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Abstract 

This paper presents a new procedure for modelling the simultaneous heat and mass transfer in 

direct contact membrane distillation (DCMD) in a hollow fibre configuration. Iterative 

calculations in classic dimensionless analysis were applied to develop semi-empirical models, 

employing the analogy between heat and mass transfer. The procedure incorporated the 

significant effect of the membrane module‟s geometry: length, tortuosity of fibres in the 

bundle and fibres‟ size. Additionally, the new procedure showed the influence of the exponent 

β of Prandtl and Schmidt numbers on the validity of the models to simultaneously describe 

heat and mass transfer in the DCMD process. Current results agreed well with other analyses 

in the literature. The value close to 0.33 of β, as conventionally used, could be applied for heat 

transfer and minimal mass transfer. In other more intensive mass transfer cases, it was found 

that the values of β could go up to 0.55. The new models demonstrated a linear relationship 

between heat and mass fluxes and their respective driving forces, namely conductive heat flux 

against temperature gradient and mass flux against water vapour pressure difference across the 

membrane. Finally these semi-empirical models were applied to evaluate the performance of 

various hollow fibre modules of different length and types. 

Keywords: Direct Contact Membrane Distillation, DCMD, modelling, hollow fibre, shell side 

heat and mass transfer.  
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1. Introduction 

Direct contact membrane distillation (DCMD) is a selective membrane separation process 

driven by a vapour pressure gradient across a hydrophobic microporous membrane. The 

driving force for mass transfer in DCMD is created by the temperature difference across the 

membrane between a hot solution, the feed, and the cold permeate which is usually pure water. 

The membrane must be hydrophobic to avoid penetration of any liquid into the membrane 

pores. These pores are hypothetically filled with stagnant air. As a water vapour pressure 

gradient is formed across the pores, water molecules start to evaporate from the gas-liquid 

interface on the feed side, diffuse through the immobilised air in the pores, condense on the 

permeate side, and eventually are swept away with the permeate stream [1]. Due to the 

presence of a temperature difference across the membrane, heat and mass transfer 

simultaneously occur. As a result, multiple polarisations exist in DCMD as demonstrated in 

Fig.1. All symbols and abbreviations used in this figure and throughout the paper are shown in 

the nomenclature list. 

 

Figure 1 

 

DCMD has attracted interest from the research community due to its simplicity and ease of 

implementation, possibility of utilising waste heat, and a high potential of applicability in a 

wide range of areas [2]. This process has mostly been studied for application in desalination, 

waste water treatment and concentration of aqueous solutions [3] where removal of water 

from the feed is the main concern. DCMD also appears to be suitable for concentration of 

thermally sensitive liquid foods as it has demonstrated the ability to operate at low 

temperatures, and yet achieved high solid contents [4-7].  

However, low temperature DCMD has not been commercially practised due to its energy 

inefficiency [8-10]. Therefore, modelling of heat and mass transfer in DCMD is required as a 

prerequisite step for simulation and optimisation aiming at reducing the energy consumption 
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in the process. This paper focuses on a better modelling method for the transport processes in 

DCMD. 

Previous attempts [11, 12] to model the flux in DCMD used a value of 0.33 for the exponent β 

of Prandtl and Schmidt numbers in the calculations of Nusselt and Sherwood numbers and 

they had not been quite satisfactory. Different values of β that better describe the coupled heat 

and mass transfer in the process will be determined by a new method based on dimensional 

analysis. In the following sections, the configuration and model of a DCMD process will be 

presented, the problem will be formulated and solved for the new values of β. The model will 

be tested for its fitness in describing heat and mass transfer of a DCMD operation to 

concentrate a glucose solution by different hollow fibre modules (HFM). It will also be used to 

evaluate the different HFM types. 

 

2. Heat and mass transfer in DCMD in hollow fibre configuration 

For a hollow fibre configuration as in this study, heat and mass fluxes through the boundary 

layers and the total heat exchanged between the feed and the permeate are shown in Fig.2. 

