DIRECTIVE WORDS OF EPISTURMIAN WORDS

A. Glen¹, F. Levé², G. Richomme²

1: LaCIM, UQAM 2: MIS, UPJV

Journées Montoises / Mons Days 2008

Introduction

- G. Richomme mentionned in the previous talk works about quasiperiodicity of episturmian words [GLR2008].
- He presented morphic decompositions of episturmian words which led us to the result.
- Doing this study, we wanted to know more about morphic decompositions of episturmian words: unicity, equivalences, . . .

Plan

- Directive words of episturmian words
 - Episturmian words and morphisms
 - Morphic decompositions of episturmian words
 - Spinned words

- 2 Many questions about directive words of episturmian words
 - Do all spinned infinite word direct a unique episturmian word?
 - Characterization of the words directing a common episturmian word
 - When does an episturmian word have a unique directive word?

Episturmian words and morphisms

Notions seen in the previous talk:

Let the morphisms L_a and R_a where, for all $a \in A$

$$L_a:\left\{\begin{array}{cc}a\mapsto a\\b\mapsto ab\end{array}\right.\ R_a:\left\{\begin{array}{cc}a\mapsto a\\b\mapsto ba\end{array}\right.\ \text{for all}\ b\neq a\in A.$$

Notation:

Morphisms obtained by composition of elements of $\mathcal{L}_A = \{L_a \mid a \in A\}$ and $\mathcal{R}_A = \{R_a \mid a \in A\}$ are called "pure episturmian morphisms".

[Justin Pirillo 2002]

- A word is episturmian if and only if it can be infinitely decomposed over pure episturmian morphisms.
- A word is epistandard if and only if it can be infinitely decomposed over morphisms in \mathcal{L}_A (pure epistandard morphisms).

Morphic decompositions of episturmian words

[Justin Pirillo 2002]

A word is epistandard if and only if it can be infinitely decomposed over pure epistandard morphisms.

Example

```
w = abaababaabaababaababaabaabaaba...
```


Morphic decompositions of episturmian words

[Justin Pirillo 2002]

A word is epistandard if and only if it can be infinitely decomposed over pure epistandard morphisms.

Example

$$w=a$$
baababaabaabaabaabaabaabaabaaba $\dots \quad L_a \left\{egin{array}{c} \mathsf{a} \mapsto \mathsf{a} \mathsf{b} \ \mathsf{b} \mapsto \mathsf{a} \mathsf{b} \end{array}
ight.$

$$w = L_a(b)$$

Morphic decompositions of episturmian words

[Justin Pirillo 2002]

A word is epistandard if and only if it can be infinitely decomposed over pure epistandard morphisms.

Example

$$w={\color{red} ab}$$
aababaabaabaabaabaabaabaabaaba $\ldots \quad {\color{blue} L_a\left\{ egin{array}{l} a\mapsto ab \ b\mapsto ab \end{array}
ight.}$

$$w = L_a(b$$

Morphic decompositions of episturmian words

[Justin Pirillo 2002]

A word is epistandard if and only if it can be infinitely decomposed over pure epistandard morphisms.

Example

$$w=ab$$
aababaabaabaabaabaabaabaabaaba $\dots \quad L_a\left\{egin{array}{l} a\mapsto a \ b\mapsto ab \end{array}
ight.$

$$w = L_a(ba)$$

Morphic decompositions of episturmian words

[Justin Pirillo 2002]

A word is epistandard if and only if it can be infinitely decomposed over pure epistandard morphisms.

Example

$$w=aba$$
a b abaabaabaabaabaabaabaabaaba \ldots $L_a\left\{egin{array}{c} a\mapsto a \ b\mapsto ab \end{array}
ight.$

$$w = L_a(bab$$

Morphic decompositions of episturmian words

[Justin Pirillo 2002]

A word is epistandard if and only if it can be infinitely decomposed over pure epistandard morphisms.

Example

$$w=a$$
baababaabaababaabaabaabaabaaba $\dots \quad L_a\left\{egin{array}{c} a\mapsto a \ b\mapsto ab \end{array}
ight.$

$$w = L_a(babb)$$

Morphic decompositions of episturmian words

[Justin Pirillo 2002]

A word is epistandard if and only if it can be infinitely decomposed over pure epistandard morphisms.

Example

$$w=a$$
baaba ba abaababaabaabaabaabaaba $\dots \quad L_a \left\{egin{array}{c} a \mapsto a \ b \mapsto ab \end{array}
ight.$

$$w = L_a(babba$$

Morphic decompositions of episturmian words

[Justin Pirillo 2002]

A word is epistandard if and only if it can be infinitely decomposed over pure epistandard morphisms.

