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Sundaland, a tropical hotspot of biodiversity comprising Borneo
and Sumatra among other islands, the Malay Peninsula, and a
shallow sea, has been subject to dramatic environmental processes.
Thus, it presents an ideal opportunity to investigate the role of
environmental mechanisms in shaping species distribution and
diversity. We investigated the population structure and underlying
mechanisms of an insular endemic, the Bornean orangutan (Pongo
pygmaeus). Phylogenetic reconstructions based onmtDNA sequen-
ces from 211 wild orangutans covering the entire range of the spe-
cies indicate an unexpectedly recent common ancestor of Bornean
orangutans 176 ka (95% highest posterior density, 72–322 ka),
pointing to a Pleistocene refugium. High mtDNA differentiation
among populations and rare haplotype sharing is consistent with
a pattern of strong female philopatry. This is corroborated by
isolation by distance tests, which show a significant correlation
between mtDNA divergence and distance and a strong effect of
rivers as barriers for female movement. Both frequency-based
and Bayesian clustering analyses using asmany as 25 nuclearmicro-
satellite loci revealed a significant separation among all popula-
tions, as well as a small degree of male-mediated gene flow. This
study highlights the unique effects of environmental and biological
features on the evolutionary history of Bornean orangutans,
a highly endangered species particularly vulnerable to future cli-
mate and anthropogenic change as an insular endemic.
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Environmental mechanisms are some of the most important
forces affecting the evolutionary history and current distribu-

tion of species. Such mechanisms have been invoked to explain
genetic structure in many temperate European and North Amer-
ican species but with little focus on hotspots of biodiversity and
endemism in the tropics (1), where the forces underlying patterns
of genetic diversity and differentiation are especially intriguing.
The tropical Asian hotspot of Sundaland is remarkable in that it

has been subject to dramatic geological and environmental changes
(2, 3). This now partly submerged continental shelf encompasses
theMalaysian peninsula, the islands of Borneo, Sumatra, Java, and
possibly Palawan (2). It is a historically dynamic tectonic area that
underwent notable landmass configuration changes (3). More re-
cently, it has been severely affected by the Pleistocene climatic
oscillations (4) of the Quaternary. Changes in sea levels resulted in
the cyclical exposure of the continental shelf and the formation
of land bridges between the islands (4, 5), allowing for species in-
terchange with subsequent isolation (6). Moreover, climatic fluc-
tuations were accompanied by vegetation changes (2, 7, 8), with
shifts in the range and elevational distribution of rainforests. Thus,

these changes led to habitat expansions or contractions, leading to
new openings or barriers to gene flow. The Pleistocene was further
punctuated by intense regional climatic and habitat changes
through extraordinary volcanic eruptions, especially of Mount
Toba (9, 10). Finally, Sundaland contains many interesting topo-
graphical features, including rivers, lakes, and mountains (5, 11,
12), that may have acted as barriers to dispersal for a number of
species, adding yet another potential allopatric force.
The roles of these environmental forces in driving biotic di-

versity and endemism remain underexplored, particularly in Bor-
neo, the world’s second largest tropical island as well as the
easternmost Sunda region abutting the Wallace line (13, 14). Its
unusually high species endemism (14–16) suggests a combination
of specialized ecological niches, refugia formation, and long peri-
ods of isolation.
Among the species endemic to the island are the Bornean

orangutans (Pongo pygmaeus). This rainforest canopy-bound spe-
cies with an unusually slow life history is characterized by a rich
spectrum of genetic, morphological, and cultural variation (17–
19). Fossils indicate a much wider distribution of orangutans dur-
ing the Pleistocene extending from Southern China and Vietnam
to Java (11, 18), but orangutans are currently only found, as distinct
species, in Borneo (P. pygmaeus) and Sumatra (Pongo abelii). The
ancestors of orangutans therefore probably migrated from the
mainland to Sumatra and from there to Borneo (12), yet it remains
unclear when and how these colonization events took place.
It is also unclear how the exceptional environmental features of