Temperature and concentration profiles in this figure are dependent on the flow characteristics 

of the two streams and the heat and mass exchanges between them. Once these profiles have 

been determined the transmembrane water vapour pressure (WVP), which is the mass transfer 

driving force of the DCMD process, can be estimated by the well-known Antoine equation for 

pure water (the permeate) and the relationship between water activity, aw, of an aqueous 

solution and its WVP (the feed). These equations are well documented in the literature and can 

be found in [13-15] for example. Subsequently, Eq (1) is commonly applied in the calculation 

of DCMD mass flux. Other applicable mechanisms include the Schofield model [16] and the 

Dusty-gas model [17] but they will not be needed here. 

mMm
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Figure 2 

 

In Eq.(1), J is the mass flux, based on the internal surface area of the fibres;  /K1 , a 

membrane quality parameter, with  being the membrane porosity and  being pore tortuosity; 

and KM, a membrane‟s structural parameter. In this equation, the membrane vapour 

permeability Km can be estimated by the molecular diffusion law, modified for the cylindrical 

geometry of hollow fibres. This mechanism of vapour transport is considered the simplest, 

requiring the least input parameters, and has been successfully applied in a number of studies 

in DCMD on flat sheet membrane. 

 After the mass flux, the concentration of the feed and the temperatures at both membrane 

surfaces need to be determined. For this step, only a heat transfer model is needed on the 

permeate side while both heat and mass transfer models are required on the shell (feed) side.  

Hollow fibre module (HFM) is a configuration consisting of a bundle of hollow fibres housed 

in a shell. Although the fibres in the modules are not ideally straight, a flow of liquid inside 

the fibres, called the lumen side, can be considered as similar to that in cylindrical pipes. Thus, 

by allowing the cold water permeate to flow inside the fibres, readily available semi-empirical 

heat transfer models for a flow inside cylindrical pipes can be applied. This simplification 

however can not be made for the feed flow in the shell side due to the random distribution of 

fibres in this flow channel. Thus, modelling of heat and mass transfer in the shell side of a 

hollow fibre module became the focus in this study. 

As one of many membrane processes, “thin film theory” can be applied for the description of 

mass transfer in the feed boundary layer in DCMD. The validity of this theory has been well 

demonstrated in a number of numerical studies on DCMD and reverse osmosis, using the 

finite element approach [18-20]. There is a similarity between reverse osmosis and DCMD in 

that only water is being removed through the film layer next to the membrane surface. As a 

result, feed concentration at the membrane‟s surface in a hollow fibre configuration could be 
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determined as in Eq.(3). This theory has been used extensively in mass transfer analysis of 

membrane distillation [21, 22]; and osmotic distillation [23, 24].  















ff

oi
ffm

K.

rrJ
exp.CC         (3) 

In Eq.(3), the convective mass transfer coefficient Kf was estimated by applying the semi-

empirical mass transfer model which was assumed to be analogous to the heat transfer model 

in the same domain. This assumption is generally accepted due to the similarity of the two 

transport processes occurring in the same geometry [25, 26]. The analogy is detailed in Table 

1 with the models which needed to be developed. 

 

Table 1 

 

Based on the principle of convective heat transfer and the simultaneous occurrences of heat 

and mass transfer in DCMD, the heat balance of the system could be described as below in 

Eqs.(4) to (10). 

 Total heat lost by the feed and gained by the permeate due to temperature changes from 

the inlets to the outlets of the corresponding streams: 

  )TT(CmQ fofipff

F         (4) 

 )TT(CmQ pipoppp

P         (5) 

Neglecting the loss of heat through the HFM‟s insulation, the heat fluxes ascertained by 

Eqs.(4) and (5) should be the same, hence an average was accepted as indicative of the 

total heat exchanged between the feed and the permeate in the DCMD process. 

 )QQ(5.0Q PF

T         (6) 
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 Heat fluxes through the boundary layers due to convection: 

 )TT(hAQ fmffof        (7)  

 )TT(hAQ ppmpip        (8) 

 Heat flux through the membrane Qm. This heat flux included not only the conductive 

heat flux, but also the latent heat of water vapour transferred across the membrane. 

 vipmfmmim HJA)TT(hAQ      (9)  

 Overall heat balance of the system: 

 mfpT QQQQ         (10) 

The overall heat transfer coefficient was estimated as given in Eq.(11) with pmfmm TTT  . 

1

"fmvmp h

1

T/)H.J(h

1

h

1
U



















 ; where 

i

o
f"f

r

r
hh    (11) 

In the equations above, all heat and mass fluxes were based on the internal surface area of the 

fibres. Mean temperatures of the feed and permeate streams were approximated from the 

measured inlet and outlet temperatures as demonstrated in Eq.(12), while the conductive heat 

transfer coefficient of the porous membrane, hm, was estimated by Eq.(13), for cylindrical 

geometry of the hollow fibres, as based on its constituents – air and polymer. 