Example

$$w=a$$
baababaabaabaabaabaabaabaaba $\ldots \quad L_a \left\{egin{array}{l} a\mapsto a \ b\mapsto ab \end{array}
ight.$

$$w = L_a(babbab$$

Morphic decompositions of episturmian words

[Justin Pirillo 2002]

A word is epistandard if and only if it can be infinitely decomposed over pure epistandard morphisms.

Example

$$w=a$$
baababaabaabaabaabaabaabaabaaba $\dots \quad L_a \left\{egin{array}{ccc} a \mapsto a \ b \mapsto ab \end{array}
ight.$

$$w = L_a(babbababbabababababa...)$$

Morphic decompositions of episturmian words

[Justin Pirillo 2002]

A word is epistandard if and only if it can be infinitely decomposed over pure epistandard morphisms.

Example

Morphic decompositions of episturmian words

[Justin Pirillo 2002]

A word is epistandard if and only if it can be infinitely decomposed over pure epistandard morphisms.

Example

```
w = abaababaabaabaabaabaabaabaabaaba \dots
w = L_a(babbababbabbabababa...)
w = L_a L_b (abaababaabaa...)
```

Morphic decompositions of episturmian words

[Justin Pirillo 2002]

A word is epistandard if and only if it can be infinitely decomposed over pure epistandard morphisms.

Example

```
w = L_a(babbababababababababa...)
w = L_a L_b (abaababaabaa...)
w = L_a L_b L_a (babbaba...)
```

Morphic decompositions of episturmian words

[Justin Pirillo 2002]

A word is epistandard if and only if it can be infinitely decomposed over pure epistandard morphisms.

Example

```
L_a \left\{ \begin{array}{l} a \mapsto a \\ b \mapsto ab \end{array} \right.
L_b \left\{ \begin{array}{l} a \mapsto ba \\ b \mapsto b \end{array} \right.
w = abaababaabaabaabaabaabaabaabaaba \dots
w = L_a(babbababababababababa...)
w = L_a L_b (abaababaabaa...)
w = L_a L_b L_a (babbaba...)
w = L_a L_b L_a L_b (abaa...)
```

Morphic decompositions of episturmian words

[Justin Pirillo 2002]

A word is epistandard if and only if it can be infinitely decomposed over pure epistandard morphisms.

Example

```
w=abaababaabaabaabaabaabaabaabaa... L_a\begin{cases} a\mapsto a\\ b\mapsto ab \end{cases} w=L_a(babbababbababababababa...) L_b\begin{cases} a\mapsto ba\\ b\mapsto b \end{cases} w=L_aL_b(abaababaabaa...) w=L_aL_bL_a(babbaba...) w=L_aL_bL_a(babaa...)
```

- $(L_aL_b)^{\omega}$ is the morphic decomposition of w.
- $\Delta = (ab)^{\omega}$ is the *directive word* of F.

• To translate a morphic decomposition in terms of spinned word :

$$L_x \to x$$
 (x with spin L)
 $R_x \to \bar{x}$ (x with spin R)

Example

 $(R_aR_bL_a)^\omega$ morphic decomposition of a word $w\Rightarrow \check{\Delta}=(\bar{a}\bar{b}a)^\omega$ directive word of w.

Conversely

$$x \to \mu_x = L_x$$

 $\bar{x} \to \mu_{\bar{x}} = R_x$
 $\mu_w = \mu_{w_1} \dots \mu_{w_n} \dots$ for $w = w_1 \dots w_n \dots$

- A word over $A \cup \overline{A}$ is called a *spinned word*.
- The opposite \bar{w} of a spinned word w is obtained by exchanging all spins in w.

Example

$$ightharpoonup \overline{(a^{\omega})} = \overline{a}^{\omega}$$

Plan

- Directive words of episturmian words
 - Episturmian words and morphisms
 - Morphic decompositions of episturmian words
 - Spinned words
- 2 Many questions about directive words of episturmian words
 - Do all spinned infinite word direct a unique episturmian word?
 - Characterization of the words directing a common episturmian word
 - When does an episturmian word have a unique directive word?

Many questions

- 1 Do all spinned infinite words direct a unique episturmian word?
- 2 Is it possible that two different spinned words direct a common episturmian word? What are their forms in this case?
- 3 In general an episturmian word has several equivalent directive words. When does an episturmian word have a unique directive word?

