulation processes that may be applicable in gold 

processing. 

Traditionally, these trace elements have been investigated in minerals processing as 

impurities in commodities such as base metals and concentrates.  However, more 

recently this research has been aimed at increasing employee safety and meeting 

environmental regulations.  In Australia, the trace elements antimony, arsenic, 

beryllium, cadmium, chromium (III&VI), cobalt, copper, lead, manganese, mercury, 

nickel, selenium and zinc are listed by the Australian National Pollutant Inventory 

(NPI) as monitoring targets that need to be measured and reported annually for all 

mine and mineral processing facility outputs.  The NPI is a public database listed on 

the internet that displays information about diffuse sources and emissions of 90 
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different substances to air, land and water reported by industrial facilities.  The most 

recent reports can be viewed on their website (http://www.npi.gov.au).  The latest 

relevant Australian emissions data for the trace elements of interest to this review are 

listed in Table 1.  Bismuth and tellurium are excluded as they are not required to be 

reported under current legislation.  Several other countries also collate similar data 

which is available publicly on the Internet (e.g. USA – Toxics Release Inventory; 

Canada – National Pollution Release Inventory). 

The Australian data, which includes emissions from all aspects of the mining and 

mineral processing operations including the burning of fossil fuels on site, indicates 

that the main trace metal emissions to the environment from metal processing 

operations are lead, arsenic, antimony and cadmium.  In general, emissions to air 

dominate the total emissions, although for certain trace elements (e.g., selenium) 

water emissions can also be significant.  The main emissions from gold mining 

operations are arsenic which is largely fugitive (dust containing arsenic minerals), and 

mercury (~0.7 tonnes/year), which is mainly stack emissions from ore roasting and 

carbon regeneration.   

Lead toxicity is now well established, and cadmium is widely classified as a human 

carcinogen, but little is known of their deportment in the gold processing solutions.  

Similarly mercury toxicity from its use in gold amalgamation is well known, but 

mercury as a trace element of concern in ore roasting, pressure oxidative leaching and 

gold cyanidation is a more recent issue (Newmont Mining Corporation, 2009).  

Arsenic, another known carcinogen, has been widely studied in gold processing 

(Reddy et al., 1988) particularly the precipitation and disposal of solubilised arsenical 

wastes, and several commercial processes now exist for the fixation and encapsulation 
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of arsenical wastes from the roasting, pressure leaching or bacterial leaching of gold 

ores and concentrates (Connor, 1990; Reddy and Ramachandran, 2005; Dolomatrix 

International, 2011).  Research into the long term stability of these treated wastes 

continues, as do investigations into the behaviour and deportment of arsenic aimed at 

further reducing health and environmental risks, especially in tailings discharges.  

Much less is known about antimony and bismuth due to their generally lower 

concentrations in gold ores, and while bismuth has a lower toxicity, antimony can be 

compared to arsenic in its toxic effects on humans. 

Selenium is an essential nutrient in trace amounts but it is very toxic at higher 

concentrations (Cai, 2000); it has been ranked as the third most toxic trace element 

after mercury and lead (Peters et al., 1997).  Tellurium is thought to be less toxic but 

must be handled with care.  Little information is currently available regarding the 

deportment of selenium or tellurium in mineral processing plants.  Hence, the health 

and environmental risks of antimony and selenium, and to a lesser extent bismuth and 

tellurium, require that more is known of their chemical behaviour during gold 

processing. 

2 MINERALOGY AND AQUEOUS SOLUTION CHEMISTRY 

2.1  Lead, cadmium and mercury 

Lead, cadmium and mercury are the key heavy metals covered in this review.  

Although the solution chemistry of lead differs significantly from cadmium and 

mercury, these metals are often grouped together in environmental studies on account 

of their toxicities. 
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Lead is in Group IVB of the Periodic Table.  It is a relatively abundant element in the 

earth’s crust at an estimated average abundance of 10 to 14 parts per million by mass.  

Its principal valence states are 0, +II and +IV.  Its principal sulfide mineral is galena 

(PbS) from which most lead is extracted.  Secondary oxidised minerals include 

cerussite (PbCO3) and anglesite (PbSO4) which commonly occur in the near-surface 

weathered or oxidised zone of a lead orebody.  Lead forms lead(II) oxide (PbO), 

lead(IV) oxide (PbO2) and the mixed valence state oxide Pb3O4 (called red lead).  

Native lead is rare.  

Cadmium and mercury are in Group IIB of the Periodic Table.  The principal valence 

state of both elements is +II, though mercury also forms mercury metal (0) and a 

number of mercurous(I) compounds (e.g. calomel, Hg2Cl2).  Cadmium(I) compounds 

are rare.  Cadmium is a rare element in the earth’s crust at an estimated average 

abundance of 0.11 to 0.15 parts per million by mass, which is much higher than 

mercury with an estimated average crustal abundance of only 0.05 to 0.08 parts per 

million by mass.  Since mercury does not blend geochemically with those elements 

that constitute the majority of the crustal mass, mercury ores can be extraordinarily 

concentrated considering the element's low abundance in ordinary rock.  The richest 

mercury ores contain up to 2.5 % mercury by mass, and even the leanest concentrated 

deposits are at least 0.1 % mercury. 