 
2
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3. Experimental setup 

Experiments were carried out on a lab-scale DCMD unit shown in Fig.3, concentrating 

glucose solutions of 30, 40, 50 and 60% (w/w) at temperatures of 25, 30, 35 and 40ºC at the 

feed inlet. Details of the hollow fibre modules PVDF (PV modules) and Halar (HL modules) 

used in the DCMD unit are specified in Table 2. 

 

Figure 3 

Table 2 

Feeds were glucose solutions, flowing in the shell side of the hollow fibre module at different 

velocities up to 0.8m.s
-1

. Permeate was pure water, flowing in the lumen side at a maximal 

constant velocity of 1.2m.s
-1

 and at constant inlet temperature of 10ºC. Due to the pressure 

limits of the membranes, the feed velocity could not go above 0.8m.s
-1

. During the 

experiments, the mass of water transferred from the feed into permeate over a period of 15 

minutes was precisely measured by the water level rising in pipette 13. This amount of water 

was then discharged via valve 14 back into bottle 2 to maintain a constant feed concentration 

in subsequent experiments. The temperatures at the inlets of the feed and permeate streams 

were controlled to the aforementioned levels, while those at the outlets were measured by 

thermometer 10 and recorded. The heat and mass transfer data were calculated following the 

steps described in section 4 below.  

 

4. Procedure for modelling heat and mass transfer in DCMD 

On the permeate side, heat transfer models for a laminar flow (Re < 2100) within a cylindrical 

pipe, expressed as Eqs.(14
a
) and (14

b
), were applied [27-29]. 

 Sieder-Tate model:   
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 Hausen model: 
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  if 100

L

d
PrReGz

hp

ppp   (14
b
) 

In both models, the subscript (p) stands for the permeate stream. 

4.1. Stage 1 of model development 

This stage aimed to develop a semi-empirical model, relating the hydrodynamic conditions of 

the system to heat and mass transfer in DCMD, in the form of Eq.(15) where constant A , and 

the exponents α and β, were to be determined by sequentially solving heat and mass transfer 

balances in the DCMD process. 

14.0

fm

f
fff PrRe.ANu 












 

 and 

14.0

fm

f
fff ScReASh 












 

  (15) 

Following was the calculation procedure: 

a. All physical properties of the feed and permeate solutions were calculated based on the 

bulk inlet and outlet temperatures. The convective heat transfer coefficient hp was then 

calculated from Eq.(14) using an iterative method with an absolute tolerance of 0.01. 

The surface temperatures on both sides of the membrane: Tpm and Tfm were given by 

Eq.(8), Eq.(9) and Eq.(10).  

b. Similarly, the convective heat transfer coefficient, hf, was determined from Eq.(7) and 

then Nusselt and Sherwood numbers were calculated. A loop started from this step 

with an initial value of β equal to 0.33 and was repeated until other values of β were 

found to well describe both heat and mass transfer. 
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c. On the feed side the convective mass transfer coefficient must be calculated as well. 

 
hf

WGf
f

d

D.Sh
K    where DG-W is the diffusivity of glucose in water at the 

average temperature T=(Tf + Tfm)/2 in the feed thermal boundary layer.  

d. Calculate the surface concentration on the feed side, based on the „thin film theory‟ 

applied on the external surface of the fibres as given in Eq.(3). 

e. Calculate the viscosity factor on the feed side 

14.0

fm

f
fF 












  once the surface 

quantities Tfm and Cfm are known.   

f. The exponent α and the constant A  in Eq.(15) were determined from a linear 

regression plot of )]F./(PrNuln[)ln(Re ffff

  with the initial value β = 0.33. This 

value of the exponent β is the one most widely used in the heat transfer literature when 

undertaking purely heat transfer investigations. This step was required to establish a 

framework for determination of the constant A  = exp(intercept) and the exponent α = 

(slope) once a value of β has been accepted. 

g. In order to determine the value of β that would provide the best description of both 

heat and mass transfer in DCMD, repeat step (f) with different value of β. For each 

new value of  and A  found, Cfm, by Eq.(3), and the surface temperatures, Tfm, by 

Eq.(16), and Tpm by Eq.(17) were recalculated. This was done by using the heat and 

mass transfer coefficients estimated by the newly obtained model and the 

experimentally measured data. These equations were derived by equating the heat and 

mass transfer balances described by Eqs.(7) to (10). 
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m
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h

h
1hh

HJh)TT(
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i

o
f"f

r

r
hh  .   (17) 

Referring to Eq.(1), coefficient Km, the membrane water vapour permeability, could be 

varied slightly due to its dependence on the temperature of the membrane wall. Two 

linear regression curves describing heat and mass transferred were plotted, with 2
massR  

and 2
heatR , coefficients of determination for mass and heat transfer, respectively.  