Many answers...

- 1 Do all spinned infinite word direct a unique episturmian word?
 - ▶ Justin Pirillo 2002

Do all spinned infinite words direct a unique episturmian word?

NO!

[Justin-Pirillo 2002]

lacktriangle Any ultimately R-spinned word $\check{\Delta}$ directs exactly one episturmian word for each letter in $Ult(\check{\Delta})$.

Example

 $\Delta = \bar{a}(\bar{b}\bar{c}\bar{a})^{\omega}$ directs an episturmian word starting with a. But $\Delta = \bar{a}\bar{b}(\bar{c}\bar{a}\bar{b})^{\omega}$ also directs an episturmian word starting with b.

- \bigcirc Any spinned infinite word $\check{\Delta}$ having infinitely many L-spinned letters directs a unique episturmian word beginning with the left-most letter having spin L in Ă.
 - ⇒ Any L-spinned infinite word directs a unique epistandard word.

Many answers... but

- 2 Is it possible that two different spinned words direct a common episturmian word? What are their forms in this case?
 - Almost all answers by Justin and Pirillo (2004). They provide:
 - * all answers in the aperiodic cases
 - ★ partial answers in the periodic cases

But...

- * Their results are disseminated into 6 different results
- * their results allow to verify if two spinned words are directive-equivalent, but they don't provide an easy way to check it just by "seeing" the spinned words.
- Our work:
 - We complete the characterization of spinned words directing a common episturmian word.
 - We unify the results so that there is less distinct cases
 - * We give a more "easy to check" way to verify if two spinned words direct a common episturmian word, by providing explicitely the possible forms of the spinned words.

Block-equivalence of finite words

• Two finite spinned words are block-equivalent (\equiv) if we can pass from one to the other by a chain of block-transformations, that is:

 $xv\bar{x}$ is replaced by $\bar{x}\bar{v}x$ for $x \in A$, $v \in A^* \setminus \{x\}$.

Example

bābcbāc → babcbāc → babcbāc. babcbāc → babcbāc → babcbāc.

Block-equivalence vs presentation of the episturmian monoid

Theorem [R2003, see also JP2004]

The monoid of *pure episturmian morphisms* with $\{L_{\alpha}, R_{\alpha} \mid \alpha \in A\}$ as set of generators has the following presentation:

$$R_{a_1}R_{a_2}\dots R_{a_k}L_{a_1}=L_{a_1}L_{a_2}\dots L_{a_k}R_{a_1}$$

where $k \geq 1$ integer and $a_1, \ldots, a_k \in A$ with $a_1 \neq a_i$ for all $i, 2 \leq i \leq k$.

Example

$$R_{a}R_{b}L_{c}R_{b}L_{b}R_{a}R_{c}R_{b}R_{a}R_{c}L_{a}$$

$$= R_{a}R_{b}L_{c}R_{b}L_{b}R_{a}R_{c}R_{b}L_{a}L_{c}R_{a}$$

$$= R_{a}R_{b}L_{c}L_{b}R_{b}R_{a}R_{c}R_{b}L_{a}L_{c}R_{a}$$

$$= R_{a}R_{b}L_{c}L_{b}R_{b}R_{a}R_{c}R_{b}R_{a}R_{c}L_{a}$$

$$= R_{a}R_{b}L_{c}L_{b}R_{b}L_{a}L_{c}L_{b}L_{a}L_{c}R_{a}$$

Block-equivalence of infinite words

- Justin and Pirillo use of a relation "leads to" (→).
- $\Delta_1 \rightsquigarrow \Delta_2$ if there exist infinitely many prefixes f_i of Δ_1 and g_i of Δ_2 with the g_i of strictly increasing lengths, and such that, for all i, $|g_i| \leq |f_i|$ and $f_i \equiv g_i c_i$ for a suitable spinned word c_i .
- $\bullet \ \Delta_1 \equiv \Delta_2 \ \text{if} \ \Delta_1 \leadsto \Delta_2 \ \text{and} \ \Delta_2 \leadsto \Delta_1.$
- This approach doesn't allow to "see" straight away if two spinned words direct a common word.

The periodic case

Let $\check{\Delta}$ be a spinned version of an L-spinned word Δ , t be an episturmian word directed by $\hat{\Delta}$ and s the epistandard word directed by Δ . Then t and s have the same set of factors.

Moreover **t** periodic \Leftrightarrow **s** periodic \Leftrightarrow |*Ult*(Δ)| = 1 [Justin Pirillo 2002].

