
D-Proxy: Reliability in Wireless Networks
David Murray

Murdoch University
D.Murray@murdoch.edu.au

Terry Koziniec
Murdoch University

T.Koziniec@murdoch.edu.au

Michael Dixon
Murdoch University

M.Dixon@murdoch.edu.au

Abstract—Packet corruption negatively affects TCP through-
puts because losses are interpreted as congestion. To enable
TCP to operate effectively over wireless networks, a number of
reliability techniques such as Forward Error Correction (FEC)
and Automatic Repeat Request (ARQ) are used. These provide
reliability at the expense of increased overheads. This study
provides experimental results of a new distributed Performance
Enhancing Proxy (PEP) called D-Proxy. This proxy can provide
reliability to wireless links with minimal overhead. The results
show that D-Proxy can provide near-optimal performance in the
presence of high loss rates. It is suggested that D-Proxy could be
used to replace current ARQ mechanisms.

I. INTRODUCTION

Transmission Control Protocol (TCP) was designed in the
70’s to provide reliable end-to-end service for applications.
During this period, Internet links were wired and reliable
and thus the majority of lost/missing packets were from
congestion. These losses occur when packets are transmitted
too fast, causing router buffers to fill. This is otherwise known
as congestion. When routers become congested, they will drop
packets to alleviate congestion. Dropping packets is used as
a signal to inform the TCP sender that it is sending too
fast. Upon the detection of packet loss, the TCP sender will
react by reducing the TCP congestion window, slowing the
transmission speed. Since the original design of TCP, there has
been considerable deployment of wireless technology across
the Internet.

Wireless technologies are fundamentally different from cop-
per and fibre based technologies as they have significantly
higher Bit Error Rates (BERs). Higher error rates lead to
dropped packets, which unfortunately, get interpreted by TCP
as congestion. These “congestion” events cause reductions in
TCP’s window leading to link underutilisation. To prevent
packet losses from being interpreted as congestion, wireless
links implement Forward Error Correction (FEC) and Auto-
matic Repeat Request (ARQ) to reduce packet loss.

II. FEC AND ARQ

FEC is the process of adding redundant bits to accommodate
small amounts of packet corruption. Varying levels of FEC
are added to different technologies based on the degree of
unreliability. This leds to a trade-off. Higher levels of FEC will
increase reliability but lower the data rate due to overheads.

If FEC is unable to correct errors, ARQ is used to recover
the entire frame. Send and wait error detection is the most
simple and commonly used form of ARQ. The sender will
send a data packet and wait for an individual ack before

sending the next data frame. As the sender has no knowledge
of the transmission success, both the data packet and the ARQ
ack must be successful.

ARQ does not provide perfect reliability because it will
only retransmit packets a finite number of times. In many
applications, latency can be more important than reliability.
For example, in voice telephony, random losses as high as
2% do not cause audible speech degradation [1] but delayed
and jittery delivery do. Another reason why ARQ schemes
only transmit a finite number of times is because excessive
reattempts of the same transmission may cause fairness issues
between TCP flows [2]. When ARQ fails to reliably send a
packet, TCP will recover the loss, but; as the loss will be inter-
preted as congestion, there will be a significant performance
penalty.

Newer ARQ mechanisms used in recent WiFi and WiMAX
amendments use block acknowledgements to lower the ARQ
overhead [3]. BlockAcks reduce the overhead by acknowledg-
ing a series of packets with a single acknowledgement. This
reduces the number of acknowledgements sent, lowering the
overhead. This can create contention and fairness issues [4],
[5] because it requires a single transmitting station to have
lengthy medium access. During this time, other stations will be
unable to transmit or receive packets. BlockAcks also increase
link delays. As packets are being sent and received in blocks,
the OS cannot process any of the packets until the entire block
is successfully received.