Greenockite (CdS) is the only important cadmium mineral.  It is nearly always 

associated with sphalerite (ZnS) and is produced mainly as a by-product from zinc ore 

processing.  Mercury is found most commonly as the brick-red mineral cinnabar 

(HgS).  Some of the other mercury minerals associated with gold or silver are 
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tiemannite (HgSe), corderoite (Hg3S2Cl2), coloradoite (HgTe), and gold or silver 

mercury amalgams (Zaraté, 1985).  Native mercury metal is rare.  

In cyanidation solutions these minerals may dissolve to form a number of stable 

complexes.  The overall formation constants (Log βn) for the formation of several 

complexes with these metals are presented in Table 2.  Lead may form the very weak 

cyano complexes Pb(CN)+ and Pb(CN)2
0 in aqueous solution, but only below pH 8 

(Perera, 2001).   Cadmium forms relatively weak cyano complexes, Cd(CN)2
0, 

Cd(CN)3
− and Cd(CN)4

2−, but the mercury complexes, Hg(CN)3
− and Hg(CN)4

2−  are 

considerably stronger.  Cadmium cyano complexes therefore report as weak acid 

dissociable (WAD) cyanide, whereas mercury complexes are included in the total 

cyanide analysis.  Depending on the conditions, all the metals can form a number of 

hydroxo and chloro complexes.  Unlike most metals, lead forms an insoluble chloride 

(PbCl2) and, being amphoteric, the hydroxide is soluble at high pH forming a number 

of hydroxo complexes including Pb(OH)3
- and Pb(OH)4

2- (plumbite).  In solutions 

containing carbonate or sulfate ions, carbonato or sulfato complexes with lead may 

also form, depending on the concentrations of the complexing ions in solution (Powell 

et al., 2009).   

Chemical Speciation Modelling 

Thermodynamic properties have been determined for many of these species, mostly 

for “ideal” solutions (i.e. 25 oC and 1 atmosphere pressure, in very dilute solution) 

and thus thermodynamic equilibrium modelling can provide information as to the 

equilibrium speciation for particular solution conditions (i.e. pH, EH, salinity, 

temperature).  Several commercial thermodynamic equilibrium modelling packages 

are available, such as OLI (http://www.olisystems.com), JESS (May and Murray, 
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2000; Murray and May, 2008; http://jess.murdoch.edu.au), STABCAL 

(http://www.mtech.edu/CAMP/documents/camp_brochure.pdf) and HSC 

(http://www.outotec.com), that can provide information on the speciation and 

deportment of minor elements during gold processing.  However, variations exist in 

the extent of the databases, the quality of the thermodynamic constants chosen, and 

the treatment of solution non-ideality in the calculations (Popov and Wanner, 2005).  

In modelling the deportment of these elements during gold processing, consideration 

also needs to be given to the rate of reactions as they move towards the equilibrium 

condition (i.e. chemical kinetics).  In cases where the reactions are very slow, often 

“pseudo-equilibrium” conditions better describe the speciation and deportment of the 

species in the short term. 

The thermodynamic equilibrium models for the speciation of these trace elements in 

cyanidation solutions were determined using the JESS and OLI software packages 

which had the most extensive data on the trace elements of interest.  The aim was to 

compare not only the thermodynamic models produced, but also to investigate the 

information on the trace elements contained within the respective databases. Figure 1 

shows the thermodynamic equilibrium distributions calculated using JESS for lead, 

mercury and cadmium species in a typical gold processing solution of low ionic 

strength that is free of sulfides.  The speciation differs slightly from that calculated 

using OLI (Figure 2) and can be explained by the slightly different values of the 

formation constants for the main species used in the determination.  These values, as 

well as the preferred formation constants discussed in this review, are listed in Table 

2. 

http://www.mtech.edu/CAMP/documents/camp_brochure.pdf�
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Both JESS and OLI predict that lead is mainly in the solid state up to pH 11 or 12 as 

the basic lead carbonate, hydrocerussite (PbCO3·2Pb(OH)2).  Hydrocerussite is now 

generally believed to be the stable solid phase is alkaline solutions rather than lead 

hydroxide (Todd and Parry, 1964).  The most recent and accurate determination of the 

∆Gf
o
 for hydrocerussite has been reported by Mercy et al. (1998) who used 

electrochemical cell measurements.  This value is in good agreement with earlier 

determinations of -1699 kJ/mol by Garrels (1957), who adjusted the earlier data of -

1711 kJ/mol of Randall and Spencer (1928), and -1705±11 kJ/mol by Taylor and 

Lopata (1984) using solubility measurements.  The value by Mercy et al. (1998) is 

recommended as the preferred value, as it is less reliant on the speciation model 

chosen to interpret the data.   

The lead redissolves above pH 11 to predominantly form the hydrogen dioxylead ion, 

HPbO2
− (OLI) or a number of different lead hydroxide complexes, (Pb(OH)2

0 

followed by Pb(OH)3
− and PbO(OH)− with minor Pb(OH)4

2−) as the pH increases 

(JESS).  It should be noted that the ions HPbO2
−, PbO(OH)−, and  Pb(OH)3

− are all 

thermodynamically equivalent in aqueous solutions, differing only in the way the ions 

are described or the extent of hydration.  One issue with thermodynamic databases is 

to describe these thermodynamically identical ions in a consistent manner (Filella and 

May, 2003).  