Justin Pirillo 2004

$$egin{aligned} reve{\Delta}_1 &= reve{w}reve{y}_{\pmb{a}^\omega} \ reve{\Delta}_2 &= \hat{w}\hat{y}_{\pmb{a}^\omega} \end{aligned}$$

$$\overset{\circ}{\Delta}_{2} = \hat{w}\hat{y}^{\underline{a}^{\omega}}$$

 $\breve{\Delta}_1$ and $\breve{\Delta}_2$ are directive-equivalent iff there exist sequences of letters $(\breve{a}_n)_{n\geq 1}$ and $(\hat{a}_n)_{n\geq 1}$ such that $\check{w}\check{y}\prod_{n\geq 1}\check{a}_n\equiv \hat{w}\hat{y}\prod_{n\geq 1}\hat{a}_n$.

The periodic case

It is not the only periodic case!

[GLR2008]

 $\Delta_1 = w\mathbf{x}$ and $\Delta_2 = w'\mathbf{y}$ where w, w' are spinned words, x and y are letters, and $\mathbf{x} \in \{x, \bar{x}\}^\omega$, $\mathbf{y} \in \{y, \bar{y}\}^\omega$ are spinned infinite words such that $\mu_w(x) = \mu_{w'}(y)$. Then Δ_1 and Δ_2 are directive-equivalent.

Example

$$(ab)^\omega = L_a(b^\omega) = R_b(a^\omega)$$
 is directed by

- ab^ω
- $\bar{b}a^{\omega}$
- $a\bar{b}^{\omega}$
- \bullet $abar{b}^\omega$
- abbbbb
- words in $a\{b, \bar{b}\}^{\omega}$

The aperiodic cases

Case where one of the words is L-spinned

Justin Pirillo 2004

Let Δ be an L-spinned infinite word. Then Δ and $\bar{\Delta}$ do not direct a common right-infinite episturmian word.

The aperiodic cases

Case of wavy spinned words (with infinitely many letters of spin L and R)

[JP2004] If an aperiodic episturmian word is directed by two spinned words Δ_1 and Δ_2 , then Δ_1 and Δ_2 are spinned versions of a common L-spinned word.

JP2004

When

 Δ_1 and Δ_2 do not have any common prefix modulo \equiv ,

 $\exists x \text{ such that } \Delta_1 = xw \text{ and } \Delta_2 = \bar{x}w'$

Then
$$\Delta_1 \equiv \Delta_2 \quad \Rightarrow \quad \Delta_1 = x \prod_{n \geq 1} (v_n \breve{x}_n), \quad \Delta_2 = \bar{x} \prod_{n \geq 1} (\bar{v}_n \hat{x}_n),$$

where $(v_n)_{n\geq 1}$ are x-free L-spinned words,

and $(\check{x}_n)_{n\geq 1}$, $(\hat{x}_n)_{n\geq 1}$ in $\{x,\bar{x}\}$ such that $(\check{x}_n)_{n\geq 1}$ contains infinitely many \bar{x} , and $(\hat{x}_n)_{n\geq 1}$ contains infinitely many x.

The aperiodic cases

Case where each word is ultimately L-spinned or R-spinned

Justin Pirillo 2004

Let Δ_1 and Δ_2 be spinned versions of a common word $\Delta \in \mathcal{A}^{\omega}$. If there exist spinned words w_1, w_2 and an L-spinned infinite word Δ' such that

$$\Delta_1 = w_1 \overline{\Delta}'$$
 and $\Delta_2 = w_2 \overline{\Delta}'$ (resp. $\Delta_1 = w_1 \overline{\Delta}'$ and $\Delta_2 = w_2 \overline{\Delta}'$),

then

 Δ_1 , Δ_2 are directive-equivalent if and only if $\mu_{w_1} = \mu_{w_2}$.

Our characterization of directive-equivalent words

[GLR2008]

Given two spinned infinite words Δ_1 and Δ_2 , the following assertions are equivalent.

- i) Δ_1 and Δ_2 direct a common right-infinite episturmian word;
- ii) One of the following cases holds for some i, j such that $\{i, j\} = \{1, 2\}$:
 - 1. $\Delta_i = \prod_{n \geq 1} \mathbf{v}_n$, $\Delta_j = \prod_{n \geq 1} \mathbf{z}_n$ where $\mu_{\mathbf{v}_n} = \mu_{\mathbf{z}_n}$ for all $n \geq 1$;

Example

abcā.ābāa.bcb... ābca.abaā.bcb...

