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Abstract      

Chlorine is widely used in public water supplies to provide a disinfection barrier.  The 

effect of chlorine disinfection on the water-borne pathogen Burkholderia 

pseudomallei was assessed using multiple techniques.  After exposure to chlorine 

viable bacteria were undetectable by conventional plate count techniques, however 

persistence of B. pseudomallei was verified by flow cytometry and bacteria were 

recoverable following a simple one step broth procedure.  The minimum residual 

chlorine concentration and contact time as prescribed by potable water providers in 

Australia was insufficient to reduce a B. pseudomallei population by more than 

2 log10.  Chlorine had a bacteriostatic effect only on B. pseudomallei; viable bacteria 

were recovered from water containing up to 1000 ppm free chlorine.  This finding has 

practical implications for water treatment in regions where B. pseudomallei is 

endemic.  Future work to assess the effect of alternative water disinfection processes 

either singly or in sequence is necessary. 
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1.0  Introduction 
 
   Burkholderia pseudomallei causes the potentially fatal infection melioidosis, with a 

high mortality rate (Beeker et al., 1999).  B. pseudomallei is endemic to Southeast 

Asia (Leelarasamee, 1998; Perret et al., 1998) and Northern Australia (Brook et al., 

1997) where it was first recognised during the early 20th century.  Since the 1960s 

B. pseudomallei has come to prominence in other parts of the world through infection 

of Vietnam veterans and, more recently, as a potential biological weapon 

(Josephson, 2001).  The principal means of contracting melioidosis is through 

recreational or occupational exposure to contaminated soil or surface water 

(Leelarasamee and Bovornkitti, 1989), particularly via direct wound inoculation.  

However, infection by inhalation of an aerosol or ingestion of contaminated material 

has been proposed (Currie et al., 2001).   

   It was shown recently that the potable water supply was the likely source of a small 

outbreak of melioidosis in a remote Australian community (Inglis et al., 1999).  The 

outbreak occurred during failure of the chlorine supply to the community’s water 

treatment plant (Inglis et al., 2000).  Other melioidosis case clusters also show 

evidence that the water supply may have been the principal vehicle of infection 

(Ketterer et al., 1986; Currie et al., 2000).  Chlorine is the most widely used method 

for disinfecting water supplies against possible bacteriological contamination (Miche 

and Balandreau, 2001), however, there may be an increased resistance of bacterial 

strains to chlorine inactivation (Mir et al., 1997).  Furthermore, bacteria may be 

partially damaged by exposure to sublethal levels of chemical biocides.  This may 

manifest as the inability to grow and form colonies (McFeters et al., 1986) and result 

in an underestimation of bacterial contamination.   

   Drinking water chlorination in Western Australia aims to achieve a 1 ppm residual 

chlorine concentration with a contact time of not less than 30 min.  In the current 

study, we set out to test the efficacy of these criteria for chlorine disinfection of 

B. pseudomallei in water.  This study also aimed to determine the chlorine 
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susceptibility of a range of clinical and environmental isolates of B. pseudomallei and 

to ascertain if chlorine tolerance was the result of prior exposure to chlorine. 
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2.0  Materials and Methods 

2.1  Bacterial strains 

   The origin of B. pseudomallei strains used in these studies is listed in Table 1.  

With the exception of some of the environmental isolates from Western Australia, 

none of the strains had been in prior contact with chlorine.  All strains had been in 

culture for greater than 12 months except for the environmental strains 65A1and 

90B1, which were isolated 3 months prior to testing, and BCC122 which was isolated 

1 month prior to testing.  Type strains of Pseudomonas aeruginosa (ATCC 27583) 

and Escherichia coli (ATCC 25922) were used as controls.  

   All bacteria were stored in 15% glycerol in brain heart infusion broth at -70°C and 

incubated on blood agar (BA) for a maximum of 3 days, then transferred to 10 mL 

trypticase soy broth (TSB) for 18 h incubation at 37°C in the dark.   

