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ABSTRACT 
 

The effect of chlorine, monochloramine and UV disinfection on the water-borne 
pathogen Burkholderia pseudomallei was assessed.  Persistence of B. pseudomallei 
was verified by MPN involving a one-step recovery procedure.  Chlorine proved the 
most effective disinfectant with a 99.99% reduction of a 106 CFU/mL pure bacterial 
culture followed by 99.9% reduction by monochloramine and 99% reduction by UV.  
Co-culture of B. pseudomallei with Acanthamoeba astronyxis was found to greatly 
enhance survival of B. pseudomallei in the presence of all disinfecting agents tested.  
For example, when amoebae were present 100 times more monochloramine was 
required to maintain the disinfectant efficacy.  Given the results obtained from these 
co-culture experiments, more research is needed to investigate the role of amoeba 
and biofilms in survival of B. pseudomallei in potable water. 
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1.0  Introduction 
 

Burkholderia pseudomallei causes the potentially fatal infection known as 

melioidosis.  A recent small outbreak of melioidosis in a northern Australian 

community occurred during failure of the community’s potable water supply chlorine 

treatment plant (Inglis et al., 1999; Inglis et al., 2000).  There has also been evidence 

that the water supply may have been the principal means of infection in other 

melioidosis case clusters (Ketterer et al., 1986; Currie and Fisher, 2000).   

The minimum residual chlorine concentration and contact time of 1 mg/L chlorine 

for 30 min, as prescribed by potable water providers in Australia, was insufficient to 

reduce a B. pseudomallei population by more than 2 log10 

Intra-protozoal growth of bacterial pathogens has been associated with increased 

environmental survival, enhanced virulence, and resistance to biocides and 

antibiotics (Kilvington and Price, 1990).  Protozoa may serve as reservoirs for 

bacteria with human pathogenic potential (Marciano-Cabral and Cabral, 2003).  

These protozoa can survive and grow after exposure to levels of free chlorine 

residuals that kill free-living bacteria.  For example, Salmonella and Legionella were 

greater than 50 times more resistant to free chlorine when ingested by Tetrahymena 

pyriformis (King et al., 1988).  Both trophozoites and cysts of Acanthamoeba can 

retain viable bacteria.  Endamebic bacterial survival of B. pseudomallei has recently 

been observed in Acanthamoeba (Inglis et al., 2000).   

(Howard and Inglis, 

2003a).  Using flow cytometry to estimate viable bacteria and a recovery procedure 

to determine survival of chlorine-treated B. pseudomallei suspensions, the recovery 

of viable bacteria from water containing up to 1000 mg/L free chlorine indicated that 

chlorine had a bacteriostatic effect on B. pseudomallei (Howard and Inglis, 2003a).  

This study highlighted the need for assessment of alternative water disinfection 

processes for B. pseudomallei. 

Monochloramine, another oxidant, is a weaker disinfectant than free chlorine 

(Kouame and Haas, 1991) but has been shown to be superior on some indicator 
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organisms (Pretorius and Pretorius, 1999) and has greater penetrating power on 

biofilms compared to free chlorine.  UV light disinfects by damaging bacterial DNA to 

prevent replication (Gadgil et al., 1997).  The UV dose for a 90% bactericidal effect 

ranges from 380 to 5500 μWs.cm-2, while Giardia, Cryptosporidium and cysts 

required 60 000 to 80 000 μWs.cm-2 

In this paper we compare the effectiveness of chlorine, monochloramine and UV 

light for the disinfection of B. pseudomallei from drinking water in the presence and 

absence of Acanthamoeba astronyxis trophozoites. 

minimum (Wolfe, 1990).   
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2.0  Methods 
 
2.1  Bacteria 
 

B. pseudomallei strains for this study were selected from a group of 45 isolates 

previously tested for tolerance to chlorine (Howard and Inglis, 2003a).  Three of the 

most tolerant strains (NCTC 13177, NCTC 10276 and BCC11) were selected for 

most of the experiments.  In addition, BCC16 and BCC30 (less tolerant to chlorine), 

BCC11 (persistently mucoid) and BCC69 (mucoid) were also included for 

comparison.   