Sundaland, combined with the characteristic behavioral and eco-
logical traits of orangutans, have shaped their phylogeography.
For instance, isolation in refugia or through riverine barriers
have been described as important forces underlying the genetic
structure of some of the African great apes (20–22), yet the evo-
lutionary history of orangutans remains unresolved. First, the high
genetic differentiation between Bornean and Sumatran orang-
utans (17, 23) is intriguing given recurrent land bridge formation
between the islands during the Pleistocene glacial periods (5).
Second, within Borneo, arguments for a stable distribution since
colonization (24) clashwith that of a bottleneck possibly associated
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with the last eruption of Mount Toba (25). Third, the three Bor-
nean subspecies (P. p. pygmaeus, P. p. wurmbii, P. p. morio), de-
scribed on the basis of morphological characteristics (26), show
unexplained genetic substructuring (17). Fourth, as for geo-
graphical features, the marked role of rivers as dispersal barriers
has been highlighted in the study of populations in Sabah (27, 28),
but it remains to be seen whether other rivers have had similar
vicariant effects. Thus, the relative importance of the Pleistocene
sea level and vegetation changes, Toba eruptions, and rivers as
dispersal barriers, against the background of regular dispersal
behavior of orangutans, remains unknown.
These questions also acquire special relevance today from a

conservation perspective, in the light of ongoing habitat con-
version (29) and predicted future climate change (30, 31), par-
ticularly for insular endemics and highly endangered species such
as orangutans.
We recently obtained noninvasively collected wild Bornean

orangutan samples from seven long-term study sites, as well as
other localities, thus encompassing most of the species’ range.
Capitalizing on the most extensive sample size to date, we provide

genetic evidence for a recent radiation of Bornean populations
within the Middle to Late Pleistocene. We further illustrate the
role of rivers and sex-biased dispersal in generating the marked
population structure of the largest arboreal primate.

Results
mtDNA Analyses. We generated a phylogenetic tree for the mito-
chondrial (mtDNA) haplotypes from 211 individuals distributed
throughout 10 sampling sites in Borneo (Fig. 1B), as well as six
Sumatran individuals. The tree (Fig. 1A) shows a monophyletic
Bornean clade with a surprisingly recent mean coalescence date
of 176 ka (95% highest posterior density, 72–322 ka), contrasting
with a much older estimate from a previous study (17). The
phylogenetic tree and divergence estimate further illustrate the
deeper coalescence of Bornean and Sumatran haplotypes (mean,
3.6 Ma; 95% highest posterior density, 2.3–5.0 Ma). Given the
recurrent formation of potential connections between the islands,
these findings point to an unexpectedly recent and single origin
for current Bornean populations. Furthermore, the Bornean
subspecies, as currently recognized on the basis of morphological
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Fig. 1. Phylogenetic reconstruction and sampling sites of Bornean orangutans. (A) Bayesian phylogenetic tree of Bornean and Sumatran mtDNA haplotypes.
Circles show posterior probabilities (>0.5, open circles; >0.75, black circles). Colored bars next to tips indicate species/subspecies designation. (B) Map of
Borneo with location of sampling sites. Triangles correspond to sites for which only mtDNA data are available, circles correspond to sites for which addi-
tionally microsatellite data are available. Colored ranges on the map represent subspecies. (C) Median joining network of Bornean mtDNA HVRI haplotypes.
Mutational steps are one unless indicated by the numbers. Two haplotypes from TU more closely related to those from SL are exclusively found in males. Sites
with resequenced data from Warren et al. (17) are indicated in parentheses.
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characteristics, are not reciprocally monophyletic, and should
therefore be reconsidered.
The surprisingly recent radiation of a single Bornean lineage

