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Occurrences of palindromes in characteristic Sturmian words

Amy Glen∗

June 24, 2005

School of Mathematical Sciences, Discipline of Pure Mathematics, University of Adelaide,

South Australia, Australia, 5005

Abstract

This paper is concerned with palindromes occurring in characteristic Sturmian words cα of slope

α, where α ∈ (0, 1) is an irrational. As cα is a uniformly recurrent infinite word, any (palindromic)

factor of cα occurs infinitely many times in cα with bounded gaps. Our aim is to completely describe

where palindromes occur in cα. In particular, given any palindromic factor u of cα, we shall establish

a decomposition of cα with respect to the occurrences of u. Such a decomposition shows precisely

where u occurs in cα, and this is directly related to the continued fraction expansion of α.

Keywords: Combinatorics on words; Characteristic Sturmian word; Singular word; Palindrome;

Morphism; Return word; Overlap.

2000 Mathematical Subject Classifications: primary 68R15; secondary 11B85.

1 Introduction

The fascinating family of Sturmian words consists of all aperiodic infinite words having exactly n + 1

distinct factors of length n for each n ∈ N. Such words have many applications in various fields of

mathematics, such as symbolic dynamics, the study of continued fraction expansion, and also in some

domains of physics (crystallography) and computer science (formal language theory, algorithms on

words, pattern recognition). Sturmian words admit several equivalent definitions and have numerous

characterizations; in particular, they can be characterized by their palindrome or return word structure

[10, 16]. For a comprehensive introduction to Sturmian words, see for instance [1, 2, 23] and references

therein.

Sturmian words have exactly two factors of length 1, and thus are infinite sequences over a two-letter

alphabet A = {a, b}, say. Here, an infinite word (or sequence) x over A is a map x : N → A. For any

i ≥ 0, we set xi = x(i) and write x = x0x1x2 · · · , each xi ∈ A. Central to our study is the following

characterization of Sturmian words, which was originally proved by Morse and Hedlund [21]. An infinite

word s over A = {a, b} is Sturmian if and only if there exists an irrational α ∈ (0, 1), and a real number

ρ, such that s is equal to one of the following two infinite words:

sα,ρ, s
′
α,ρ : N → A

defined by

sα,ρ(n) =

{
a if b(n+ 1)α+ ρc − bnα+ ρc = 0,

b otherwise;

s′α,ρ(n) =

{
a if d(n+ 1)α+ ρe − dnα+ ρe = 0,

b otherwise.

(n ≥ 0)
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The irrational α is called the slope of s and ρ is the intercept. If ρ = 0, we have

sα,0 = acα and s′α,0 = bcα,

where cα is called the characteristic Sturmian word of slope α (see [2]).

Our focus will be on palindromic factors of cα. In general terms, a palindrome is a finite word that

reads the same backwards as forwards. Palindromes are important tools used in the study of factors

of Sturmian words (e.g., [6, 8, 9, 10]), and they have also become objects of great interest in computer

science. The aim of this current paper is to completely describe where palindromes occur in cα (and

hence sα,0, s
′
α,0). In order to do this, we shall make use of some previous results concerning factorizations

of cα into singular words, which are particular palindromes. Singular words were first defined for the

Fibonacci word f (a special example of a Sturmian word) by Wen and Wen [25], who established a

decomposition of f with respect to such words. This result was later extended by Melançon [19] to

characteristic Sturmian words. More recently, Levé and Séébold [17] have generalized Wen and Wen’s

‘singular’ decomposition of f , by establishing a similar decomposition for each conjugate of f into what

they called generalized singular words. This last result has now been further extended by the present

author [14] to cα (and c1−α), where α has continued fraction expansion [0; 2, r, r, r, . . .] for some r ≥ 1.

It is well-known that any Sturmian word s is uniformly recurrent, i.e., any factor of s occurs infinitely

often in s with bounded gaps [5]. Accordingly, any palindromic factor u of cα has infinitely many

occurrences in cα and, as we shall see later (Corollary 5.2), the distance between any two adjacent

occurrences of u is bounded above by an integer depending on u. Given any palindromic factor u of

cα, we shall establish a decomposition of cα with respect to the occurrences of u. Such a decomposition

shows precisely at which positions u occurs in cα, and this is directly related to the continued fraction

expansion of the irrational slope α.

This paper is organized as follows. In Section 2, after some preliminaries on words and morphisms,

we will recall some facts about cα and consider some of its singular decompositions (Section 2.2). Then,

in Section 3, we consider the structure of palindromic factors of cα with respect to its singular factors.

We also recall the important notion of a return word and the concept of overlapping occurrences of a

word in cα. Section 4 contains the lemmas we need in order to establish the main result of this paper,

which appears in Section 5. Lastly, using results of Section 4, we obtain decompositions of cα that

show precisely where a given factor of length qn occurs in cα (where qn is the denominator of the n-th

convergent to α = [0; 1 + d1, d2, d3, . . .], di ≥ 1).

2 Preliminaries

Any of the following terminology that is not further clarified can be found in either [18] or [2], which

give more detailed presentations.

2.1 Words and morphisms

In what follows, let A denote the two-letter alphabet {a, b}. A (finite) word is an element of the free

monoid A∗ generated by A, in the sense of concatenation. The identity ε of A∗ is called the empty

word, and the free semigroup over A is defined by A+ := A∗ \ {ε}. We denote by Aω the set of all

infinite words over A, and define A∞ := A∗ ∪Aω. The length |w| of a finite word w is defined to be the

number of letters it contains. (Note that |ε| = 0.)

A finite word z is a factor of a word w ∈ A∞ if w = uzv for some u ∈ A∗ and v ∈ A∞. Furthermore,

z is called a prefix (resp. suffix ) of w if u = ε (resp. v = ε), and we write z ⊆p w (resp. z ⊆s w). The

word z is said to have an occurrence (or occur) at position |u| of w = uzv, i.e., z begins at the |u|-th
position of w. We denote by |w|z the number of occurrences of z in w, i.e., the number of distinct

positions at which z occurs in w. For example, |ababa|aba = 2 since aba has two occurrences at positions

0 and 2 in ababa.
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For any word w ∈ A∞, Ω(w) denotes the set of all factors of w. Moreover, we denote by Ωn(w)

the set of all factors of w of length n ∈ N (where n ≤ |w| for w finite), i.e., Ωn(w) = Ω(w) ∩ An. If

u ∈ Ω(w), then we shall simply write u ≺ w.

The reversal operation ∼ in A∗ is defined inductively by: ε̃ = ε and, for any u ∈ A∗ and x ∈ A,

(ũx) = xũ. Thus, if w = x0x1x2 . . . xn, with each xi ∈ A, then w̃ = xnxn−1 . . . x1x0. If w = w̃, then w

is called a palindrome, and we define PAL to be the set of all palindromes over A. It is useful to note

that if |w| is even, then w is a palindrome if and only if w = vṽ for some word v. Otherwise, w is a

palindrome if and only if w = vxṽ for some word v and some letter x ∈ A.