 )PP(PJ pmfmm  ; with 2
massR . 

 pmfmmvimcond TTT)H.J.AQ(Q  ; with 2
heatR . 

The slopes of the regression curves respectively represented the membrane structural 

parameter KM, as defined in Eq.(2), and the products of )hA( mi  . The best value of β 

would maximise the sum )RR( 2

heat

2

mass  , which could simultaneously describe heat 

and mass transfer in the DCMD process. An example of these linear regression plots 

will be presented in Fig.5 of the result and discussion section. 

4.2. Stage 2 of model development 

This stage aimed to include the effect of the module‟s length on heat and mass transfer. In 

each type of the hollow fibre module investigated in this work, length was the only structural 

parameter being varied. Consequently, it could be assumed that the effects of the 

hydrodynamic conditions (indicated by α) and the ratio of momentum diffusivity over heat and 

mass diffusivity (indicated by β) on DCMD heat and mass transfer were the same regardless 

of the module length within the range from 150 to 350 mm. Therefore, a new model 
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represented by Eq.(18), having the same α and β as in Eq.(15), was developed to include a new 

term (dhf/L) which could describe the effect of the length of the module. 

14.0

fm

fhf
fff .
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d
.Pr.Re.BNu 
























 and 

14.0

fm

fhf
fff .

L

d
.Sc.Re.BSh 
























  (18) 

Experiments in the second stage working with the short module groups of all types of hollow 

fibre were modified to work at two initial feed concentrations, Cf = 30 and 35% w/w,  two 

feed velocities, ωf = 0.4 and 0.8 m.s
-1

, and one feed inlet temperatures, Tfi = 35°C. The 

designed experiments would yield enough data points to investigate the effect of module 

length on heat and mass transfer. Steps a to e of stage 1 were repeated with known α and β. 

Finally, a linear regression plot of )L/dln()]F.Pr./(ReNuln[ hfffff   was created, to obtain 

slope  and B  = exp(intercept) of the regression curves. 

5. Results and Discussion 

Microsoft-Excel spreadsheets were constructed to process the calculations in stage 1, as 

scheduled in Fig.4. The best value of β, A  and α in the heat and mass transfer models for the 

feed side, as shown in Eq.(15) were found. The procedure was applied for the feed side only. 

For each value of β, the plots mPJ   and mcond TQ   were observed, and coefficients 

of determination 2
massR , 2

heatR  and their sum were recorded. 

Figure 4 

It was found that increasing β from 0.30 to 1.00 improved the linearity of the plot 

)]F/(PrNuln[)ln(Re ffff  
, but rapidly worsened the linearity of the plots mPJ   and 

mcond TQ   when β became greater than 0.60. Two examples of the mentioned plots due to 

different values of the exponent β are shown in Fig.5 and Fig.6. It could be concluded that 

good linearity of the plot )]F/(PrNuln[)ln(Re ffff  
 does not necessarily mean that the 

model derived from that plot could adequately describe the simultaneous heat and mass 

transfer in DCMD.  
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Figure 5 

 

Figure 6 

The effect of β on the sum of ( 2
massR  + 2

heatR ) is illustrated in Fig.7, and the best β was picked 

at its peak. At these values of β, details of the models developed are listed in Table 3. The 

obtained values of β showed that 0.33 was no longer the most suitable exponent for the Prandtl 

and Schmidt numbers in DCMD, due to the simultaneous occurrences of heat and mass 

transfer. It appeared that the best β was influenced by not only the mass flux, but also the type 

of hollow fibres. One possible explanation is that higher mass flux leads to a thicker 

concentration boundary layer on the feed side. This also affects the thermal boundary layer, 

due to the heat transport associated with mass transfer. Thus, the role of the Schmidt and 

Prandtl numbers in the model was influenced by mass transfer in DCMD, and eventually 

meant adopting new values for β other than 0.33, depending on the mass transfer rates 

achieved by each type of hollow fibre. 