A critical review of lead hydroxo complex stability constants has recently been 

compiled by Powell et al. (2009).  Formation constants calculated from these data are 

included in Table 2 as recommended values.  The Pb(OH)4
2− complex was excluded 

from this review, and also Table 2,  as its formation was considered as still uncertain.   
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The cadmium and mercury speciations are similar for both models even though for 

mercury there are significant differences between the formation constants used in the 

calculations. The tetracyanide complexes predominate at high pH over the tricyanide 

complexes, andthe lower complexes, having lower formation constants, tend to form 

only to a limited extent (as in the dicyanides) or not at all (the mono-cyanide 

complexes).   

Another factor to be considered in speciation modelling is the salinity of the process 

water.  In certain parts of Western Australia, the process water used in gold 

cyanidation is hypersaline having total dissolved solids concentrations ranging from 

about two times up to seven times seawater (that is, from ~60 to ~210 g/L).  The 

salinity, which consists mainly of sodium, chloride, magnesium, and sulfate (in order 

of decreasing molar concentration), causes a range of ionic strength effects including 

changes in the dissociation constant for hydrogen cyanide (Verhoeven et al., 1990) 

and changes in the stability constants for a range of cyano-complexes (Rees and Van 

Deventer, 1999).  For copper, the more highly complexed species are favoured at 

higher ionic strengths (Lukey et al., 1999), and the same dependence may apply to 

cadmium and mercury cyano complexes, although to our knowledge this has not been 

confirmed. 

2.2 Arsenic, antimony and bismuth 

These elements are all in Group VB of the periodic table, and as such have similar 

chemical properties.  Arsenic and antimony are metalloids, although they are 

generally grouped with metals for environmental purposes.  Bismuth is a metal and is 

similar to lead in its properties (Smith, 1973).  All are chalcophiles preferring to bond 

with sulfur rather than oxygen, and they generally occur in nature as sulfides. 
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Their principal valence states are 0, -III, +III and +V, but for bismuth only 0 and +III 

are formed under normal conditions.  The Bismuth(-III) hydride (BiH3) will only form 

under extremely reducing conditions (Eo = -0.97 V) and is thus very unstable.  Bi(V) 

is highly oxidising, being able to oxidise water to oxygen (Eo = +2.1 V) (Smith, 

1973).   

Arsenic is a relatively abundant element (1.8 parts per million) and is widely 

distributed in the earth’s crust in more than 300 minerals.  The most common 

commercial source of arsenic is arsenic trioxide, a by-product from the processing of 

base and precious metals ores (Smith, 1973).  Antimony is less abundant than arsenic, 

although over a hundred minerals of antimony are found in nature.  Estimates of the 

abundance of antimony in the Earth's crust range from 0.2 to 0.5 parts per million.   

The most common arsenic sulfide minerals are the red-orange realgar (As4S4) and its 

weathering product, yellow orpiment (As2S3).  Arsenic is also found in association 

with metals as arsenides, for example in the common mineral arsenopyrite (FeAsS) 

and base metal arsenides such as enargite (Cu3AsS4), cobaltite (CoAsS) and 

gersdorffite (NiAsS).  In arsenical ores formed at high temperature like arsenopyrite, 

gold may be incorporated into the lattice either in solid solution or on the growing 

crystal faces.  Often sub-microscopic gold may account for the majority of the gold 

present, rendering the ore refractory and can be difficult to treat.  Oxidised minerals 

include claudetite or arsenolite (As2O3), pharmacolite (CaHAsO4.2H2O), mimetite 

(Pb5(AsO4)3Cl) and erythrite (Co3(AsO4)2.8H2O) (Smith, 1973).  

Stibnite (Sb2S3) is the predominant mineral of antimony (USGS, 2010a), and the main 

antimony mineral associated with gold.  Other minor minerals with gold associations 

are tetrahedrite (Cu12Sb4S13), berthierite (FeSb2S4), gudmindite (FeSbS) and 
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aurostibite (AuSb2) (Davies and Paterson, 1986; Millard, 2005).  The most common 

oxide minerals are the dimorphous minerals valentinite and senarmontite (Sb2O3) and 

the oxyhydroxide stibiconite (Sb3O6(OH)).  All are derived from the oxidation of 

stibnite.  In natural waters, soluble antimony is present exclusively as Sb(OH)6
− under 

oxic conditions, and as Sb(OH)3
0 in anoxic waters (Filella and May, 2003). 

Bismuth is the heaviest of the ‘heavy metals’.  At an estimated 8 parts per billion by 

mass in the Earth’s crust it is much rarer than it’s counterparts but about twice as 

abundant as gold.  It’s most common mineral is bismuthinite, Bi2S3 (USGS, 2010b) 

and is generally found with or without its oxidation products bismite (Bi2O3) and 

bismutite, Bi2(CO3)O2.  Generally, these occur in minute quantities within ores of 

other metals, such as gold, silver, lead, zinc, and tungsten (Smith, 1973).  Other 

bismuth minerals found in association with gold-bismuth deposits in China include 

native bismuth (Bi), montanite (Bi2TeO6.2H2O), pavonite (AgBi3S5), hedleyite 

(possibly Bi7Te3) and others (Yunsheng et al., 2005). 

