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RICH, STURMIAN, AND TRAPEZOIDAL WORDS
ALDO DE LUCA, AMY GLEN, AND LUCA Q. ZAMBONI

ABSTRACT. Inthis paperwe explore various interconnections betwiedrwords, Sturmian words,
and trapezoidal words. Rich words, first introduced by thmsd and third authors together with
J. Justin and S. Widmer, constitute a new class of finite aficit@words characterized by having
the maximal number of palindromic factors. Every finite &tian word is rich, but not conversely.
Trapezoidal words were first introduced by the first authostindying the behavior of the sub-
word complexity of finite Sturmian words. Unfortunatelydtproperty does not characterize finite
Sturmian words. In this note we show that the only trapeagidéindromes are Sturmian. More
generally we show that Sturmian palindromes can be chaizeteeither in terms of their subword
complexity (the trapezoidal property) or in terms of theitipdromic complexity. We also obtain a
similar characterization of rich palindromes in terms oékation between palindromic complexity
and subword complexity.

1. INTRODUCTION

In [10], X. Droubay, J. Justin, and G. Pirillo showed that atéirword W of length|1¥/| has at
most|W| 4+ 1 many distinct palindromic factors, including the empty diofn [14], the second
and third authors together with J. Justin and S. Widmerat&t a unified study of both finite and
infinite words characterized by this palindromic richnessperty. Accordingly we say that a finite
word W isrich if and only if it has| /7| 41 distinct palindromic factors, and an infinite word is rich
if all of its factors are rich. Droubay, Justin and Pirilloosteed that all episturmian words (in par-
ticular all Sturmian words) are rich. Other examples of iards are complementation symmetric
sequences [14], symbolic codings of trajectories of symimetterval exchange transformations
[12, 13], and certaim-expansions wherg is a simple Parry number [1].

Let « be a non-empty factor of a finite or infinite woltl. A factor of W having exactly two
occurrences ofi, one as a prefix and one as a suffix, is calledaplete returrio v in . In [14],
the following fact is established:

Proposition 1. A finite or infinite wordlV is rich if and only if for each non-empty palindromic
factoru of W, every complete return to in 1 is a palindrome.

In short,IW is rich if and only if all complete returns to palindromes pedindrome& Given a
finite or infinite wordW, let Cy, (n) (respectivelyPy, (n)) denote thesubword complexity function
(respectively thepalindromic complexity functignwhich associates to each number> 0 the
number of distinct factors (respectively palindromic @s) of I of lengthn. Infinite Sturmian
words are characterized by both their subword complexity@Eiindromic complexity. An infinite
word W is Sturmian if and only ity (n) = n+1 for eachn > 0 (cf. [3]). In [11], X. Droubay and
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1in [2], the third author, V. Anne and |. Zorca proved that inepisturmian word, any complete return to a palin-
drome is itself a palindrome.
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G. Pirillo showed thatV” is Sturmian if and only if?y (n) = 1 whenevenr is even, and?y (n) = 2
whenevem is odd. In [6], the first author studied the complexity funatiof finite wordsiV. He
showed that i#V is a finite Sturmian word (meaning a factor of a Sturmian wdithn the graph of
Cw(n) as a function of: (for 0 < n < |WW|) is that of a regular trapezoid: thatd$y (n) increases
by 1 with eachn on some interval of length thenCy, (n) is constant on some interval of length
s, and finallyCy, (n) decreases by with eachn on an interval of the same sizeSuch a word is
said to betrapezoidal SinceCy, (1) = 2, a trapezoidal word is necessarily on a binary alphabet.
For any wordlV let us denote by, the smallest integer such thail” has no right special factor
of lengthp, and byKy;, the length of the shortest unrepeated suffiXiofin Proposition 4.7 of [6],
the first author proves that’ is trapezoidal if and only ifiV'| = Ry + Ky,. However, in [6] it
is shown that the property of being trapezoidal does notatherize finite Sturmian words. For
instance, the wordaabab is not Sturmian although it is trapezoidal.

The main results of this note are to give characterizatibbsth rich palindromes and Sturmian
palindromes in terms of the palindromic complexity funogoWe also show that every trapezoidal
word is rich, but not conversely. In the case of rich palimiles we prové

Theorem 1. Let W be a finite word. Then the following two conditions are eglént

(A) W is arich palindrome.
(B) Pw(n)+ Py(n+1)=Cw(n+1) — Cw(n)+ 2 foreach) < n < |W]|.

In the context of Sturmian palindromes we prave

Theorem 2. LetW be a word of lengthV. Then the following three conditions are equivalent:

(A) W is a Sturmian palindrome.
(B) Pw(n)+ Pw(N —n)=2foreach0 <n < N.
(C) W is atrapezoidal palindrome.