   Prior to use in the experiments, overnight cultures in 10 mL polycarbonate 

centrifuge tubes were washed twice in cold sterile water after centrifugation at 300 g 

for 15 min at room temperature.  They were incubated at room temperature for 2 h 

before exposure to chlorine, to bring the cultures to mid-lag phase. 

 

2.2  Assessment of viability 

   Four complementary methods were employed to assess viability of bacterial 

cultures after chlorine exposure.  A standard plate counting method was used to 

indicate the number of colony forming units able to grow within 48 h.  Viability 

staining measured by flow cytometry was used to quantify the viable organisms in 

cultures.  All cultures were put through a qualitative recovery procedure to determine 

whether viable bacteria remained after 72 h.  The most probable number (MPN) 

method was used to determine surviving bacteria after chlorine exposure by utilising 

this recovery procedure. 
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2.2.1  Colony count method  

   Bacterial suspensions were plated in triplicate onto plate count agar (PCA) using a 

spiral plater (Don Whitely Scientific Ltd, Shipley, UK) after 10:1 dilution with water to 

reduce the effect of chlorine.  

 

2.2.2  Flow cytometry 

   Bacterial suspensions of 106 organisms/mL in filter sterilised distilled water were 

stained for 10 min with 1 µL/mL each of SYTO®BC bacterial stain in DMSO 

(Molecular Probes, Oregon, USA) and propidium iodide (20 mM in DMSO) for 

quantification of viable cells by flow cytometry (Becton Dickinson FACSCalibur®).  

Samples were collected using two thresholds: side-scatter and fluorescence following 

SYTO staining.  The amount of non-cellular material contributed by the stains and 

diluent was assessed with a series of reagent controls prior to sample collection and 

was always less than 0.2%.  Viability was calculated as the percentage of live gated 

events from a minimum 20 000 events.  An assumption is made that the error of flow 

gated events is linear for the measurement range.  The percentages of live gated 

events were converted to viable organisms from plate counts of initial suspension 

concentrations.  Data analysis was performed using Becton Dickinson CELLQuest® 

v3.1.   

 
2.2.3  Qualitative recovery procedure 

   The cultures were diluted and centrifuged at 300 g for 10 min at room temperature 

after chlorine exposure.  The bacterial pellet was re-suspended in 10 mL TSB, left at 

room temperature for 24 h, and then incubated at 37°C for 48 h.  Recovery of 

B. pseudomallei was confirmed by plating onto B. pseudomallei selective agar 

(BPSA) and PCA.   
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2.2.4   Most probable number of surviving bacteria 

   To determine the MPN of surviving growth units the cultures were diluted and 

washed and the recovered bacteria were resuspended in TSB and filtered through a 

10 μ filter to reduce any clumping effect before 10 μL was aliquoted into 1 mL of 

TSB.  Ten and 100 fold dilutions were also done in the same manner, with 100 

replicates for each dilution.  All tubes were left at room temperature for 24 h, then 

incubated at 37°C for 48 h.  The MPN was calculated (Hurley and Roscoe, 1983) 

using an average of the repeats and the 95% confidence interval (CI) calculated. 

 

2.3  Susceptibility of bacteria to chlorine 

   Chlorine was added to cell suspensions as a solution of sodium hypochlorite.  

Concentrations of free chlorine (Cl2, HOCl, OCl-) were measured (± 0.02 mg/L) using 

a pocket colorimeter analysis system (HACH Test Kit, HACH Company, Colorado, 

USA).  All water used for experiments was micro filtered at 18Ω.  Suspensions of 106 

organisms/mL did not create a measurable chlorine demand and, after 30 min 

exposure, the residual chlorine was similar to the original dose. 

   Overnight cultures of 45 strains of B. pseudomallei (Table 1) were washed and 

diluted to 106 cfu/mL.  The number of viable cells was determined by flow cytometry.  