Arsenic, antimony and bismuth do not form stable complexes with cyanide.  Arsenic 

sulfide minerals decompose in solution to form arsenite (AsO3
3−) and arsenate 

(AsO4
3−) and the partially oxidised thioarsenites (AsS3

3−) and thioarsenates (AsS4
3−).  

Antimony sulfide minerals tend to form the equivalent oxyanions and thioanions to 

arsenic.  Bismuth is more metallic in nature and does not form oxyanions in aqueous 

solution.  It is only sparingly soluble above pH 4 (concentrations of bismuth in 

solution of 0.01 to 0.1 millimolar), and in weakly acid or alkaline solutions 

precipitates as Bi(OH)3 or BiOOH.  Bismuth forms a number of mono- and 

polynuclear hydroxo complexes at high pH, namely [Bi(OH)2]
+, [Bi(OH)3

0], 



 14 

[Bi(OH)4
−] and [Bi6O4(OH)4]

6+ with minor [Bi3(OH)4]
5+  (Kragten and Decnop-

Weever, 1993; Godfrey et al., 1998).   

Chemical Speciation Modelling 

Figure 1 shows the thermodynamic equilibrium distributions calculated using JESS 

for arsenic, antimony and bismuth species in a typical gold processing solution of low 

ionic strength.  The speciation calculated using OLI (Figure 2) is similar for bismuth, 

however, there are a number of significant differences for arsenic and antimony.   

The speciation for arsenic and antimony are very dependent on the oxidative capacity 

of the system.  As this is generally high in well oxygenated solutions such as 

modelled here (EH varied from 850 down to 450 mV over the pH range for an oxygen 

partial pressure of 0.2), the equilibrium species will contain mainly the most highly 

oxidised forms of the trace elements. The oxidation of  As(III) to As(V) is generally 

slow (except in the presence of strong oxidising agents) and so both oxidation states 

can often co-exist in solution, with the arsenite(III) species being more soluble than 

the arsenate(V) species (Magalhães, 2002).  However the thermodynamic equilibrium 

species predicted by these models are all in the As(V) oxidation state.   

In aqueous oxygenated solutions containing calcium and arsenate ions, a range of 

solid species may precipitate, depending on the pH and Ca:As ratios.  Many species 

have been reported, but from recent carefully executed solubility experiments, the 

most prominent species formed in alkaline solutions appear to be johnbaumite 

(Ca5(OH)(AsO4)3) and calcium arsenate (Ca3(AsO4)2•xH2O) at Ca:As ratios below 

2.0, with Ca4(OH)2(AsO4)2•xH2O forming at higher Ca:As ratios (Bothe and Brown, 

1999; Zhu et al., 2006).  The most recent equilibrium data (pKsp) of Zhu et al. at 25oC 
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differ slightly from the earlier data of Bothe and Brown (23oC), mainly due to 

differences in their speciation modelling.  The latter data are recommended (Table 3). 

The modelling using JESS predicts that all the arsenic will be present as the solid 

species Ca10(OH)2(AsO4)6 (Mahapatra et al., 1987), which is thermodynamically 

equivalent to johnbaumite (Ca5(OH) (AsO4)3).  The JESS database contains two 

calcium arsenate species, johnbaumite and Ca3(AsO4)2  The OLI model indicates the 

arsenic will be soluble and present only as the hydrogen arsenate ion (HAsO4
2-).  The 

only solid calcium species in the OLI database is Ca3(AsO4)2.  

The available thermodynamic data for antimony have been recently critically 

reviewed and evaluated (Filella and May, 2003) and represent the best information 

available at present on antimony equilibria in aqueous solutions.  The most relevant 

and recommended stability constants are shown in Table 3.  The current modelling 

using JESS predicts that all antimony will be soluble as the antimony(V) complex 

Sb(OH)6
−.  The OLI database does not have data for Sb(V) species and hence only 

Sb(III) species are modelled.  Predominantly the Sb(III) species are the soluble 

hydroxide (Sb(OH)3
0) and the insoluble solid trioxide (Sb2O3) up to pH 11, after 

which both species hydrolyse further to the Sb(OH)4
− ion.   

The models predict bismuth is present mainly as the insoluble oxyhydroxide, BiOOH 

(JESS) or the thermodynamically equivalent hydroxide, Bi(OH)3 (OLI) respectively 

over the entire pH range, with minor amounts (less than 1% in JESS and about 10% in 

OLI) of the soluble species Bi(OH)3 (aq) and Bi(OH)4
−, the latter increasing at pHs 

above 12.  For both models, the bismuth solubility is less than expected from the 

measurements of Kratgen and Decnop-Weever (1993), who measured bismuth 
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solubility and equilibrium constants for the bismuth hydroxo complexes in one molar 

nitrate and perchlorate media. 