The free monoid A∗ can be naturally embedded within a free group. We shall denote by F the free

group generated by A, which contains the inverse u−1 of each word u ∈ A∗. For any u, v ∈ F , we have

uu−1 = u−1u = ε and (uv)−1 = v−1u−1. If u, w ∈ A∗, we shall write u−1w (resp. wu−1) only if u is

a prefix (resp. suffix) of w, so that u−1w (resp. wu−1) is a word in A∗. In particular, if w = uv ∈ A∗,

then u−1w = v and wv−1 = u, and we have |u−1w| = |w| − |u| = |v|, |wv−1| = |w| − |v| = |u|.
An endomorphism (or simply morphism) of A∗ is a map ψ : A∗ → A∗ such that ψ(uv) = ψ(u)ψ(v)

for all u, v ∈ A∗. It is uniquely determined by its image on the alphabet A. Any morphism ψ of A∗ can

be uniquely extended to an endomorphism of F by defining ψ(a−1) = (ψ(a))−1 and ψ(b−1) = (ψ(b))−1,

from which it follows that ψ(w−1) = (ψ(w))−1 for any w ∈ F .

2.1.1 Standard morphisms

Define the following two morphisms of A∗:

E :
a 7→ b

b 7→ a
, ϕ :

a 7→ ab

b 7→ a
.

A morphism ψ of A∗ is standard if ψ(x) is a characteristic Sturmian word for any characteristic Sturmian

word x [2]. In fact, a morphism ψ is standard if and only if ψ ∈ {E,ϕ}∗, i.e., if and only if it is a

composition of E and ϕ in any number and order [7, 2]. The standard morphisms E and ϕE will play

an important role in the proof of our main result.

2.2 Characteristic Sturmian words c
α

and singular words

Note that every irrational α ∈ (0, 1) has a unique continued fraction expansion

α = [0; a1, a2, a3, . . .] =
1

a1 +
1

a2 +
1

a3 + · · ·

where each ai is a positive integer. If the sequence (ai)i≥1 is eventually periodic, with ai = ai+m for all

i ≥ n, we use the notation α = [0; a1, a2, . . . , an−1, an, an+1, . . . , an+m−1]. The n-th convergent to α is

defined by
pn

qn
= [0; a1, a2, . . . , an], for all n ≥ 1,

where the sequences (pn)n≥0 and (qn)n≥0 are given by

p0 = 0, p1 = 1, pn = anpn−1 + pn−2, n ≥ 2;

q0 = 1, q1 = a1, qn = anqn−1 + qn−2, n ≥ 2.

Suppose α = [0; 1 + d1, d2, d3, . . .] with d1 ≥ 0 and all other dn > 0. To the directive sequence

(d1, d2, d3, . . .), we associate a sequence (sn)n≥−1 of words defined by

s−1 = b, s0 = a, sn = sdn

n−1sn−2, n ≥ 1.
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Such a sequence of words is called a standard sequence, and we have

|sn| = qn for all n ≥ 0.

Note that ab is a suffix of s2n−1 and ba is a suffix of s2n, for all n ≥ 1.

Standard sequences are related to characteristic Sturmian words in the following way. Observe that,

for any n ≥ 0, sn is a prefix of sn+1, which gives obvious meaning to limn→∞sn as an infinite word. In

fact, each sn is a prefix of cα, and we have

cα = lim
n→∞

sn (see [13, 3]). (2.1)

2.2.1 Some singular decompositions of cα

Note that if α = [0; 1, d1, d2, d3, . . .], then

1 − α =
1

1 + 1/(1/α− 1)
= [0; 1 + d1, d2, d3, . . .]. (2.2)

For any irrational α ∈ (0, 1), E(cα) = c1−α, i.e., c1−α is obtained from cα by exchanging a’s and b’s

[22]. Thus, in light of the above observation (2.2), we shall hereafter restrict our attention to the case

when α = [0; 1 + d1, d2, d3, . . .] with d1 ≥ 1.

Melançon [19] (also see [4, 25]) has introduced the singular words (wn)n≥0 of cα defined by

wn =

{
asnb

−1 if n is odd,

bsna
−1 otherwise.

Moreover, for each n ≥ −1, Melançon [19] defined the words

vn =

{
as

dn+2−1
n+1 snb

−1 if n is odd,

bs
dn+2−1
n+1 sna

−1 otherwise.

Clearly, the word vn differs from wn+2 by a factor sn+1, and it is easily proved that all vn and wn are

palindromes. Here, we will call wn (resp. vn) the n-th singular word (resp. n-th adjoining singular word)

of cα, and use the convention w−2 = v−2 = ε, w−1 = a.

Singular words play an important role in the study of factors of Sturmian words. In particular, as

we shall see in the next section, the words wn and vn−1 can be used to determine the structure of all

palindromic factors of a Sturmian word of slope α. We have the following decomposition of cα in terms

of singular and adjoining singular words.

Proposition 2.1. [25, 19] cα =
∏∞

j=−1(v2jw2j+1)
d2j+3 =

∏∞
j=−1 vj.

Notation. In order to simplify proceedings, we introduce some notation.

(i) Let γ ∈ (0, 1) be irrational with γ = [0; a1, a2, a3, . . .]. For any n ∈ N and integer k such that

k ≥ 1 − an+1, define

γn,k := [0; an+1 + k, an+2, an+3, . . .]

and write γn,0 = γn. Note that γ0,0 = γ = [0; a1, a2, . . . , an + γn] for all n ≥ 1.

(ii) As cα is uniformly recurrent, given any factor w of cα, the occurrences of w in cα can be arranged

as a sequence (w(i))i≥1, where w(i) denotes the i-th occurrence of w in cα.

With the above notation, we may now state a corollary of Proposition 2.1.
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Corollary 2.2. Let n ∈ N be fixed. The characteristic Sturmian word cα has the following two decom-

positions:

(1)

cα =




n−1∏

j=−1

(v2jw2j+1)
d2j+3


w

(1)
2n z1w

(2)
2n z2w

(3)
2n z3 · · · ,

where z := z1z2z3 · · · is given by cα2n+1
over the alphabet {v2n−1, w2n+1}.

(2)

cα =




n−1∏

j=−1

(v2jw2j+1)
d2j+3


 z1W1z2W2z3 · · · ,

where z := z1z2z3 · · · is given by cα2n+1,1
over the alphabet {w2n, v2n−2} and, for all i ≥ 1,

Wi =

{
v2n−1 if zi = w2n,

w2n−1 if zi = v2n−2.

Proof. See [19, Corollary 4.6].

