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Abstract 

 

This report details development and evaluation of potential performance measures for 
Advanced Process Control (APC) applications implemented across Alcoa sites. The final 
measure would ideally aid in the diagnosis of poor control and enable comparison between 
the performances of separate controllers. 

In particular, the work has focused on the development of a suitable control performance 
index for Honeywell’s Robust Model Predictive Control Technology (RMPCT – Profit 
Controller) as implemented on an evaporator process located at Alcoa’s Kwinana alumina 
refinery. 

Research in the field of controller performance assessment, particularly the performance of 
multivariate Model-based Predictive Controllers, was investigated.  Existing performance 
indices proposed in the literature were assessed for their suitability to Alcoa’s applications. 
For the greater part, these methods are not suited to the specific characteristics and 
functionality of Honeywell RMPCT.  

A CPA metric entitled Event Frequency Performance Index (EFPI) is proposed in this report. 
It is a composite metric comprising five component metrics each of which are designed to 
gauge different aspects of RMPCT performance. Its stages of development are described and 
it is applied to seven periods of RMPCT historical data. The metric results are analysed and 
compared to general expectations about controller performance for these assessment periods 
in order to determine the utility of the proposed approach.  

A historical benchmarking method for performance assessment is also proposed. This 
involves the identification of a period of controller operation that is known to be good and 
then comparing subsequent assessment periods to this benchmark. This approach is applied to 
three different aspects of RMPCT performance: CV limit violation, MV movement and 
economic optimisation. Performance indices using this method are obtained for six periods of 
RMPCT historical data.  
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1 Introduction 

  

1.1 Control Performance Assessment 

 

Controller performance assessment (CPA) aims to evaluate the performance of controllers 

from routine operating data. It is necessary to ensure effectiveness of process control and 

consequently safe and profitable plant operation. 

The initial design of control systems includes many uncertainties caused by approximations in 

process models, estimations of disturbance dynamics and magnitudes, and assumptions about 

operating conditions. These uncertainties can lead to plant performance that may differ 

significantly from the design specifications. Even if controllers perform well initially, many 

factors can cause their abrupt or gradual performance deterioration over time. 

It is often difficult to effectively monitor the performance and diagnose problems from raw 

data trends as they tend to show complicated response patterns resulting from the presence of 

disturbances, noise or non-linearities. CPA is therefore primarily concerned with the 

development of statistics that are able to measure criteria that have been identified as 

reflecting aspects of control performance. While the diagnosis and correction of control issues 

indicated by these statistics may be considered an integral part of CPA, in this report CPA 

refers only to the application of the indices to gauge control performance.  

Effective CPA is also important with regard to appropriate allocation of resources. A plant 

may have a number of different control assets. Maintaining them based on their respective 

conditions requires an effective way to determine their performance and prioritise action. In 

order to enable this comparison between controllers, CPA metrics’ upper and lower bounds 

should indicate the best and worst performance a controller is capable of. 

Alcoa does not currently have any standard CPA procedures in place, other than measuring 

Manipulated Variable (MV) utilization, which indicates the percentage of critical Manipulated 

Variables (MVs) the controller is using over an assessment period. It is predicted that, without 

the adoption of effective CPA methods, the performance of Alcoa’s Advanced Process 

Control (APC) applications will be significantly reduced. This is especially the case given the 

predicted increase in the number of their APC assets. 

 



4 
 

 



5 
 

 

1.2  State of CPA Research 

 

A number of algorithms for estimating a CPA index are proposed in the literature. The 

conventional method involves comparing the existing controller to a theoretical benchmark 

such as the Minimum Variance Controller (MVC).  

Harris (1989) laid the theoretical groundwork for CPA of single loop controllers from routine 

operating data. He proposed a comparison of the output variance term with the minimum 

achievable variance. Desboroug and Harris (1993) apply this idea to assessing 

feedback/feedforward control schemes. Harris et al. (1996) and Huang et al. (1997b) applied 

the generalized the minimum variance benchmark to the multivariate case based on the 

multivariate interpretation of the delay term, known as the interactor matrix.  

Kozub and Garcia (1993) proposed more practical user defined benchmarks based on settling 

times, and rise times. The settling time or rise time for a process can often be chosen based on 

process knowledge. A correlation analysis of the operating data is used to determine whether 

the desired closed loop characteristics were achieved.  

Tyler and Morari (1995) proposed a CPA method based on likelihood methods and 

hypothesis testing. Performance assessment of non-minimum phase and open loop unstable 

systems was also addressed by Tyler and Morari (1995). Ko and Edgar (2000) addressed the 

issue of cascade control system performance assessment.  

Huang and Shah (1999) proposed the Linear Quadratic Gaussian (LQG) control as the 

benchmark instead of MVC. This technique also takes input variance into account. The input 

variance is often of major concern as it is frequently a utility such as steam or power with 

significant cost. A model of the process and the disturbances is required to do the LQG 

benchmarking. Kammer et al. (1996) used non-parametric modelling in the frequency domain 

to ascertain the optimality of a LQG controller, based on the comparison of the optimal and 

the achieved cost functions.  

A constrained Model Predictive Controller (MPC), such as RMPCT, is essentially a non-

linear controller, especially when operating at constraints. Conventional MVC benchmarking 

techniques which rely on linear time-series analysis are therefore infeasible. Patwhardan et al. 

(1998) attempted to address this issue by using the historical (control) objective function as a 

practical performance benchmark. This technique has been adapted to assessment of RMPCT 

in this report. 
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Ko and Edgar (2001a) propose a benchmark based on the finite horizon MVC derived from 

closed loop data and knowledge of the order of the delay matrix. This was extended to the 

constrained MPC case in Ko and Edgar (2001b). While this idea has merit, it relies on 

accurate data for all of the process’s disturbances in order for the benchmark to be realistic. 

The number of unmeasured disturbances in a typical RMPCT application prohibits this. 

Accurate process and disturbance models are also required. Any model uncertainty will also 

result in inaccurate estimation of the benchmark. 

Patwhardan et al. (2002) propose a performance metric based on comparison of the designed 

and achieved MPC objective functions. This method takes into account the structure of the 

controller along with its design specifications such as the weighting factors associated with 

different variables. While this approach is attractive, its use for RMPCT assessment is 

precluded by the fact that the RMPCT control objective function is not obtainable as 

historized data. 

