

MURDOCH RESEARCH REPOSITORY

This is the author's final version of the work, as accepted for publication following peer review but without the publisher's layout or pagination. The definitive version is available at <u>http://dx.doi.org/10.1016/j.vetpar.2009.12.032</u>

Parkar, U., Traub, R.J., Vitali, S., Elliot, A., Levecke, B., Robertson, I., Geurden, T., Steele, J., Drake,
B. and Thompson, R.C.A. (2010) *Molecular characterization of Blastocystis isolates from zoo animals and their animalkeepers.* Veterinary Parasitology, 169 (1-2). pp. 8-17.

http://researchrepository.murdoch.edu.au/3809/

Copyright: © 2010 Elsevier B.V.

It is posted here for your personal use. No further distribution is permitted.

Accepted Manuscript

Title: Molecular characterization of *Blastocystis* isolates from zoo animals and their animal-keepers

Authors: Unaiza Parkar, Rebecca J. Traub, Simone Vitali, Aileen Elliot, Bruno Levecke, Ian Robertson, Thomas Geurden, Jan Steele, Bev Drake, R.C Andrew Thompson

PII:	S0304-4017(09)00755-9
DOI:	doi:10.1016/j.vetpar.2009.12.032
Reference:	VETPAR 5133
To appear in:	Veterinary Parasitology
Received date:	12-7-2009
Revised date:	15-12-2009
Accepted date:	21-12-2009

Please cite this article as: Parkar, U., Traub, R.J., Vitali, S., Elliot, A., Levecke, B., Robertson, I., Geurden, T., Steele, J., Drake, B., Thompson, R.C.A., Molecular characterization of *Blastocystis* isolates from zoo animals and their animal-keepers, *Veterinary Parasitology* (2008), doi:10.1016/j.vetpar.2009.12.032

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

1	Molecular characterization of <i>Blastocystis</i> isolates from zoo
2	animals and their animal-keepers
3	
4	Unaiza Parkar* ¹ , Rebecca J. Traub ² , Simone Vitali ³ , Aileen Elliot ¹ , Bruno
5	Levecke ^{4,5} , Ian Robertson ¹ , Thomas Geurden ⁴ , Jan Steele ⁶ , Bev Drake ⁷ and R.C
6	Andrew Thompson ¹
7	
8	¹ WHO Collaborating Centre for the Molecular Epidemiology of Parasitic
9	Infections and the State Agricultural Biotechnology Centre, School of Veterinary
10	and Biomedical Sciences, Murdoch University, Murdoch, Western Australia
11	6150, Australia
12	² School of Veterinary Science, University of Queensland, St Lucia, Queensland
13	4072, Australia
14	³ Perth Zoo, South Perth, Western Australia 6151, Australia
15	⁴ Laboratory of Parasitology, Faculty of Veterinary Medicine, Ghent University,
16	Salisburylaan 133, B-9820 Merelbeke, Belgium
17	⁵ Centre for Research and Conservation, Royal Zoological Society of Antwerp,
18	Koningin Astridplein 26, B-2018 Antwerp, Belgium
19	⁶ Melbourne Zoo, Parkville, Victoria 3052, Australia
20	⁷ Werribee Open Range Zoo, Werribee, Victoria 3030, Australia
21	*Corresponding author: phone: +61 8 9360 6718; fax: +61 8 9310 4144; email
22	address: U.Parkar@murdoch.edu.au
23	

24 Abstract

25

26	Blastocystis is an enteric protist and one of the most frequently reported parasitic
27	infections in humans and a variety of animal hosts. It has also been reported in
28	numerous parasite surveys of animals in zoological gardens and in particular in
29	non-human primate species. PCR-based methods capable of the direct detection
30	of Blastocystis in faeces were used to detect Blastocystis from various hosts,
31	including nonhuman primates, Australian native fauna, elephants and giraffes, as
32	well as their keepers from a Western Australian zoo. Additional faecal samples
33	were also collected from elephants and giraffes from four other zoos in
34	Amsterdam (The Netherlands), Antwerp (Belgium), Melbourne and Werribee
35	(Australia). Information regarding the general health and lifestyle of the human
36	volunteers were obtained by questionnaire. Overall, 42% and 63% of animals and
37	zoo-keepers sampled from the Western Australian zoo were positive for
38	Blastocystis, respectively. The occurrence of Blastocystis in elephants and
39	giraffes from other cities was similar. This is the first report of Blastocystis found
40	in the elephant, giraffe, quokka, southern hairy nosed wombat and western grey
41	kangaroo. Three novel and what appear to be highly host-specific subtypes (STs)
42	of Blastocystis in the elephant, giraffe and quokka are also described. These
43	findings indicate that further exploration of the genetic diversity of Blastocystis is
44	crucial. Most zoo-keepers at the Perth Zoo were harbouring Blastocystis. Four of
45	these zoo-keeper isolates were identical to the isolates from the southern hairy
46	nosed wombat and five primate species.

- 47
- 48 Keywords: *Blastocystis*, characterization, elephant, giraffe, zoo
- 49
- 50

51 **1. Introduction**

52 Blastocystis is an enteric protist and one of the most frequently reported parasitic infections in humans and a variety of animal hosts (Abe, 2004; Amin, 2002; 53 54 Windsor et al., 2002). It has also been reported in numerous parasite surveys of animals in zoological gardens and in particular in non-human primate species 55 (Abe et al., 2002; Lim et al., 2008; Pérez Cordón et al., 2008; Stensvold et al., 56 57 2009a). 58 59 Previous studies have shown that *Blastocystis* is common among animal handlers, 60 namely zoo-keepers and abattoir workers, indicating that animals may pose a significant zoonotic source of *Blastocystis* for humans (Salim et al., 1999). This, 61 62 however, is difficult to determine considering that few of these isolates from such environments have been characterized using molecular tools (Parkar et al., 2007; 63 64 Stensvold et al., 2009a). 65 *Blastocystis* displays considerable degree of genetic heterogeneity and there are 66 67 currently ten subtypes (ST1-10) that have been isolated from mammalian, avian, 68 reptilian and amphibian hosts (Belova and Krylov, 1998; Noël et al., 2005; Noël et al., 2003; Stensvold et al., 2007a; Yoshikawa et al., 2004b). Some subtypes 69 70 (STs), for example ST5, appears to be highly host specific for pigs and cattle, 71 while other STs display moderate or low host specificity (Noël et al., 2005; 72 Stensvold et al., 2009a) and may be considered zoonotic. However, to date, a 73 limited variety of mammalian species have been screened for *Blastocystis*, making