2. RICH vs TRAPEZOIDAL WORDS
In this section we show that all trapezoidal words are rich:
Proposition 2. LetV be a trapezoidal word. Thel is rich.

Proof. We proceed by induction ofi¥’|. The result is clearly true ifiV/| < 2. Suppose every
trapezoidal word of length less thanis rich, and suppose thét" is trapezoidal of lengthv. Let
us suppose to the contrary th&tis not rich. Then, by Proposition 1, ity there exists a complete
return to some non-empty palindroniewhich is not a palindrome. By Proposition 8 of [5], any
factor of a trapezoidal word is itself trapezoidal. Thus g induction hypothesis, we deduce that
the prefix and suffix of?” of length N — 1 are each rich. It follows thaP is both a prefix and a
suffix of W, and that these are the only two occurrence®oh 1. So W itself is the complete
return toP which is not a palindrome. This implies th&t’| > 2|P| + 2.

It follows that Ky, = |P|+1 sinceP occurs twice i} and if some longer suffix dfi” occurred
more than once imV, then P would occur at least three times . SincelV is trapezoidal, we

2In [5], F. D’Alessandro classified all non-Sturmian trapiezdwords.

3An infinite version of Theorem 1 was obtained by the secondthind authors together with M. Bucci and A. De
Luca in [4] using completely different methods.

“A different characterization of Sturmian palindromes whtamed by A. de Luca and A. De Luca in [7]. See also

[8].
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haveRy + Ky = |W|. Now the word W has a periag= |W|—|P| = Rw + Kw — (Kw —1) =
Rw + 1. Let my, denote the minimal period d¥. Thenmy,, < Ry + 1. Since for any word/V,
mw > Rw + 1, it follows thatmy, = Ry + 1. From Proposition 28 of [7] we deduce tHat is
Sturmian, and hence rich, a contradiction. O

Remark 1. We note that the converse is false; in fagbbaa is rich but not trapezoidal.

3. PROOF OFTHEOREM 1

Proof. We first show that (B) implies (A). We assuriié satisfies (B). Taking. = |IW| and using
Py (W] +1)=Cw(W]|+1) =0andCy (|W|) = 1, we deduce thaby, (|IW]) = 1, and hence
W is a palindrome. It remains to show tHat is rich. LetS denote the total number of distinct
palindromic factors of?/. We will show thatS = |W| + 1. SincelV itself is a palindrome we have

Wi-1

S—1= Y Py(n).

Similarly since the empty word is a palindrome we have
W]

S—1=> Py(n).

Thus
W1 W]
25-2 = > Py(n)+ Y Pw(n)
wer
= Y (Pw(n)+ Pw(n+1))
wiot
= Z (Cw(n+1)—Cw(n)+2)

= Cw([W]) — Cw(0) +2|W|
= 1—-142W|=2/W].

HenceS = |WW| + 1 as required.

Next we show that (A) implies (B). We proceed by induction be tength ofl¥. The result
is easily verified in the cas@’| < 2. Now suppose the result is true for all rich palindromes of
length less thanV and supposél’ is a palindrome of lengtlv. Let V' denote the palindrome of
length N — 2 obtained by removing the first and last letterl®f SinceV is also rich (see [14]),
by the induction hypothesis we hav& (n) + Py(n + 1) = Cy(n + 1) — Cy(n) + 2 for each
0<n<N-—-2.

Let Ny denote the length of a shortest factdrof W which is not a factor of. Then for
0<n< Ny—1wehavePy(n)+ Py(n+1)=Cy(n+1)—Cw(n) + 2.

The wordU is either a prefix or a suffix df”. We claim that it is in fact both a prefix and a suffix
of W, in other words a palindrome. Suppose to the contrary&hist not a palindrome. Without
loss of generality we may assume thais a suffix of V. Let U’ denote the longest palindromic
suffix of U. Since|U’| < Ny, we havel’ is also a factor oft. Hence there exists a complete
return Z of U’ which is a proper suffix ofi. SincelV is rich, Z is a palindrome. Since we are
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assuming that/ is not a palindrome and that’ is the longest palindromic suffix d@f, it follows
that|Z| > |U|. SincelV is a palindrome is also a prefix of¥, and hence the proper suffix of
Z occurs inV, a contradiction. Thu# is a palindrome, and hence both a prefix and a suffiX/of
ThusU is the only factor ofil” of length /vy which is not a factor o¥/. Thus we have

Pw(NO) = Pv(No) +1 and Cw(NO) = Cv(No) + 1.