calls for a more detailed exploration of Bornean phylogeography.
We generated an mtDNA phylogenetic network (Fig. 1C), more
appropriate for population level studies than phylogenetic trees
as they do not force possible ancestral haplotypes to the tips
(32, 33). The network revealed seven main star-like geographical
clusters, reflecting considerable structuring within the different
subspecies. These seven clusters were further supported by a spa-
tial analysis of molecular variance (SAMOVA), which defines
groups of populations that are “geographically homogeneous and
maximally differentiated from each other” (34). The analysis in-
dicated that among-group variance asymptotes at 79.27% (FCT =
0.793, P < 0.01) with seven groups of populations. The grouping
corresponds to an almost complete separation of all sampled sites
except for: (i) Danum Valley (DV), which clusters with South
Kinabatangan (SK), a site in close proximity (approximately 90
km) not separated by geographical barriers (Fig. 1B); and (ii)
Gunung Palung (GP), clustering with Sabangau (SA), a site with
which it shares its only haplotype. Our results point to strong in-
terpopulation differentiation for mtDNA, as corroborated by the
high and significant ΦST values for all 36 population pairs (Fig.
2B). The exceptions are three lower, albeit still significant, ΦST
values between the sites that share haplotypes. Given the heavy
reliance of ΦST and other classic moment-based estimators on
intrapopulation diversity (35), we also computed population av-
erage pairwise differences (Table S1). We found generally higher
levels of diversity between populations than within, providing
additional support for interpopulation differentiation.

Microsatellite Analyses. We also examined differentiation patterns
using nuclear loci, which are biparentally inherited and therefore
representative of both male and female histories, for the seven
sites for which we could generate microsatellite genotypes. Both
cluster analyses with Structure and significant pairwise population
FST values indicate strong structuring of these sites (Fig. 2), par-
ticularly when separated by rivers (Fig. 1B). The structure runs for
all seven sites using 12 microsatellite loci (dataset II, Fig. 2A)
yielded the highest probability runs forK=7 [Log likelihood (LnL),
−9,619.88], partitioning each of the sites as a distinct cluster.
Likewise, a more detailed analysis for the five sites for which
25 microsatellite loci were available (dataset I) also led to each
one being inferred as a separate cluster (Fig. S1). Generally, high
pairwise FST and level of structuring of populations is congruent
with our mtDNA results. However, the cluster analyses using nu-

clear loci indicate some heterogeneity within populations. As
haplotype sharing is rare among populations exchanging migrants,
the low levels of gene flow are most likely male-mediated.
We investigated the signature of sex-specific demographic

processes more directly by comparing isolation by distance pat-
terns for the nuclear and mtDNA loci. The Mantel test for the
relationship between genetic and Euclidean geographical distance
yielded a significant and positive correlation for both the nuclear
markers and mtDNA (FST, r = 0.415, P < 0.05; ΦST, r = 0.357,
P < 0.05). We also explored the effect of rivers in a partial Mantel
test of the association between genetic and cost path distances
while controlling for Euclidean distance. Results were significant
for the mtDNA (P < 0.01; r = 0.403) but not the nuclear markers
(P = 0.633; r = −0.096). It is noteworthy, however, that for the
mtDNA, only three of the 36 population pairs studied have low
ΦST values (<0.6). Therefore, most populations are highly dif-
ferentiated from each other despite the short geographical dis-
tances between them.

Discussion
We investigated the evolutionary history of Bornean orangutans
using the most comprehensive Bornean sample set compiled to
date to our knowledge. Our mtDNA results indicate a surpris-
ingly recent origin for current Bornean populations, and together
with the nuclear markers, illustrate that their current distribution
has been uniquely shaped by a combination of historical, geo-
graphical, and sociobehavioral factors.

Historical Factors: Recent Radiation of Bornean Populations. The
recent coalescence of Bornean orangutan haplotypes in the
Middle to Late Pleistocene is in striking contrast with that of the
other Bornean canopy-bound rainforest species for which data are
available, the gibbon Hylobates muelleri. This gibbon, distributed
throughout the north, east, and west of Kalimantan, has a time to
the most recent common ancestor (TMRCA) of 1.78 Ma (95%
CI, 1.33–2.25) (36), suggesting that Bornean gibbons have been
differentiating within the island for much longer than orangutans.
Moreover, Sulawesi macaques (genus Macaca), whose ancestors
dispersed from Borneo, have a TMRCA with their Bornean sister
species of approximately 2 Ma (37). Although the exact timing of
their migration is uncertain, the older mtDNA coalescence dates
for both Bornean gibbons and Bornean and Sulawesi macaques
suggests they have been in Borneo as far back as the Early
Pleistocene. Therefore, it is conceivable that orangutans also ar-
rived in Borneo around the same time. Yet, current Bornean
orangutan mtDNA haplotypes stem from a very recent common
ancestor originating in the Middle to Late Pleistocene.
The relatively short time to themost recent common ancestor of