2.3 Selenium and tellurium 

Selenium and tellurium are in Group VIB of the Periodic Table, the same group as 

sulfur, and have similar chemical properties.  They are classified chemically as non-

metals with principal valence states of 0, -II, +IV and +VI.  Selenium and tellurium 

are extremely rare elements having estimated crustal abundances of 50 and 1 - 5 parts 

per billion respectively.  The principal sources of selenium and tellurium are anode 

sludges produced during the electrolytic refining or smelting of base metals such as 

copper and lead.  

Selenium often occurs together with sulfide minerals as selenides and is found in 

sulfide ores such as pyrite, partially replacing the sulfur in the ore matrix.  Typical 

selenide minerals include klockmannite (CuSe), stilleite (ZnSe), berzelianite (CuSe), 

clausthalite (PbSe), penroseite (NiSe) and tiemannite (HgSe).  Although these 

minerals are not abundant, they can occur together with copper, zinc and nickel ores.  

Recently, other selenide minerals such as aguilarite (Ag4SeS), naumannite (Ag2Se), 

Sb-pearceite ((Ag,Cu)16.9(Fe,Zn)0.24(Sb,As)1.98(S,Se)11) and polybasite 

((Ag,Cu)16.9(Sb,As)1.98 (S,Se)11) have been identified in the Waihi district of the 

Hauraki goldfield in New Zealand (Staley, 2005). 

Tellurium is sometimes found in its native (elemental) form and as the tellurides of 

gold, and often with associated silver.  Typical gold and silver minerals are calaverite, 

AuTe2, krennerite, AuTe2, petzite, Ag3AuTe2, sylvanite, (Ag,Au)Te2, hessite, Ag2Te, 

and coloradoite, HgTe (Bagnall, 1973; Ahmad et al., 1987).  Gold-telluride 

associations also occur with antimony in montbrayite ([AuSb]2Te3) and copper in 
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kostovite [CuAuTe4] while non-gold associated minerals include coloradoite (HgTe) 

and altaite (PbTe) (Ellis, 2005). 

Selenium forms the  stable selenocyanate anion (SeCN−) in the presence of cyanide 

(Flynn and Haslem, 1995) while cyanotellurate (TeCN−) is known but is much less 

stable (Klaeboe et al., 1977).  In cyanide solutions, both selenite and selenate ions 

should be reduced to selenocyanate by cyanide ions, the latter being oxidised to 

cyanate (Table 4).  Although thermodynamically favourable, the rates of these 

reactions are unknown.  In acidic solutions, selenocyanate will decompose to 

selenium(0) and hydrocyanic acid (Boughton and Keller, 1966). 

Selenocyante is analogous to the sulfur species thiocyanate (SCN−) and can form 

complexes with metal ions such as gold, zinc, cadmium, mercury and iron (Norbury, 

1975).  As expected for a “soft” base such as selenocyanate, the formation constants 

for its complexes of mercury are much larger than for cadmium (Table 5, OECD, 

2005).  

Analogous to sulfides, selenides and tellurides may be oxidised to form oxyanions in 

cyanide solutions (e.g. selenite, SeO3
2− or selenate, SeO4

2− and tellurite, TeO3
2− or 

tellurate, TeO4
2−) with the +IV species predominating except at high redox potentials 

and/or high pH.  The selenides (-II) and tellurides (-II) are immobile in anoxic 

environments but are rapidly oxidised in air to elemental selenium and tellurium 

(Haygarth, 1994). 

The selenate and tellurate ions are strong oxidising agents in acidic solutions with 

standard reduction potentials values greater than 1.0 volt, but are much less oxidising 
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in alkaline solutions (see Table 4) where the values fall to around zero volts (OECD, 

2005; Greenwood and Earnshaw, 1997). 

Chemical Speciation Modelling 

Figure 1 shows the thermodynamic equilibrium distributions calculated using JESS 

for selenium and tellurium species in a typical gold processing solution of low ionic 

strength.  Again, there are a number of differences between the JESS and OLI models 

(Figure 2).   

For selenium modelling, both JESS and OLI predict virtually all the selenium to be 

present as the soluble selenate(VI) ion, SeO4
2−.  Because of the very low pKa (1.75 or 

1.91, see Table 4) of hydrogen selenate, it will only exist in minor amounts except at 

very low pH.  JESS also includes minor amounts of the aqueous complexes CaSeO4
0 

and MgSeO4
0 while OLI predicts minor hydrogen selenate, HSeO4

−.  Neither model 

predicts selenite(IV) ion to be present under the oxidising conditions in the cyanide 

leach, nor the existence of selenocyanate in oxic cyanide solutions, although it 

appears to be thermodynamically stable at lower EH (Table 4). 

For tellurium, JESS predicts all is present as soluble Te(VI) species, predominantly 

the hydrogentellurate ion, HTeO4
− at lower pH and the deprotonated tellurate ion, 

TeO4
2− at higher pH.  OLI modelling, however, predicts tellurium(VI) is 

predominantly soluble below about pH 8.5, as orthotelluric acid (H6TeO6), 

pentahydrogen (H5TeO6
−), and the hydrogentellurite(IV) ion, HTeO3

−, with the latter 

two having similar distributions with pH.  Orthotelluric acid, and orthotellurate ions, 

are a six-coordinate form of the tellurate, structurally different from the four-

coordinate form, called metatellurate.  Unlike selenate ion, in solution, the ortho-form 
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predominates (Greenwood and Earnshaw, 1997) and, unless specifically differentiated 

as the four-coordinate metatellurate the formula TeO4
2− υσυαλλψ refers to the six-

coordinate species.  