Bacterial strains were stored in 15% glycerol in brain heart infusion broth at -70°C 

and incubated on blood agar for a maximum of 3 days, then transferred to 10 mL 

trypticase soy broth (TSB) for 18 h incubation at 37ºC in the dark.  Prior to use in the 

experiments, these overnight cultures were washed twice in cold sterile water after 

centrifugation at 300 g for 15 min at room temperature.  They were incubated in 

water at room temperature for 2 h to bring the cultures to mid-lag phase, before 

exposure to disinfectant or amoeba. 

 
2.2 Amoebae 
 

A. astronyxis (WACC111) was grown axenically at 30ºC in 25mL PYG (peptone, 

yeast extract, glucose) broth containing 100 mg/L penicillin and 60 mg/L streptomycin 

(Excel Laboratory Products, Belmont, Western Australia).  After 14 days incubation 

as monolayers in tissue culture flasks, the amoeba were harvested by centrifugation 

(300 g, 5 min, room temperature) washed once and resuspended to give a density of 

107

 

 trophozoites/mL.  The concentration of amoebae was determined by counting 

viable trophozoites in a Kova® cell (Hycor Biomedical Inc., Garden Grove, California) 

with 0.04% trypan blue. 

2.3  Co-cultures 

A. astronyxis suspensions were exposed to mid lag phase cultures (Inglis et al., 

2000) of B. pseudomallei (strain NCTC 13177) to yield a multiplicity of infection of 
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approximately 10 amoebae (106) per bacteria (105

 

).  The tubes were gently rolled to 

mix the two suspensions and left for 10 min.  The co-cultures were washed once and 

resuspended in water, or phosphate buffer (pH 8) for the monochloramine 

experiments, to facilitate ingestion of the bacteria, and incubated at room 

temperature in the dark for 1 h.  In this study the term co-culture is used for a 10:1 

ratio of A. astronyxis (WACC111) / B. pseudomallei (NCTC 13177).  

2.4  Disinfection methods 
 
2.4.1 Chlorine 
  

Chlorine was added to cell suspensions as a solution of sodium hypochlorite.  

Concentrations of free chlorine (Cl2, HOCl, OCl-

The three tolerant strains of bacteria (each at 10

) were measured (± 0.02 mg/L) using 

a pocket colorimeter analysis system (HACH Test Kit, HACH Company, Colorado, 

USA).  All water used for experiments was microfiltered at 18Ω.   

6 CFU/mL) were exposed to 0, 

0.25, 0.5, 1, 2 and 4 mg/L chlorine for 30 min.  Four concentrations (103, 104, 105 and 

106

Survival of amoebae 10

 CFU/mL) of these three strains of bacteria were also exposed to 1 mg/L chlorine 

for 30 min to determine the effect of cell density on efficacy of chlorine disinfection.  

All six strains of bacteria were exposed to 1 mg/L chlorine for 30 min. 

2, 103, 104 and 105

Co-cultures and 10

 trophozoites/mL was determined after 

30 min exposure to 0, 5, 10, 20, 50 or 100 mg/L chlorine.   

5

 

 CFU/mL bacteria (controls) were exposed to 0, 10, 20, 50 

and 100 mg/L chlorine for 30 min.  The treatment was ended by dilution and the 

cultures were washed twice by centrifugation, resuspended in water, incubated at 

4ºC for 30 min, then sonicated (15 min, Branson B-12 ultrasonic bath) to disrupt 

amoeba membranes.  Viable counts of bacteria were done using the most probable 

number (MPN) method (Howard and Inglis, 2003a).    

2.4.2  Monochloramine 
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NaOCl and NH4

The three chlorine tolerant strains of bacteria were exposed to 0, 0.5, 1, 2 and 4 

mg/L monochloramine.  Aliquots to determine survival were taken at 1, 2 and 7 days.  

An untreated control for each strain was used to determine the reductive power of the 

monochloramine.  Three concentrations (10

Cl were combined in a 4:1 ratio and the solutions were tested with 

a pocket colorimeter analysis system to ensure that there was no free chlorine 

present.  All bacterial, amoebae and co-culture suspensions were made in phosphate 

buffer (pH 8) for monochloramine treatments.   

4, 105 and 106

Survival of 10

 CFU/mL) of these three 

strains of bacteria were also exposed to 1 mg/L monochloramine for 24 h to 

determine the effect of cell density on efficacy of chlorine disinfection.  All six strains 

of bacteria were exposed to 1 mg/L monochloramine for 24, 48 and 72h. 