 

Figure 7 

 

Table 3 

The geometry parameter A  in the models varied considerably amongst the modules. This was 

probably due to the differences of the fibre sizes, their physical properties, and their 

distribution within the shell. The obtained exponents α, ranging from 0.63 to 1.06,  indicated 

that the flow through the shell side was in the transitional to turbulent regime, even though the 

highest Reynolds number was only 470. This phenomenon was due to tortuosity of the hollow 

fibres in the bundle. More tortuous fibres had a higher likelihood of causing turbulence than 

the others, hence produced a higher value of α. As shown in Fig.8, fibres PV37 and PV65 

were much more tortuous than the others, and consequently, much higher values of α were 
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obtained for them. Fibres PV80, HL50 and HL31 were of similar straightness, hence their 

exponents α were almost the same. 

Figure 8 

Calculations for stage 2 were carried out in similar ways, which included all the data on 

modules of all lengths. Then, the plot of )L/dln()]F.Pr./(ReNuln[ hfffff   was created, with 

Nuf being the experimental Nusselt number of the feed flow, and α and β being the newly 

obtained exponents in stage 1. This plot is shown in Fig.9. The slopes and intercepts of the 

lines were then taken to estimate the exponent φ and the constants B  in model Eq.(18) 

accordingly. The graph showed that under similar operating conditions, heat and mass transfer 

were more intensive in shorter modules. This phenomenon was expected, since shorter 

modules meant a shorter contact time of the fluids with the membrane surface, resulting in a 

smaller drop in the fluids‟ temperatures while flowing through the membrane module. As a 

result, the transmembrane temperature difference was higher in short modules than in the long 

ones when the same operating conditions were applied, thus more intensive heat and mass 

transfer occurred. 

Figure 9 

Details of the final models are listed in Table 4. It can be seen that the exponent φ for all the 

modules were relatively comparable to each other, and varied around unity.  

Table 4 

The outcome of exponent φ being higher than α in all cases indicated that length had a greater 

effect on heat and mass transfer in DCMD than the Reynolds number. In other words, 

reducing the length, L (or increasing dhf/L), was more effective than increasing the feed 

velocity at improving the rate of heat and mass transfer. Moreover, the ratio (φ/α) appeared to 

be proportional to the straightness of the fibres and the equivalent diameter, dhf, of the feed 

flow channel, highlighting the more important role of length in, for example, module PV80 

than in PV37. Reducing the module‟s length may not be an economical or practical solution in 
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the DCMD concentration operation, but increasing the diameter of the feed flow channel could 

be considered to improve the heat and mass transfer. 

The validity of the newly developed models was assessed by the linearity of the plots between 

the heat and mass fluxes versus their corresponding transmembrane driving forces as shown in 

Fig.10. For comparison purpose, this assessment was also carried out for the heat transfer 

model proposed by Kreith and Bohn [30] since it had been used by Khayet et al. [21] for 

analysing DCMD heat and mass transfer in the shell side of a hollow fibre module. The plots 

in Fig. 10 clearly showed that the newly developed models could better describe both heat and 

mass transfer in DCMD than the one proposed by Kreith and Bohn. This is an indication that 

the new modelling method offered in this study is more advantageous than using non-linear 

regression softwares since it correlates two sets of data for heat and mass transfer 

simultaneously, while not violating the theory of their analogy.  

 

Figure 10 

 

Applying the newly developed models Eq.(18) resulted in a relatively good linearity for the 

plots mcond TQ   and mPJ  . These graphs are shown in Fig.11 and Fig.12, with the 

slopes respectively indicating the products of the membrane area and its thermal conductivity 

(Ai.hm), and the structural parameter, KM, of the corresponding fibres. It is desirable that the 

DCMD process be operated at minimum heat loss with maximum mass flux across the 

membrane from the feed to permeate. In other words, a membrane considered suitable for 

DCMD, must possess the combined properties of high heat resistance and high vapour 

permeability. Clearly, hollow fibre PV80 appeared to be the least vapour-permeable 

membrane, and is therefore not suited in DCMD application, when mass flux is the main 

concern. Hollow fibre PV37 was highly thermally conductive and possessed the second least 

vapour-permeable property, and is therefore also not suitable for DCMD application. Halar 

fibres HL50 and HL31, with their heat resistance close to that of PV80, the highest amongst 
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the five types of fibres tested, yet far better vapour permeability, seemed to be the most 

desirable membranes amongst the studied hollow fibres for DCMD. 