The cost of using link layer ARQ to hide link losses from
TCP imposes a significant overhead. It has been found that
ARQ in 802.11 consumes as much as 22% of the transmission
time [6]. The use of BlockAcks can reduce this overhead
to 10% but introduces a number of complications described
above [4], [5]. Removing acknowledgements yields significant
gains in performance. Put simply, the time that was previously
spent sending acks can be used for the transmission of actual
data. The aim of this paper is to investigate this overhead
problem which plagues all wireless technologies. Two lines
of investigation are taken; increasing TCP’s intelligence to
prevent the misinterpretation of loss as congestion, and using
Performance Enhancing Proxies (PEPs) to provide wireless
reliability with less overhead. We begin with an examination
of TCP.

III. TCP IMPROVEMENTS

Improving wireless performance using TCP is ideal because
only end host devices need to be updated to improve capacity.

2010 16th Asia-Pacific Conference on Communications (APCC)

978-1-4244-8129-3/10/$26.00 ©2010 Crown 129

The caveat is that TCP modifications must improve wireless
performance without disadvantaging wired TCP transactions.
As a result, TCP improvements tend to be evolutionary.

The aim of TCP congestion control is to send packets from
the source to the destination, as quickly as possible, without
causing congestion on intermediate routers. TCP does this
by building a congestion window. This window dictates the
number of packets allowed to be unacknowledged between
the source and the destination.

Lost packets are used as a sign of congestion. The TCP
receiver will signal packet loss by sending duplicate acknowl-
edgements. Upon reception of three duplicate acks, TCP New
Reno will resend the packet and halve the congestion window.

The problem with wireless packet loss is not reliability be-
cause TCP ensures reliable delivery end-to-end. The problem
is that losses are treated as congestion; causing reductions in
the TCP congestion window and lowering the transfer rate.
TCP operates in this manner because traditionally, congestion
is the primary cause of packet loss. ARQ mechanisms were
introduced for the simple purpose of preventing link losses be-
ing interpreted as congestion. This section investigates whether
TCP optimisations can prevent this mis-interpretation. Numer-
ous solutions have proposed to improve the performance of
TCP over wireless links.

A. Westwood

TCP Westwood [7] was created as an alternative con-
gestion control mechanism specifically designed for wireless
networks. It mimics TCP Reno operation with exponential
growth during slow start and linear growth during congestion
avoidance phases, however, Westwood’s response in the case
of packet loss is different. Based on the packet sizes and
Round Trip Time (RTT) estimates, Westwood uses a series
of equations to estimate the bandwidth usage of the link.
When a packet is lost, the window is reset to the bandwidth
estimate rather than halved. Further details of the mathematical
derivation of the bandwidth estimates can be found in [7].

B. SACK

Selective ACKnowledgements (SACK) [8] are a TCP ex-
tension that enhance recovery when multiple packet losses
occur within a RTT window. It is anecdotally recognised
that wireless networks experience short bursts of packet loss.
Losing multiple packets in the same RTT is problematic for
pre-SACK TCP because cumulative acks can only hold the
information of the first lost packet. SACK can specify which
blocks of data, following the loss have been successfully
received. By informing the sender which packets have been
received, and which packets must be resent, multiple lost
packets can be recovered in one RTT. SACK is proven to
be beneficial [9] for error recovery in wireless networks
and thus has been implemented in all major OSs. SACK is
an acknowledgement mechanism and is therefore capable of
being used alongside congestion control mechanisms such as
NewReno and Westwood.

C. Explicit Loss Notification

As TCP (mis)interprets packet loss as congestion, many
[10], [11] have postulated that if packet loss and congestion
could be signalled differently, TCP could make appropriate
window adjustments. In the case of congestion, the TCP sender
could slow down. Alternatively, if interference or collisions
caused the loss, the congestion window could be maintained.

Balakrishnan et al [11] suggested that that some wireless
losses could be interpreted at the TCP receiver. If a packet
with a corrupt Cyclic Redundancy Check (CRC) is received
by a TCP receiver, it could inform the sender that the loss
was not caused by congestion. This solution is problematic
because if the CRC is incorrect, it is also likely that either;
the TCP header is corrupt and unidentifiable or, the packet will
be dropped before reaching the TCP receiver due to a corrupt
CRC in the IP header.