Above pH 8.5, OLI predicts the insoluble tellurite salts calcium tellurite(IV) 

monohydrate (CaTeO3.H2O) and magnesium tellurite(IV) are the major tellurium 

species formed.  The JESS database for Tellurium does not contain these species. 

2.4 Conclusions 

Although there is much information available about the aqueous solution chemistry of 

the trace elements, much more remains to be learned.  In particular, the chemistry of 

the trace elements as applied to cyanide leach solutions remains largely unexplored.  

Chemical speciation modelling can assist in understanding the chemistry of the trace 

elements in gold cyanidation solutions, however, many significant differences exist 

between the predicted speciation of these trace elements for different types of 

modelling software (Popov and Wanner, 2005).  A comparison between the predicted 

speciation models using JESS and OLI software has been used to examine these 

differences, which exist due to differences in the thermodynamic data used, the 

paucity of data that exists under appropriate non-ideal conditions, and the methods 

used in the software packages to estimate thermodynamic parameters under such 

conditions. 

 



 20 

3 TOXICITY AND ENVIRONMENTAL GUIDELINES 

3.1 Sources and toxicities 

Most of the trace elements are toxic to plants and animals because they do not have a 

natural physiological role, and their toxicity can be ascribed to their interference in 

certain critical biochemical processes (May and Bulman, 1983).  Therefore, the 

sources and toxicities of the trace elements to humans are important from an 

environmental health and safety perspective.  In addition, the toxicity of the trace 

elements to aquatic and terrestrial flora and fauna is now a key issue for the gold 

processing industry.  The ingestion of wastewater from tailings storage facilities by 

birds and animals has been documented by Donata et al. (2007).  However, 

information on the toxicity of metal cyanides to birds and to plant life surrounding the 

tailings impoundment, including species that may be used for revegetation following 

mine closure, or even for phytoremediation (the use of plants in bioremediation) is 

minimal.  

Lead, cadmium and mercury 

Lead, cadmium and mercury are generally considered to be the most toxic of the 

heavy metals in the environment (Landis and Yu, 2003).  Until recently, lead in 

gasoline was the primary source of environmental lead, followed by lead emissions 

from smelting operations and household paints.  Lead is accordingly ubiquitous in the 

environment.  Cadmium outputs are mainly from metal refining, the burning of fossil 

fuels and its presence in phosphate fertilisers and cigarettes.  Mercury comes from 

natural sources (volcanic activity) as well as smelting operations and its use in 

industry and agriculture. 
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The systemic toxic effects of lead in humans have been well-documented up to 1990 

by the USEPA (1990), who extensively reviewed and evaluated data reported in the 

literature.  Due to their solubility in acids and therefore stomach fluids, the lead salts 

of carbonate, monoxide, and sulfate are considered to be more toxic than metallic lead 

or other lead compounds.  One of the main health concerns is the retardation of brain 

development in children.  Lead is a probable carcinogen (Silbergeld et al., 2000). 

Cadmium is absorbed more efficiently by the lungs than by the gastrointestinal tract, 

and is excreted primarily in the urine.  Inhalation of cadmium is associated with lung 

cancer while gastrointestinal intake affects the liver and kidneys (May and Bulman, 

1983).  Cadmium is classified as a human carcinogen by World Health Organization’s 

International Agency for Research on Cancer and the United States National 

Toxicology Program (Waalkes, 2003).  

Mercury and most of its compounds are extremely toxic, particularly its organic 

compounds, such as methyl mercury and dimethyl mercury.  Fish and shellfish have a 

natural tendency to concentrate mercury (May and Bulman, 1983).  The World Health 

Organization treats mercury as an occupational hazard, and has established specific 

occupational exposure limits.  

Methylmercury is a neurological poison affecting primarily brain tissue and at high 

doses can cause severe damage to the developing brain.  Today a chief concern is with 

the more subtle effects arising from prenatal exposure such as delayed development 

and cognitive changes in children.  Mercury is a possible human carcinogen 

(Clarkson, 1997).  

Lead, cadmium and mercury are all toxic to plants and animals, and when in solution 

are especially toxic to aquatic flora and fauna.  In plants, they inhibit germination and 
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photosynthesis, and in higher plants accumulate in leaves where they become 

available to grazing animals (Yu, 2001).  Little is known of the ability of plants to 

assimilate the cyanide complexes of these metals. 

Arsenic, antimony and bismuth 

Arsenic is ubiquitous in the environment and its anthropogenic sources include paints, 

insecticides, herbicides and rodenticides, and until recently was also used as a wood 

preservative.  Antimony and bismuth are less common although antimony is used in 

many products as a flame retardant, and bismuth is being increasingly used as a 

substitute for lead.  The main sources of emissions are from mining and smelting 

operations where they are generally present as impurities.   