Example 2.1. The best known example of a characteristic Sturmian word is the infinite Fibonacci word

f , which has been extensively studied by many authors (see [6, 9], for example). It is well-known that

f = lim
n→∞

fn = abaababaabaababaababaabaababaabaab · · · ,

where (fn)n≥−1 is the sequence of finite Fibonacci words defined by

f−1 = b, f0 = a, fn = fn−1fn−2, n ≥ 1.

Clearly, |fn| = Fn, where Fn is the n-th Fibonacci number defined by

F−1 = 1, F0 = 1, Fn = Fn−1 + Fn−2, n ≥ 1.

Note that (fn)n≥−1 is a standard sequence with associated directive sequence (1, 1, 1, . . .), and hence

wn = vn for all n ≥ −1. Moreover, in view of (2.1), f = cα where α = (3 −
√

5)/2 = [0; 2, 1], in which

case α = α2n+1,1 and 1−α = α2n+1, for all n ∈ N. Hence, f = cα2n+1,1
and E(f) = cα2n+1

. Accordingly,

one deduces from the above corollary that

f =




n−1∏

j=−1

wj


w(1)

n z1w
(2)
n z2w

(3)
n z3 · · · ,

where z := z1z2z3 · · · is the Fibonacci word over the alphabet {wn+1, wn−1} (also see [25, Theorem 2]).

For instance, when n = 2, wn−1 = w1 = aa, wn = w2 = bab, wn+1 = w3 = aabaa, and z is the Fibonacci

word over the alphabet {aabaa, aa}. Indeed, one may write

f = abaa(bab)aabaa(bab)aa(bab)aabaa(bab)aabaa(bab)aa(bab)aabaa(bab)aa(bab)aabaa · · · .

3 Palindromes, return words and overlap

3.1 Structure of palindromes in c
α

In [4], Cao and Wen considered the structure of palindromic factors of cα with respect to singular words.

Specifically, they proved the following result concerning palindromic factors u of cα with qn < |u| ≤ qn+1.

(For technical reasons, we set q−1 = 1, so that |sn| = qn for all n ≥ −1.)
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Proposition 3.1. [4] Let u ∈ PAL with qn < |u| ≤ qn+1 for some n ∈ N. Then u ≺ cα if and only if u

takes one of the following forms:

(1) u = vwnṽ with v ⊆s vn−1 and |v| ≤ 1
2 |vn−1| = 1

2 (qn+1 − qn);

(2) u = vvn−1ṽ with v ⊆s wn and |v| ≤ 1
2qn;

(3) u = v(wn−1vn−2)
kwn−1ṽ with v ⊆s vn−2, v 6= vn−2, and 0 ≤ k ≤ dn+1 − 2;

(4) u = v(vn−2wn−1)
kvn−2ṽ with v ⊆s wn−1, v 6= wn−1, and 0 ≤ k ≤ dn+1 − 1;

(5) u = wn+1.

Moreover, if k = 0 in (3) (resp. (4)), then |v| > 1
2 |vn−2| = 1

2 (qn − qn−1) (resp. |v| > 1
2qn−1).

Hereafter, we will make frequent use of the following properties of singular words. Some of these

properties may be used without referring to the given lemma.

Lemma 3.2. [19, 4] Let x, y ∈ A (x 6= y) with y ⊆s sn. Then, for any n ∈ N,

(1) yx−1wn = ysny
−1 = wn−1vn−2, wnx

−1y = vn−2wn−1;

(2) wn+1 = wn−1vn−2vn−1 = vn−1vn−2wn−1;

(3) vn−1 = (wn−1vn−2)
dn+1−1wn−1;

(4) wn+1 = (wn−1vn−2)
dn+1wn−1;

(5) wn+1 = y
∏n−1

j=−1 vj ;

(6) wn ⊀ wn+1;

(7) vn−1 ⊀ wn.

Now, for each n ∈ N and 0 ≤ k ≤ dn+1 −1, let us denote by Un,k and Un,k the palindromes given by

Un,k := (wn−1vn−2)
kwn−1 and Un,k := (vn−2wn−1)

kvn−2.

Note that Un,k = wn−1Un,k(vn−2)
−1. Also observe that the singular words (wn)n≥−1 and (vn)n≥−1 are

given by

wn−1 = Un,0 and vn−1 = Un,dn+1−1 = Un+1,0 for all n ≥ 0.

From the preceding proposition and Lemma 3.2, we easily deduce the following result, which gives

the structure of all palindromic factors of cα in terms of Un,k and Un,k. The proof is left to the reader.

Corollary 3.3. Let u ∈ PAL with |u| ≥ 2. Then u is a factor of cα if and only if, for some n ∈ N, we

have

u = vUn,kṽ, where v ⊆s vn−2, v 6= vn−2 and 0 ≤ k ≤ dn+1 − 2 (3.1)

or

u = vUn,kṽ, where v ⊆s wn−1, v 6= wn−1 and 0 ≤ k ≤ dn+1 − 1. (3.2)

Note. Let us point out that U0,0 = ε and U0,k−1 = ak = U0,k for 1 ≤ k ≤ d1 − 1. Therefore, if u takes

the form (3.1) or (3.2) for n = 0, then u = ak for some k ∈ [2, d1−1]. So, if d1 ≤ 2, a palindromic factor

of cα is given by (3.1) or (3.2) for some n ≥ 1.

Remark 3.1. It is important to note that Corollary 3.3 (and also Proposition 3.1) gives the structure

of all palindromic factors of any Sturmian word of slope α. Indeed, Mignosi [20] proved that any two

Sturmian words s, t of the same slope are equivalent, i.e., Ω(s) = Ω(t). Whence, for any real number ρ,

we have

Ω(sα,ρ) = Ω(s′α,ρ) = Ω(cα),

i.e., a palindrome is a factor of some Sturmian word of slope α if and only if it is a factor of cα.
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3.2 Return words and overlapping occurrences

Let us write cα = x0x1x2 · · · , each xi ∈ A, and let w ≺ cα. Suppose n1 < n2 < n3 < · · · are all the

natural numbers ni such that w = xni
xni+1 · · ·xni+|w|−1. Then the word xni

· · ·xni+1−1 is a return

word of w in cα. That is, we define the set Rw(cα) of return words of w to be the set of all distinct

words beginning with an occurrence of w and ending exactly before the next occurrence of w in cα. This

notion was introduced independently by Durand [11], and Holton and Zamboni [15]. Clearly, Rw(cα) is

finite since the distance between two adjacent occurrences of w in cα is bounded. In fact, Vuillon [24]

has proved that an infinite word s over A is Sturmian if and only if, for any factor w of s, there are

exactly two return words of w in s. Suppose Rw(cα) = {u1, u2}. Then cα can be uniquely factorized

as cα = vui1ui2 · · ·uik
· · · , where each ik ∈ {1, 2} and the first occurrence of w in cα is at position |v|.