Base station Explicit Loss Notification (ELN) implemen-
tations are another alternative [10]. If wireless base stations
could detect packet loss, they could inform senders using
ICMP messages or by tagging returning TCP acks. The
difficulty is determining whether a transmission was success-
ful. Base station implementations of ELN typically monitor
the success of ARQ acknowledgements. As this research is
attempting to reduce or remove the ARQ overhead, this option
is of little interest. A mechanism that could separate packets
lost due to errors and packets lost due to congestion is the
panacea that has thus far proved unattainable.

IV. PERFORMANCE ENHANCING PROXIES

PEPs are described in RFC 3135. They can be used in a
variety of circumstances, however, their generally described
purpose is mitigating link related degradations. This study will
investigate whether PEPs are capable of providing reliability
to wireless links with less overhead than ARQ mechanisms.
Split-TCP and Snoop are commonly described PEPs.

A. Split-TCP

Split-TCP PEPs [12], [13], segment a TCP connection by
capturing the SYN and SYN-ACK packets that are used to
setup a TCP session. Split-TCP will rewrite these packets to
imitate each side of the transaction. One advantage is a large
reduction in TCP perceived Round Trip Times (RTTs). Real
end-to-end latencies will be the same, however, by splitting
the link, the TCP sender can receive acks more quickly,
building the congestion window faster and thereby completing
faster. Subsequently, Split-TCP is commonly used in satellite
networks which feature large RTTs.

Split-TCP can also be used to hide losses in low RTT
wireless by placing the PEP between the wireless link and
the TCP sender. If the latency between the PEP and the
TCP receiver is small enough, losses on the wireless link do
not affect performance because only a small TCP window is
required to fill low latency connections.

Unfortunately, Split-TCP has numerous problems. Firstly
it breaks TCP end-to-end semantics [14]. This means that
when a TCP sender receives a TCP ack, the actual packet

130

Fig. 1. The operation of Snoop is reactive. Snoop will attempt to resend a
packet after a loss has occured

may not have reached the real TCP receiver. If that packet is
currently buffered on the PEP, and the path to the actual TCP
receiver breaks, unforeseen application layer problems may
arise. Split-TCP is also not capable of accommodating route
changes between the TCP sender and the PEP [14]. Finally,
numerous security protocols will not work through Split-TCP
[14]. For these reasons, Split-TCP is not recommended as a
general solution to lossy wireless links [14].

B. Snoop

The Snoop proxy [15], [14] is an alternative to Split-TCP. It
avoids the afore mentioned problems because it doesn’t split a
TCP connection, but instead, detects losses by monitoring TCP
acknowledgements. Duplicate acks are a sign of packet loss.
Snoop will filter duplicate acknowledgements and retransmit
the lost packet. In ideal scenarios, the TCP sender will be
oblivious to the loss. Fig 1 demonstrates the basic operation
of Snoop.

A problem is that the protocol [15], [14] does not specify
what should happen if the retransmitted packet is also lost. It
also fails to specify how many duplicate acks should be filtered
before resending the lost TCP segment. Furthermore, a number
of studies suggest that Snoop is unable to completely hide
TCP losses due to interoperability problems between SACK
and Snoop [16], [17], [18].

V. D-PROXY

A. Basic Proxy Design and Implementation

D-Proxy is a new proactive distributed TCP proxy that we
designed to overcome the limitations of Snoop and Split-TCP.
D-Proxy is distributed because it uses a proxy either side of the
lossy link. It is proactive because, instead of using TCP acks

Fig. 2. D-Proxy is proactive; recovering and reordering packets before
relaying them to the TCP receiver

as confirmation of packet loss, the TCP sequence numbers
in the data packets are used. D-Proxy detects packet losses
in the same way that TCP receivers detect packet loss, the:
next seq num = curr seq num + payload size. A packet can
be recognised as missing when the received sequence number
is higher than expected. When this occurs, a request can be
sent to the previous proxy to request retransmission.

Fig 2 shows the basic operation of D-Proxy. The missing
packet is discovered because 5792 was sent when 4344 was
expected. When a loss is detected, D-Proxy buffers segments
from that TCP flow until the lost segment can be replayed and
reorganises them such that they are forwarded in sequence.