74	it likely that further yet undiscovered STs may exist. Exploration of the genetic
75	diversity of Blastocystis is crucial. The taxonomy of Blastocystis is still a
76	controversial area and it has been proposed that each ST may correspond to
77	different species of <i>Blastocystis</i> (Noël et al., 2005). Each species may possess
78	unique phenotypic characteristics that may well dictate its zoonotic potential.
79	
80	The aim of the present study was to determine the occurrence of Blastocystis
81	among animals and their handlers at an urban Australian zoo and from animals
82	from four additional locations, and to genetically characterize positive samples in
83	order to understand the epidemiology and zoonotic potential of this parasite.
84	
85	2. Materials and Methods
85 86	 2. Materials and Methods 2.1 Study sites and collection of animal samples
85 86 87	 2. Materials and Methods 2.1 Study sites and collection of animal samples 2.1.1. Animal samples
85 86 87 88	 2. Materials and Methods 2.1 Study sites and collection of animal samples 2.1.1. Animal samples The Perth Zoological Gardens (Perth Zoo), in South Perth, Western Australia,
85 86 87 88 89	 2. Materials and Methods 2.1 Study sites and collection of animal samples 2.1.1. Animal samples The Perth Zoological Gardens (Perth Zoo), in South Perth, Western Australia, houses approximately 1300 animals from 200 different species. A total of 76
85 86 87 88 89 90	 2. Materials and Methods 2.1 Study sites and collection of animal samples 2.1.1. Animal samples The Perth Zoological Gardens (Perth Zoo), in South Perth, Western Australia, houses approximately 1300 animals from 200 different species. A total of 76 fresh faecal samples were collected from a variety of animals. Some animals had
85 86 87 88 89 90 91	 2. Materials and Methods 2.1 Study sites and collection of animal samples 2.1.1. Animal samples The Perth Zoological Gardens (Perth Zoo), in South Perth, Western Australia, houses approximately 1300 animals from 200 different species. A total of 76 fresh faecal samples were collected from a variety of animals. Some animals had previously been screened for <i>Blastocystis</i>. Animals had variable levels of contact
 85 86 87 88 89 90 91 92 	 2. Materials and Methods 2.1 Study sites and collection of animal samples 2.1.1. Animal samples The Perth Zoological Gardens (Perth Zoo), in South Perth, Western Australia, houses approximately 1300 animals from 200 different species. A total of 76 fresh faecal samples were collected from a variety of animals. Some animals had previously been screened for <i>Blastocystis</i>. Animals had variable levels of contact with zoo-keepers. Several Australian native fauna species were included in the
 85 86 87 88 89 90 91 92 93 	 2. Materials and Methods 2.1 Study sites and collection of animal samples 2.1.1. Animal samples The Perth Zoological Gardens (Perth Zoo), in South Perth, Western Australia, houses approximately 1300 animals from 200 different species. A total of 76 fresh faecal samples were collected from a variety of animals. Some animals had previously been screened for <i>Blastocystis</i>. Animals had variable levels of contact with zoo-keepers. Several Australian native fauna species were included in the study (Table I). Samples were collected from animals in eight of the 15 general
 85 86 87 88 89 90 91 92 93 94 	 2. Materials and Methods 2.1 Study sites and collection of animal samples 2.1.1. Animal samples The Perth Zoological Gardens (Perth Zoo), in South Perth, Western Australia, houses approximately 1300 animals from 200 different species. A total of 76 fresh faecal samples were collected from a variety of animals. Some animals had previously been screened for <i>Blastocystis</i>. Animals had variable levels of contact with zoo-keepers. Several Australian native fauna species were included in the study (Table I). Samples were collected from animals in eight of the 15 general exhibits at the Perth Zoo between April and August 2007.

96	Fresh faecal samples were also obtained from elephants and giraffes at the
97	Melbourne Zoo and giraffes from the Werribee Open Range Zoo in Victoria,
98	Australia (Table II). Faecal samples from elephants and giraffes were collected
99	from Amsterdam (The Netherlands) and Antwerp (Belgium) zoos (Table II) and
100	fixed in 70% ethanol.
101	
102	2.1.2 Questionnaire and collection of human samples
103	Zoo-keepers working with animals in the study groups were approached to
104	voluntarily participate in the study by providing a faecal sample and completing a
105	questionnaire. Questionnaires were designed to provide information regarding the
106	participant's general health and lifestyle, occupational experience and current
107	contact with zoo animals. Questionnaire data and single faecal samples from 19
108	zoo-keepers (40% response rate) were collected between April and August during
109	two consecutive years (2007 and 2008). Faecal samples and questionnaire data
110	from 22 individuals who did not have close interactions with exotic animals were
111	also collected as part of the control population in the same time period in 2007.
112	Permission was obtained from both the Murdoch Human Ethics Committee and
113	the Zoo's Research and Ethics Committees for the collection of faecal samples
114	and questionnaire data from the respondents.
115	
116	2.2 Microscopy screening

All human samples collected were screened for gastrointestinal parasites using thezinc sulphate flotation method followed by microscopy (Weller et al., 1945).

119

120	2.4 DNA extraction
121	DNA was extracted from fresh faeces using the QIAamp DNA Stool Mini Kit
122	(Qiagen, Germany) according to the manufacturer's protocol, with the
123	modifications previously specified (Parkar et al., 2007). DNA from samples fixed
124	in 70% ethanol were washed with milliQ water prior to the extraction method for
125	fresh faeces.
126	
127	2.5 Polymerase Chain Reaction (PCR)
128	At the beginning of our study, the PCR protocol from a previous study (Parkar et
129	al., 2007) was used to amplify ~1100bp region of <i>Blastocystis</i> SSUrDNA. The
130	primary PCR utilized previously published forward and reverse primers (RD3, 5'-
131	GGG ATC CTG ATC CTT CCG CAG GTT CAC CTA C-3`; RD5, 5`-GGA
132	AGC TTA TCT GGT TGA TCC TGC CAG TA-3`) for PCR amplification under
133	the conditions previously described by Clark (1997). The secondary PCR utilized
134	previously published forward and reverse primers (F1, 5`-GGA GGT AGT GAC
135	AAT AAA TC-3`; R1, 5`-CGT TCA TGA TGA ACA ATT AC-3`) for PCR
136	amplification under the conditions described by Böhm-Gloning et al (1997).
137	
138	However, it was later discovered that the secondary PCR primers described by
139	Böhm-Gloning et al (1997) do not amplify all Blastocystis isolates (Wong et al.,
140	2008), in particular ST3. Consequently, negative samples were screened again
141	using previously published forward and reverse primers in the secondary PCR

142 (b11400ForC, 5 - GGA ATC CTC TTA GAG GGA CAC TAT ACA
--

143	bl1710RevC, 5`-	· TTA	CTA AAA	TCC AAA	GTG TTC ATC	GGA C-3`) under
-----	-----------------	-------	---------	---------	-------------	----------	---------

- 144 conditions previously described (Stensvold et al., 2006). As bl1400ForC and
- 145 bl1710RevC amplify ~310bp region of *Blastocystis* SSUrDNA, another secondary
- 146 PCR using previously published primers (F1, 5`-GGA GGT AGT GAC AAT

147 AAA TC-3`; R2, 5`- ACT AGG AAT TCC TCG TTC ATG-3`) were used to

148 reamplify positive isolates under previously described conditions (Wong et al.,

149 2008) in order to obtain larger fragments (~1100 bp) for phylogenetic analysis.