The infinite word Dw(cα) := ui1ui2 · · ·uik
· · · , called the derived word of cα with respect to w, can be

viewed as an infinite word over the alphabet {u1, u2}. In particular, Dw(cα) is a Sturmian word over

the alphabet Rw(cα) [12]. For example, the return words of wn in f are wnwn+1 and wnwn−1, and

Dwn
(f) is the Fibonacci word over the alphabet {wnwn+1, wnwn−1} (see Example 2.1).

Given w ≺ cα, a return word of w in cα is not necessarily longer than w, in which case w has

overlapping occurrences in cα. More precisely, if there exist non-empty words u, v and z such that

w = uz = zv and uzv ≺ cα, then w is said to have overlap in cα with overlap factor z. Further, one can

write uzv = wz−1w; whence w has overlap in cα if wz−1w ≺ cα for some z ∈ A+. In this case, wz−1 is

a return word of cα that has length less than that of w. Clearly, since any factor w of cα has exactly

two return words, w has at most two different overlap factors.

Return words, and the concept of overlap, are fundamentally important to our study of occurrences

of palindromes in cα. Indeed, we shall be establishing decompositions of cα with respect to certain

palindromic factors that have overlap, i.e., palindromic factors u that have a return word (or return

words) of length(s) less than |u|. Specifically, given any palindromic factor u of cα, we can write

cα = z0u
(1)z1u

(2)z2u
(3)z3 · · · ,

where z0 ∈ A∗ and all other zi are such that z−1
i ∈ A+ or zi ∈ A∗, according to whether the occurrences

u(i) and u(i+1) do or do not overlap each other, respectively. For instance, if u = wn is the n-th singular

factor of the Fibonacci word, then, as shown in Example 2.1, each zi ∈ {wn+1, wn−1} (i ≥ 1); in which

case u does not have overlap in f .

The following result shows precisely which factors of cα have no overlapping occurrences in cα.

Proposition 3.4. [4, Theorem 10] Let u ≺ cα with qn < |u| ≤ qn+1 for some n ∈ N. Then u has no

overlap in cα if and only if u = wn+1, or wn ≺ u.

Accordingly, one easily deduces from Proposition 3.1 and Lemma 3.2 which palindromic factors of

cα do not have overlap.

Corollary 3.5. Let u ∈ PAL and u ≺ cα with qn < |u| ≤ qn+1 for some n ∈ N. Then u is a palindrome

without overlap in cα if and only if u = wn+1, or u = vwnṽ with v ⊆s vn−1 and |v| ≤ 1
2 |vn−1|.

4 Decompositions of cα into palindromes

In this section, we prove some lemmas which lead us to the main result of this paper (Theorem 5.1).

4.1 Useful results

In what follows, let us denote by G the standard morphism of A∗ given by

G = ϕE :
a 7→ a

b 7→ ab
.
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Lemma 4.1. [22] For any irrational γ ∈ (0, 1), E(cγ) = c1−γ and G(cγ) = cγ/(1+γ).

The following simple, yet useful, corollary (and the remark to follow) will be needed in our proofs.

Corollary 4.2. For any irrational γ ∈ (0, 1) and k ∈ N, Gk(cγ) = cγ/(1+kγ).

Proof. Induction on k.

Remark 4.1. Recall that we are restricting our attention to cα where α has continued fraction expansion

[0; 1 + d1, d2, d3, . . .], d1 ≥ 1. Let us note that α
1+kα = 1

k+1/α = [0; 1 + d1 + k, d2, d3, . . .] = α0,k and,

more generally, αn

1+kαn
= [0; dn+1 + k, dn+2, dn+3, . . .] for n ≥ 1. Consequently,

Gk(cαn
) = cαn,k

for all n ≥ 0.

It is also easily checked that 1 − αn+1,1 = [0; 1, dn+2, dn+3, . . .] = αn,1−dn+1
, for any n ≥ 1; whence

E(cαn+1,1
) = cαn,1−dn+1

for all n ≥ 1. (4.1)

(Note that E(cα1,1
) = cα0,−d1

.)

4.2 Some lemmas

Here, we simplify Melançon’s decompositions of cα, given in Corollary 2.2. In particular, we obtain two

different decompositions of cα with respect to occurrences of the palindromes

Un,k = (wn−1vn−2)
kwn−1 and Un,k = (vn−2wn−1)

kvn−2 (0 ≤ k ≤ dn+1 − 1),

which form the basis of all palindromic factors of cα (see Corollary 3.3). From the first of these decom-

positions, we easily deduce decompositions of cα that show exactly where the singular words wn and vn

occur in cα, for any n ∈ N. (Recall that Corollary 2.2 gives a decomposition of cα which shows all of

the occurrences of w2n, but this result does not provide information as to the exact positions of w2n−1

in cα.)

Notation. For any morphism ψ of A∗ such that ψ(a) = u and ψ(b) = v for some u, v ∈ A∗, we

shall write ψ = (u, v) to indicate the image of ψ on the alphabet A . If x = x0x1x2 · · · ∈ Aω , then

ψ(x) = ψ(x0)ψ(x1)ψ(x2) · · · is the word obtained from x by replacing the letters a and b in x by the

words u and v, respectively. We shall denote by x{u, v} the word ψ(x). In particular, cα{u, v} denotes

the characteristic Sturmian word of slope α over the alphabet {u, v}.

Lemma 4.3. [4] For any n ≥ 1, cα = cαn,1
{sn, sn−1}.

Lemma 4.4. For any n ∈ N,
n−1∏

j=−1

(v2jw2j+1)
d2j+3 =

2n−1∏

j=−1

vj .

Proof. Using Lemma 3.2(3), observe that for any integer j ≥ 0,

(v2jw2j+1)
d2j+3 = v2jw2j+1(v2jw2j+1)

d2j+3−1 = v2j(w2j+1v2j)
d2j+3−1w2j+1 = v2jv2j+1,

from which the result is readily deduced.

Lemma 4.5. For any n ≥ 1 and 0 ≤ k ≤ dn+1 − 1, we have

cα =




n−2∏

j=−1

vj


U

(1)
n,kz1U

(2)
n,kz2U

(3)
n,kz3 · · · ,

where z := z1z2z3 · · · is given by cαn,−k
over the alphabet {(Un,k−1)

−1, wn}.
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Note. We set Un,−1 = (vn−2)
−1 and Un,−1 = (wn−1)

−1; whence if k = 0, then

(Un,k−1)
−1 = (Un,−1)

−1 = vn−2 and (Un,k−1)
−1 = (Un,−1)

−1 = wn−1.