While the basic concept of D-Proxy is relatively simple, the
implementation required significant work. D-Proxy maintains
TCP state information and each flow is differentiated based
on source IP, destination IP, source port and destination port.
The individual packets being cached are identified within their
flow based on sequence numbers. D-Proxy was implemented
in Linux using the ip queue library which passes packets from
kernel space to user space for processing.

B. Inter Proxy Communication

D-Proxy buffers TCP flows until lost packets can be re-
covered and reordered, but, lengthy buffering can cause TCP
timeouts. Therefore, the speed at which D-Proxy can recognise
a loss, request retransmission and reorder the recovered packet
is of utmost importance. The core problem for D-Proxy is
that the burst losses, found in wireless networks, increase the
likelihood that D-Proxy packets requesting retransmission are
corrupt. Alternatively, packets requesting retransmission may
be successful but the data segment being retransmitted may
fail. Fig 3 demonstrates this unreliability problem. As a result
of this inter proxy unreliability, the mechanism used to request
the retransmission of lost packets was critical.

UDP sockets were used to re-request lost packets. We found
TCP error recovery too slow in scenarios where errors must be
detected and recovered on a millisecond time-scale. D-Proxy
uses UDP and its own fast reliability mechanisms. Note these

131

Fig. 3. Requests for packet retransmission and the retransmitted packet are
frequently lost

mechanisms had to provide fast two way reliability for both the
D-Proxy retransmission request and the actual retransmitted
data segment.

C. Timeouts

The scenario shown in Fig 3 is common. Two mechanisms
are used to infer that either the UDP retransmission request, or,
the retransmitted data segment have been lost. One mechanism
was timer based. The amount of time required to recover
missing packets is continually averaged. The moving average
of retransmission times will adapt to natural link latency and
link loads.

The duration of time to wait before sending repeat retrans-
mission requests is a trade-off. If a replayed packet is not
lost but merely waiting in buffers, or awaiting media access,
sending further retransmission requests for this packet will
only exacerbate delays and create superfluous retransmissions.
However, if the re-requested packet has actually been lost,
waiting too long before sending further retransmission requests
increases buffering and the likelihood of TCP time-outs. In
D-Proxy, missing packets are re-requested after two, three
and four times the average delay required to retransmit a lost
packet. On the fourth retransmission request, D-Proxy will no
longer hold the buffer awaiting that packets retransmission.
This timeout based retransmission mechanism provided perfor-
mance benefits, however, transfer rates were still suboptimal.
The process of reliably recovering packets, needed to be
quickened to reduce the amount of buffering on D-Proxy.

D. Retransmission Order

To reiterate, the problem being solved is the internal reli-
ability of the D-proxy retransmission request packet and the
actual data packet being retransmitted. Data packets that have
been lost are detected immediately, however, it is difficult to
determine the success of a D-Proxy request for retransmission
or the success of the retransmitted data segment.

Given that losses occur in bursts, we created a mechanism
which uses burst losses as an advantage. For example, lets
suggest that 10 packets are sent back-to-back within a TCP
flow. Due to the burst loss nature of wireless links, 3 of these
10 packets are lost. Individual UDP D-Proxy retransmission

requests will be sent for each of these three packets. As these
retransmission requests are sent in order, it is expected that
the retransmitted packets will also be resent in order. In D-
Proxy, if the second missing packet is received ahead of the
first missing packet, it infers that either the first retransmission
request or the first retransmitted packet was lost. A request for
the first missing packet will need to be resent. This mechanism
reduced the latency of packet recovery. Faster packet recovery
resulted in less buffering and significantly better performance.

E. Staggered TCP Catch-up

Under heavy losses, D-Proxy can sometimes queue many
packets. Upon the recovery of a missing packet, it is desirable
to avoid replaying all the buffered packets immediately as this
could be to the detriment of other TCP flows. D-Proxy will
send a maximum of five packets from a particular TCP flow
before rechecking the input buffer. If the next packet on the
ip queue input buffer is from a different flow, then that flow
will be serviced. If it is from the same flow, then another 5
packets can be sent from the buffer to the kernel. The purpose
of this mechanism is to stagger the catch-up that occurs after
recovering the holes of a TCP sequence. This reduces the
impact on other TCP flows and aids fairness.