Bornean haplotypes is particularly striking given the deep Bor-
nean–Sumatran orangutan coalescence approximately 3.5 Ma.
Such a long differentiation between Bornean and Sumatran hap-
lotypes appears hard to reconcile with the recent episodes of in-
terconnectedness between the islands during the Pleistocene
glaciations, most notably during the Last Glacial Maximum ap-
proximately 17 ka (2, 5). However, the presence of land bridges
does not necessarily imply suitable conditions for migration. A
savannah corridor (8) combined with riverine barriers dissecting
the exposed land (5, 11) would have presented severe obstacles to
migration for orangutans, restricting them to riverine forest gal-
leries along the banks. Coalescence for Bornean and Sumatran
haplotypes is expected to vary across species, reflecting differences
in dispersal abilities, habitat requirements, or ancestral effective
population size, aside from possible discrepancies in dating
methods (38). For instance, the south Bornean gibbon Hylobates
albibarbis and the Sumatran–Malaysian gibbon Hylobates agilis
have a TMRCA of 1.56 Ma (36), and Bornean and Sumatran pig-
tailed macaques have one of 3 to 4 Ma (37). By contrast, the
Bornean–Sumatran common ancestor of both the silvered langur
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Fig. 2. Population structure based on nuclear microsatellite markers. (A)
Structure run for the seven study sites with 12 microsatellite marker data
(dataset II) at K = 7 (LnL, −9,576.8). (B) Interpopulation differentiation with
pairwise FST estimates are above the diagonal and pairwise ΦST estimates are
below the diagonal. All are significant at P < 0.001 except when indicated
(*P < 0.05; ** P < 0.01).
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(39) and clouded leopard (40) is much more recent than that of
orangutans, gibbons, and pig-tailedmacaques, probably because of
a higher flexibility in habitat use.
Assuming that orangutans arrived in Borneo around the same

time as gibbons and macaques, the recent coalescence of Bornean
orangutans could be explained by a bottleneck through a severe
rainforest contraction. Such a bottleneck would have had a more
dramatic impact on the mtDNA structure of orangutans com-
pared with other species as a result of their low densities and slow
life histories (18) as well as habitat requirements. Gibbons were
apparently not affected by habitat changes as harshly, perhaps
because populations can survive in smaller patches. Our findings
are consistent with the survival and expansion of a single lineage
from within a refugium in Borneo. Geomorphological and paly-
nological data indicate the presence of dryer, more open vege-
tation in southern and western Borneo during the last glaciation
(2, 41), and by extrapolation also during other glaciations (but c.f.
refs. 42, 43). Climate change was especially severe during an ex-
tended cold period within the penultimate glaciation between 130
and 190 ka (44, 45), which occurred approximately at the time of
mean coalescence of Bornean mtDNA haplotypes. More re-
cently, the last Toba eruption approximately 74 ka resulted in
a short, albeit significant, decrease in regional temperatures, en-
sued by a 1,800-y cold stadial (9, 10). Our data do not provide
clear signals to make conclusive statements about potential Toba
effects. Nonetheless, the coldest period of the penultimate gla-
ciation (44, 45) was more prolonged than the cold period fol-
lowing the last Toba eruption, suggesting more severe effects of
the former on the extent of rainforest across Sundaland. In any
event, suitable rainforest habitat for orangutans should have
existed in certain regions in Borneo where a refugium population
survived the dry glacial conditions. Possible Pleistocene refugia in
Borneo have also been described for numerous other rainforest
species such as termites, ants, orchids, oaks, and large-bodied
mammals (37, 46–51), and together with the isolation of the
island, could act as a mechanism of evolutionary diversification
driving high Bornean species endemism. Following the expansion
of orangutans throughout the island, the Pleistocene climatic
oscillations should have led to recurrent population expansions
and contractions.