Proof of Lemma 4.5. We first prove the result for odd n = 2m + 1, m ≥ 0. By Corollary 2.2(1) and

Lemma 4.4, we have

cα =




2m−1∏

j=−1

vj


ψ(cα2m+1

),

where ψ = (w2mv2m−1, w2mw2m+1). Further, by Remark 4.1, we have

ψGk(cα2m+1,−k
) = ψ(cα2m+1

) for 0 ≤ k ≤ d2m+2 − 1.

Therefore,

cα =




2m−1∏

j=−1

vj


ψGk(cα2m+1,−k

),

where Gk = (a, akb), and hence

ψGk = (w2mv2m−1, (w2mv2m−1)
kw2mw2m+1)

= (w2mv2m−1, U2m+1,kw2m+1)

= (U2m+1,k(U2m+1,k−1)
−1, U2m+1,kw2m+1).

Clearly, U2m+1,kw2m+1 and w2mv2m−1 (= U2m+1,k(U2m+1,k−1)
−1) must be the two return words of

U2m+1,k. Also, using Lemma 3.2, we find that U2m+1,k is not a factor of the prefix (
∏2m−1

j=−1 vj)U2m+1,k−1

of cα, since



2m−1∏

j=−1

vj


U2m+1,k−1 = x−1w2mv2m−1U2m+1,k−1 = x−1U2m+1,k (x ∈ A).

Thus, the derived word of cα with respect to U2m+1,k is given by DU2m+1,k
(cα) =

cα2m+1,−k
{w2mv2m−1, U2m+1,kw2m+1}, and we can write

cα =




2m−1∏

j=−1

vj


U

(1)
2m+1,kz1U

(2)
2m+1,kz2U

(3)
2m+1,kz3 · · · ,

where z := z1z2z3 · · · is given by cα2m+1,−k
over the alphabet {(U2m+1,k−1)

−1, w2m+1}. This completes

the proof for odd n.

Let us now prove that the assertion holds for even n = 2m, m ≥ 1. By considering occurrences of

U2m−1,d2m−1 (= v2m−2) in cα, one deduces from the above that, for any integer m ≥ 1,

cα =




2m−3∏

j=−1

vj


 v2m−2φ(cα2m−1,1−d2m

), (4.2)

where φ = ((U2m−1,d2m−2)
−1v2m−2, w2m−1v2m−2). In fact, using (2) and (3) of Lemma 3.2, we can

write φ = (v2m−3w2m−2, w2m−1v2m−2) = ((v2m−2)
−1w2m, w2m−1v2m−2). Again, using Remark 4.1, we

have EGk+1(cα2m,−k
) = E(cα2m,1

) = cα2m−1,1−d2m
, where EGk+1 = (b, bk+1a). Whence, it follows from

(4.2) that

cα =




2m−2∏

j=−1

vj


φEGk+1(cα2m,−k

),

where

φEGk+1 = (w2m−1v2m−2, (w2m−1v2m−2)
k+1(v2m−2)

−1w2m) = (U2m,k(U2m,k−1)
−1, U2m,kw2m).
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The result now follows (as for the odd case) since U2m,kw2m and w2m−1v2m−2 (= U2m,k(U2m,k−1)
−1)

are the two return words of U2m,k.

Remark 4.2. From Lemma 4.5, we readily deduce two ‘singular’ decompositions of cα with respect to

the occurrences of wn and vn, for any n ∈ N. Indeed, we have Un,0 = wn−1 and Un,dn+1−1 = vn−1.

Therefore, taking k = 0 in the above lemma, we obtain a decomposition that shows exactly where the

n-th singular word wn occurs in cα. That is, for any n ≥ 0,

cα =




n−1∏

j=−1

vj


w(1)

n z1w
(2)
n z2w

(3)
n z3 · · · , (4.3)

where z := z1z2z3 · · · is given by cαn+1
over the alphabet {vn−1, wn+1}.

Now, taking k = dn+1 − 1, we find that, for any n ≥ 0,

cα =




n−1∏

j=−1

vj


 v(1)

n z1v
(2)
n z2v

(3)
n z3 · · · , (4.4)

where z := z1z2z3 · · · is given by cαn+2,1
over the alphabet {wn+1, (Un+1,dn+2−2)

−1} (since

E(cαn+1,1−dn+2
) = cαn+2,1

). This also holds for n = −1 since, from Lemma 4.3, we have

cα = cα1,1
{s1, s0} = cα1,1

{ad1b, a} = cα1,1
{v−1w0, w−1v−2}.

The following simple decomposition of cα (which has also been proved independently in [4]) is a

direct consequence of (4.4).

Proposition 4.6. For any n ∈ N, we have

cα =




n−2∏

j=−1

vj


 cαn+1,1

{vn−1wn, wn−1vn−2}.

Lemma 4.7. For any n ≥ 1 and 0 ≤ k ≤ dn+1 − 1, we have

cα =




n−3∏

j=−1

vj


U

(1)

n,kz1U
(2)

n,kz2U
(3)

n,kz3 · · · ,

where z := z1z2z3 · · · is given by cαn,1−k
over the alphabet {(Un,k−1)

−1, (Un−1,dn−2)
−1}.

Proof. Follows almost immediately from Proposition 4.6. Indeed, Gk(cαn,1−k
) = cαn,1

for 0 ≤ k ≤
dn+1 − 1, and hence

cα =




n−3∏

j=−1

vj


 cαn,1

{vn−2wn−1, wn−2vn−3} =




n−3∏

j=−1

vj


 cαn,1−k

{vn−2wn−1, (vn−2wn−1)
kwn−2vn−3},

where vn−2wn−1 = Un,k(Un,k−1)
−1 and

(vn−2wn−1)
kwn−2vn−3 = Un,k(vn−2)

−1wn−2vn−3 = Un,k(Un−1,dn−2)
−1.
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5 Main result

We are now equipped with the necessary tools to prove the main result of this paper, which, in view of

Corollary 3.3, completely describes occurrences of palindromes in cα.

Theorem 5.1. Let u be a palindromic factor of cα with |u| ≥ 2.

(1) Suppose u = vUn,kṽ for some n ≥ 1, where v ⊆s vn−2, v 6= vn−2, and 0 ≤ k ≤ dn+1 − 2. Then

cα =




n−2∏

j=−1

vj


 v−1u(1)z1u

(2)z2u
(3)z3 · · · ,

where z := z1z2z3 · · · is given by cαn,−k
over the alphabet {(vUn,k−1ṽ)

−1, ṽ−1wnv
−1}.

(2) Suppose u = vUn,kṽ for some n ≥ 1, where v ⊆s wn−1, v 6= wn−1, and 0 ≤ k ≤ dn+1 − 1. Then

cα =




n−3∏

j=−1

vj


 v−1u(1)z1u

(2)z2u
(3)z3 · · · ,

where z := z1z2z3 · · · is given by cαn,1−k
over the alphabet {(vUn,k−1ṽ)

−1, (vUn−1,dn−2ṽ)
−1}.