150

151 <u>2.6 Sequencing and phylogenetic analysis</u>

152 Bands representing the 1100 bp amplified PCR products were excised from a gel

and purified using the UltraClean GelSpin DNA Purification Kit (MO BIO

154 Laboratories, Inc.). Manufacturer's kit protocols were followed, except that DNA

155 was eluted using 30µl of ultrapure PCR water and incubated at room temperature

156 for 10 min prior to centrifugation at 10,000g for 30 s. PCR products were also

- 157 purified from reactions using the Wizard SV Gel and PCR Clean-Up System
- 158 (Promega Corporation) according to the manufacturer's kit protocol. The PCR
- 159 products were sequenced in both directions using an ABI 3730 capillary
- 160 sequencer. Sequences were analysed using FinchTV and compared with
- 161 previously published sequences from GenBank using the BLAST 2.2.9 program
- 162 (http://www.ncbi.nlm.nih.gov/blast). Blastocystis STs 11, 12 and 13, and the
- 163 western grey kangaroo sequences were deposited into GenBank (GU256899-

164 GU256937).

165	Phylogenetic trees were constructed using sequence data from the amplified
166	segments of the SSU rDNA (Figure 1: ~160bp; Figure 2: ~700bp; Figure 3:
167	~965bp). Sequences of isolates obtained from the present study were aligned with
168	previously published sequences of <i>Blastocystis</i> obtained from GenBank (Table
169	III) and isolates from the Perth Zoo (Parkar et al., 2007) using the program
170	CLUSTAL W (Thompson et al., 1994) and then manually adjusted where
171	necessary. Phylogenetic analysis was performed using MEGA v4.0.2 (Tamura et
172	al., 2007). Distance-based analysis was undertaken using Kimura-2-parameter
173	and the tree was constructed using the neighbour-joining algorithm. Bootstrap
174	values were calculated by the analysis of 1400 replicates from the Neighbour-
175	Joining tree. Analysis was also undertaken using the maximum parasimony
176	algorithm. Bootstrap values were calculated by the analysis of 500 replicates
177	from the maximum parasimony tree. Proteromonas lacertae was used as the
178	outgroup.

179

180 **3. Results**

181 <u>3.1 Occurrence of *Blastocystis* in animals</u>

From the total number of 76 samples screened for *Blastocystis* from the Perth
Zoo, 32 (42%) tested positive. Amongst the 40 primate samples collected, 50%
were positive for *Blastocystis*. More than half of the primate species housed at the
Western Australian zoo were infected with *Blastocystis*. In contrast, 33% of all
non-primates sampled tested positive, with *Blastocystis* found in only five of the
16 species sampled.

188

189 The occurrence of *Blastocystis* in elephants and giraffes from Amsterdam,

190 Antwerp, Melbourne and Werribee was 57% (12/21) and 82% (19/23),

191 respectively.

192

193 <u>3.2 Occurrence of *Blastocystis* in the zoo-keepers and control group</u>

194 Questionnaire data revealed that all participants from the zoo had been working at 195 the zoo for at least a year, and that it was common for them to care for a variety of 196 different animal species from more than one exhibit. Only three zoo-keepers 197 cared for animals from one exhibit, with only one of them caring specifically for 198 elephants. Zoo-keepers were accordingly classified as primate keepers (working 199 exclusively with primates), non-primate keepers (working exclusively with nonprimates) or generalist keepers (working with both primate and non-primate 200 201 species).

202

In total, 12 out of 19 (63%) zoo keepers were infected with *Blastocystis*. Five from nine of the non-primate zoo keepers and all five generalist zoo-keepers were positive for *Blastocystis*. All of these individuals reported experiencing gastrointestinal related symptoms. Two of five of the primate zoo-keepers were also positive for *Blastocystis*. No other parasites were detected using the zinc sulphate floatation method and microscopy. Only two out of 22 (9%) individuals from the control group were positive for *Blastocystis*, with one of these individuals

11

A10

210	reporting gastro-intestinally related symptoms. Again, no other parasites were
211	detected using the zinc floatation method and microscopy.
212	
213	3.4 Phylogenetic analysis
214	DNA sequences obtained from 34 Blastocystis isolates on Genbank were included
215	in the phylogenetic analysis (Table III). The rooted neighbour-joining tree
216	identified 13 clades (Figures 1, 2 and 3). Ten of these clades correspond to STs
217	identified in the consensus based on previous molecular studies (Figure 1). There
218	was strong support in placing all elephant, giraffe and quokka isolates within
219	separate novel host-specific clades or STs that we assign as ST11, ST12 and
220	ST13, respectively. The other isolates from this study clustered within ST1, ST2,
221	ST3 and ST4.
222	

223 All isolates of Blastocystis isolated from the non-human primates at the Perth Zoo 224 belonged to ST1 and ST2. Three isolates from primate zoo-keepers also belong to 225 ST1 and were similar to the primate isolates, as well as previously characterized 226 isolates from primate zoo-keepers. The only isolates from this study in ST1 that 227 did not belong to the primates or primate zoo-keepers was isolated from the 228 southern hairy nosed wombat (from the Australian bushwalk exhibit) and zoo-229 keeper 14, who cared for animals in the Australian bushwalk exhibit. 230 231 Other isolates from this study belonged to ST3 and ST4. Three isolates belonging

to generalist zoo-keepers were characterised as ST3, and were similar to

233	previously characterized human isolates. An isolate from the control group
234	belonged to ST4, and was identical to previously characterized isolates from a
235	human and a rat.
236	
237	4. Discussion
238	4.1 Blastocystis in zoo animals
239	Previous studies of <i>Blastocystis</i> in zoo environments have found high prevalences
240	of the organism amongst primate and avian hosts (Abe et al., 2002; Pérez Cordón
241	et al., 2008). The present study has also shown that many of the primates at the
242	Western Australian zoo are infected with Blastocystis, and that these isolates are
243	similar to previously characterized isolates (Figure 2). This confirms previous
244	studies showing that ST1 and ST2 appear to be zoonotic and primarily consisting
245	of isolates from human and non-human primates. However, few studies have
246	screened other zoo animals for <i>Blastocystis</i> (Abe et al., 2002; Lim et al., 2008;
247	Pérez Cordón et al., 2008). Our study is the first to report the isolation of
248	Blastocystis from the following hosts: Asian elephant, giraffe, quokka, southern

249 hairy nosed wombat and the western grey kangaroo.