Geographical and Sociobehavioral Barriers. Despite the recent
common ancestry of Bornean populations, our analyses revealed
high and significant mitochondrial differentiation, with pop-
ulations within currently recognized subspecies generally display-
ing as much differentiation as those between subspecies. Of
notable interest is the great extent of subdivision and lack of re-
ciprocal monophyly for themorphologically recognized subspecies
P. p. morio and P. p. wurmbii. MtDNA haplotype sharing is un-
common and for populations separated by rivers occurs only in two
instances: (i) for SA and GP and (ii) for the northern and southern
populations across the Kinabatangan river. In both cases, very
recent common ancestry could explain the incomplete mtDNA
lineage sorting. For North Kinabatangan (NK) and SK, Jalil et al.
(27) proposed an expansion from a recent common refugium
further west in Mount Kinabalu, as posited for other Bornean
species (46, 47, 49). DV, with its low haplotype diversity, might also
be the result of a recent range expansion. GP is located proximally
to the Bangka–Belitung–Karimata–Schwaner divide, from where
orangutans are presumed to have dispersed to the rest of Borneo
(12) and where we might expect a rich haplotype diversity. How-
ever, the presence of only one mtDNA haplotype shared with
populations further east suggests that the current population inGP
is recent and/or underwent a severe recent bottleneck. This and
other local bottlenecks make it impossible to reconstruct a colo-
nization of Borneo through the southwestern “choke point” (52).
The rarity of mtDNA haplotype sharing among Bornean pop-

ulations contrasts with patterns in the patrilocal chimpanzees

and bonobos (53, 54), where mtDNA sharing is extensive. Inter-
estingly, two orangutan haplotypes from one site (Tuanan, TU)
that were more closely related to those of another site (Sungai
Lading, SL) pertain only to males. Although nuclear differentia-
tion among the orangutan populations is significant, we find evi-
dence for a small degree of nuclear gene flow, suggesting that it is
male-mediated. Furthermore, the effect of rivers on the isolation
by distance patterns for the mtDNA indicate that these are im-
portant barriers to female movement, probably as a result of
smaller dispersal distances of females (18). An association be-
tween mtDNA genetic distance and distances around rivers has
also been found in gorillas (20), and a role for differential dispersal
distances between the sexes has been posited for western lowland
gorillas (55). Our results are consistent with the pattern of female
philopatry and male-biased dispersal proposed by Delgado and
van Schaik (18) and indicate that the orangutan sexes are subject to
very different constraints onmobility. Although female philopatric
behavior may be responsible for the strong effect of geographical
barriers on mtDNA structure, we cannot make any conclusive
statements on the effects of rivers on males. More continuous
sampling, especially along rivers and examination of Y-chromo-
somalmarkers, representative of male histories, will prove useful in
determining how geographical barriers differentially affect the
sexes. In addition, further geomorphological data on river course
and width changes through time would contribute to the under-
standing of their vicariant action.
Bornean orangutan distribution and population structure has

been uniquely shaped by the Pleistocene fluctuations and by soci-
obehavioral and geographical barriers to movement. Our findings
support a recent radiation of Bornean orangutans in the Middle to
Late Pleistocene, resulting in “static” clusters of females strongly
separated by geographical barriers and subject to high differentia-
tion, with moremobile males exerting a homogenizing influence on
the nuclear gene pool. Further sampling will help establish whether
there is a marker specific pattern of clusters versus clines resulting
from sex-biased dispersal (c.f ref. 52). In addition, in depth pop-
ulation genetic studies of other endangered and endemic taxa such
as theBornean gibbons and Sumatran orangutans will be of interest
in contrasting the differential effects of environmental processes.

Materials and Methods
Samples and Datasets.Ourdatacomprisenoninvasively collected fecalandhair
samples from a number of long-term study sites: Gunung Palung (GP),
Sabangau (SA), Sungai Lading (SL), Tuanan (TU), Danum Valley Conservation
Area (DV), and the Lower Kinabatangan Wildlife Sanctuary (Fig. 1B). We
partitioned the latter site into South Kinabatangan (SK) and North Kin-
abatangan (NK), given the significant differentiation between the locales
found by Goossens et al. (28). In addition, we incorporated scattered samples
from Warren et al. (17) (Table S2), encompassing most of the current distri-
bution of P. pygmaeus (Fig. 1B). Depending on sample quality and data
availability, we used two different datasets for mtDNA analyses, and two for
nuclear microsatellite analyses (Table S3). DNA extraction and quantification
procedures are described in SI Materials and Methods.