A data-based covariance benchmark is proposed by Yu a and Qin (2001). The scheme uses 

generalized eigenvalue analysis to extract the directions with degraded or improved control 

performance against a benchmark period. It was found that application of this method to large 

multivariable controllers often results in index values so large or small (from 10-5 to 108) that 

the exact level of performance improvement of degradation is difficult to interpret.    

 

1.3 Honeywell Robust Model Predictive Control Technology (RMPCT – 

Profit Controller) 

 

Honeywell’s Robust Model Predictive Control Technology (RMPCT), or Profit Controller, 

program controls and optimizes the operation of processes that have significant interaction 

between variables. 

The controller employs a model of the process dynamics in order to explicitly predict future 

process behaviour and determines the control moves necessary to bring all process variables 

to setpoints or within constraints. If there are any degrees of freedom remaining to the 

controller it adjusts the process to optimize operations, for example by maximizing product 

quality. 

Profit Controller, as with Multivariable Model-Predictive Controllers (MPCs) generally, 

considers an entire process as a single entity rather than as a collection of isolated control 

loops. As such, it is more appropriate to the control of highly interactive variables than many 
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single loop controllers. Profit Controller is essentially a tool to keep the process within 

operational restraints while optionally optimizing some performance measure. 

The following is an introduction to some of the main features of Profit Controller and those 

that are deemed to offer some insight into the controller’s performance in terms of what to 

expect from the controller under varying process conditions. 

 

 

1.3.1 Profit Controller Implementation 

 

RMPCT employs three types of process variables as control input and output: 

Controlled Variables (CVs) are variables the controller attempts to keep at setpoint 

or within an Operator specified range with prioritisation given to maintaining them 

within their restraints. 

Manipulated Variables (MVs) are adjusted by the controller in order to keep CVs 

within restraints and to optimize the process while not violating restraints placed on 

the MVs. 

Disturbance Variables (DVs) are variables which, although measured, are not under 

control of the controller but affect the values of CVs. The controller, on the basis of 

feed-forward information, may predict the future effect of DVs on process response 

and take action to prevent CV excursions outside constraints before they develop. 

 

RMPCT uses a process model to predict process behaviour. The overall model comprises a 

matrix of dynamic sub-process models which describe the effect of the MVs and DVs on 

CVs. Each sub-process is of a generic form that provides a reasonably accurate description of 

the behaviour of the majority of processes that can be found in processing industries. They 

contain a number of coefficients whose values determine the dynamic response of the sub-

process.  

The sub-process models are specified for a given process by determining the coefficient 

values by model identification which involves open-loop step testing. This is typically done 

when the controller is first commissioned. 
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1.3.2 Robustness Features 

 

Profit Controller’s robustness refers to its ability to maintain good control of highly 

interactive processes even in the event of significant model error. An understanding of these 

robustness features impact on what can be expected from Profit Controller’s performance. 

These features include: 

Range Control Algorithm (RCA) as opposed to setpoint tracking. Where range 

control is common, performance measures such as settling time and offset are less 

applicable than for conventional feedback control loops. While RMPCT allows 

setpoints to be implemented and changed and therefore, its servo performance 

assessed, this is not usual under normal operation. Statistically derived measures 

concerning the violation of restraints and MV movement may be more appropriate.  

 

Singular Value Thresholding (SVT) is employed to correct poor conditioning of the 

matrix used for control calculations. The controller effectively drops any of the 

matrix’s singular values which are below a specified threshold. This is done in order 

to desensitise the controller to model error and prevent excessive MV movement. One 

of the implications of which is that if a controller is Singular Value Thresholding it 

may result in no MV action being taken despite a CV being outside the desired range. 

While this may appear to be poor performance, it is in fact appropriate to the 

controller’s objective, i.e. preventing overly aggressive MV movement for little 

benefit in CV response 

 

1.3.3 CV Characteristics 

 

In a typical Profit Controller process, there is significant interaction between CVs. This means 

that action taken to change the value of a CV may also change the value of other CVs. The 

controller must therefore coordinate changes to a number of MVs in order to move a 

particular CV as desired without causing undesired changes in other CVs. 

As in conventional MPC a CV can have a setpoint that defines the desired value for the CV. It 

is more common, at least in Alcoa’s RMPCT applications, that the CV will have a high a high 

and low limit that define a range of allowable features. This is one of RMPCT’s robustness 

features. The controller will not take corrective control action provided CVs are within their 
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limits which minimises unnecessary MV movement and makes the controller less susceptible 

to plant-model mismatch. 

In addition to these ‘hard’ limits, it is also possible to define soft limits for each CV. These 

limits, defined as an offset within the hard limits specify the allowable limits for optimisation 

of the process. They effectively provide a buffer which allows the controller to push the CVs 

close to restraints while retaining the ability to absorb disturbances without violating those 

restraints. 

CV tracking results in the controller adjusting the external (Operator-set) limit or setpoint and 

the internal (controller-honoured) violated limit so that there is no CV error on initialisation. 

The Operator must then return the limit or setpoint to the desired value.  

Limit ramping adjusts only the internal, violated limit to the current CV value. The controller 

then returns the internal limit gradually to the external limit or setpoint. Both CV tracking and 

limit ramping aim to minimize the initial jolt that can result when CVs exhibit large error 

when control is initiated.  

Limit ramping also applies when the operator makes a large change in a limit or setpoint. It 

minimizes the disruption by establishing the rate at which the controller moves the old limit 

towards the new limit.    
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1.3.4 MV Characteristics 

 

Each MV has a high and low limit which the controller will never violate of. The controller 

will return the MV to within limits when the controller is started with the MV outside its 

limits (except when tracking is on) or when the operator changes an MV limit such that the 

MV value is outside of it. 

Rate-of-change limits may also be set in order to prevent excessive MV action when an 

abnormal event occurs. If these are being hit repeatedly, the limits are possibly being set too 

small and the controller therefore has less freedom to determine the optimum trajectory. 

Limit ramping for MVs determines the minimum rate at which an MV must move towards a 

violated limit (in the event of initialisation or the Operator changing a limit such that it is 

violated). 