SinceP\/(NQ — ].) + Pv(NQ) = C\/(No) — C\/(NO — ].) + 2, P\/(NQ — ].) = PW(NO — 1), and
Cy(Ny — 1) = Cw(Ny — 1), we deduce that
Py(No—1)+ (Pw(Nog) — 1) = (Cw(Nog) — 1) = Cy(Ng — 1) + 2
and hence
Py (No— 1)+ Py (Ny) = Cw(Ng) — Cyy(Ng — 1) + 2

in other words equality in (B) also holds far= N, — 1.

We now claim that the only palindromic suffix & of length greater thatv, is W itself. In
fact, if W admitted a proper palindromic suffix of length greater thgnthenU would be a factor
of V, a contradiction. Thus we have

(3.1) Py (n) = Py(n) forall Ny <n < N.

Also, for eachNy < n < N, letUX (respectivelyX U) denote the prefix (respectively suffix)
of W of lengthn, where X' denotes the reversal of. SincelU X is not a palindrome it follows that
UX # XU. Thus

(32) Cw(n) = Cv(n) + 2 for all Nog <n<N.

We now verify (B) forn = N,. Starting withPy (Ny) + Py (No+1) = Cy(No+1) —Cy (Ng) +2

and using (3.1) and (3.2) we have
(Pw(No) = 1) + Pw(No + 1) = (Cw(No + 1) = 2) = (Cw(No) — 1) + 2
and hence
Pw(No) + Pw(No + 1) = Cw(No + 1) — Cw (No) + 2.

We next verify (B) forNy < n < N — 2. Starting withPy(n) + Py(n + 1) = Cy(n + 1) —

Cy(n) + 2 and using (3.1) and (3.2) we have
Py(n)+Py(n+1)=(Cwn+1)—2)— (Cw(n) —2)+2
and hence
Py (n) +Pw(n+1)=Cw(n+1)— Cw(n) + 2.

It remains to verify (B) fom = N —1 andn = N. If W is the constant word, thefA;, (N —1) =
1, Pw(N) =1, Pw(N—l— 1) =0, Cw(N — 1) =1, Cw(N) =1, andCW(N—l— 1) = 0. Otherwise,
Py (N—1) =0, Py(N) =1, P(N+1) = 0, C(N—1) = 2, Cyy(N) = 1, andCyy (N +1) = 0.
In either case one readily verifies (B) far= N — 1 andn = N. This completes the proof of
Theorem 1. O
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4. PROOF OFTHEOREM 2
We begin with the following lemma:

Lemma l. LetWW be a word of lengthV satisfying any condition of Theorem 2. Théhis a rich
palindrome. Hence by Theorem 1 we hd¥g(n) + Pw(n + 1) = Cw(n+ 1) — Cw(n) + 2 for
0<n<N.

Proof. Since any Sturmian word is trapezoidal, by Proposition 2 loa® that ifiV satisfies ei-
ther condition (A) or (C’), then it is rich. Let us supposeathV satisfies condition (B’).
Since Py (N) = Pw(0) = 1, we have thatil" is a palindrome. To see thdl is rich, let

S = Pw(0) + Pw(1) + Pw(2) + ... + Pw(N) denote the number of distinct palindromic fac-
tors of IW. Then

28 = Pw(0)+ Pw(N)+ Pw(1)+ Pw(N — 1)+ ...+ Pw(N) + Pw(0)
2(N +1).

WhenceS =N +1=|W|+ 1.
U

We note that condition (B’) is equivalent to saying that theravPy, (0) Py (1) Pw (2)... Pw (N)
is af-palindrome on the alphabgb, 1, 2} with respect to the involutory antimorphifrdefined by
0(0) =2,0(2) =0andf(1) = 1.

Assume first thatll satisfies (A), i.e.,W is a Sturmian palindrome. For att with
0< n< N-1,setDy(n) = Cw(n+ 1) — Cw(n). In [6], the first author showed that
the word: Dy (0) Dy (1) Dy (2)....Dy (N — 1) is of the form170°(—1)". In other wordsV is a
trapezoidal word: Cy, (n) increases by with eachn on an interval of lengthr, then stabilizes,
and eventually decreases byvith eachn on an interval of the same sizeThe trapezoidal prop-
erty of W together with the preceding lemma imply that the wétg(0) Py (1) Pw (2)... Pw (N)
begins with a block of the formi21212. .. (corresponding to the interval of lengthon which
Cw(n+1) — Cw(n) = 1), and terminates with a block of the form. 010101 (corresponding to
the interval on whictCy, (n+ 1) — Cw (n) = —1), and moreover by the trapezoidal property, these
two blocks are of the same length. Between these two bloakghier a block of the formi1...11
or of the form202 . . . 020 corresponding to the interval on whicky (n+ 1) — Cyw (n) = 0. Hence
W satisfies condition (B’).