mtDNA Analyses. Based on unique microsatellite genotypes or mtDNA hap-
lotypes (SI Materials and Methods), we obtained the following long-term
study site sample sizes: SA (n = 23), SL (n = 26), TU (n = 30), and DV (n = 18).
We also sequenced low DNA quantity samples from GP (n = 20), where in-
dividual identification was done through long-term observational data.
Additionally, haplotypes for individuals from SK (n = 38) and NK (n = 35)
were from Jalil et al. (27) (GenBank accession numbers EU547189–
EU547201). Finally, we resequenced 21 extracts from the Bornean samples in
Warren et al. (17) to cover the same region of mtDNA (Table S2). We se-
quenced a 323-bp region of the mtDNA hypervariable region I (HVRI).
Details on the primers and PCR conditions and raw data analyses are pro-
vided in SI Materials and Methods. Summary statistics including haplotype
diversity (hd), nucleotide diversity (π), and average pairwise differences were
calculated in DNAsp 5 (56) and Arlequin 3.11 (57). We conducted model
selection tests on jModelTest 0.1 (58, 59), using the Akaike information cri-
terion to choose the most suitable model and its parameters.
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For the phylogenetic analyses, we incorporated HVRI haplotypes from all
long-term study sites as well as Warren resequenced samples (Tables S2 and
S3). First, to infer the coalescence date for Bornean mtDNA haplotypes, we
used a Bayesian Markov chain Monte Carlo analysis as implemented in
BEAST 1.5.4 (60) and produced a phylogenetic tree. We included the col-
lapsed haplotypes from 211 Bornean and six Sumatran orangutans, as well
as 19 humans as an outgroup. Based on the Akaike information criterion
from jModeltest, we selected the HKY + G model. We used an uncorrelated
relaxed log-normal clock (61), specifying a normal distribution with a mean
HVRI substitution rate of 0.1643 substitutions per nucleotide per Myr for the
mean rate prior. We chose this corrected HVRI estimate (62) because it takes
into account the effects of purifying selection on the entire mtDNA molecule
as well as saturation factors affecting the molecular rate decay described in
numerous studies (38, 63, 64), and is therefore appropriate for population-
level analyses (62, 65). The 95% confidence interval for the normal distri-
bution spanned HVRI substitution rates obtained in other studies, from 0.06
to 0.25 substitutions/site/Myr (66). Using the birth-death prior for branching
rates, we carried out two runs for 25 million generations with parameter
sampling every 1,000 generations. Tracer 1.4.1 (67) was then used to examine
whether the 10% burn-in period and effective sample sizes were adequate.
Both runs were combined in LogCombiner 1.4.8, and the resulting tree visu-
alized and edited using Figtree 1.2 (68), omitting human haplotypes. Second,
to infer the coalescence date for Bornean and Sumatran mtDNA haplotypes,
we used the same procedure, but instead of the corrected mutation rate, we
chose two fossil based divergence estimates as priors. Fossil calibration points
provide estimates of phylogenetic rates suitable for analyses at the inter-
specific level (65). The two calibration points were the Ponginae-Homininae
divergence at approximately 14 Ma (69, 70) and the Pan-Homo divergence
older than 6 Ma (71, 72). We specified log-normally distributed priors, ap-
propriate for paleontological data (73). For the Ponginae-Homininae di-
vergence, we used a log-normal mean of 0, log-normal SD of 0.56, and offset
of 13 Ma, thereby obtaining a broad distribution with a 95% interval from
13.4 to 20 Ma. This range incorporates the uncertainties associated with the
upper bound estimate of a split. For the Pan-Homo calibration, we used a log-
normal mean of 0, log-normal SD of 0.56, and offset of 5Ma, spanning a 95%
interval from 5.4 to 7.5 Ma. The tree topology remained the same as in the
first analysis, so it is not presented. Third, we investigated phylogenetic
relationships at the intraspecific level by generating a median-joining net-
work for the Bornean haplotypes using Network 4.0 (74).