F. Variable Per Flow Buffer Size

Similar to ordinary routers, buffering increases latency and
slows the reaction to congestion, however, some buffering is
important to allow missing packets to be re-requested, resent
and reordered for delivery. D-Proxy has a buffer size of 150
packets. With one TCP flow, the entire 150 packet buffer will
be utilised. The addition of more flows, will divide the buffer
equally. Therefore, if there are 5 flows, each flow will have
a buffer of 30 packets. Flows may exceed their buffer size.
For example, if there is one flow utilising a buffer of 150
packets and then 2 additional flows are added, the buffer size
will be reduced to 50 packets per flow. The 100 packets that
exceed the buffer size from one flow are not lost or dropped,
instead the oversize buffer will continue being processed, but
no packets that exceed the allowed buffer size will be reordered
in sequence. Retransmission requests may have already been
sent to fill the holes in the TCP sequence, however, D-Proxy
will no longer reorder packets that are exceeding the buffer
size. Receiving the lost packets out of order fortuitously causes
the TCP sender to slow down to accommodate the two new
flows.

VI. EXPERIMENT

Our experiment shows the performance of D-Proxy under a
range of conditions. We believe that D-Proxy is applicable to a
range of technologies and scenarios. The experimental aim was
therefore, to show the performance benefit of D-Proxy under a
range of loss conditions. Our experimental setup is deliberately
generic because we believe the results are applicable to many
wireless network technologies.

The testing setup is shown in Fig 4 and conceptually
emulates a 100Mb/s wireless link connected via 100Mb/s

132

Fig. 4. The conceptual and actual experimental test configurations

Ethernet to the Internet. The wireless link was emulated with a
dual NIC Linux machine which used Netem to create varying
levels of loss. The Internet was emulated by inserting 40ms
of delay. These link emulators were Intel Celeron 700Mhz
machines. The D-Proxy machines were P4 2.4GHz machines
with dual NICs. All machines used a variant of Ubuntu and
the TCP sender was running the Apache 2.0 web server. Two
types of lossy networks were emulated, very high loss and
high loss. The very high loss tests feature packet loss rates
linearly descending from 10% to 1% packet loss. The other
test results show packet loss rates on a logarithmic scale from
1x10−1 to 1x10−6.

Multi flow tests were performed whereby one host started
five simultaneous downloads of a file from an Apache web
server. The results are the amount downloaded (five copies
of the file), divided by the time when the last file download
completes. We believe this five flow test was a reasonable
test of TCP fairness. The limited Bandwidth Delay Product
(BDP) means that one flow typically does not fill the link,
and thus; to complete quickly, it is advantageous if all flows
finish simultaneously. Mechanisms which unfairly distribute
bandwidth between flows achieved lower scores. Single flow
tests were also performed, however, they have been omitted
due to space limitations. D-Proxy was compared with Standard
TCP Reno, TCP Westwood and Snoop.

VII. RESULTS AND DISCUSSION

The results shown in Fig, 5 and 6 show the performance
of the different solutions. There was a maximum capacity of
93.2 Mb/s imposed by the limits of the 100 Mb/s link.

Reno and Westwood show the worst performance. They
are end-to-end congestion control mechanisms and are clearly
not designed to hide very high loss rates between 10% and
1%. In these scenarios, Every lost packet is interpreted as
congestion, causing constant window reductions. At loss rates
between 10% and 1%, Westwood outperformed Reno by a
small margin, however, as loss rates decreased from 1x10−1

to 1x10−6 TCP Reno began to outperform Westwood.
Our results suggest that Snoop is unable to completely

hide losses from the TCP sender, resulting in suboptimal
performance. There are numerous reasons why we suggest that
Snoop is unable to hide losses end-to-end. Interoperation with
SACK is problematic because duplicate acks containing SACK

information are filtered and Snoop only recovers the packet
referred to in the cumulative ack [9]. Despite our attempts
to modify Snoop to utilise SACK, no significant performance
benefits were made. Another problem is that, after Snoop’s
initial retransmission of the lost packet specified in duplicate
acknowledgements, there is no mechanism to confirm of deny
the success of the retransmitted packet.