Moreover, if u = ak for some k ∈ [2, d1 − 1], then cα = u(1)z1u
(2)z2u

(3)z3 · · · , where z1z2z3 · · · is given

by cα0,−k
over the alphabet {(ak−1)−1, b}.

Note. In regards to assertion (1), let us point out that v is a suffix (and ṽ is a prefix) of wn since

wn = wn−2vn−3vn−2 = vn−2vn−3wn−2. Therefore, ṽ−1wnv
−1 ∈ A∗ since |v| < |vn−2| = qn − qn−1 ≤

1
2qn = 1

2 |wn|.

Proof of Theorem 5.1. Assertions (1) and (2) are proved in a similar fashion, using Lemmas 4.5 and

4.7 respectively, so we just give the proof of (1). The last statement is trivial since cα = Gk(cα0,−k
) =

cα0,−k
{a, akb}.

Suppose u = vUn,kṽ for some n ≥ 1, where v ⊆s vn−2, v 6= vn−2 and 0 ≤ k ≤ dn+1 − 2. From

Lemma 4.5, it follows that

cα =




n−2∏

j=−1

vj


 v−1(vU

(1)
n,kṽ)ṽ

−1z1v
−1(vU

(2)
n,kṽ)ṽ

−1z2v
−1(vU

(3)
n,kṽ)ṽ

−1z3 · · · ,

where z := z1z2z3 · · · is given by cαn,−k
over the alphabet {(Un,k−1)

−1, wn}. Consequently, since each

occurrence of u in cα corresponds to an occurrence of Un,k in cα, we have

cα =




n−2∏

j=−1

vj


 v−1u(1)ẑ1u

(2)ẑ2u
(3)ẑ3 · · · ,

where ẑi = ṽ−1ziv
−1, for all i ≥ 1. (Note that

(∏n−2
j=−1 vj

)
v−1 ∈ A∗ since v ⊆s vn−2.) Thus, ẑ :=

ẑ1ẑ2ẑ3 · · · is given by cαn,−k
over the alphabet {(vUn,k−1ṽ)

−1, ṽ−1wnv
−1}. Indeed, ẑi = ṽ−1wnv

−1 if

zi = wn, and ẑi = ṽ−1(Un,k−1)
−1v−1 = (vUn,k−1ṽ)

−1 if zi = (Un,k−1)
−1. This completes the proof of

(1).

In part (2), note that
(∏n−3

j=−1 vj

)
v−1 ∈ A∗, since v is a proper suffix of wn−1, and hence a suffix of

∏n−3
j=−1 vj = x−1wn−1, where x ∈ A (by Lemma 3.2(5)).
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Example 5.1. Let us now demonstrate Theorem 5.1 for cα with α = [0; 2, 1, 3, 1] = (4
√

5 − 5)/11. In

this case, we have

cα = abaabaabaababaabaabaabaababaabaabaabaab · · · .

Also note that

w−1 = v−1 = a, w0 = v0 = b, w1 = aa, w2 = bab, w3 = aabaabaabaa, v1 = aabaabaa, v2 = bab.

(i) Consider the palindromic factor u = baaw2aab = baababaab, where v = baa ⊆s v1. By Theorem

5.1(1),

cα = v−1v0v1(baa)
−1u(1)z1u

(2)z2u
(3)z3 · · ·

= abaabaa(baababaab)z1(baababaab)z2(baababaab)z3 · · · ,

where z := z1z2z3 · · · is given by cα3
over the alphabet {aa, aabaa}. We have cα3

= cα3,0
=

[0; 1, 2, 1, 3] =
√

5 − 57/38, and hence cα3
= bbabbbabbba · · · . Thus, we can write

cα = abaabaa(baababaab)aabaa(baababaab)aabaa(baababaab)aa(baababaab)aabaa(baababaab) · · · .

(ii) Now consider the palindromic factor u = U2,1 = (w1v0)
1w1 = aabaa. By Theorem 5.1(1),

cα = v−1v0u
(1)z1u

(2)z2u
(3)z3 · · · = ab(aabaa)z1(aabaa)z2(aabaa)z3 · · · ,

where z := z1z2z3 · · · is given by cα2,−1
over the alphabet {(aa)−1, bab}. We have α2,−1 =

[0; 2, 1, 2, 1, 3] = (4
√

5 − 2)/19, and therefore

cα2,−1
= abaabaababaabaabaababaabaabaa · · · .

Hence, we can write

cα = ab(aabaa)baabab(aabaa)b(aabaa)bab(aabaa)b(aabaa)bab(aabaa)baa

bab(aabaa)b(aabaa)bab(aabaa)baa · · · .

Notice that u has a unique overlap factor aa.

(iii) Let us now consider the palindromic factor u = aU2,2a = a(v0w1)
2v0a = abaabaaba, where

a ⊆s w1 = aa. Observe that

(vU2,1ṽ)
−1 = (a(baa)1ba)−1 = (abaaba)−1 and (vU1,d2−2ṽ)

−1 = (a(ba)−1ba) = a−1.

Thus, by Theorem 5.1(2), we have

cα = v−1a
−1u(1)z1u

(2)z2u
(3)z3 · · · = (abaabaaba)z1(abaabaaba)z2(abaabaaba)z3 · · · ,

where z := z1z2z3 · · · is given by cα2,−1
over the alphabet {(abaaba)−1, a−1}; whence

cα = (abaabaaba)ab(abaaba[aba)abaaba]ba(aba[abaaba)aba]ba(abaabaa

ba)ba(aba[abaaba)aba]baabaaba · · · .

In this case, u has two overlap factors: abaaba and a.

Let us now denote by occi(u) the position of the i-th occurrence of u in cα, i.e., if cα = zux for

some z ∈ A∗, x ∈ Aω such that |zu|u = i, then occi(u) = |z|. With this notation, a given factor u of cα
occurs at precisely the positions (occi(u))i≥1 in cα.

The following corollary of Theorem 5.1 gives the exact positions at which palindromes occur in cα.
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Corollary 5.2. Let u be a palindromic factor of cα with |u| ≥ 2.

(1) Suppose u = vUn,kṽ for some n ≥ 1, where v ⊆s vn−2, v 6= vn−2, and 0 ≤ k ≤ dn+1 − 2. Then

occ1(u) = 1
2 ((k + 2)qn + qn−1 − |u| − 2) and, for all i ≥ 1,

occi+1(u) = occi(u) + Pi,

where (Pi)i≥1 is given by cαn,−k
over the alphabet {qn, (k + 1)qn + qn−1}.