Bacterial suspensions were then exposed to 1 ppm chlorine (pH 6.25 - 7, 22 - 25°C) 

and further viable counts were taken at 20, 30 and 60 min.  At 60 min plate counts (3 

replicate plates) were also taken.  After 48 h incubation there was no growth.  The 

two reference strains (NCTC 13177 and 10276) and the persistently mucoid strain 

(BCC11) were exposed for 2 h and the proportion of viable cells determined at 30 

min intervals by flow cytometry.  NCTC 13177 was exposed to 0, 0.25, 0.5, 0.75 and 

1 ppm chlorine for 30 min after a 1 h preparatory incubation (early lag phase), with 

viability readings at 5 min intervals.  Early lag phase cultures of P. aeruginosa (ATCC 
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27583), E. coli (ATCC 25922) and B. pseudomallei (NCTC 13177) were exposed to 1 

ppm chlorine for 30 min for a comparison of population response to chlorine.   

   Using 3 of the more tolerant strains (NCTC 13177, NCTC 10276 and BCC11) plate 

counts (5 replicate plates) were taken after 1, 5 and 10 min exposure to 1 ppm 

chlorine.   

   All experiments were repeated and were compared to control cultures with no 

chlorine exposure. 

 

2.4   Survival of bacteria in chlorine 

   The MPN of reference strains NCTC 13177 and 10276 were determined after the 

cultures were subjected to 1 ppm chlorine for 30 min.  This experiment was 

performed three times.   

   Six of the more tolerant strains of B. pseudomallei were subjected to 0, 10, 50, 100, 

200, 300, 500 ppm chlorine, with the two reference strains and BCC11 also 

subjected to 1000 ppm chlorine.  P. aeruginosa and E. coli were exposed to up to 10 

ppm chlorine only.  After 30 min exposure, the solution was diluted with sterile water 

(1:100) to end effective chlorine exposure.  This was followed immediately with two 

centrifugation and washing steps and the recovery procedure.  Recovery of the two 

reference strains and BCC11 from 1000 ppm was repeated.  Strains subjected to 

100 ppm were stored at -70°C for further experimentation. 

 

2.5  Effect of pH on survival in chlorinated water 

   The reference strain NCTC 13177 and the persistently mucoid strain (BCC11) were 

prepared as overnight cultures, washed and resuspended in water that had been 

adjusted to pH 4, 5, 6, 7, or 8 by addition of HNO3 or NaOH.  The addition of chlorine 

was varied to achieve 1 ppm at each pH.  The pH of these bacterial suspensions was 

checked periodically throughout the experiment and did not change by more than 0.4 

units from the original value.  
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2.6  Previous exposure to chlorine 

   A comparison was made between viable cell counts in strains previously exposed 

to 100 ppm chlorine and their parent strains after subsequent exposure to 1 ppm 

chlorine.  Flow cytometer readings were taken at 0 and 30 min.  Viability of NCTC 

13177 (previously survived 100 ppm chlorine) and its control were read at 10 min 

intervals in duplicate. 
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3.0  Results 

3.1  Susceptibility to chlorine   

   The survival of 45 strains of B. pseudomallei following 30 min exposure to 1 ppm 

chlorine is shown in Figure 1a.  After 60 min exposure there was a 100 fold reduction 

in viability.  In mid-lag phase the viability of the isolates was rapidly reduced by 

1 ppm chlorine during the first 10 to 20 min, after which the rate of decrease in 

viability slowed and levelled off (Figure 1b).  The decline after 60 min was similar to 

the decline due to osmotic shock observed in control cultures suspended in water.  In 

early lag phase survival was increased by more than 5% when there was a reduction 

in chlorine concentration (Figure 1c).  E. coli and P. aeruginosa populations were 

reduced more rapidly by chlorine than B. pseudomallei with a 30% decline in viable 

organisms within the first 5 min of contact.  Reduction in viability of E. coli was limited 

to the initial 5 min exposure (Figure 1d). 