250

Elephants and giraffes have been screened previously at Osaka Zoo but were negative for *Blastocystis* (Abe et al., 2002). However, it is possible that these animals may harbour the parasite as *in vitro* cultivation was used as the method for detection, which is known to preferentially amplify some STs over others (Parkar et al., 2007), and to lack sensitivity due to several factors which may

affect the viability and reproduction of *Blastocystis* (Leelayoova et al., 2002;

- 257 Zaman and Khan, 1994).
- 258

259 The significance of *Blastocystis* infections and these novel STs in elephants,

260 giraffes and Australian native fauna is not clear. The limited parasitological data

261 recorded for elephants and giraffes in the past 50 years have largely been confined

to helminths and *Sarcocystis* (Bengis et al., 1998; Garijo et al., 2004; Goossens et

al., 2005; Vidya and Sukumar, 2002). However, our study has demonstrated that

the newly assigned ST11 seems to be host-specific, as it was not detected in any

265 other species at the study site, and was found in elephants from four different

266 geographical locations (Figure 3). Further studies are required to determine

267 whether *Blastocystis* occurs in African elephants, and if so, whether these isolates

are genetically similar or distinct from those in ST11.

269

This is the second study to report *Blastocystis* infection in Australian native fauna, 270 271 although novel STs were identified in the present study. The western grey 272 kangaroo isolate, like the giraffe isolates, belongs to the newly assigned ST12 273 (Figure 3). The quokka isolates (ST13), and the western grey kangaroo isolate, 274 are distinct from the brushtailed possum isolate previously characterized (Parkar 275 et al., 2007). Some studies had recorded novel and/or zoonotic genotypes of 276 Cryptosporidium and Giardia in various species of Australian native fauna (Adams et al., 2004; McCarthy et al., 2008; Thompson et al., 2008), and the 277 278 significance of these findings are not fully understood. Further studies are

279	required in order to determine the incidence in other populations, host-specificity
280	and zoonotic significance. These findings also stress the importance of screening
281	other hosts for Blastocystis in order to determine the genetic diversity and
282	taxonomy of this parasite.
283	
284	4.2 Zoonotic potential
285	High prevalence of Blastocystis infections has previously been reported amongst
286	zoo-keepers (Salim et al., 1999). In the present study, 12 out of 19 zoo-keepers
287	were positive, compared to two out of 22 from the control group. Seven of these
288	isolates were sequenced and characterized successfully. Two isolates were found
289	to be similar to some isolates from the primates in ST1 and ST2, and one isolate
290	was identical to primates and the southern hairy nosed wombat in ST1 (Figure 2).
291	These findings indicate that the high prevalence amongst zoo-keepers may be due
292	to the close contact between the animals and zoo-keepers, which may facilitate the
293	transmission of <i>Blastocystis</i> . Thus, there is epidemiological evidence to support
294	the zoonotic potential of Blastocystis.
295	
296	The potential for waterborne transmission of <i>Blastocystis</i> to occur in the zoo
297	environment should also be taken into account as Leelayoova et al (2008)
298	demonstrated that the high prevalence of Blastocystis ST1 amongst Thai
299	schoolchildren may be due to consuming Blastocystis ST1 contaminated drinking
300	water from a rainwater tank on school grounds. One of the tasks routinely
301	performed by zoo-keepers is the cleaning of animal enclosures. The cleaning of

302	primate enclosures involve the use of water hoses, and it may be possible for zoo-
303	keepers to acquire infection through contact with contaminated water. Previous
304	studies found that Blastocystis cysts may be resistant to water treatment and
305	clorination (Suresh et al., 2005; Zaki et al., 1996), and it is possible that cysts may
306	also be resistant to various disinfectants, which may play a role in the
307	transmission of Blastocystis in the zoo environment. Further studies are required
308	to determine risk factors for zoonotic transmission of <i>Blastocystis</i> .
309	
310	4.3 Host specificity occurring within the genus Blastocystis
311	Many of the Blastocystis STs display a broad host range, although they may not
312	all be of zoonotic significance. Based on evidence from this study and previous
313	studies (Abe, 2004; Abe et al., 2003; Noël et al., 2005; Parkar et al., 2007; Rivera,
314	2008; Stensvold et al., 2009a; Yan et al., 2007; Yoshikawa et al., 2003), it is likely
315	that ST1, ST2, and ST4 are zoonotic as identical isolates of human and animal
316	origin were identified and clustered within these STs. These STs also display a
317	low host specificity (Noël et al., 2005), which is also likely for other STs
318	containing isolates from different hosts. ST3 also contains isolates of animal and
319	human origin. However, none of the human isolates are identical to the animal
320	isolates and there is strong bootstrap support (Noël et al., 2005) to suggest that
321	there may be high host specificity occurring within this ST. ST5 and ST10 also
322	display a broad host range, containing isolates from primates, pigs (ST5 only),
323	and livestock with low host specificity (Noël et al., 2005; Stensvold et al., 2009a).
324	Whereas ST6 and ST7 seem to display degrees of host specificity, as human

325	isolates are distinctly different to avian isolates within these STs (Arisue et al.,
326	2003; Noël et al., 2005; Yoshikawa et al., 2004a). ST8 contains isolates from
327	primates, humans and a pheasant (Stensvold et al., 2009a). ST9 currently
328	consists of only two isolates, and these are of human origin (Noël et al., 2005).
329	Although ST11, ST12 and ST13 seem to be host specific, further characterization
330	studies of Blastocystis from elephant, giraffe and Australian native fauna species
331	are required in order to determine whether these newly assigned STs are common
332	amongst these animals, and whether they are geographic and/or host specific, with
333	zoonotic potential.
334	
335	Current phylogenetic analyses based on the SSU rRNA gene of Blastocystis
336	isolates suggest that there is low host specificity occurring within the genus. The
337	findings from this study along with an increasing number of epidemiological and
338	subtyping studies, it is becoming increasingly evident that the frequency of STs
339	differs significantly between hosts. Thus further studies focusing upon animal
340	hosts not previously screened for Blastocystis, and the phylogenetic analysis of
341	these isolates may help resolve the genetic diversity and taxonomic status of
342	Blastocystis.
343	
344	4.4 The limitations of current screening tools and its implications for the
345	taxonomy of Blastocystis

A number of different methods to amplify *Blastocystis* SSU rRNA gene have been
described previously (Böhm-Gloning et al., 1997; Clark, 1997; Jones II et al.,

348	2008; Jones et al., 2009; Menounos et al., 2008; Scicluna et al., 2006; Stensvold et
349	al., 2007b; Stensvold et al., 2006; Termmathurapoj et al., 2004; Wong et al., 2008;
350	Yoshikawa et al., 1998; Yoshikawa et al., 1996). Some methods primarily focus
351	upon detection and subtyping of Blastocystis isolates using primers which amplify
352	fragments smaller than 350bp (Menounos et al., 2008; Stensvold et al., 2007b;
353	Stensvold et al., 2006) while others amplify products in excess of 600bp (Scicluna
354	et al., 2006) and 1000bp (Termmathurapoj et al., 2004; Wong et al., 2008;
355	Yoshikawa et al., 1998; Yoshikawa et al., 1996). As these primers are genus-
356	specific, preferential amplification or no amplification of certain STs are possible.
357	It has previously been reported that primers designed by Böhm-Gloning et al.
358	(1997) do not amplify ST3 isolates (Wong et al., 2008), while ST3 is
359	preferentially amplified by primers described in Stensvold et al. (2006). In order
360	to account for possible sequence variation within primer sites, it is recommended
361	to use multiple primer pairs (Stensvold et al., 2009b).
362	
363	Although using different primer pairs may minimise the likelihood of preferential
364	amplification, it can be difficult to perform accurate phylogenetic analyses if the
365	primers amplify small products. The major limitation of performing phylogenetic
366	analyses using small products is the inability to determine subgroupings and
367	relationships within individual STs. Therefore, it is important that future research
368	focusing upon the taxonomy and phylogenetic relationships among Blastocystis
369	isolates amplify at least 1000bp of the SSU rRNA gene. Also, isolates belonging

370	to novel STs	should be an	nlified us	sing primer	naire with	resulting	products (of at
570	to novel STS	should be all	ipinieu us	sing primer	pairs with	resulting	products (ла

least 1000bp in order to create accurate phylogenetic trees.