2, 103, 104 and 105

 

 amoebal trophozoites/mL was determined after 

24 h exposure to 0, 10, 20, 50 or 100 mg/L monochloramine in phosphate buffer (pH 

8).  Co-cultures were exposed to 0, 1, 5, 10, 50 and 100 mg/L monochloramine and 

aliquots were taken at 3 h, 24 h and 7 days.  The aliquots were washed twice, 

incubated at 4ºC for 30 min, and then viable counts done by MPN. 

2.4.3  UV light 
The UV treatment used a Spectroline model EA-160/FC (Spectronics Corp., New 

York, USA) 365 nm wavelength, 230v 50hz 0.17 amp UV lamp at 5 L/min producing 

approximately 90 000 μWs.cm-2

The three chlorine tolerant strains of bacteria at three concentrations (10

.   

4, 105 and 

106 CFU/mL), then all six strains (106 CFU/mL) of B. pseudomallei, were exposed to 

UV.  Survival of amoebae (102, 103, 104 and 105

 

 trophozoites/mL) and bacteria from 

a co-culture was determined after exposing to UV.  All cultures were centrifuged after 

exposure before viable counts.  

2.5  Recovery and Counting Methods 
 

2.5.1  Bacteria 
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The concentration of bacteria (CFU/mL) prior to treatment was determined by 

plating in triplicate on plate count agar (PCA) using a spiral plater (Don Whitely 

Scientific Ltd, Shipley, UK) and by MPN.  There were 10 replicate tubes for each 

MPN dilution.  Each tube with growth was plated onto PCA for confirmation of 

B. pseudomallei recovery. 

 

2.5.2  Amoebae 
The cultures were washed twice and 5 x 10 μL aliquots of the washed pellet were 

dropped onto non-nutrient agar (NNA) plates spread with a concentrated suspension 

of live Escherichia coli (WACC9) to ascertain if there were surviving amoebae after 

each treatment.  The plates were examined at 40x magnification daily for evidence of 

migration from the inoculation zone.  
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Results 

 
3.1  Bacteria 
 

Viable bacteria were recovered from all chlorine, monochloramine and UV 

concentrations tested.  For the shortest exposure time tested, chlorine was the most 

effective disinfectant agent, for three strains of bacteria (Figure 1) with a 10-fold 

greater reduction than either monochloramine or UV.  There was a more marked 

difference in the sensitivity of the mucoid strain which was least affected by UV.   

As the concentration of monochloramine increased there a continual decline in 

survival, in contrast, there was no extra reduction in survival after 1 mg/L chlorine 

(Figure 2).  Monochloramine at 4 mg/L had a greater disinfectant power than chlorine 

at 4 mg/L when bacteria were exposed for 48 h.  Increasing the bacterial 

concentration increased the survival rate of B. pseudomallei in chlorine, 

monochloramine and UV (Figure 3).  In each treatment there was no difference 

(p=0.08) in survival when starting with concentrations of 104 or 105

There was no difference (p=0.1) in the effectiveness of monochloramine or UV on 

the chlorine “tolerant” and “sensitive” strains (Figure 4).  However, the mucoid strains 

were more sensitive to monochloramine (p=0.04) and more resistant to UV (p=0.01) 

than the non-mucoid strains.  The mucoid strains (BCC11 and BCC69) had a higher 

resistance (p=0.02) to chlorine than the chlorine “sensitive” strains.   

 CFU/mL. 

 
3.2  Amoebae 
 

The amoeba survived all three disinfectants at all concentrations tested.  Migration 

across the NNA plates was observed at all trophozoite concentrations and all 

disinfectant concentrations.  While at 50 and 100 mg/L chlorine, and 50 and 

100 mg/L monochloramine, there was considerable reduction in migration rates, 

more than 2 migration zones were seen from each aliquot of approximately 200 live 

amoebae/mL.   
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3.3  Co-cultures 
 

When co-cultured with amoebae, there was no reduction (p=0.06) in the bacterial 

concentration by any of the disinfecting methods (Figure 5).   

Bacterial recovery from co-cultures was significantly higher (p = 0.006) than the 

pure culture at all chlorine concentrations tested (Figure 6a).  In the presence of 

amoebae, B. pseudomallei were 1000- and 10,000-fold more resistant to 1 mg/L and 

10 mg/L chlorine, respectively.  At 100 mg/L chlorine, the presence of amoebae 

conferred a 100-fold increase in survival of bacteria. 