MV weighting is analogous to CV weighting. Greater MV movement weights discourage the 

movement of particular MVs to resolve CV error. This results in greater movement of larger 

MVs. When there are more MVs than required in order to meet control objectives, the 

controller minimizes the sum of the squared changes of the MVs, with each change multiplied 

by its respective MV weight. 

Movement weights do not affect the speed of response or controller stability. Movement 

weights are only used to set priorities with regard to which MVs it is preferable to move in the 

event that more than one MV will suffice. 

 

1.3.5 Feedback Performance Ratio 

 

The feedback performance ratio is a tuning parameter defined as the ratio of the closed-loop 

to open-loop settling times for a CV. The nominal open-loop settling time is the gain-

weighted average of the settling times for all of the sup-process models of a given CV. The 

nominal dead-time is gain-weighted average of the dead times for the CV. 

A performance ratio is therefore used to tune controller response. A performance ratio of 1.0 

means the CV is returned to zero error within the nominal open-loop settling time, while a 

ratio of 0.5 means it will be returned to zero error in half that time. 

The performance ratio determines the inherent tradeoffs in controller performance that are 

associated with speed of response, model accuracy and MV movement. That is, a smaller 
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performance ratio results in faster setpoint tracking and disturbance rejection, larger MV 

movement and higher sensitivity to model error. The converse is also true. 
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1.3.6 Degrees of Freedom (DOF) 

 

Profit Controller maintains all CVs at setpoint or within range provided there are sufficient 

DOF to do so. The number of DOF is the number of MVs not at a limit, minus the number of 

CVs that either have a specified setpoint or are at or outside a limit. 

So long as the degrees of freedom are zero or positive CV constraints can be satisfied. If they 

become negative it is physically impossible to keep setpoints within range. 

When there are negative degrees of freedom, Profit Controller attempts to maintain a 

compromise by minimizing the weighted sum of the squared CV error: 

     (1) 

where   is the CV index. 

In the above formula the error is the scaled CV error. This scaling results in equal increments 

of different CVs having equal importance on the process. Error trade-off between CVs may 

be influenced by specifying engineering unit give-ups for each of the CVs. Weights are 

inversely related to scaling factors and EU give-ups by: 

  (2) 

The smaller the Engineering Unit ( EU) give-up the more the controller attempts to minimize 

the error for that CV. The EU give-ups are relative to each other. That is, if CV1 has an EU 

give-up of 3.0 while CV2 has a give-up of 1.0, CV1 will exhibit approximately 3 units of 

error to every 1 of CV2’s.  

EU give-ups have no effect when there are sufficient degrees of freedom to bring CV errors to 

zero. Further, give-ups do not affect the speed with which the controller corrects CV errors. 
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1.3.7 Economic Optimization 

 

If the controller has degrees of freedom remaining to it, it is able to optimize an objective 

function that represents one or several aspects of the process, for example, improvement of 

product throughput or lower utility costs.  

 

The controller will minimize the objective function (or maximize its negative) subject to 

keeping all CVs and MVs within limits. 

 

The general form of the objective function is  

  Minimize 2
0

22
0

2 )()( ii
i i

iiiii
i i

iii MVMVdMVcCVCVbCVaJ −++−+= ∑ ∑∑ ∑
 (3)

 

where ia and ic  are the linear coefficients of the CVs and MVs respectively, ib and id  are the 

quadratic coefficients of the CVs and MVs and iCV0  and iMV0  are the desired steady state 

values of the CVs and MVs. 

 

1.4 Case Study Controller – SLAC 

 

The evaporation area of Alcoa’s Kwinana refinery has the process objective of concentrating 

the Spent Liquor (SL) from the precipitation area before returning to the Digestion Feed 

Tanks. This is achieved by heating the SL in shell and tube heat exchangers and then flashing 

off water vapour by dropping the temperature and pressure in a series of flash tanks.  

 

Evaporation Optimisation application, also known as the Spent Liquor Advanced Controller 

or SLAC, aims at managing the levels of the spent liquor stock tanks that feed into the 

evaporation units whilst optimising the evaporation building. 

 

SLAC is the Profit Controller application that has been selected for this study and 

development of possible CPA methods. The first objective of the controller is to maintain safe 



14 
 

operating conditions in the evaporation units.  Constraints have therefore been included in the 

controller design to ensure that the operating pressures and tank levels are within safe limits. 

The second control objective is to maximise the total evaporation rate of the building, thereby 

increasing the caustic recovery, reducing refinery costs and increasing production. The third 

objective is to control the stock tank levels to ensure liquor stocks are balanced to maximise 

liquor circuit flow. 

 

Prioritising these control objectives ensures that safe operation of the evaporation process is 

not compromised by the controller. The evaporation process is thus prevented from reaching 

safety override trip settings that would cause undesirable flow cuts. 

 

SLAC is a large controller, even by Advanced Process Control standards. 87 CVs, 27 MVs 

and 16 DVs in total are used in the application.  
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2 Event Frequency Performance Index (EFPI) 

 

A comprehensive Control Performance Assessment (CPA) procedure would ideally 

incorporate several methods that reflect different aspects of control performance. The goal of 

creating the EFPI is the development of a metric which combines several component metrics, 

each of which measures a different aspect of RMPCT performance and therefore provides a 

general indication of how well, or poorly the controller is performing. 

The name, Event Frequency Performance Index, comes from the fact that each of the 

component metrics measures the average frequency of certain events, or the time the 

controller spends in certain states. This approach was predicted to have several advantages, 

not least of which is mathematical simplicity.  

Also, each individual metric is normalized based not only on time, but also the controller 

parameters, such as number of variables and limit values. It is therefore hoped that the metric 

can be applied consistently to different controllers without the need for scaling, as the metrics 

are already scaled using the intrinsic characteristics of the controller.      

Six aspects of control performance are measured by the EFPI. The individual, component 

metrics were initially defined as follows:  

1. Constraint Ratio (CR) – This measures how the controller uses its capacity to add 

value. At each interval, all MVs are checked to see whether they are at a constraint 

and given a value of ‘1’ if they are and ‘0’ if not. The scores are averaged over time 

and the resulting values for each MV are then summed. 