372

373	In order to determine whether STs correspond to different species of Blastocystis,
374	more discriminatory ST-specific genotyping tools are required to resolve host
375	specificity and ST subgroupings. At present, phylogenetic analyses are derived
376	from sequences of the SSU rRNA gene. Phylogenetic studies based on other loci,
377	such as the elongation factor-1-alpha (EF-1 α), intertranscriber region (ITS) may
378	provide further insight into the taxonomic status of Blastocystis, including the
379	subgroupings within individual STs.
380	
381	In conclusion, the present study is the first to report Blastocystis isolated from
382	elephants (ST11), giraffes (ST12), quokka (ST13) and western grey kangaroo
383	(ST12). Further studies are required in order to determine the host specificity and
384	zoonotic potential of these newly assigned STs, as well as their potential clinical
385	impact. A high prevalence of Blastocystis was reported in animals and zoo-
386	keepers from the Western Australian zoo. Some isolates from the zoo-keepers
387	were similar or identical to isolates from the animals they work with, providing
388	evidence to support the zoonotic potential of this parasite.
389	

390 Acknowledgements

391 This study was possible with the help from Caroline Lawrence, Cree Monaghan,

392 Paul Eden and other zoo staff from the Perth Zoo. We would also like to thank the

- 394 provided samples from the African painted dogs at the Perth Zoo.
- 395

396 **References**

- Abe, N., 2004, Molecular and phylogenetic analysis of *Blastocystis* isolates from
 various hosts. Vet Parasitol 120, 235-242.
- 399 Abe, N., Nagoshi, M., Takami, K., Sawano, Y., Yoshikawa, H., 2002, A survey of
- 400 *Blastocystis* sp. in livestock, pets and zoo animals in Japan. Vet Parasitol
 401 106, 203-212.
- 402 Abe, N., Wu, Z., Yoshikawa, H., 2003, Zoonotic genotypes of *Blastocystis*
- 403 *hominis* detected in cattle and pigs by PCR with diagnostic primers and
- 404 restriction fragment length polymoprhism analysis of the small subunit

405 ribosomal RNA gene. Parasitol Res 90, 124-128.

- 406 Adams, P., Monis, P.T., Elliot, A., Thompson, R., 2004, Cyst morphology and
- 407 sequence analysis of the small subunit rDNA and ef1 alpha identifies a
- 408 novel *Giardia* genotype in a quenda (*Isoodon obesulus*) from Western
- 409 Australia. Infect Genet Evol 4, 365-370.
- 410 Amin, O., 2002, Seasonal Prevalence of Intestinal Parasites in the United States
 411 During 2000. Am J Trop Med Hyg 66, 799-803.
- 412 Arisue, N., Hashimoto, T., Yoshikawa, H., 2003, Sequence heterogeneity of the
- 413 small subunit ribosomal RNA genes among *Blastocystis* isolates.
- 414 Parasitology 126, 1-9.

415	Arisue, N., Hashimoto, T., Yoshikawa, H., Nakamura, Y., Nakamura, G.,
416	Nakamura, F., Yano, T., Hasegawa, M., 2002, Phylogenetic Position of
417	Blastocystis hominis and of Stramenophiles Inferred from Multiple
418	Molecular Sequence Data. J Eukaryot Microbiol 49, 42-53.
419	Belova, L.M., Krylov, M.V., 1998, The distribution of <i>Blastocystis</i> according to
420	different systematic groups of hosts. Parazitologiia 32, 268–276.
421	Bengis, R., Odening, K., Stolte, M., Quandt, S., Bockhardt, I., 1998, Three new
422	Sarcocystis species, Sarcocystis giraffae, S. klaseriensis, and S.
423	camelopardalis (Protozoa: Sarcocystidae) from the giraffe (Giraffa
424	camelopardalis) in South Africa. J Parasitol 84, 562-565.
425	Böhm-Gloning, B., Knobloch, J., Walderich, B., 1997, Five subgroups of
426	Blastocystis hominis isolates from symptomatic and asymptomatic patients
427	revealed by restriction site analysis of PCR-amplified 16S-like rDNA.
428	Trop Med Int Health 2, 771-778.
429	Clark, C., 1997, Extensive genetic diversity in Blastocystis hominis. Mol
430	Biochem Parasitol 87, 79-83.
431	Garijo, M., Ortiz JM, MR, R.d.I., 2004, Helminths in a giraffe (Giraffa
432	camelopardalis xgiraffa) from a zoo in Spain. Onderstepoort J Vet Res 71,
433	153-156.
434	Goossens, E., Dorny P, Boomker J, Vercammen F, J, V., 2005, A 12-month
435	survey of the gastro-intestinal helminths of antelopes, gazelles and
436	giraffids kept at two zoos in Belgium. Vet Parasitol 127, 303-312.

437	Jones II, M., Ganac, R., Hiser, G., Hudson, N., Le, A., Whipps, C., 2008,
438	Detection of <i>Blastocystis</i> from stool samples using real-time PCR.
439	Parasitol Res 103, 551-557.
440	Jones, M., Whipps, C., Ganac, R., Hudson, N., Boroom, K., 2009, Association of
441	Blastocystis subtype 3 and 1 with patients from an Oregon community
442	presenting with chronic gastrointestinal illness. Parasitol Res 104, 341-
443	345.
444	Leelayoova, S., Siripattanapipong, S., Thathaisong, U., Naaglor, T., Taamasri, P.,
445	Piyaraj, P., Mungthin, M., 2008, Drinking Water: A Possible Source of
446	Blastocystis spp. Subtype 1 Infection in Schoolchildren of a Rural
447	Community in Central Thailand. Am J Trop Med Hyg 79, 401-406.
448	Leelayoova, S., Taamasri, P., Rangsin, R., Naaglor, T., Thathaisong, U.,
449	Mungthin, M., 2002, In-vitro cultivation: a sensitive method for detecting
450	Blastocystis hominis. Ann Trop Med Parasitol 96, 803-807.
451	Lim, Y.A.L., Ngui, R., Shukri, J., Rohela, M., Mat Naim, H.R., 2008, Intestinal
452	parasites in various animals at a zoo in Malaysia. Vet Parasitol 157, 154-
453	159.
454	McCarthy, S., Ng, J., Gordon, C., Miller, R., Wyber, A., Ryan, U.M., 2008,
455	Prevalence of Cryptosporidium and Giardia species in animals in irrigation
456	catchments in the southwest of Australia. Exp Parasitol 118, 596-599.
457	Menounos, P.G., Spanakos, G., Tegos, N., Vassalos, C.M., Papadopoulou, C.,
458	Vakalis, N.C., 2008, Direct detection of Blastocystis sp. in human faecal