Over time, the number of surviving bacteria increased in the presence of amoebae 

consistent with bacterial replication within amoebae.  At 1 and 10 mg 

monochloramine/L, there was a 1000-10,000-fold reduction on pure cultures at 24 

and 48 h, and 7 days (Figures 6b, c and d), while there was no effect (p=0.08) when 

amoebae were present.   
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4.0 Discussion 
 

This study highlights the capacity of B. pseudomallei to survive in treated potable 

water.  Chlorine proved the most effective disinfectant of 106 CFU/mL pure bacterial 

cultures with a 99.99% reduction, followed by 99.9% reduction by monochloramine 

and 99% reduction by UV.  This is in agreement with the findings of Kim et al. (2002) 

who showed that, in general, oxidising disinfectants (chlorine and monochloramine in 

this study) were more effective than non-oxidising ones against Legionella in water 

systems.  The reduction by chlorine calculated by MPN in this study is greater than 

those estimates produced by flow cytometry (Howard and Inglis, 2003a), however 

flow cytometry was not used due to the lower detection limit of 104

 

 CFU/mL.  

Underestimation of viable bacteria by MPN can also occur due to aggregates formed 

by bacteria, but the large number of MPN tubes used in this study has provided a 

more sensitive quantification of the viable cells than flow cytometry.  

In pure bacterial cultures, disinfection is density dependant, with UV treatment 

least effective at the highest bacterial concentration.  There is a significant reduction 

in the disinfectant power of monochloramine and UV when the bacterial population is 

increased from 105 to 106 CFU/mL.  However, monochloramine can be utilised as a 

successful disinfectant if there is sufficient retention time as it can reduce the viability 

of B. pseudomallei by a greater degree than chlorine.  At 7 days the reduction in 

viable cells can reach 99.9999% of a population of 106

 

 CFU/mL in pure culture at as 

low as 0.5 mg/L monochloramine.   

Survival of groups of chlorine “tolerant”, chlorine “sensitive” and mucoid strains 

from the earlier study (Howard and Inglis, 2003a) showed a difference between the 

three disinfecting agents used in this study.  When exposed to chlorine the mucoid 

strains were as resistant to chlorine as the tolerant group.  This is in contrast to 

Morris et al. (1996) who showed rugose variants of Vibrio cholerae displayed 
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resistance to killing by chlorine due to expression of an amorphous 

exopolysaccharide that promotes cell aggregation.  However, monochloramine is 

more effective at reducing survival of mucoid strains than non-mucoid strains, while 

UV was least effective at killing mucoid strains.  The reasons for these differences in 

survival have not been explored further.  The mucoid strain may be least affected by 

UV due to protection against UV light by the mucoid polysaccharide coating.  This is 

an important finding as mucoid strains may have evaded detection in diagnostic 

laboratories due to limitations of isolation techniques.  These identification problems 

may be more prevalent than previously thought.  The recent development of a 

selective agar designed to improve recovery of the more easily inhibited strains of 

B. pseudomallei (Howard and Inglis, 2003b) is expected to increase our ability to 

isolate the mucoid strains from environmental and clinical specimens.     

 

Pure cultures of amoebae were able to survive all disinfecting agents.  At most 

there was a 99.9% reduction in amoeba.  Migration of trophozoites showed a rapid 

recovery of Acanthamoeba and contradicts the earlier findings of Cursons et al. 

(1980) that 1.25 mg/L of total available chlorine was amoebicidal after 30 min 

exposure for 104

 

 amoebic cells/mL of two Acanthamoeba species. Amoebic 

trophozoites probably encyst in response to the disinfecting agents resulting in 

greater protection for the bacteria.  In an equivalent study, Kilvington and Price 

(1990) reported cysts produced from co-cultures of Legionella with A. polyphaga 

protected the bacteria from 50 mg/L free chlorine.   

Co-culture of B. pseudomallei with A. astronyxis greatly enhanced survival of 

B. pseudomallei in the presence of the disinfecting agents tested.  As amoebae occur 

commonly in drinking water supplies, this may be an important mechanism for 

persistence of B. pseudomallei.  Aquatic amoebae play a central role in Legionella 

ecology by supporting intracellular multiplication and providing protection against a 
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hostile environment.  Acanthamoebae also protect Legionella against disinfecting 

agents (Cirillo et al., 1999).  In view of the results of this study, this effect is likely to 

hold true for B. pseudomallei.   