Similarly each CV is checked to see whether it is at a soft constraint. In the absence of 

historized data for the CV soft limits, a value of 5% of the CVs operating range from 

the hard limits was used. If the CV read value for an interval is within this range 

without violating the hard restraint a value of ‘1’ is assigned for that CV at that 

interval. Otherwise a value of ‘0’ is assigned. The result for each CV is averaged over 

the sampling interval and the CV results are summed.  

A normalized result for the CR is then obtained by the following calculation: 

)(
. ,

,,
CMaxC

MaxCMaxC

C MVMV
MVCV

CV
CR −=    (4) 
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Where CCV and CMV  are the average number of CVs and MVs respectively hitting a 

constraint per interval over the assessment period and  MaxCCV ,  and  MaxCMV ,  are the 

total number of CVs and MVs that could be hitting a constraint at a given interval.  

The metric therefore penalizes for MVs hitting constraints and rewards CVs at 

constraints. 

The metric ostensibly penalizes those controllers that are not optimizing to constraints 

or who are not optimizing at all. The measure is based on the assumption that a 

controller is at its most useful when only CV constraints are being hit. It may be useful 

in the diagnosis of problems arising from operators setting MV constraints too narrow 

and thereby limiting a controller’s capacity to push CVs to optimal operating points.  

 

2. Economic Movement Index (EMI)  – This metric aims to measure how necessary the 

controller is to economic unit operation. It is defined by mapping the economic 

objective function to the controller MVs. The relevant MVs are identified by whether 

they possess a linear/quadratic economic coefficient or a non-null sub-process 

relationship to CVs with a linear/quadratic economic coefficient.  

 

These MVs are checked for a non-zero gradient at each time interval. EMI is then 

defined as the time-averaged ratio of those MVs that have a non-zero gradient to the 

total number of MVs. 

This component is based on the assumption that a controller is more economic if all 

MVs are pushing in an economic direction and will ideally penalize those controllers 

that are not used to optimize operation or that only partially use MVs. 

 

It may be that this component also enables inference about the degrees of freedom 

(DOF) available to the controller. A controller may generally be considered to be 

performing well in this regard if it has DOF > 0 as it has the capability to correct for 

disturbances. If the controller is optimizing it indicates that this is the case. 

 

3. Objective Function Attainment (OFA) – This metric aims to measure how much 

value the controller is generating. It is defined as the percentage of time the current 

objective function value is within a certain range of the steady-state objective 

function. This condition is checked at every interval and if the current objective 

function is within the desired range of the steady-state value a score of ‘1’ is assigned. 

A ‘0’ is assigned if it is not. These scores then are averaged for the assessment period 
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The metric is based on the assumption that a controller is generating more profit if it 

spends a lot of time at its steady-state objective function value. Initially the range 

within which the current objective function has to fall, or the OFA Threshold, was 5% 

of the stead-state. 

  

4. Movement Index (MI) – This attempts to measure how smoothly the controller is 

operating and therefore decreases with increasing MV movement. It is calculated by 

measuring the movement of each MV as a percentage of the maximum allowable 

move at each sampling instant. The maximum allowable move value will depend on 

the MV direction, so this is ascertained for each sampling instant. A score between ‘0’ 

to ‘1’ is assigned for each interval and each MV and the result is averaged over the 

assessment period and all MVs then subtracted from one. 

Gating was implemented such that if a MV is not on for a given interval , that is, it is 

not being used by the controller at that point, then it is not included in the metric for 

that interval. This prevents the metric from rewarding the controller for not moving a 

MV that is not being used for control.     

The metric penalises those controllers that are moving the process around 

significantly. For the initial EFPI implementation this is the only component metric 

that does not rely entirely on the frequency of certain events, as it incorporates the 

magnitude of MV movement as a percentage of the maximum move limits. 

 

It should be noted that because MI penalises MV movement, while EMI rewards 

movement of certain MVs, a perfect EFPI score is not possible, even in theory. 

However, it was believed that those controllers that push towards optimization with a 

minimum of MV movement may still score highly. 

 

5. Constraint Adherence Index (CAI) – This measures how well the CV constraints are 

honoured. It is calculated by taking the average number of constraint violations per 

CV, per interval occurring over the assessment period, resulting in a value between ‘0’ 

and ‘1’. The result is then subtracted from one. The assumption is that a controller that 

is not keeping the process within defined limits is neither reliable nor safe.  

 

A final, overriding performance factor is controller Time in Normal (TIN). The controller 

parameter, ControllerMode is used to determine whether the controller is ON over the 

assessment period. A value of’1’ is assigned if the controller is ON and ‘0’ if it is not. The 

results are then averaged for the period. 
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The composite EFPI metric is defined as 

    (5) 

 

While each EFPI factor is given an equal weighting, it may be necessary to individually 

weight the variables used in the calculations to better reflect the design objectives of a 

controller. For example, the restraints on a given CV may have been deliberately set such that 

they are violated frequently. This may have been done intentionally so as to elicit a specific 

desired behaviour from the controller and process. In order to reflect this design objective, the 

Reliability of this individual CV could be given a lower weighting than others.  This 

customization will enable better comparability between controllers. 
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2.1 Initial EFPI Implementation: Results and Discussion 

Table 1 First run EFPI results 

 

 

The EFPI metrics as defined in Table 1 were implemented on three periods of historical data 

for SLAC. These were initially classified as ‘Good’, ‘Reasonable’ and ‘Poor’ periods of 

controller operation, based on the amount of attention the controller was receiving during 

these periods, length of time since the controller was commissioned and the ‘gut feel’ of 

engineers familiar with the controller. 

The results for the first run application of the EFPI, displayed in Table 1, suggest a definite 

overall degradation in performance between the first period (period G) and the second (R) and 

between period G and the third period (P). Whether performance has improved or worsened 

between periods R and P however, depends on whether the controller’s Time in Normal (TIN) 

statistic is included.  

The overall EFPI is calculated both with and without TIN as it is debatable whether or not it is 

really a measure of control performance.  Despite the fact that the controller is on for a greater 

percentage of R than for P, R has a lower average index for the other components. This 

suggests that the controller has maintained other aspects of control more effectively over 

period P despite being active less of the time.  