459	samples and subtype assignment using single strand conformational
460	polymorphism and sequencing. Mol Cell Probes 22, 24-29.
461	Noël, C., Dufernez, F., Gerbod, D., Edgcomb, V., Delgardo-Viscogliosi, P., Ho,
462	L., Singh, M., Wintjens, R., Sogin, M., Capron, M., Pierce, R., Zenner, L.,
463	Viscogliosi, E., 2005, Molecular Phylogenies of Blastocystis Isolates from
464	Different Hosts: Implications for Genetic Diversity, Identification of
465	Species, and Zoonosis. J Clin Microbiol 43, 348-355.
466	Noël, C., Peyronnet, C., Gerbod, D., Edgcomb, V., Delgado-Viscogliosi, P.,
467	Sogin, M., Capron, M., Viscogliosi, E., Zenner, L., 2003, Phylogenetic
468	analysis of Blastocystis isolates from different hosts based on the
469	comparison of the small-subunit rRNA gene sequences. Mol Biochem
470	Parasitol 126, 119-123.
471	Parkar, U., Traub, R.J., Kumar, S., Mungthin, M., Vitali, S., Leelayoova, S.,
472	Morris, K., Thompson, R.C.A., 2007, Direct characterization of
473	Blastocystis from faeces by PCR and evidence of zoonotic potential.
474	Parasitology 134, 359-367.
475	Pérez Cordón, G., Hitos Prados, A., Romero, D., Sánchez Moreno, M., Pontes, A.,
476	Osuna, A., Rosales, M.J., 2008, Intestinal parasitism in the animals of the
477	zoological garden "Peña Escrita" (Almuñecar, Spain). Vet Parasitol 156,
478	302-309.
479	Rivera, W.L., 2008, Phylogenetic analysis of <i>Blastocystis</i> isolates from animal
480	and human hosts in the Philippines. Vet Parasitol 156, 178-182.

481	Salim, H., Kumar, G., Vellayan, S., Mak, J., Anuar, A., Init, I., Vennila, G.,
482	Saminathan, R., Ramakrishnan, K., 1999, Blastocystis in animal handlers.
483	Parasitol Res 85, 1032-1033.
484	Scicluna, S.M., Tawari, B., Clark, C.G., 2006, DNA Barcoding of <i>Blastocystis</i> .
485	Protist 157, 77-85.
486	Stensvold, C.R., Alfellani, M.A., Nørskov-Lauritsen, S., Prip, K., Victory, E.L.,
487	Maddox, C., Nielsen, H.V., Clark, C.G., 2009a, Subtype distribution of
488	Blastocystis isolates from synanthropic and zoo animals and identification
489	of a new subtype. Int J Parasitol 39, 473-479.
490	Stensvold, C.R., Nielsen, H.V., Mølbak, K., Smith, H.V., 2009b, Pursuing the
491	clinical significance of <i>Blastocystis</i> - diagnostic limitations. Trends
492	Parasitol 25, 23-29.
493	Stensvold, C.R., Suresh, G.K., Tan, K.S.W., Thompson, R.C.A., Traub, R.J.,
494	Viscogliosi, E., Yoshikawa, H., Clark, C.G., 2007a, Terminology for
495	Blastocystis subtypes - a consensus. Trends Parasitol 23, 93-96.
496	Stensvold, C.R., Traub, R.J., von Samson-Himmelstjerna, G., Jespersgaard, C.,
497	Nielsen, H.V., Thompson, R.C.A., 2007b, Blastocystis: Subtyping isolates
498	using pyrosequencing(TM) technology. Exp Parasitol 116, 111-119.
499	Stensvold, R., Brillowska-Dabrowska, A., Nielsen, H.V., Arendrup, M.C., 2006,
500	Detection of Blastocystis hominis in unpreserved stool specimens by using
501	polymerase chain reaction. J Parasitol 92, 1081-1087.
502	Suresh, K., Smith, H.V., Tan, T.C., 2005, Viable Blastocystis Cysts in Scottish
503	and Malaysian Sewage Samples. Appl Environ Microbiol 71, 5619-5620.

504	Tamura, K., Dudley, J., Nei, M., Kumar, S. 2007, MEGA4: Molecular
505	Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol Biol
506	Evol 24, 1596-1599
507	Termmathurapoj, S., Leelayoova, S., Aimpun, P., Thathaisong, U., Nimmanon,
508	T., Taamasri, P., Mungthin, M., 2004, The usefulness of the short-term in
509	vitro cultivation for the detection and molecular study of Blastocystis
510	hominis in stool specimens. Parasitol Res 93, 445-447.
511	Thathaisong, U., Worapong, J., Mungthin, M., Tan-Ariya, P., Viputtigul, A.,
512	Sudatis, A., Noona, i A., Leelayoova, S., 2003, Blastocystis isolates from a
513	pig and a horse are closely related to Blastocystis hominis. J Clin
514	Microbiol 41, 967-975.
515	Thompson, J., Yang, R., Power, M., Hufschmid, J., Beveridge, I., Reid, S., Ng, J.,
516	Armson, A., Ryan, U., 2008, Identification of zoonotic Giardia genotypes
517	in marsupials in Australia. Exp Parasitol 120, 88-93.
518	Thompson, J.D., Higgins, D.G., Gibson, T.J., 1994, Clustal w: Improving the
519	sensitivity of progressive multiple sequence alignment through sequence
520	weighting, position-specific-gap penalties and weight matrix choice.
521	Nucleic Acids Res 22, 4673-4680.
522	Vidya, T., Sukumar, R., 2002, The effect of some ecological factors on the
523	intestinal parasite loads of the Asian elephant (Elephas maximus) in
524	southern India. J Biosci 27, 521-528.
525	Weller, T.H., Dammin, G.J., Patterson, K., Harwood, E.L., 1945, The Acid-Ether
526	Centrifugation and the Zinc Sulfate Flotation Techniques as Methods for