   In contrast, when plate counts were used to measure viability, no viable 

B. pseudomallei were detected after 10 min exposure to 1 ppm chlorine (Figure 3).  

The persistently mucoid strain was non-culturable over all periods of chlorine 

exposure tested (Figure 2).  However, three test strains were recovered after 

subsequent incubation of the remaining solution in TSB.  Plate counting was not 

used further as a measure of survival in these experiments.   

 

3.2  Survival of bacteria in chlorine 

   The more chlorine tolerant group of isolates stabilised after 10 min exposure to 

1 ppm while the susceptible group had a more linear rate of decrease over contact 

time (Figure 3).  The number of viable organisms/mL of the susceptible group was 

0.5 log10 less than the tolerant group by 30 min. 

   Clinical isolates from the Northern Territory were more tolerant of chlorine 

(p=0.001) than the other groups.  There was no significant difference between the 

rest of the groups (p=0.69)  (Figure 4).  Further analysis revealed that two pairs of 
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strains from the Northern Territory clinical group were indistinguishable, while the 

remaining 7 were classified as distinct by DNA macro restriction with Xbal (Inglis et 

al., 2002).  There was no significant difference in chlorine tolerance between soil and 

water environmental isolates from Western Australia; a result that was anticipated 

since most of these isolates were from a single cluster and had a high homology by 

PFGE.   

   An end point for the killing curve for B. pseudomallei was not found.  The two 

reference strains and BCC11 were recovered from 1000 ppm chlorine.  Strains 

BCC51 and BCC52 were recovered from 500 ppm (the highest concentration tested 

for these strains) while BCC49 was not recovered at 500 ppm but survived at 

300 ppm chlorine.  All recovered populations had pellicles within 48 h of 37°C 

incubation.  The MPN of NCTC 13177 and 10276 was 370 MPN/mL (LL 95% CI of 

290 and UL of 470) and 300 MPN/mL (LL of 240 and UL of 370 MPN/mL) 

respectively.   

   There was a 30% recovery rate after exposure to 1 ppm chlorine for P. aeruginosa, 

while E. coli was non-recoverable after any chlorine exposure. 

 

3.3  Effect of pH on survival in chlorinated water 

   Chlorine was a more effective disinfectant at higher pH.  Survival was increased in 

an acidic environment by 10 fold in both strains (Figure 5).  The survival of the 

persistently mucoid strain varied more than the reference strain over the pH range 

tested. 

 

3.4  Cumulative effect of chlorine on B. pseudomallei 

   There was less than 1% difference in the survival of strains that had previous or no 

previous contact with chlorine, with only one exception; the persistently mucoid strain 

BCC11.  When BCC11 had previous exposure to chlorine there was a small increase 

in survival at 30 min in 1 ppm chlorine compared to no previous exposure.  In 



 12 

contrast when examined at 10 min intervals, the survival of NCTC 13177 was 10 

times lower in the isolates previously exposed to chlorine (Figure 6).  When 

previously exposed the rate of decrease during the contact time was more linear than 

in the isolate not previously exposed to chlorine.  
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4.0  Discussion    

   The efficacy of chlorination for the control of B. pseudomallei in potable water has 

not been extensively studied.  This study highlights the capacity of B. pseudomallei to 

survive in chlorine treated water.  B. pseudomallei survived up to 1000 times the 

chlorine concentration used to disinfect drinking water supplies in Australia.  It is also 

notable that a conventional bacteriological plate count method used to determine the 

presence of this species significantly underestimated viable B. pseudomallei in water. 