 

When amoebae are present, 100 times more monochloramine is required to 

maintain the disinfectant efficacy.  There are at least two possible explanations.  

Bacteria are capable of low level intracellular multiplication within protozoa, for 

example, a 7-fold increase in B. cepacia per Acanthamoeba trophozoite occurs after 

co-culturing in vitro (Marolda et al., 1999).  A 10-fold increase was seen in the 7 day 

co-cultures of B. pseudomallei and A. astronyxis in the current study.  A second 

reason for enhanced bacterial survival in the presence of amoebae may be the 

greater disinfectant demand created by the amoebae.   

 

Intracellular survival within amoebae may induce a stress-resistant phenotype 

(James et al., 1999) which may manifest as an increased resistance to disinfectant 

agents.  James et al. (1999) proposed that as well as providing protection and 

supporting proliferation in hostile environments, amoebae may contribute to bacterial 

persistence by inducing a polyhydroxybutyrate rich phenotype that is more 

physiologically prepared for extracellular survival in low nutrient environments.    

 

    While the recommended dosage of the disinfectant agents will never totally 

eradicate B. pseudomallei, they can significantly reduce the concentration of the 

pathogen in the absence of amoebae.  We believe that there are several lines of 

research to be undertaken to ensure that water supplies in endemic areas can be 

monitored for potential contamination by B. pseudomallei.  Firstly, it is important to 

monitor potable water supplies in endemic regions for the presence of amoeba as 

well as B. pseudomallei, and it will be essential to assess the ability of 

B. pseudomallei to survive and multiple within a range of commonly found aquatic 
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amoebae.  Formation of biofilms containing amoebae and/or B. pseudomallei is likely 

to enhance the survival of this bacterium and therefore the effect of disinfecting 

agents on B. pseudomallei biofilms warrants investigation.  Further studies into the 

effect of sequential disinfecting methods should be considered, as they could be 

employed in areas where disease is present.  Finally, it has not been determined if 

B. pseudomallei damaged by disinfectants, or after survival within amoebic hosts, are 

more virulent than an untreated bacterial population.   
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Figure 1  Mean reduction in viable cell counts of 106 CFU/mL of 3 strains of 
Burkholderia pseudomallei  (NCTC 13177, NCTC 10276 and BCC11) subjected to 
chlorine (1 mg/L for 30 min), monochloramine (1 mg/L for 24 and 48 h) or UV (90 000 
μWs.cm-2).    
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Figure 2  The effect of a) chlorine (30 min) and b) monochloramine (  24 h,    
48 h, and    7 days) on survival of 3 strains of 106 CFU/mL Burkholderia 
pseudomallei.  Viable bacteria presented as most probable number of colony forming 
units/mL. 
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Figure 3  The effect of a) 1 mg/L chlorine, b) 1 mg/L monochloramine and c) UV 
(90 000 μWs.cm-2) on the survival of different starting concentrations of 3 strains of 
Burkholderia pseudomallei (NCTC 13177, NCTC 10276 and BCC11).  Surviving 
bacteria presented as most probable number of colony forming units/mL. 
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Figure 4  Effect of a) chlorine, b) monochloramine and c) UV on survival of chlorine 
sensitive strains (  ), chlorine tolerant strains  (  ) and mucoid strains (  ) of 
Burkholderia pseudomallei. 
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Figure 5  Survival of pure bacterial cultures (dashed line) of Burkholderia pseudomallei  
(NCTC 13177 at 105 CFU/mL) compared to a co-culture with Acanthamoeba astronyxis 
(106 trophozoites/mL) after a) 30 min exposure to 1 mg/L chlorine, b) 1 mg/L 
monochloramine for 24 h, c) and 48 h and d) UV (90 000 μWs.cm-2).   Viable counts 
determined by most probable number.  Error bars are 95% confidence interval.   
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Figure 6  Survival of pure bacterial cultures (dashed line) of Burkholderia 
pseudomallei  (NCTC 13177 at 105 CFU/mL) compared to a co-culture with 
Acanthamoeba astronyxis (106 trophozoites/mL) after a) 30 min exposure to 1 mg/L 
chlorine, b) 24 h, c) 48 h and d) 7 day exposure to 1 mg/L monochloramine. 
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