In the European Union (EU), elemental arsenic and its compounds are classified as 

"toxic" and "dangerous for the environment".  The EU and the International Agency 

for Research on Cancer (IARC) both recognize arsenic and arsenic compounds as 

carcinogens.  Human exposure to arsenic is mainly through water consumption.  In 

general, arsenic(III) compounds are more toxic than arsenic(V) compounds, and those 

that are water soluble are more toxic than those that are not.  One of the most toxic 

inorganic arsenic compounds is arsine gas, AsH3 (Graeme and Pollack, 1998).  

In plants and animals, arsenic is toxic at relatively low (ppb) levels (e.g. Gebel, 1997; 

Smedley and Kinniburgh, 2002) and can inhibit nitrification and the growth of 

microorganisms.  

Antimony and many of its compounds are toxic with antimony(III) being more toxic 

than antimony(V) compounds (Gurnani et al., 1994; Gebel, 1997).  The main route of 

exposure is by inhalation of the dust.  Deposits of inhaled antimonials may be retained 
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in the lungs for years.  The toxicity of stibine (SbH3) is analogous to that of arsine 

(AsH3).  Antimony(III) is a possible carcinogen (De Wolff, 1995).  

Bismuth is considered one of the less toxic of the heavy metals, and its salts are used 

in cosmetics and medicines.  However, serious and sometimes fatal poisoning may 

occur from over-use.  Bismuth is not considered to be a human carcinogen 

(Slikkerveer and De Wolff, 1989; Lambert, 1991). 

Selenium and tellurium 

Selenium is an essential trace element for human health, and has been shown to 

reduce occurrences of a range of conditions including cancers when taken as a 

supplement in selenium-deficient regions (Ni et al., 1994; Brown, 2000).  It is, 

however, toxic if taken in excess.  Elemental selenium and metallic selenides have 

relatively low toxicities because of their low bioavailability.  By contrast, selenates 

and selenites are very toxic, having a mode of action similar to that of arsenic trioxide 

(Tinggi, 2003).  Hydrogen selenide gas is an extremely toxic and corrosive gas.  

Selenium compounds are not considered to be carcinogens. 

Soluble tellurium and its compounds are highly toxic to most microorganisms (Turner 

et al., 2001).  They are also considered to be toxic to humans and need to be handled 

with care, although acute poisoning is rare.  They are not considered to be 

carcinogenic (Taylor, 1996). 

3.2 Environmental guidelines 

The World Health Organisation (WHO, 2001) has developed guidelines for the 

maximum quantities of chemicals that should be present in drinking water to protect 

human health, and Australia has developed similar guidelines for the Australian 
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environment (NHMRC, 2004).  In addition, the Australian and New Zealand 

Environmental and Conservation Council (ANZECC, 2000) have developed 

guidelines using a risk based approach for the maximum quantities of 

elements/chemicals that should be present in both freshwater and marine aquatic 

ecosystems for the protection of the aquatic flora and fauna.  The WHO and 

Australian drinking water guidelines, together with the ANZECC guidelines for the 

protection of freshwater aquatic ecosystems, are listed in Table 6.  These guidelines 

are constantly being updated as new knowledge comes to hand.  Aquatic organisms 

are much more sensitive to changes to toxic elements than humans, and therefore the 

guidelines are generally much lower than the drinking water guidelines. 

The toxicity of the trace elements are generally listed as the total elemental 

concentration in the water, but as the importance of the elemental speciation is 

becoming more recognised, more data is becoming available on the toxic effects of 

different chemical species.  For example, the toxicity effects of arsenic(III) and 

arsenic(V) are now listed separately in the ANZECC (2000) guidelines.  

In cyanidation waste waters, some of the elements may exist as cyanide complexes 

and hence also contribute to the toxic effect of cyanide on fauna (Donato et al., 2007).  

The toxicity of metal cyano complexes to aquatic life and information pertaining to 

aquatic plant uptake of these metal-cyanide species is largely unknown, with only a 

few studies addressing plant uptake and metabolism of ferro- and ferricyanide being 

found (Ebbs, 2004; Samiotakis and Ebbs, 2004 and references therein).   

6 CONCLUSIONS 

A literature review on the mineralogy, aqueous solution chemistry and toxicity of the 

trace elements lead, cadmium, mercury, arsenic, antimony, bismuth, selenium, and 
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tellurium in gold processing by cyanidation is presented.  The review compiles the 

current knowledge in this area and highlights the gaps in the current knowledge and 

understanding.  

6.1 Lead, cadmium and mercury 

The principal sulfide minerals are galena (PbS), greenockite (CdS) and cinnabar 

(HgS).  Lead(II) has a very low solubility under gold cyanidation conditions forming 

the relatively insoluble hydroxide, whereas cadmium minerals dissolve to form a 

range of relatively weak cyano-complexes that are readily dissociated, and report as 

WAD cyanide.  The mercury cyano-complexes are much stronger and persistent in 

tailings solutions and the environment.   

Lead, cadmium and mercury are heavy metals and are all very toxic to humans, with 

cadmium and mercury being classified as human carcinogens.  They are also toxic to 

plants and animals, especially the aqueous species.   

6.2 Arsenic, antimony and bismuth 

Arsenic and antimony are metalloids.  The most common arsenic sulfide minerals are 

realgar (As4S4), orpiment (As2S3), and arsenopyrite (FeAsS).  The antimony mineral 

associated with gold is stibnite (Sb2S3), and bismuth is generally found as 

bismuthinite (Bi2S3).   