SLAC EFPI -All CVs/MVs 

Period CAI EMI CR OFA MI TIN EFPI EFPI w/o TIN 

1/06/2007 - 30/06/2007 

(G) 0.908 0.739 0.122 0.984 0.908 0.980 0.718 0.732 

1/10/2007-30/10/2007 

(R) 0.861 0.664 0.103 0.898 0.935 0.998 0.691 0.692 

1/05/2008-30/05/2008 

(P) 0.710 0.669 0.138 0.998 0.948 0.957 0.663 0.693 
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Further to consideration of the TIN statistic, it can be observed from the daily component 

averages for period P shown in Figure 1 that a trough in TIN corresponds to decreases in all 

other components. This level of interdependence in CPA metrics is undesirable, particularly if 

the end goal is a composite, ‘rolled up’ metric, as it results in the repetitive inclusion of 

certain aspects of performance.  

 

Figure 1 First run EFPI results for 1/05/2008-30/05/2008 

 

For these reasons the TIN component should not be considered as a CPA metric but rather as 

a potential diagnostic. For example, if several other indicators drop below a specified level 

and the TIN for that period is also low, it is likely to be a root cause.  

This evidences one of the problems with implementing a composite index of this type, that is 

outlying components can skew the overall metric such that it does not present an accurate 

picture of control performance. The same may be said of other components: the OFA factor 

for P is considerably better than for any of its other components, or for those of the other 

assessment periods.  

The above results suggest an apparently inverse relationship between CAI and MI. That is, 

where the controller is reducing CV constraint violation, MV movement increases. However, 

this relationship is not supported by inspection of the daily averages obtained for these two 

components, or calculation of their correlation coefficients shown in Table 2. 
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Table 2 Correlation coefficients between EFPIs for three assessment periods  

Period Correlation Coefficient for CAI and MI daily  figures 

1/06/2007 - 30/06/2007 (G) -0.2672 

1/10/2007-30/10/2007 (R) 0.0476 

1/05/2008-30/05/2008 (P) 0.4933 

 

While a daily relationship is not supported by these figures, it does not disprove the notion 

that if the controller is averaging high scores for constraint adherence it is likely to be moving 

MVs more. In fact, the overall CAI-MI correlation coefficient for daily values for all three 

periods combined approaches -0.6, suggesting a reasonably strong inverse relationship 

between the two indices.  

This relationship further highlights a key problem with a “rolled-up” metric, that the 

controller performance can exhibit very different characteristics which are hidden by 

combining the scores of different indices.  

Of further note is the very low scores attained for the CR all three periods. This is less likely 

to indicate poor control performance than it does the inherent nature of the system being 

controlled. The CR is defined as   

)1(
,, MaxC

C

MaxC

C

MV

MV

CV

CV
CR −=

    (6) 

Where CCV and CMV  are the average number of CVs and MVs respectively hitting a 

constraint per interval over the assessment period and  MaxCCV ,  and  MaxCMV ,  are the total 

number of CVs and MVs that could be hitting a constraint at a given interval, in this case 87, 

the total number of CVs or 27 the total number MVs.  The metric therefore penalizes for MVs 

hitting constraints and rewards CVs at constraints. 

It was apparent during the course of calculating this metric that the term concerning MV 

constraints would have very little impact on the overall score as the average number of MVs 

at constraints, at each sampling interval, over each assessment period was of the order of 10-2.  

An additional problem was in defining what constituted a restrained CV. It was not desirable 

to use the CV hard constraints as a SLAC CV seldom pushes against a hard constraint without 

violating it. To reward those CVs that were violating limits would create a number that was 

the inverse of the CAI. The optimisation limits or delta-soft limits (defining an offset from the 

hard limits for optimisation) were the preferred values to use. However, it was determined 

later that many of the values for these from the process data historian were not correct.  
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It was decided to choose some arbitrary off-set from the hard limits, defined as a percentage 

of the CV operating range, and if a CV was between this point and the nearest hard limit it 

was assumed to be restrained.  

This solution was not ideal, as those CVs with very large operating ranges would have 

inordinately large regions where they were assumed to be restrained. Further it was later 

discovered that not all SLAC CVs have hard limits; the values being used for hard limits were 

extrapolations by the data historian based on limits that may have once existed. This fact also 

significantly affected the CAI and was the first point to be addressed when revising the 

metrics. 

Ultimately the low CR scores attained for each assessment period were a result of the fact that 

very few of the SLAC CVs typically operated close to the limits defined for the metric. The 

controller was performing very well with respect to MVs not becoming restrained but this is 

not evident from the scores. This is another example of combining two or more factors into a 

metric obscuring the true picture of controller performance. 

Perhaps one of the most interesting observations for this first application the EFPI was the 

fact that period P, expected to exhibit the worst control performance, had an OFA score close 

to perfect. That is, the Current Objective Function value was within 5% of the Steady State 

Objective Function value for almost the entire one month period.  

2.2 EFPI Revision A 

 

A number of initial revisions to the EFPI components were performed. These revisions were 

primarily concerned with incorporating design knowledge into the CAI. The revised metrics 

were applied to the original three assessment periods. They were also applied to data obtained 

for a further three periods which were similarly classified as ‘Good’, ‘Reasonable’ or ‘Poor’.  

The revisions to the CAI were as follows: 

 Correct Hard Limits – Some of the hard limits initially obtained from historized data did 

not actually exist, or were different from the correct limits. These were corrected.   

Activated Limits – Some limits are activated by other variables. For example certain flowrate 

limits are activated in the event of valve saturation. This was handled by gating all values 

when the limits weren’t activated in the controller 

Deliberate Violation of Limits – Several of the SLAC CVs violate one or both of their limits 

by design. These CVs have been excluded from the metric or had the deliberately violated CV 

removed 



23 
 

CV Weighting – The ability to weight CVs has been incorporated into the EFPI program. At 

this point, all CVs’ CAI have a weighting of 1, excepting those that are indicator CVs only or 

others that are not representative of APC performance in some way. These are given a weight 

of zero. These zero-weighted CVs have not been excluded all-together as their individual CAI 

may provide useful information at the CV level, as opposed to controller level.   