For the population structure analyses, we used data from the long-term
study sites GP, SA, SL, TU, DV, NK, and SK. In addition, we incorporated Danau
Sentarum (DS) and Kutai (KU) sampling sites fromWarren et al. (17) for which
at least three samples of precise origin are available (cf. ref. 20; Table S2).
We calculated pairwise ΦST values in Arlequin, using the Tamura Nei model
(75) and a γ distribution shape parameter of 0.344. We obtained significance
levels using 10,000 permutations. To define the most differentiated groups
of populations, we also performed a spatial analysis of molecular variance
(SAMOVA) with SAMOVA software, version 1.0 (34), using previously pub-
lished geographical coordinates (17, 76).

Microsatellite Analyses. Microsatellite analyses focused only on samples from
long-term study sites GP, SA, SL, TU, DV, SK, and NK. For the low DNA quality
and quantity samples from GP, we could obtain genotypes for six individuals.
We genotyped samples from all sites except SK and NK using a panel of 25
highly polymorphic nuclear microsatellite markers (28, 77) listed in Table S4,
following the protocol given in SI Materials and Methods. Additionally, we
incorporated previously generated data from NK and SK for 12 micro-
satellite markers (28), which were part of our panel of 25 markers. We

standardized the data and performed identity analyses as described in
SI Materials and Methods. After this procedure, we obtained two data sets:
(i) dataset I includes 25 markers and 98 individuals from the five study sites
GP (n = 6), SA (n = 19), SL (n = 26), TU (n = 29), and DV (n = 18); and (ii)
dataset II includes 12 markers and 295 individuals from seven study sites,
including all from dataset I plus NK (n = 91) and SK (n = 106).

After Bonferroni correction, we found no deviation fromHardy–Weinberg
equilibrium, and only four pairs of different loci from two populations
showed linkage disequilibrium, which is most likely explained by de-
mographic effects rather than linkage. Also, we found evidence for possible
null alleles for one locus in one population. As it was not consistent across
populations, we did not exclude this locus from further analyses.

We used Genetix 4.05 (78) to obtain population pairwise FST values and
significance levels. We also performed two separate analyses on Structure
2.3 (79) using the admixture model with correlated allele frequencies, and
the Locprior model, which improves clustering when the signal is weak
without spuriously inferring structure if absent (80). We specified a burn-in
length of 105 followed by 106 Markov chain Monte Carlo steps. For each K,
we ran the analysis 10 times. In the first analysis, we incorporated the widely
distributed seven populations genotyped at 12 microsatellite markers
(dataset II). In the second analysis, we further refined our findings focusing
on the five populations for which we have genotypes for 25 microsatellite
markers (dataset I).

We calculated geographical distance matrices as Euclidean and cost path
distances between all study populations. The latter, representing true surface
distances circumnavigating riverine barriers, were computed from the Shuttle
Radar Topography Mission global Digital Elevation Model, as distributed by
ESRI (81). We clipped the Digital Elevation Model to encompass the whole of
Borneo and filled sinks to obtain a depressionless elevation model, which
was then reprojected into the Universal Transverse Mercator coordinate
system with a resolution of 100 m. From this, we constructed a flow accu-
mulation raster and extracted grid cells with values of at least 1,000 to
generate a stream order raster following the convention of Strahler (82). We
then produced a cost raster by designating areas with flow accumulation
values lower than 1,000 and streams of order 1 to 2, a cost of 1, whereas
streams of orders 3, 4, and 5 were assigned costs of 3,000, 4,000, and 5,000,
respectively. Streams of order 6 to 7 were designated as uncrossable barriers
(cf. ref. 20). After masking the resulting cost raster with the Shuttle Radar
Topography Mission Water dataset (81), we calculated dyadic cost path
distances between the study populations. For all geospatial analyses, we
used ArcInfo Spatial Analyst extension for ArcGIS 9.3 (83).

To investigate the association between genetic (pairwise ΦST for HVRI and
FST for microsatellite markers) and geographical distances (Euclidean and
cost path), we performed (partial) Mantel tests in R 2.10.1 (84), using the
”ecodist” package (85).
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