In alkaline waters, both arsenic and antimony can be present in solution at very high 

concentrations as oxy- or hydroxy-anions.  Bismuth is insoluble accept under acidic 

conditions and in alkaline solutions precipitates as bismuthyl salts or bismuth 

hydroxide (Bi(OH)3) or oxyhydroxide (BiOOH).   
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Their compounds are classified as "toxic" and "dangerous for the environment”.  In 

general, arsenic and antimony (III) compounds are more toxic than the arsenic and 

antimony (V) compounds respectively.  While arsenic is recognised as a carcinogen, 

antimony(III) is not.  Bismuth, a metal, is less toxic and is not a carcinogen.   

6.3  Selenium and tellurium 

Selenium occurs with sulfide minerals as selenides while tellurium is found as 

tellurides of gold and silver.  Selenide minerals have been reported to form 

selenocyanate (SeCN−) during cyanidation, which may predominate over the 

oxyanions selenite and selenate under certain conditions, but was not predicted in 

current models produced using OLI and JESS.  Tellurocyanate is unstable with 

tellurite being the most stable oxyanions except under oxidising conditions at high pH 

where tellurate may form.   

Selenium is an essential trace element for human health but is toxic in excess.  

Selenates and selenites are very toxic, with a mode of action similar to their arsenic 

analogues.  Soluble tellurium and its compounds are highly toxic to most micro-

organisms and also toxic to humans.  Neither is considered to be carcinogenic.  

The application of two currently available software packages (JESS and OLI) for 

thermodynamic modelling of these trace elements in cyanidation solutions has been 

investigated.  The results have shown significant differences between the models, and 

have highlighted the need for further development of these software packages, as well 

as further input to their databases to produce more accurate models of the systems 

under study.  
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Table 1: Estimated NPI Reported Emissions (2007-08) from metal ore mining 

and basic non-ferrous metal manufacturing in Australia (tonnes/year). 

Metal ore mining Pb Cd Hg As Sb Se 

Air 220 5.9 1.4 55 2.5 2.9 

Water 13 1.4 <0.1 3.1 1.5 1.0 

Total 240 7.4 1.4 60 5 4 

Basic non-ferrous 
metal manufacture 

Pb Cd Hg As Sb Se 

Air 340 15 8.7 72 21 0.8 

Water 2.9 0.6 <0.1 1 0.6 0.5 

Total 340 16 8.8 74 22 1.4 

  

Table 2: WHO (2001) and NHMRC (2004) drinking water guidelines and 

ANZECC (2000) Guidelines for protection of freshwater aquatic species (µg/L) 

Guideline1 Pb Cd Hg As Sb Se 

WHO 

NHMRC 

ANZECC (99%) 

10 

10 

1 

3 

2 

0.06 

6 

1 

0.062 

10 

7 

1.83 

20 

3 

- 

10 

10 

54 

1 There are currently no guidelines for bismuth or tellurium. 

2 Hg (inorganic)      

3Total As (As(III) = 1 and As(V) = 0.8)      

4Total Se 
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Table 3.  Formation Constants, Log(βn/M−1), for Pb, Cd and Hg Complexes 
for aqueous solutions at zero ionic strength and 25oC (from Morel, 1983 and 
others as indicated). 

L n For Pb(L)n
2−n For Cd(L)n

2−n For Hg(L)n
2−n 

CN 

(Beck, 
1987) 

 

1 

2 

3 

4 

2.73 

4.33 

 

 

5.5 

10.6 

15.3 

18.9 

17.0 

32.8 

36.3 

39.0 

SeCN- 

(OECD, 
2005) 

1 

2 

3 

4 

 

2.24 

3.34 

3.81 

4.60 

- 

22.3 

26.8 

29.3 

OH 

 

 

1 

2 

3 

6.351 

11.11 

14.01 

3.9 

7.6 

- 

10.61 

22.01 

20.9 

Cl 

 

 

 

1 

2 

3 

4 

1.51 

2.11 

2.01 

- 

2.0 

2.6 

2.4 

1.7 

7.31 

14.01 

14.91 

15.51 

L n For Pb(L)n
2−2n For Cd(L)n

2−2n For Hg(L)n
2−2n 

SO4 

 

 

1 

2 

3 

2.71 

- 

- 

2.3 

3.2 

2.7 

2.5 

3.6 

- 

CO3 

 

1 

2 

6.51 

10.11 

4.72 

6.52 

- 

- 

1Powell et al., 2005, 2009 
2 Rai et al., 1991 
3Perera, 2001 
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Figure 1: Distribution of individual trace elements from JESS thermodynamic 
package (10−4 M of the target element, 7.7 mM NaCN, 14 mM NaCl, 2.88 mM 
MgSO4, and 1.12 mM CaCO3 with pH adjusted with HCl or NaOH) in air-
saturated solutions.  
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Figure 2: Distribution of individual trace elements from OLI thermodynamic 
package (10−4 M of the target element, 7.7 mM NaCN, 14 mM NaCl, 2.88 mM 
MgSO4, and 1.12 mM CaCO3 with pH adjusted with HCl or NaOH) in air-
saturated solutions.  
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