D-Proxy significantly outperforms Snoop in all scenarios
due to its proactive approach to packet recovery. By analysing
TCP sequence numbers, holes can be detected and filled
before they reach the final destination. This means that
packets are delivered to the TCP sender in order. The D-
Proxy code and the code used to test Snoop can be found
at http://bridgingthelayers.org/.

Despite D-Proxy’s obvious advantages over Snoop, it is
debatable as to whether D-Proxy performs better than link
layer ARQ technologies. This was impossible to test in this
experiment as we were artificially introducing loss by dropping
packets over an Ethernet link. Based on the adequate perfor-
mance of modern wireless networks, ARQ is able to hide link
layer losses using acknowledgements. This is evident because
the results in Fig 6 demonstrate that dropping 0.1% of packets
over a 50ms link would reduce the throughput by half. The
next section does not argue that D-Proxy can hide higher loss
rates from TCP, but that D-Proxy hides losses more efficiently.

A. D-Proxy/ARQ Analysis

D-Proxy is able to maintain and recover losses in very high
loss situations. It can perform this task using negative acknowl-
edgements. Unlike ARQ D-Proxy, will send a message when
a packet has been lost rather than for every successful packet.
Thus, the overhead of D-Proxy is minuscule (< 1%) compared
with traditional ARQ that consumes 22% of transmission time
[6].

More recent ARQ developments use BlockAcks to reduce
the ARQ overhead. With BlockAcks, groups of packets can be
acknowledged by a single ack. Despite the obvious efficiency
advantages over standard ARQ mechanisms, BlockAcks are
still a positive acknowledgement mechanism, whereas D-
Proxy is a negative ack mechanism. Prior work has suggested
that BlockAcks can reduce the ARQ overhead to 10% [4], [5]
in 802.11a/g technology.

Using BlockAcks requires frames to be sent and received in
blocks. OSs cannot start routing received frames onto the next
network segment until the entire block has been received. In D-
Proxy, packets are not grouped and are processed as received.

With BlockAcks, the loss of one packet will cause the
entire group of packets to be buffered awaiting the recovery
of lost frames. This occurs because BlockAck is not transport
layer aware. It must maintain order to prevent delivering mis-
ordered packets. Comparatively, D-Proxy packets get separated
into different TCP flows. The loss of one packet from a TCP
flow will only hold up subsequent packets from the same
TCP flow. We believe that D-Proxy will have lower overheads
and will be more TCP friendly than current ARQ technology,
however, it must be acknowledged that current comparisons

133

Fig. 5. Throughput of five TCP flows given losses of 10% to 1%

with ARQ are purely analytical. Future work must compare
basic ARQ and BlockAck with D-Proxy to provide substantive
evidence.

D-Proxy’s drawbacks are consistent with most PEPs: com-
plexity and layer violation. D-Proxy is more complex than
basic ARQ mechanisms and Snoop. However, D-Proxy is no
more complex than modern ARQ optimisations like BlockAck.
Transport layer security must also bypass the proxy mecha-
nism, however this function will occur automatically.

VIII. CONCLUSION

This research introduced a new TCP proxy capable of
hiding wireless losses from TCP. The experiments show that
D-Proxy can recover packets, over highly lossy links, and
can significantly outperform other competing solutions. The
scenario used to test D-Proxy was deliberately generic because
we believe it to be broadly applicable to a multitude of wireless
technologies. D-Proxy is proactive. It analyses the sequence
of data frames, recovering and reordering the packets for in
order delivery to the TCP receiver. The key benefit is that D-
Proxy is a negatively acknowledging proxy; sending messages
only when a packet is missing. Overall, we believe that the
performance of D-Proxy necessitates serious consideration as
a potential replacement for ARQ mechanisms.