(2) Suppose u = vUn,kṽ for some n ≥ 1, where v ⊆s wn−1, v 6= wn−1, and 0 ≤ k ≤ dn+1 − 1. Then

occ1(u) = 1
2 ((k + 1)qn + qn−1 − |u| − 2) and, for all i ≥ 1,

occi+1(u) = occi(u) + Pi,

where (Pi)i≥1 is given by cαn,1−k
over the alphabet {qn, kqn + qn−1}.

Moreover, if u = ak for some k ∈ [2, d1 − 1], then occ1(u) = 0 and occi+1(u) = occi(u) + Pi for all

i ≥ 1, where (Pi)i≥1 is given by cα0,−k
over the alphabet {1, k + 1}.

Proof. As with Theorem 5.1, the proofs of (1) and (2) are much the same, so we just give the proof of

(1). The proof of the last statement is trivial.

Suppose u = vUn,kṽ for some n ≥ 1, where v ⊆s vn−2, v 6= vn−2 and 0 ≤ k ≤ dn+1 − 2. Theorem

5.1(1) shows that

cα =




n−2∏

j=−1

vj


 v−1u(1)z1u

(2)z2u
(3)z3 · · · , (5.1)

where z := z1z2z3 · · · is given by cαn,−k
over the alphabet {(vUn,k−1ṽ)

−1, ṽ−1wnv
−1}. Observe that

|Un,k| = (k + 1)|wn−1| + k|vn−2| = (k + 1)qn−1 + k(qn − qn−1) = kqn + qn−1,

and hence

|v| =
1

2
(|u| − |Un,k|) =

1

2
(|u| − kqn − qn−1).

Also recall that if x is the first letter of wn, then x−1wn =
∏n−2

j=−1 vj . Therefore, since v is a proper

suffix of vn−2, we have

∣∣∣∣∣∣




n−2∏

j=−1

vj


 v−1

∣∣∣∣∣∣
= |x−1wn| − |v| = qn − 1 − 1

2
(|u| − kqn − qn−1).

Hence, the first occurrence of u in cα is at position

occ1(u) =
1

2
((k + 2)qn + qn−1 − |u| − 2).

Furthermore,

|vUn,k−1ṽ| = (k − 1)qn + qn−1 + 2|v| = (k − 1)qn + qn−1 + (|u| − kqn − qn−1) = |u| − qn

and

|ṽ−1wnv
−1| = qn − 2|v| = qn − (|u| − kqn − qn−1) = (k + 1)qn + qn−1 − |u|.

Thus, it follows from (5.1) that occi+1(u) = occi(u)+Pi for all i ≥ 1, where (Pi)i≥1 is the characteristic

Sturmian word of slope αn,−k over the alphabet {qn, (k + 1)qn + qn−1}.

Example 5.2. Let α = [0; 2, 1, 3, 1] = (4
√

5 − 5)/11 and consider the palindromic factor u of cα given

by u = U2,1 = aabaa. According to Corollary 5.2, one should find that u first occurs at position

occ1(u) =
1

2
(3q2 − q1 − 5 − 2) =

1

2
(9 + 2 − 7) = 2,
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followed by the positions occi+1(u) = occi(u) + Pi for each i ≥ 1, where (Pi)i≥1 is the characteristic

Sturmian word of slope α2,−1 = [0; 2, 1, 2, 1, 3] over the alphabet {q2, 2q2+q1} = {3, 8}; that is, (Pi)i≥1 =

(3, 8, 3, 3, 8, 3, 3, 8, 3, 8, 3, 3, 8, 3, 3, 8, . . .). Indeed, from Example 5.1(2), we have

cα = ab(aabaa)baabab(aabaa)b(aabaa)bab(aabaa)b(aabaa)bab(aabaa)baa

bab(aabaa)b(aabaa)bab(aabaa)baa · · · ,

from which it is evident that u = aabaa occurs at positions 2, 5, 13, 16, 19, 27, 30, 33, 41, 44, 52, 55,

58, 66, . . . .

Remark 5.1. In general, if u1 and u2 are the two return words of a factor u of cα, it is clear that

occi+1(u) = occi(u) + |uji
| where ji = 1 or 2.

In particular, the sequence (ji)i≥1 is a Sturmian word over the alphabet {1, 2} (see [12] or Section 3.2).

In the case when u is a palindromic factor of cα, Corollary 5.2 shows that the sequence (ji)i≥1 is given

by cαn,−k
over the alphabet {1, 2}, for some n ∈ N and 0 ≤ k ≤ dn+1 − 1. For example, the two return

words of wn (= Un+1,0) are u1 = wnvn−1 and u2 = wnwn+1, where

|u1| = qn+1 and |u2| = qn+1 + qn.

From Corollary 5.2, occ1(wn) = qn+1−1 and occi+1(wn) = occi(wn)+ |uji
| for each i ≥ 1, where (ji)i≥1

is given by cαn+1
over the alphabet {1, 2}.

6 Occurrences of factors of length qn in cα

In this last section, we determine the structure of all factors of length qn of cα with respect to the

singular words wn, wn−1, and vn−2. Subsequently, using some results from Section 4, we completely

describe where factors of length qn occur in cα.

Let w = x1x2 · · ·xm ∈ A∗, each xi ∈ A, and let k ∈ N with 0 ≤ k ≤ m− 1. The k-th conjugate of w

is the word Ck(w) := xk+1xk+2 · · ·xmx1x2 · · ·xk. Further, we conventionally set C−k(w) = C|w|−k(w)

and define C(w) := {Ck(w) : 0 ≤ k ≤ |w| − 1}.
One can easily prove that any conjugate of sn is a factor of cα. Certainly, C(s−1) = {b} and, for

n ≥ 0,

sn+3 = s
dn+3

n+2 sn+1 = (s
dn+2

n+1 sn)dn+3sdn+1

n sn−1 = (s
dn+2

n+1 sn)dn+3−1s
dn+2

n+1 s
dn+1+1
n sn−1,

where dn+1 + 1 ≥ 2. Thus, s2n is a factor of cα, and hence the claim is proved since any conjugate of sn

is a factor of s2n.

Now, each sn is a primitive word [8], i.e., sn cannot be written as a non-trivial integer power of a

shorter word. Consequently, sn has qn distinct conjugates, i.e., |C(sn)| = qn. Furthermore, from the

above observation, C(sn) is a set of factors of cα. It is therefore deduced that the set of all factors of

length qn of cα consists of C(sn) and wn. That is,

Ωqn
(cα) = C(sn) ∪ {wn}.

Indeed, since cα is a Sturmian word, it must have exactly qn + 1 distinct factors of length qn.

Lemma 6.1. For any n ≥ 1, Cqn−1(sn) = wn−1vn−2 and Cqn−1−1(sn) = vn−2wn−1. Moreover,

(1) for 0 ≤ k ≤ qn−1 − 2, Ck(sn) = uvn−2v, where vu = wn−1 and |v| = k + 1;

(2) for qn−1 − 1 ≤ k ≤ qn − 1, Ck(sn) = uwn−1v, where vu = vn−2 and |v| = k + 1 − qn−1.