527	the Recovery of the Eggs of Schistosoma Mansoni. Am J Trop Med s1-25,
528	367-374.
529	Windsor, J., MacFarlane, L., Hughes-Thapa, G., Jones, S., Whiteside, T., 2002,
530	Incidence of Blastocystis hominis in faecal samples submitted for routine
531	microbiological analysis. Br J Biomed Sci 59, 154-157.
532	Wong, K., Ng, G., Lin, R., Yoshikawa, H., Taylor, M., Tan, K., 2008,
533	Predominance of subtype 3 among Blastocystis isolates from a major
534	hospital in Singapore. Parasitol Res 102, 663-670.
535	Yan, Y., Su, S., Ye, J., Lai, X., Lai, R., Liao, H., Chen, G., Zhang, R., Hou, Z.,
536	Luo, X., 2007, Blastocystis sp. subtype 5: a possibly zoonotic genotype.
537	Parasitol Res 101, 1527-1532.
538	Yoshikawa, H., Abe, N., Wu, Z., 2004a, PCR-based identification of zoonotic
539	isolates of Blastocystis from mammals and birds. Microbiol 150, 1147-
540	1151.
541	Yoshikawa, H., Morimoto, K., Wu, Z., Singh, M., Hashimoto, T., 2004b,
542	Problems in speciation in the genus Blastocystis. Trends Parasitol 20, 251-
543	255.
544	Yoshikawa, H., Wu, Z., Kimata, I., Iseki, M., Ali, I., Hossain, M., Zaman, V.,
545	Haque, R., Takahashi, Y., 2004c, Polymerase chain reaction-based
546	genotype classification among human Blastocystis hominis populations
547	isolated from different countries. Parasitol Res 92, 22-29.
548	

549	Yoshikawa, H., Nagano, I., Wu, Z., Yap, E., Singh, M., Takahashi, Y., 1998,
550	Genomic polymorphism among Blastocystis hominis strains and
551	development of subtype-specific diagnostic primers. Mol Cell Probes 12,
552	153-159.
553	Yoshikawa, H., Nagano, I., Yap, E., Singh, M., Takahashi, Y., 1996, DNA
554	Polymorphism Revealed by Arbitrary Primers Polymerase Chain Reaction
555	Among Blastocystis Strains Isolated from Humans, a Chicken, and a
556	Reptile. J Eukaryot Microbiol 43, 127-130.
557	Yoshikawa, H., Wu, Z., Nagano, I., Takahashi, Y., 2003, Molecular Comparative
558	Studies Among Blastocystis Isolates Obtained from Humans and Animals.
559	J Parasitol 89, 585-594.
560	Zaki, M., Zaman, V., Sheikh, N.A., 1996, Resistance of Blastocystis hominis cysts
561	to chlorine. J Pak Med Assoc 46, 178-179.
562	Zaman, V., Khan, K., 1994, A comparison of direct microscopy with culture for
563	the diagnosis of Blastocystis hominis. Southeast Asian J Trop Med Public
564	Health 25, 792-793.
565	

566 Tables

567	Table I. Animals sampled from the Perth Zoo in this study.
568	

General Samples Positive Host **Scientific Name** Exhibit **(n)** (n) African painted dog Lycaon pictus 7 0 Hamadryas baboon Papio hamadryas 3 3 African *Giraffa camelopardalis* 4 4 Rothschild's giraffe savannah rothschildi Ceratotherium simum Southern white 2 0 rhinoceros simum Elephas maximus Asian elephant 4 4 Oriental small-clawed 2 Aonyx cinereus 0 otter Silvery gibbon Hylobates moloch 4 2 Sulawesi crested Asian Macaca nigra nigra 4 2 macaque rainforest Sumatran orang utan Pongo pygmaeus abelii 4 4 Panthera tigris 2 0 Sumatran tiger sumatrae 2 Sun bear Helarctos malayanus 0 White cheeked gibbon Hylobates leucogenys 2 4 2 Quokka Setonix brachyurus 2 Australian Southern hairy nosed Lasiorhinus latifrons 1 1 bushwalk wombat Western grey kangaroo *Macropus fuliginosus* 2 1 Cockatoo Red tailed black Calyptorhynchus 2 0 exhibit banksii cockatoo Black-capped capuchin Cebus apella 2 0 2 Callithrix jacchus 0 Common marmoset 2 Cotton-top tamarin 0 Saguinus oedipus Lesser Emperor tamarin 0 Saguinus imperator 1 primates Callithrix pygmaea 2 0 Pygmy marmoset Ring-tailed lemur Lemur catta 4 1 White-fronted capuchin Cebus albifrons 2 0 Black and white ruffed Varecia variegata Main lake 4 4 lemur variegata Reptile 1 0 Woma Aspidites ramsayi encounter 2 Fishing cat Prionailurus viverrinus 0 Cacatua pastinator Muir's corella 2 0 Other pastinator 2 2 animals Tonkean macaque Macaca tonkeana Sulphur crested 1 0 Cacatua galerita cockatoo 76 Total 32

569 570

571 Table II. Samples collected from Melbourne, Werribee, Amsterdam and Antwerp572 Zoos.

573

Zoo	Host	Scientific name	Samples (n)	Positive (n)
	Asian elephant	Elephas maximus	5	5
Melbourne	Giraffe	Giraffa camelopardalis rothschildi	1	1
Werribee	Giraffe	Giraffa camelopardalis rothschildi	2	1
American	Asian elephant	Elephas maximus	14	6
Amsterdam	Giraffe	Giraffa camelopardalis	15	12
A	Asian elephant	Elephas maximus	2	1
Antwerp	giraffe	Giraffa camelopardalis	5	5
Total			44	31

Host	Country of origin	Reference	Accession number
Cattle	Denmark	Stensvold et al.	FM164412
		(2009a)	
Cattle	Japan	Abe et al. (2004)	AB107964
Duck	France	Noël et al. (2003)	AY135412
Human	France	Noël et al. (2003)	AY135402
Human	Japan	Arisue et al. (2002)	AB023578
Human	Japan	Yoshikawa et al.	AF408426
		(2004c)	
Human	Japan	Yoshikawa et al.	AY244621
		(2004c)	
Human	Japan	Arisue et al. (2003)	AB070987
Human	Japan	Arisue et al. (2003)	AB070988
Human	Japan	Arisue et al. (2003)	AB070989
Human	Japan	Arisue et al. (2003)	AB070990
Human	Japan	Arisue et al. (2003)	AB091238
Human	Japan	Arisue et al. (2003)	AB091239
Human	Japan	Arisue et al. (2003)	AB070986
Human	N/A	Arisue et al. (2002)	AB023499
Human	Japan	Yoshikawa et al.	AF408425
		(2004c)	
Human	Singapore	Arisue et al.	AF408427
		(2003) ; Noël et al.	
		(2005)	
Human	Thailand	Thathaisong et al.	AF439782
		(2003)	
Monkey	Japan	Arisue et al. (2003)	AB070997
Monkey	Japan	Abe et al. (2004)	AB107969
Monkey	Japan	Abe et al. (2004)	AB107970
Monkey	Japan	Abe et al. (2004)	AB107967
Monkey	Japan	Abe et al. (2004)	AB107968
Pheasant	Japan	Abe et al. (2004)	AB107971
Pig	Japan	Arisue et al. (2003)	AB091248
Rat	Japan	Arisue et al. (2003)	AB091251
Rat	Singapore	Noël et al. (2005)	AY590114