 

Figure 11 

 

Figure 12 

 

 

6. Conclusions 

A procedure for modelling transport processes in DCMD within a hollow fibre module was 

developed, by adopting the analogy between heat and mass transfer in a dimensional analysis 

framework. Models in the form of 
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.Sc.Re.BSh 

























were developed in 

this study, to describe the simultaneous heat and mass transfer in DCMD. The exponent, α in 

the models, indicating the hydrodynamic conditions, were found to be indirectly proportional 

to the tortuosity of fibres in the bundle. The results showed that β = 0.33 was no longer the 

most suitable exponent for the Prandtl number in a semi-empirical model for heat transfer in 

DCMD. Indeed, β, indicating the ratio of momentum diffusivity over heat and mass 

diffusivity, may vary due to the specific conditions of the system, especially the mass transfer 

rate. At high mass transfer rate, the values of β were higher than 0.33 and could be up to 0.55 

as found in our experiments. The models developed in this work successfully described heat 

and mass transfer in DCMD and showed linear relationships between heat and mass transfer 

rates and their respective driving forces. They also showed that the effect of fibre length could, 

under some circumstances, be greater than that of velocity on heat and mass transfer. 
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Heat and mass transfer analysis by the newly developed models showed that among the 

studied membranes, Halar fibres possessed the combinational qualities that were desirable for 

an efficient DCMD operation. These qualities included the co-occurring low thermal 

conductivity (heat resistant) and high vapour permeability (mass conductive). In contrast, 

PVDF fibres were found to be either heat resistant but mass resistant (PV80) or mass 

conductive but heat conductive (PV37), or in-between the two extremes (PV65) and therefore 

not desirable in DCMD.  
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Nomenclatures 

Capital letters 

Ai, Ao internal, external surface area of hollow fibres, (m
2
) 

C concentration of a solution, (% w/w) 

Cpx specific heat capacity of material in the (x) domain, (J.kg
-1

.K
-1

) 

DG-W diffusivity of glucose in water, (m
2
.s

-1
) 

Dw-air diffusivity of water vapour through stagnant air, (m
2
.s

-1
) 

Ff viscosity factor on the feed side 

J mass flux, (kg.m
-2

.s
-1

) 

Kf convective mass transfer coefficient on the feed side, (m.s
-1

)  

K1 membrane quality parameter, K1= ε/ τ 
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41 
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KM membrane structural parameter 

Km membrane‟s vapour permeability, (kg.m
-2

.s
-1

.Pa
-1

) 

M water molecular weight, (kg.kmol
-1

) 

P water vapour pressure, (Pa) 

Q
x
 heat flux gained or lost by the (x) stream (x = F for feed or x = P for permeate), (W) 

Qx heat flux across the (x) domain, (W) 

Qdiff heat flux due to mass diffusion, (W) 

Qcond heat flux due to conduction, (W) 

QT total heat flux, (W) 

R universal gas constant, (m
3
.Pa.kgmol

-1
.K) 

T temperature, (°C or K) 

U overall heat transfer coefficient, (W.m
-2

.k
-1

) 

Ylm log-mean molar fraction of air in membrane pores

Lower case letters 

aw water activity of a solution 

h heat transfer coefficient, (W.m
-2

.K
-1

) 

k thermal conductivity, (W. m
-1

.K
-1

) 

m  mass flow rate of a stream, (kg.s
-1

) 

ri /ro internal/external radius of hollow fibres, (m) 

Greek letters 

∆Hv latent heat of vaporisation of water, (J.kg
-1

) 

∆Px Vapour pressure difference across x-domain 

α, β, φ exponents in semi-empirical models 

ε membrane porosity 

µ viscosity, (Pa.s) 

ρ density, (kg.m
-3

) 