Spare CVs – These have been removed from the metric altogether. 

All the above revisions were also applied to the CV component of CR.  



24 
 

 

2.2.1 EFPI Revision A: Results  

 

Table 3 EFPI results for Revision A 

SLAC EFPI -Revision A 

Period CAI EMI CR OFA MI TIN EFPI EFPI w/o TIN 

15/04/2007 - 14/05/2007 (G1) 0.973 0.829 0.173 0.964 0.953 0.96 0.747 0.778 

1/06/2007 - 30/06/2007 

(G) 
0.949 0.739 0.13 0.984 0.908 0.981 0.728 0.742 

1/08/2007 - 30/08/2007 

(R1) 
0.94 0.668 0.144 0.897 0.946 0.959 0.689 0.719 

1/10/2007-30/10/2008 

(R) 
0.948 0.665 0.145 0.896 0.935 0.997 0.716 0.718 

1/04/2008 - 30/04/2008 

(P1) 
0.955 0.567 0.159 0.946 0.926 0.79 0.545 0.711 

1/05/2008-30/05/2009 

(P) 
0.958 0.664 0.18 0.998 0.948 0.957 0.718 0.750 

 

The revisions detailed in 2.2 yielded the EFPI results in Table 3.  The only metrics affected 

are the CAI, EMI and the composite metrics. Each of these was improved significantly for the 

three original assessment periods.  Period G remained the best overall performer.  

Period P’s overall EFPI is now considerably better than period R, which at the time of data 

collection was expected to be of reasonable performance. The original ‘Good’, ‘Reasonable’ 

and ‘Poor’ classifications for assessment periods were based on length of time since controller 

rebuild, the utilization figures, engineer’s intuition and the attention the controller was 

receiving at that point. The classifications were revisited subsequent to obtaining these latest 

results and it was determined that during period P, controller attention and maintenance had 

increased significantly and the period should be reclassified as reasonable to good.  
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The reclassification of assessment periods is much more congruent with the performance 

indices obtained, the general trend of which is a gradual decrease throughout the 2007 and 

early 2008 before a significant improvement in May of 2008. The EFPI trend for the 

assessment periods is shown in Figure 2. 

 

 

 

Figure 2 EFPI for six periods of SLAC operation 

 

A correlation analysis was performed on the 5 key EFPI components and the coefficients 

displayed in the matrix of Table 4. The first point noted was that the inverse relationship 

between CAI and MI was no longer present. The relationship identified in the first EFPI 

implementation did not likely exist, as the CAI figures were calculated using limits that did 

not exist, CVs not used in the controller calculations and bad data. 

The most significant relationship suggested by the correlation matrix is between the EMI and 

CAI. A possible explanation for this may be found in the derivation of the Economic 

Movement Index. At this stage in the EFPI development it is calculated by checking the MVs 

that have been mapped to the objective function for a non-zero gradient at each interval. A 

score of ‘1’ is assigned if the MV is moving and ‘0’ if it is not.  

This method is flawed in that an MV will exhibit zero movement only if it has been dropped 

and is not being used to control the process, otherwise it will exhibit at least some movement, 

however small. This implies that the EMI as it stands does not measure the economic 

movement of MVs, but rather the average number of MVs available to control the process. A 

decrease in this index then, reflects fewer degrees of freedom with which to handle 

disturbances which may lead to an increased frequency of constraint violation and a poorer 

CAI. 
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Although not as strong, EMI also correlates to CR, a component of which measures the 

average number of CVs at constraints. The degrees of freedom available to the controller also 

affect its ability to optimise the process, which for the greater number of CVs involves 

pushing them to a constraint. Thus a lower EMI suggests that the controller may not be able to 

do this (without violating a hard limit) and therefore incurs a lower CR index. 

This weakness in the EMI derivation, along with the fact that the MVs’ movement direction 

and relative impact on optimisation of the objective function are not incorporated, are 

addressed in EFPI Revision C.  

   Table 4 EFPI results for Revision A 

  CAI MI CR EMI OFA 

CAI 1     

MI 0.193069 1    

CR 0.347267 0.480067 1   

EMI 0.522823 0.306454 0.472541 1  

OFA 0.166984 0.104438 0.14414 0.15399 1 

Table 5 EFPI Correlation coefficients for Revision A 

  

The second highest correlation, between component metrics MI and CR, was also not strong 

and has been treated as coincidental. 
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2.3 EFPI Revision B 

 

2.3.1 Potential Methods for Incorporation of Constraint Violation Magnitude into CAI  

  

Up until this point, all the component metrics comprising the EFPI, with the exception of the 

MI, were based entirely on the frequency of certain defined events occurring over the 

assessment periods, for example, constraint violation or the Objective Function being within a 

certain threshold of its steady-state value. It was desired to revise the CAI such that it not only 

measured the frequency of constraint violation, but also incorporated the magnitude of each 

violation.   

This significantly increased the complexity of the problem. It was desirable to maintain the 

CAI as a normalized index in order for it to be easily interpreted and to enable better 

comparability with other controllers. This is not the case with traditional measures of error 

such as Integral Absolute Error (IAE). For example, an IAE score for SLAC would convey 

very little information to someone without extensive experience and knowledge of the system. 

Similarly a certain IAE may be high for SLAC but low for another controller.  It was 

therefore necessary to normalize, or at least scale the violation magnitudes on some basis that 

could be applied universally to other controllers. Scaling or weighting of the violation 

magnitudes for the individual CVs was also necessary due to the fact that some CV constraint 

violations are considerably more important than others. 

Normalization Based on Range of Violation Magnitude 

The first approach considered was similar to that taken for calculation of the MI metric which 

normalized each individual MVs movement at every interval based on its maximum possible 

movement. This approach can be expressed as 
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 where jid , = magnitude of violation at intervali , 

 jdmax, = the maximum possible magnitude of violation for CVj, 

 jdmin, = minimum possible magnitude of violation for CVj, presumably zero,  

 ji ,δ  = magnitude of CVj’s violation at interval i normalized between zero and one, 
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 N = number of intervals in an assessment period and 

 M = number of CVs  

  

The question is how to define jdmax, . The theoretical maximum violation magnitude is the 

difference between the violated hard limit and the closest CV engineering limit, which is the 

absolute outer bound for that CV’s region of operation. Using this value as the basis for 

normalization was not done for two main reasons: firstly the engineering limits are generally 

well outside the typical regions of operation. Using this value would scale the violation to a 

number so small as to be virtually meaningless, or at the least very hard to interpret. Secondly 

the distance of the engineering limit from the hard limit is generally unrelated to the 

importance of a unit violation for a given CV. Further, the SLAC engineering limits were not 

commonly used, accurate or available for the necessary calculations. 