Proof. By Lemma 3.2(1), C−1(sn) = Cqn−1(sn) = wn−1vn−2. Therefore, Cqn−1−1(sn) = vn−2wn−1

since |wn−1| = qn−1. Assertions (1) and (2) follow immediately.
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Accordingly, a factor of length qn of cα is either wn, or has at least one of the words vn−2 and

wn−1 as a factor. We shall now establish two different decompositions of cα, which show exactly where

conjugates of sn occur in cα.

Theorem 6.2. Let n ≥ 1.

(1) Suppose w = Ck(sn) for some k ∈ [0, qn−1 − 2], so that w = uvn−2v, where vu = wn−1 and

|v| = k + 1. Then

cα =




n−3∏

j=−1

vj


u−1w(1)z1w

(2)z2w
(3)z3 · · · ,

where z := z1z2z3 · · · is given by cαn,1
over the alphabet {ε, (uUn−1,dn−2v)

−1}.

(2) Suppose w = Ck(sn) for some k ∈ [qn−1 − 1, qn − 1], so that w = uwn−1v, where vu = vn−2 and

|v| = k + 1 − qn−1. Then

cα =




n−2∏

j=−1

vj


u−1w(1)z1w

(2)z2w
(3)z3 · · · ,

where z := z1z2z3 · · · is given by cαn
over the alphabet {ε, v−1wnu

−1}.

Proof. Using decompositions (4.4) and (4.3) (consequences of Lemma 4.5), the proof follows along

exactly the same lines as the proof of Theorem 5.1.

In light of Theorem 6.2 and the wn-decomposition of cα given by (4.3) (together with the fact that

Ωqn
(cα) = C(sn) ∪ {wn}), we have now shown precisely where each factor of length qn occurs in cα.

It is important to note that it follows from Proposition 3.4 that a factor w of length qn does not have

overlap in cα if and only if w = wn, or w = Ck(sn) for some k ∈ [qn−1 − 1, qn − 1]. Certainly, if w takes

the latter form, then w = uwn−1v with vu = vn−2 and |v| = k+ 1− qn−1. In this case, Theorem 6.2(2)

shows that w does not have overlapping occurrences since wn = (vu)vn−3wn−2 = wn−2vn−3(vu), where

vu = vn−2, and hence v−1wnu
−1 ∈ A∗.

Example 6.1. Suppose α = [0; 2, 1] = (
√

3 − 1)/2. Then

cα = abaabaababaabaabaababaabaabaababaabaababaabaabaababaabaabaababa · · · .

Let us demonstrate the above theorem by considering the first two conjugates of s3 = abaabaab; namely,

C1(s3) (= Cq2−2(s3)) and C2(s3) (= Cq2−1(s3)). First observe that

w−1 = v−1 = a, w0 = v0 = b, w1 = aa, w2 = bab, w3 = aabaabaa, v1 = aabaa, v2 = bab.

(1) Let w = C1(s3); the first conjugate of s3. We have w = baabaaba = uv1v, where u = b, v = ba

and vu = bab = w2. Hence, by Theorem 6.2(1),

cα = v−1v0b
−1w(1)z1w

(2)z2w
(3)z3 · · · = a(baabaaba)z1(baabaaba)z2(baabaaba)z3 · · · ,

where z := z1z2z3 · · · is given by cα3,1
over the alphabet {ε, (baaba)−1}. (Note that

(uU2,d3−2v)
−1 = (b(aab)0aaba)−1 = (baaba)−1.) Since α3,1 = [0; 2, 2, 1] = 1 −

√
3/3, we have

cα3,1
= ababaabababaab · · · , and thus we can write

cα = a(baabaaba)(baabaaba)aba(baabaaba)aba(baabaaba)(baabaaba)aba

(baabaaba)aba(baabaaba)aba(baabaaba)(baabaaba)aba · · · .

(2) Now let w = C2(s3); the second conjugate of s3. Then w = aabaabab = v1w2, and it follows from

Theorem 6.2(2) that

cα = v−1v0v1v1
−1w(1)z1w

(2)z2w
(3)z3 · · · = ab(aabaabab)z1(aabaabab)z2(aabaabab)z3 · · · ,
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where z := z1z2z3 · · · is given by cα3
over the alphabet {ε, w3(aabaa)

−1} = {ε, aab}. Note that

α3 = [0; 1, 2] =
√

3 − 1, and hence cα3
= bbabbbabbba · · · . Therefore,

cα = ab(aabaabab)aab(aabaabab)aab(aabaabab)(aabaabab)aab(aabaabab)

aab(aabaabab)aab(aabaabab)(aabaabab)aab(aabaabab)aab · · · .

Remark 6.1. From Theorem 6.2, one can easily deduce Lemma 4.3 (i.e., cα = cαn,1
{sn, sn−1} for all

n ≥ 1), as follows. Observe that sn = C0(sn) = uvn−2v, where u = y−1wn−1 and v = y. Similarly,

sn−1 = x−1wn−2vn−3x, where x ∈ A (x 6= y). Hence,

cα =




n−3∏

j=−1

vj


 (y−1wn−1)

−1s(1)n z1s
(2)
n z2s

(3)
n z3 · · · = s(1)n z1s

(2)
n z2s

(3)
n z3 · · · ,

where z := z1z2z3 · · · is given by cαn,1
over the alphabet {ε, (y−1wn−1Un−1,dn−2y)

−1}. That is,

cα = cαn,1
{sn, sn(y−1wn−1(wn−2vn−3)

−1vn−2y)
−1}.

Using Lemma 3.2, we have

sn(y−1wn−1(wn−2vn−3)
−1vn−2y)

−1 = sn(sn−1x
−1(wn−2vn−3)

−1vn−2y)
−1

= sny
−1(vn−2)

−1(wn−2vn−3)x(sn−1)
−1

= x−1wn(vn−2)
−1xsn−1(sn−1)

−1

= x−1wn−2vn−3x

= sn−1,

and therefore cα = cαn,1
{sn, sn−1}, as required.

We finish with a corollary of Theorem 6.2 (cf. Corollary 5.2).

Corollary 6.3. Let n ≥ 1 and suppose w = Ck(sn) for some k ∈ [0, qn − 1]. Then occ1(w) = k and,

for all i ≥ 1, occi+1(w) = occi(w) + Pi, where (Pi)i≥1 is given by:

• cαn,1
over the alphabet {qn, qn−1} if k ∈ [0, qn−1 − 2], or

• cαn
over the alphabet {qn, qn + qn−1} if k ∈ [qn−1 − 1, qn − 1].
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