τ membrane pore tortuosity 

ω fluid velocity, (m.s
-1

) 
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Subscripts 

air air 

b in the bulk 

f feed or feed domain 

fm at feed membrane surface 

fi, fo feed inlet, outlet 

m membrane, or membrane surface 

p permeate or permeate domain 

pl membrane polymer 

pm at permeate membrane surface 

pi, po permeate inlet, outlet 

Dimensionless numbers used in semi-empirical equations 

Nu Nusselt number  

Gz Graetz number 

Pr Prandtl number  

Re Reynolds number 

Sh Sherwood number  

Sc Schmidt number
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Fig.2: DCMD heat and mass fluxes through boundary layers in hollow fibres (a); and total 

heat exchanged between feed and permeate (b) 
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(1, HFM; 2, feed bottle; 3, permeate bottle; 4 and 5, pumps; 6, hot water bath; 7, 

cool water bath; 8, flow meters; 9, pressure gauges; 10, thermometers; 11 and 12, 
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This loop was 

applied on the 

feed side only 
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Fig.6: Plots )]F/(PrNuln[)ln(Re ffff  
; mPJ  ; and 

mcond TQ   at β = 0.45 for module HL50 
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Fig.7: Effect of exponent β on the overall description of heat and mass 

transfer by the semi-empirical models developed in stage 1 
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Fig.8: Image of randomly taken bundles of the studied hollow fibres 
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Fig.9: Effect of length on heat and mass transfer in HFMs 

(Error bars are standard deviations of the data) 
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Fig.10: Linear relationship between mass and heat fluxes versus their corresponding 

transmembrane driving forces by the models for module PV80 

(a) – by model proposed by Kreith and Bohn [30], (b) – by model developed in this study 
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Fig.11: Linearity between conductive heat flux and transmembrane temperature difference 
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Fig.12: Linearity between mass flux and transmembrane water vapour pressure difference 
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Table 1: Analogous dimensionless numbers in heat and mass transfer models 

In heat transfer model In mass transfer model 

Nusselt: 
k

dh
Nu h

  Sherwood: 
WS

h

D

dK
Sh




  

Reynolds: 



 hd

Re  Reynolds: 



 hd

Re  

Prandtl: 
k

C
Pr

p 
  Schmidt: 

WSD
Sc




  

Model: 

)geometry,Pr,(RefunctionNu   

Model: 

)geometry,Sc,(RefunctionSh   
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Table 2: Specifications of the hollow fibre modules used in DCMD experiments 

Code n   

% 

di 

mm 

L 

mm 

LT 

mm 

Ai 

cm
2 

Al  

mm
2
 

Ash 

mm
2
 

dh 

mm 

PV37 

PV37-2 

PV37-1 

139 50.4 0.37 350 

250 

150 

400 

300 

200 

573.1 

409.4 

245.6 

15.4 42.0 0.550 

PV65 

PV65-2 

PV65-1 

54 50.1 0.65 350 

250 

150 

400 

300 

200 

385.9 

275.7 

165.4 

17.9 42.2 0.835 

PV80 

PV80-2 

PV80-1 

32 50.2 0.80 350 

250 

150 

400 

300 

200 

281.5 

201.1 

120.6 

16.1 42.2 1.032 

HL31 

HL31-2 

HL31-1 

128 50.2 0.31 350 

250 

150 

400 

300 

200 

436.3 

311.6 

187.0 

9.66 42.2 0.573 

HL50 

HL50-2 

HL50-1 

85 50.5 0.50 350 

250 

150 

400 

300 

200 

467.3 

333.8 

200.3 

16.7 41.9 0.681 

(n, number of fibres; , packing density; di, internal diameter of fibres; L, effective mass transfer 

length; LT, total length; Ai, internal mass transfer area; Al, Ash, cross-sectional areas in the lumen 

side and in the shell side, respectively; dh, equivalent hydrodynamic diameter of the shell side flow 

channel) 
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Table 3: The semi-empirical models as in Eq.(15) developed in stage 1 

Module 10
3
 * A  α β R

2
 

PV80 25.91 0.63 0.38 0.9327 

PV65 8.56 0.75 0.39 0.9478 

PV37 2.27 1.06 0.55 0.9580 

HL50 7.68 0.64 0.45 0.8874 

HL31 7.50 0.68 0.42 0.8594 
(R

2
, coefficient of determination of ln(Ref)  ln[Nuf/(Prf

β
.Ff)] plot) 
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Table 4: The semi-empirical models as in Eq.(18) for heat and mass transfer in DCMD 

Module B  α β φ R
2
 

PV80 7.03 0.63 0.38 0.96 0.9867 

PV65 6.42 0.75 0.39 1.09 0.9647 

PV37 4.39 1.06 0.55 1.16 0.9857 

HL50 2.83 0.64 0.45 0.95 0.9786 

HL31 2.41 0.68 0.42 0.89 0.9671 

(R
2
, coefficient of determination of the lines in Fig.9) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