Defining jdmax, as the maximum violation incurred by CVj for the assessment period was also 

considered. However the resultant metric only indicates how much time the CV spends close 

to its maximum violation magnitude for the period. 

 

Scaling Based on CV Allowable Operating Range 

Alternatively the violation magnitude could be scaled on the basis of the CV’s allowable 

operating range as defined by the CV hard limits. This method is based on the assumption that 

if a CV has a larger allowable operating range the significance of a unit violation is less than 

that for one with narrower limits. The obvious drawback in this case is that not all CVs have 

both an upper and lower hard limit. Those that do not could be treated differently in some way 

but this would potentially compromise comparability between controllers as some will have 

more or less of these bounded CVs than others. 

Scaling Based on CV Standard Deviation 

The notion of scaling the constraint violations by dividing by the permissible operating range 

suggested a further option: that of scaling by 2 standard deviations of the CV read value. This 

approach assumes that greater CV variance will correspond to a wider allowable operating 

range and therefore less importance would be associated with a unit constraint violation. 

Scaling by the standard deviation was deemed to be unacceptable for several reasons. The 

first being that the notion the approach is predicated upon is not correct; a wider acceptable 

operating range will often have no bearing on whether a violation is more or less acceptable 
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than that for a CV with a narrower limits. This is exemplified by those CVs with no upper 

limits. Their allowable range may be very large resulting in a high standard deviation, but it 

may be considered relatively crucial that their lower constraints are not violated. 

 A further drawback is if the CV is exhibiting increased variance due to degradation in model 

quality or increased disturbances, in which case the disturbance magnitude will be scaled 

down as a result. In the case where the increased variance is due to model quality, the metric 

effectively allows greater violations for a controller which is actually performing worse, 

which may have been the cause of the violations. 

Scaling Based on CV Average Read Value 

The final method investigated for incorporating the violation magnitude into the CAI involved 

dividing each CV violation at each interval by a percentage of the average read value for the 

CV, such that  
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Where α = scaling percentage, initially set to 5%, and 

 iy = CVi measured value       (9) 

The highest value of  ji ,δ  was capped at 1, thus a score of 1 for an interval would indicate that 

CVi was violating at or greater than the maximum acceptable level. Calculation of the overall 

CAI for the assessment period was as per the original method: finding the average δ for each 

CV and then for the entire system.  

The method assumes that if a CVs average value is higher, then a unit constraint violation is 

less important than for CVs with lower averages. So by scaling the violations by a percentage 

of the mean, they will be expressed as values more commensurate with their relative 

importance. Despite several obvious exceptions to this assumption, this method was 

implemented, mainly as a starting point for developing individual scaling factors for each CV.   

Scaling factors were calculated with the above method then the resultant value was checked 

by a control engineer familiar with SLAC to ensure that the values were appropriate for both 

scaling and defining the maximum acceptable violation. A large number of the values did not 

need to be changed, but the fact that several did and that they all required verification 

indicated that it would have been just as, or more convenient for someone with knowledge of 

the process and control system to simply assign the scaling factors in the first place. 
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Prior to acquiring results, the procedure was updated such that the average value used was 

taken from all assessment periods. This was done in order to ensure that scaling was 

consistent for each assessment period. Also, SLAC comprises five basically identical 

processing units whose CVs are essentially the same, so it was desired to scale them all by the 

same value. Therefore, the individual average values for the corresponding CVs of different 

units were not applied to each respectively, but rather the median average was determined and 

applied to all.  
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2.3.2 Experimentation with Different Threshold Percentages for Calculation of OFA 

 

The 5% range of the steady-state objective function that the current objective function must 

fall within for a given interval to be assigned a ‘1’ value, was chosen arbitrarily. It was 

desired to apply different threshold percentages to determine whether and how significantly 

the selected threshold percentage affects the metric.  Three thresholds were implemented, 5%, 

3% and 1%.  
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2.3.3 EFPI Revision B: Results 

 

Table 6 Monthly EFPI results subsequent to Revision B 

 

Table 5 displays the monthly EFPI results for the six assessment periods having applied the 

revision to calculation of the CAI outlined in 2.3. Figures 3 and 4 compare the results prior 

and subsequent to these revisions for the CAI and overall EFPI (w/o TIN) respectively. 

 

Figure 3 CAI before and after inclusion of violation magnitude 

 

 

   

Figure 4 EFPI before and after inclusion of violation magnitude (OFA threshold 5%) 
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For the CAI, the overall performance trend is almost the same, however for Revision A, 

period P scored better than P1. After incorporating violation magnitude into the metric, 

however, period P1 and P CAI scores are almost identical. So while period P has a greater 

frequency of limit violation, the average violation magnitude during the two periods is very 

similar. This is potentially useful information, but would not be available without applying 

both versions of the metric. CAI Rev B alone will not discern whether CV limit violations are 

infrequent and large or frequent and small. 

The CAI scores for all periods increased considerably for Revision B. This is to be expected, 

as when the CAI indicated the frequency of violation only, every interval where a violation 

occurred was assigned a ‘1’. The revised CAI assigns a ‘1’ only for those intervals where the 

violation is considered equal to, or greater than the maximum acceptable magnitude.      

The overall RFPI has also improved for all periods, the best improvement being for P1 which 

now has greater parity with R and R1. For these three ‘worst performing’ periods, the effect 

of changing the CAI such that it effectively measures two aspects of performance, magnitude 

and frequency of violation, has been to reduce the discernible difference in the overall EFPI. 