   Chlorine treatment produced a 2 to 3 log reduction in viability but had a 

bacteriostatic effect only on the remainder of the bacterial population.  Some of these 

cells were subsequently able to regrow under suitable incubation conditions.  Using a 

plate count method Thomas (1991) previously showed that 0.5 to 1 ppm chlorine 

readily killed one strain of B. pseudomallei within a contact time of 5 min.  Our 

bacterial plate count results are consistent with those of Thomas (1991).  However, a 

significant portion of the total population of B. pseudomallei is not enumerated using 

conventional techniques, possibly resulting in inaccurate water quality 

determinations.  Flow cytometry is recognised as a useful tool in aquatic and 

environmental microbiology (Vives-Rego et al., 2000).  Here it has provided useful 

supplementary data on the chlorine disinfection process showing the decline in 

population over time.  Coupled with MPN calculations, flow cytometer determinations 

allow a tentative quantification of the remaining viable cells.   

   P. aeruginosa responded to chlorine in a manner similar to B. pseudomallei with a 

continued decline in viability over time, but B. pseudomallei is a more chlorine 

tolerant organism.  Chlorine reduced the viability of E. coli cultures by more than 30% 

in the first 5 min, and rendered the remaining cells non-recoverable.  These results 

show that other bacterial species cannot be used as indicator species for disinfection 

processes for control of B. pseudomallei.   

   The majority of B. pseudomallei cells died within 10 - 20 min of chlorine contact.  It 

is likely that the surviving cells either adapted to chlorine by 30 min or were 
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intrinsically resistant. McFeters and Camper (1978) showed that E. coli damaged by 

chlorine recovered after a 2 h repair period in a rich broth.  The difference between 

the plate and flow cytometry viability counts suggests that damaged B. pseudomallei 

had entered a non-culturable state in the chlorinated water (Havelaar et al., 1993; 

Leclerc and Moreau, 2002).  The recovery of culturable bacteria from high 

concentrations of chlorine may be due to the regrowth of a few culturable cells or 

resuscitation of viable but non culturable cells (Dukan et al., 1997).   

   Waters with lower pH produced a greater tolerance to chlorine in the 

B. pseudomallei strains tested.  This result was unexpected because at low pH the 

chlorine solution produces more HOCl, the most effective bactericide of the chlorine 

species, and should therefore be a more effective disinfectant.  B. pseudomallei had 

been found to grow as well at pH 4.5 as at pH 7 (Kanai et al., 1994).  It is therefore 

suggested that either B. pseudomallei rapidly employs survival strategies more 

readily or excludes chlorine under low pH conditions.   

   Tolerance to chlorine did not increase with subsequent exposure to chlorine, in 

contrast to the finding of Ridgway and Olson (1982) who showed that other bacteria 

from chlorinated systems were more resistant than those from non-chlorinated 

systems.  In the current study, the strains previously exposed to chlorine appear to 

have exhausted their capacity to cope with chlorine exposure.  This suggests that 

isolates previously exposed to chlorine accumulate sublethal damage from their prior 

exposure.  An explanation for this was suggested by Dukan and Touati (1996) who 

found when E. coli pretreated with low concentrations of HOCl are challenged with 

higher HOCl concentrations, part of their ability to scavenge HOCl is exhausted.  

They also found that the kinetics of HOCl consumption was slower in pretreated 

cells. 

   Whether the higher tolerance to chlorine of the clinical isolates from Northern 

Territory can be linked to greater virulence is not known.  There are conflicting 

reports in the literature on virulence and injured bacteria.  For example, McFeters 
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et al. (1986) reported that injured waterborne enteropathogenic bacteria can remain 

virulent, while chlorine induced a temporary loss of virulence among sublethally 

injured enterotoxigenic E. coli (Walsh and Bissonnette, 1983, 1987).   

 
 
4.1   Future directions  

   This study has clearly shown that chlorination of drinking water supplies needs 

careful attention in areas endemic for B. pseudomallei.  With the knowledge gained 

from this study, identification of high risk water supplies and the establishment of 

preventative strategies can be implemented.  However, there are other aspects that 

must be considered.  The resistance of B. pseudomallei to chlorine may be further 

enhanced by an ability to form biofilms (Mah and O’Toole, 2001) or to survive within 

free living protozoa (King et al., 1988; Inglis et al., 2000).  Additionally, whether 

B. pseudomallei employs survival strategies more readily under conditions of 

favourable pH and temperature is not known.  When maintained in a low nutrient 

environment, such as drinking water, strains are more resistant to disinfection by 

chemical agents than strains that have been maintained on a rich medium (Kuchta et 

al., 1985; Taylor et al., 2000) by persisting in non-growth or slow-growth states with 

low metabolic activity (Wai et al., 1999).  