Our characterization of directive-equivalent words

[GLR2008]

Given two spinned infinite words Δ_1 and Δ_2 , the following assertions are equivalent.

- i) Δ_1 and Δ_2 direct a common right-infinite episturmian word;
- ii) One of the following cases holds for some i,j such that $\{i,j\}=\{1,2\}$:

2.
$$\Delta_i = wx \prod_{n \geq 1} (v_n \check{x}_n)$$
, $\Delta_j = w' \check{x} \prod_{n \geq 1} (\bar{v}_n \hat{x}_n)$
where $\mu_w = \mu_{w'}$, x L -spinned letter, $(v_n)_{n \geq 1}$ x -free L -spinned words, $(\check{x}_n)_{n \geq 1}$, $(\hat{x}_n)_{n \geq 1} \in \{x, \bar{x}\}^+$ s.t. for all $n \geq 1$, $|\check{x}_n| = |\hat{x}_n|$ and $|\check{x}_n|_x = |\hat{x}_n|_x$;

Example

$$\Delta_1 = a(bc\bar{a})^{\omega}$$
 $\Delta_2 = \bar{a}(\bar{b}\bar{c}\bar{a})^{\omega}$

$$\Delta_1 = w \ \bar{a} \bar{b} \bar{c} \bar{a} a \bar{c} \bar{b} \bar{b} \bar{a} a c a b \bar{a} \dots$$

 $\Delta_2 = w' a b c a \bar{a} c b b \bar{a} a c a b \bar{a} \dots$

Our characterization of directive-equivalent words

[GLR2008]

Given two spinned infinite words Δ_1 and Δ_2 , the following assertions are equivalent.

- i) Δ_1 and Δ_2 direct a common right-infinite episturmian word;
- ii) One of the following cases holds for some i, j such that $\{i, j\} = \{1, 2\}$:
 - 3 $\Delta_1 = wx$ and $\Delta_2 = w'y$ where w, w' are spinned words, x and y are letters, and $\mathbf{x} \in \{x, \bar{x}\}^{\omega}$, $\mathbf{y} \in \{y, \bar{y}\}^{\omega}$ are spinned infinite words such that $\mu_{w}(x) = \mu_{w'}(y).$
 - \rightarrow The periodic case

Which episturmian words have a unique directive word?

• A word is episturmian if and only if it can be infinitely decomposed over $\mathcal{L}_A \cup \mathcal{R}_A$.

In general, this morphic decomposition is not unique.

- Question: can we distinguish one particular (uniquely determined) morphic decomposition of each episturmian word amongst all possibilities?
- Sturmian case

Theorem [Berthé, Holton, Zamboni 2003]

Any Sturmian word has a unique morphic decomposition containing infinitely many elements in $\{L_a, L_b\}$ but no factor of the form $R_a R_b^n L_a$ or $R_b R_a^n L_b$ with n an integer.

Which episturmian words have a unique directive word?

• Proposition: Any episturmian word has a directive word in which appear infinitely many elements of spin *L*.

Which episturmian words have a unique directive word?

- Proposition: Any episturmian word has a directive word in which appear infinitely many elements of spin *L*.
- Normalization: we transform every $\bar{a}\bar{A}^*a$.

Example \[\bar{a}\bar{b}\cap\bar{b}\bar{a}\bar{c}\bar{a}\\ = \bar{a}\bar{b}\cap\bar{b}\bar{a}\bar{c}\bar{b}\ac{a}\\ = \bar{a}\bar{b}\cap\bar{b}\bar{a}\cap\bar{a}\\ = \bar{a}\bar{b}\cap\bar{b}\bar{a}\cap\bar{a}\\ \end{a} \]

Characterization

GLR2008

An episturmian word has a unique directive word if and only if its (normalized) directive word contains

- 1) infinitely many L-spinned letters,
- 2) infinitely many R-spinned letters,
- 3) no factor in $\bigcup_{a \in A} \bar{a} \bar{A}^* a$,
- 4) no factor in $\bigcup_{a\in\mathcal{A}} a\mathcal{A}^* \bar{a}$.

Such an episturmian word is necessarily aperiodic.

Conclusion

- Study of directive words of episturmian words
- We completed answers about words directing a common episturmian word
 - we characterized these words in an "easy-to-check" way
- Consequences:
 - normalization of directive words
 - characterization of episturmian words having a unique directive word
- Normalization can be useful to characterize quasiperiodic episturmian words.
- Other applications?

Thank you for your attention!