REFERENCES

[1] Phil Karn, “The qualcomm cdma digital cellular system”, 1993.
[2] G Fairhurst and L Wood, “Advice to link designers on link automatic

repeat request (arq)”, IETF RFC 3366, August 2002.
[3] IEEE, “802.11e - ieee standard for information technology-

telecommunications and information exchange between systems-local
and metropolitan area networks-specific requirements-part 11: Wireless
lan medium access control (mac) and physical layer (phy) specifications-
amendment 8: Medium access control (mac) quality of service enhance-
ments”, IEEE Standards, 2005.

[4] Orlando Cabral, Alberto Segarra, and Fernando J Velez, “Implemen-
tation of multi-service ieee 802.11e block acknowledgement policies”,
IAENG International Journal of Computer Science, vol. 36:1, pp. 1,
June 2009.

Fig. 6. Throughput of five TCP flows given losses of 1x10−1 to 1x10−6

[5] Tianji Li, Qiang Ni, Theirry Turletti, and Yang Xiao, “Performance
analysis of the ieee 802.11e block ack scheme in a noisy channel”, in
IEEE BroadNets, 2005, pp. 551–557.

[6] David Murray, Terry Koziniec, and Michael Dixon, “Solving ack inef-
ficiencies in 802.11 networks”, in 2009 IEEE International Conference
on Internet Multimedia Services Architecture and Applications (IMSAA),
2009, pp. 1–6.

[7] Saverio Mascolo, Claudio Casetti, Mario Gerla, M. Y. Sanadidi, and Ren
Wang, “Tcp westwood: Bandwidth estimation for enhanced transport
over wireless links”, in ACM Mobicom, July 2001, pp. 287–297.

[8] Matthew Mathis, J Mahdavi, Sally Floyd, and A Romanow, “Tcp
selective acknowledgment options”, IETF FRC 2018, October 1996.

[9] Farooq Anjum and Leandros Tassiulas, “Comparative study of various
tcp versions over a wireless link with correlated losses”, IEEE/ACM
Trans. Netw., vol. 11, no. 3, pp. 370–383, 2003.

[10] Wenqing Ding and Abbas Jamalipour, “A new explicit loss notification
with acknowledgment for wireless tcp”, in 2001 12th IEEE International
Symposium onPersonal, Indoor and Mobile Radio Communications,, Sep
2001, vol. 1, pp. B–65–B–69 vol.1.

[11] Hari Balakrishnan, Venkata N. Padmanabhan, Srinivasan Seshan, and
Randy H. Katz, “A comparison of mechanisms for improving tcp
performance over wireless links”, IEEE/ACM Trans. Netw., vol. 5, no.
6, pp. 756–769, 1997.

[12] Ajay Bakre and B R Badrinath, “I-tcp: Indirect tcp for mobile hosts”, in
15th International Conference on Distributed Computing Systems, 1995,
pp. 136–143.

[13] M Luglio, M Y Sanadidi, M Gerla, and J Stepanek, “On-board satellite
”split tcp” proxy”, IEEE Journal on Selected Areas in Communications,
vol. 22, no. 2, pp. 362–370, February 2004.

[14] J Border, M Kojo, J Griner, G Montenegro, and Z Shelby, “Performance
enhancing proxies intended to mitigate link-related degradations”, IETF
RFC 3135, June 2001.

[15] Hari Balakrishnan, Srinivasan Seshan, Elan Amir, and Randy H. Katz,
“Improving tcp/ip performance over wireless networks”, in 1st Annual
International Conference on Mobile Computing and Networking, New
York, NY, USA, 1995, pp. 2–11, ACM.

[16] Jaehoon Kim and Kwangsue Chung, “C-snoop: Cross layer approach
to improving tcp performance over wired and wireless networks”,
International Journal of Computer Science and Network Security, vol.
7(3), pp. 131–137, 2007.

[17] Sarma Vangala and Miguel A. Labrador, “The tcp sack-aware snoop
protocol for tcp over wireless networks”, in IEEE Vehicular Technology
Conference, 2002.

[18] Fanglei Sun, Victor O.K. Li, and Soung C. Liew., “Design of snack
mechanism for wireless tcp with new snoop”, in Wireless Communica-
tions and Networking Conference, March 2004, vol. 2, pp. 1051–1056.

134