 

4.2 Conclusion  
 
   Our results suggest that while chlorination may be a satisfactory method for 

controlling coliforms and preventing growth of B. pseudomallei in the potable water 

supply, this method does not eradicate all viable B. pseudomallei in water.  Shock 

doses of chlorine may provide an adequate countermeasure against B. pseudomallei 

in the event of contamination of the water supply - but alternative treatments are 

needed to eradicate B. pseudomallei.  It remains to be seen whether chlorine 

damaged B. pseudomallei is more virulent than untreated populations.  
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Table 1.  Source of strains of Burkholderia pseudomallei used to determine the effect 
of exposure to chlorine in water. 
Place of isolation Source of strain Strain identification 
  NCTC BCC 

Western Australia Clinical 13177 

 

1, 2, 3, 4, 14, 16, 30, 33, 74, 87 
 

 Environmental  21, 24, 26, 27, 28, 31, 44, 45, 46 
 

Northern Territory Clinical  11*, 18, 49, 50, 51, 52, 53, 54, 69, 70*, 
122 
 

 Environmental  65A1, 90B1 
 

Queensland Clinical  75, 78, 79, 80, 81, 82, 83, 84, 85, 86 
 

Overseas Clinical 10276 
 

H1 

* persistently mucoid colony form 
NCTC =National Collection Type Culture 
BCC =Burkholderia culture collection number – held in PathCentre, Perth, Western 
Australia.
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Figure 1   a) Survival of 45 strains of Burkholderia pseudomallei in 1 ppm chlorine.   
b) Longer term survival of 3 strains of B. pseudomallei (NCTC 13177     , NCTC 
10276       and BCC11     ) in 1 ppm chlorine in water. 
c)  Survival of B. pseudomallei (NCTC 13177) at varying chlorine concentrations 
(0.25       , 0.50     , 0.75     , and 1 ppm  X ) as compared to control (0 ppm chlorine). 
d)  Survival of B. pseudomallei (NCTC 13177     ), Pseudomonas aeruginosa (ATCC 
27853     ) and Escherichia coli (ATCC  25922      )  in 1 ppm chlorine in water. 
Viability determined by flow cytometer.  Error bars = 95% confidence interval. 
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Figure 2  Recovery of Burkholderia pseudomallei strains after exposure to 1 ppm 
chlorine in water for   0  (    ), 1  (    )  5 (    ) and 10 min (    ).   Viability was 
determined by plate counting only.   Error bars = standard error the mean.
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Figure 3   Survival of strains tolerant      (n=6) and susceptible     (n=3) to 1 ppm 
chlorine in water.  Viability determined by flow cytometer.  Error bars = standard error 
of the mean. 
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Figure 4  Survival of Burkholderia pseudomallei strains grouped by state (Western 
Australia  , Northern Territory    and Queensland  ) and isolation source (clinical 
or environmental) after 30 min exposure to 1 ppm chlorine in water expressed as 
percentage of control cultures.  Viability determined by flow cytometry.  Error bars = 
standard error of the mean.
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Figure 5  Survival  of Burkholderia pseudomallei (a = NCTC 13177, b = BCC11) in 
1 ppm chlorine in water adjusted to pH 4          , 5            , 6          , 7          , 8            
Viability was determined by flow cytometry. 
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Figure 6  Survival of Burkholderia pseudomallei NCTC 13177 with no prior (    ) and 
prior (    ) exposure to 100 ppm chlorine after subsequent exposure to 1 ppm 
chlorine.  Error bars = standard error of the mean. 
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