Suppose now thdt/” satisfies (B’). First observe that for eaghwe havePy (n) € {0, 1,2},
and Py (1) # 0. If Py (1) = 1, thenW is equal to the constant word, and hence a Sturmian
palindrome. Next supposBy (1) = 2. In this casél is a binary palindromic word, say on the
alphabet{a, b}. To show thatil" is Sturmian, it suffices to show th&lt is balanced,i.e., given
any two factorsu andv of W of the same length, we have:|, — |v|,| < 1, where|u|, denotes
the number of occurrences of the lettein . Suppose to the contrary thHt is not balanced.
Then, it is well known (see for instance Proposition 2.1.33J) that there exists a palindrome
U such that botluUa andbUb are factors ofi¥. ThusW contains two distinct palindromes of
the same length, which implies thdf| is odd. For otherwise, ifU| were even, then taking
k= 27'|U|+1, we havePy, (2k) = 2, and hence by (B'Py (N — 2k) = 0. As we saw earlier, the
largest suffixes of the woréy, (0) Py (1) ... Py (N) containing zeros are of the for@i01...01
or202...020101...01. In both cases we have thBf, (N — 2k) # 0, a contradiction. Sinc@’ is
a palindrome and contains botlVa andbUb, the palindroméd/ must have at least two complete



6 ALDO DE LUCA, AMY GLEN, AND LUCA Q. ZAMBONI

returns int¥, one beginning iVa, which we denote byX, and one beginning i&/b, which we
denote byY. SincelV is rich we have bottX andY are palindromes wittX' £ Y.

If both | X| and |Y'| are greater thafi/| + 1, then both|X| and |Y'| must be even. In fact,
suppose to the contrary thigt | were odd. ThenX| > |U| + 2. But then¥ would contain three
palindromes of lengthU| + 2, namelyaUa, bUb, and the central palindromic factor of length
|U| + 2 of X which is necessarily distinct from botti/a andbUb since X cannot contain an
occurrence ot/ other than as a prefix and as a suffix. The same argument shaiys tmust be
even. Without loss of generality we can assykié < |Y'|. Then, asX and the central palindrome
of Y of length| X | are distinct, it follows that}” contains two distinct palindromes of even length
| X|. Thus, Py (| X|) = 2, and hencé’y (N — | X|) = 0, and hence’y, (N) = 0, a contradiction.

Thus it remains to consider the case in which eitiiror |Y'| is equal toU| + 1. Without loss
of generality supposgX | = |U| + 1. This means thak = Ua = aU and hencé/ is the constant
wordU = alVl. In this casdY| > |U| + 2 and by the previous argument must be even. But then
X and the central palindrome &f of length| X | are two distinct palindromic factors of of even
length, a contradiction. Thus we have shown that condit{gh)sand (B’) are equivalent.

Now we show that (A) is equivalent to (C’). The first authorogled in [6] that every finite
Sturmian word is trapezoidal. Thus (A) implies (C’). To gbat (C’) implies (A), we proceed by
induction on|IV|. The result is clearly true ifi’’| < 2. Next suppose the result is true o’ | <
N and letlV be a trapezoidal palindrome of length Since a trapezoidal word is necessarily
on a two-letter alphabet, sdy:, b}, we can write, without loss of generaliti’ = aVa. Then
V' is a trapezoidal palindrome, since factors of trapezoidaide are trapezoidal (see [5]). By
the induction hypothesid/ is a Sturmian palindrome. I’ is not Sturmian, then there exists a
palindromelU such thataUa andbUb are factors ofiV. SinceV is Sturmian, we have thatl/a
is both a prefix and suffix ofV, andbUb is a factor ofV. Since inV, all complete returns to
U are palindromes, between an occurrenceéldb in V' and the suffixall of V' there must be
an occurrence dfUa. SinceV is a palindrome we havelb is also a factor o¥/. Hence each of
aUa,bUb, aUb, andbU a is a factor ofiV. This implies that botla U andbU are right special factors
of W, a contradiction since the trapezoidal property implies thiaany0 < n < |W|, there exists
at most one right special factor of of lengthn. ThusWW must be Sturmian. This concludes our
proof of Theorem 2. O

Remark: A. De Luca [9] suggested the following alternate simple pribat (C’) implies (A):
Let I be a trapezoidal palindrome. Without loss of generality we assume thatV’| > 2, for
otherwise the result is clear. LEtdenote the longest proper palindromic suffixiof SincelV is
a palindrome(J is the longest border d¥/, whence|lW| = 7y + |U|. By Proposition 2}V is rich,
hencel is the longest repeated suffix Bf. Thus Ky, = |U| + 1. SinceWV is trapezoidal we have
thatmy = |W|— |U| = Rw + Kw — |U| = Rw + 1. By Proposition 28 of [7] we deduce thEf
is Sturmian.
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