576 Table III. *Blastocystis* isolates obtained from GenBank for phylogenetic analysis.

580 Figure Legend

582	Figure 1. Neighbour-joining tree displaying the relationships among <i>Blastocystis</i>
583	isolates, inferred by distance based analysis of SSU rDNA sequence data using
584	Kimura's-2-parameter distance estimates. Some sequences used for comparison
585	were from GenBank. Scale bar shows 0.5 substitutions (corrected) per base pair.
586	Shaded squares indicate animal isolates from the Perth Zoo. Unshaded squares
587	indicate zoo-keeper isolates, while the diamond indicates a human control isolate.
588	The triangle indicates an isolate from the Perth Zoo from a previous study (Parkar
589	et al., 2007).
590	
591	Figure 2. Neighbour-joining tree displaying the relationships among Blastocystis
592	isolates, inferred by distance based analysis of SSU rDNA sequence data using
593	Kimura's-2-parameter distance estimates (bootstrap value on the left or only
594	bootstrap value shown). Maximum parasimony estimates are also displayed
595	(right). Some sequences used for comparison were from GenBank. Scale bar
596	shows 0.2 substitutions (corrected) per base pair. Isolates marked with shaded
597	squares and circles indicate animal and zoo-keeper isolates from our study the
598	West Australian Zoo. Shaded triangle indicates a human control isolate. Isolates
599	marked with unshaded symbols indicate previously characterized isolates from the
600	Perth Zoo (Parkar et al, 2007).

602 Figure 3. Neighbour-joining tree displaying the relationships among *Blastocystis*

- 603 isolates, inferred by distance based analysis of SSU rDNA sequence data using
- 604 Kimura's-2-parameter distance estimates. Some sequences used for comparison
- 605 were from GenBank. Scale bar shows 0.2 substitutions (corrected) per base pair.
- 606 Isolates indicated by circles are from elephants and those indicated by squares are

- 607 from giraffes.
- 608

General Exhibit	Host Scientific Name		Samples (n)	Positive (n)
	African painted dog	Lycaon pictus	7	0
	Hamadryas baboon	Papio hamadryas	3	3
African savannah	Rothschild's giraffe	Giraffa camelopardalis rothschildi	4	4
General Exhibit African Savannah Asian Asian rainforest Australian bushwalk Cockatoo exhibit Lesser primates Main lake Reptile encounter Other animals	Southern white rhinoceros	Ceratotherium simum simum	2	0
	Asian elephant	Elephas maximus	4	4
	Oriental small-clawed otter	Aonyx cinereus	2	0
	Silvery gibbon	Hylobates moloch	4	2
Asian	Sulawesi crested macaque	Macaca nigra nigra	4	2
rainforest	Sumatran orang utan	Pongo pygmaeus abelii	4	4
	Sumatran tiger	Panthera tigris sumatrae	2	0
Australian bushwalk Cockatoo exhibit	Sun bear	Helarctos malayanus	2	0
	White cheeked gibbon	Hylobates leucogenys	4	2
	Quokka	Setonix brachyurus	2	2
Australian bushwalk	Southern hairy nosed wombat	Lasiorhinus latifrons	1	1
	Western grey kangaroo	Macropus fuliginosus	2	1
Cockatoo exhibit	Red tailed black cockatoo	Calyptorhynchus banksii	2	0
	Black-capped capuchin	Cebus apella	2	0
	Common marmoset	Callithrix jacchus	2	0
Exhibit African Savannah Asian rainforest Australian bushwalk Cockatoo exhibit Lesser primates Main lake Reptile encounter Other animals Total	Cotton-top tamarin	Saguinus oedipus	2	0
	Emperor tamarin	Saguinus imperator	1	0
	Pygmy marmoset	Callithrix pygmaea	2	0
	Ring-tailed lemur	Lemur catta	4	1
	White-fronted capuchin	Cebus albifrons	2	0
Main lake	Black and white ruffed lemur	Varecia variegata variegata	4	4
Reptile encounter	Woma	Aspidites ramsayi	1	0
	Fishing cat	Prionailurus viverrinus	2	0
Other animals	Muir's corella	Cacatua pastinator pastinator	2	0
Main lake Reptile encounter Other animals	Tonkean macaque	Macaca tonkeana	2	2
	Sulphur crested cockatoo	Cacatua galerita	1	0
Total			76	32

Table I. Animals sampled from the Perth Zoo in this study.

Zoo	Host	Scientific name	Samples (n)	Positive (n)	
Melbourne	Asian elephant	Elephas maximus	5	5	
	Giraffe	Giraffa camelopardalis rothschildi	1	1	
Werribee	Giraffe	Giraffa camelopardalis rothschildi	2	1	
Amsterdam	Asian elephant	Elephas maximus	14	6	
	Giraffe	Giraffa camelopardalis	15	12	
Antwerp	Asian elephant	Elephas maximus	2	1	
	giraffe	Giraffa camelopardalis	5	5	
Total			44	31]

Table II. Samples collected from Melbourne, Werribee, Amsterdam and Antwerp Zoos.

Host	Country of origin	Reference	Accession number	
Cattle	Denmark	Stensvold et al. (2009a)	FM164412	
Cattle	Japan	Abe et al. (2004)	AB107964	
Duck	France	Noël et al. (2003)	AY135412	
Human	France	Noël et al. (2003)	AY135402	
Human	Japan	Arisue et al. (2002)	AB023578	
Human	Japan	Yoshikawa et al. (2004c)	AF408426	
Human	Japan	Yoshikawa et al. (2004c)	AY244621	
Human	Japan	Arisue et al. (2003)	AB070987	
Human	Japan	Arisue et al. (2003)	AB070988	
Human	Japan	Arisue et al. (2003)	AB070989	
Human	Japan	Arisue et al. (2003)	AB070990	
Human	Japan	Arisue et al. (2003)	AB091238	
Human	Japan	Arisue et al. (2003)	AB091239	
Human	Japan	Arisue et al. (2003)	AB070986	
Human	N/A	Arisue et al. (2002)	AB023499	
Human	Japan	Yoshikawa et al. (2004c)	AF408425	
Human	Singapore	Arisue et al. (2003) ; Noël et al. (2005)	AF408427	
Human	Thailand	Thathaisong et al. (2003)	AF439782	
Monkey	Japan	Arisue et al. (2003)	AB070997	
Monkey	Japan	Abe et al. (2004)	AB107969	
Monkey	Japan	Abe et al. (2004)	AB107970	
Monkey	Japan	Abe et al. (2004)	AB107967	
Monkey	Japan	Abe et al. (2004)	AB107968	
Pheasant	Japan	Abe et al. (2004)	AB107971	
Pig	Japan	Arisue et al. (2003)	AB091248	
Rat	Japan	Arisue et al. (2003)	AB091251	
Rat	Singapore	Noël et al. (2005)	AY590114	

Table III. H	Blastocystis isolates	obtained from	GenBank for	phylogenetic analysis	s.
--------------	-----------------------	---------------	-------------	-----------------------	----

0.02

0.02