Changing the OFA threshold yielded the results plotted in figure 5. In addition to reducing the 

OFA scores for all six periods, narrowing the range generally had the effect of increasing the 

difference between the scores for each period, although in some cases the difference had 

increased. Further, the metric indicated better performance for some periods when the range 

was greater and the opposite when it was tightened.  

While the objective function for some periods may be spending more time within a certain 

range of its steady state value than for other periods, tightening the range reveals that it may 

be spending more time at the outside limit of that allowable range. Other periods’ objective 

functions may spend more time outside the larger threshold, but exhibit more frequent 

excursions into a tighter range. 
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SLAC EFPI -Revision B 

Period  CAI EMI CR 

OFA 

(5%) 

OFA 

(3%) 

OFA 

(1%) MI TIN EFPI 

EFPI w/o 

TIN 

15/04/2007 

- 

14/05/2007 

(G1) 

0.989 
0.829 0.173 0.964 0.945 0.765 0.953 0.960 

0.746 0.782 

1/06/2007 - 

30/06/2007 

(G) 

0.980 
0.739 0.130 0.984 0.937 0.747 0.908 0.981 

0.725 0.748 

1/08/2007 - 

30/08/2007 

(R1) 

0.962 
0.668 0.144 0.898 0.815 0.428 0.946 0.959 

0.678 0.723 

1/10/2007-

30/10/2008 

(R) 

0.966 
0.665 0.145 0.891 0.754 0.296 0.935 0.997 

0.691 0.720 

1/04/2008 - 

30/04/2008 

(P1) 

0.970 
0.567 0.159 0.973 0.946 0.783 0.926 0.790 

0.564 0.719 

1/05/2008-

30/05/2008 

(P) 

0.970 
0.664 0.180 0.997 0.983 0.763 0.948 0.957 

0.717 0.752 
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Figure 5 OFA with thresholds of 5%, 3% and 1% 

For subsequent revisions of the EFPI the OFA threshold has been selected as 3% as this 

appears to offer greater differentiation between good and poor performing assessment periods, 

without narrowing the range so much as to overly penalise even the periods where 

performance may be deemed good. 
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2.4 EFPI Revision C 

2.4.1 Economic Movement Index – Revised Mapping of Objective Function to MVs 

 

The current method of calculation for the Economic Movement Index (EMI) is unsatisfactory. 

This method maps MVs to the objective function via the gain array and the MV and CV linear 

and quadratic objective function coefficients. Sign of gain or magnitude of the coefficients is 

not taken into account, so although a MV that impacts the objective function may be moving, 

there is no way of knowing whether that movement is in an economically favourable 

direction. At present the index is more an indication of MV utilization.  

It was desired to discern appropriate move direction based on the objective function 

coefficients and sub-process steady state gains and to weight each MVs individual EMI on the 

basis of its respective impact on the objective function. 

 

    

 

Optimum MV Movement Direction: Linear Component of Objective Function – The 

linear component of the objective function was mapped to each MV in order to determine a 

net linear coefficient, LC net for each MV. The revised method used the steady-state sub-

process gains and the linear coefficients for CVs and MVs to determine if the move direction 

of each MV at each interval was appropriate to the economic objective and to provide a 

weighting factor for each MV based on its respective impact on the total objective function. 

 

For example, if  jMV  has a non-null sub-process relationship with iCV  only, with a steady 

state gain jiK ,  and the MV and CV’s linear economic coefficients are denoted ja  and ib  

respectively, then the linear component of the of the objective function corresponding to MV1 

can be expressed as  
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where 

1, )( LCnetKba jiij =+     (11) 

For an MV with non-null sub-processes with more than one CV, LCnet can be expressed as 

 

KB ⋅+= ii aLCnet      (12) 

where B is a column vector containing the linear coefficients of each CV and K is a column 

vector containing the steady-state gains between the MV and each CV.  

 The values calculated for LCnet for each MV were used to determine whether they had 

moved in an optimal economic direction for each 35m interval for the seven assessment 

periods. A score was assigned for each MV at every interval based on LCnet as follows 
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and if  LCneti = 0,  MVi is not included in this metric.    (13) 

Because the controller optimizer attempts to minimize the objective function, a negative net 

linear coefficient for a given MV means that maximising MV is desirable. Conversely a 

negative coefficient implies that there are economic benefits to be gained by decreasing the 

MV 

An average overall score of 1 for an MV indicates that the MV been moving in an 

economically favourable direction for the entire assessment period, while a score of zero 

indicates that it has been moving in a direction that minimizes economic benefits. A score of 

0.5 indicates that there has been no net movement in either direction. 

The assignment of a neutral score of 0.5 to an MV for an interval in which no net movement 

was exhibited is somewhat problematic in that zero movement can mean one of several things 
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about the controller’s operation. For example, for the case where the MV is not being used to 

optimize but is nevertheless not moving away from an economic optimum a neutral score is 

appropriate. However, if the MV has optimized to a constraint (a soft limit) and is incapable 

of moving further it will receive a neutral score despite the fact that the controller is 

performing to the best of its capabilities under the given circumstances. The latter scenario 

may or may not be the result of operator-set MV limits being set too tightly which is 

something that should be investigated in the course of diagnosis in the event of a poor 

criticality score. 

Further to the issue of assigning a neutral score in the event of zero movement, it was 

questioned whether it was appropriate for the case where the MV was not being used for 

control. It was decided to still assign 0.5 as the economic benefits being accrued as a result 

were the same as if the controller was not optimizing. However, this is another factor that 

would need to be investigated in a diagnostic phase. 

The overall Economic Movement Index (EMI) is calculated by taking the weighted average of 

the individual scores for each MV over the assessment period, where each weighting factor is 

defined as the net linear objective function coefficients for the individual CVs. The EMI is 

therefore more sensitive to those MVs whose values have a greater impact on the economic 

objective function and will not include those MVs that do not have individual economic 

coefficients or are not mapped to CVs that do. 

The above weighting approach was considered valid with regard to the linear component of 

the economic objective function because at any point in an MVs operating range an 

incremental increase/decrease will increase or reduce the overall objective function value as if 

the MV had started form any other point. That is, the partial derivative of the linear 

component of the objective function with respect to an MV is a constant, LCnet. This is not 

true for the quadratic components of the objective function as discussed below.        

Optimum MV Movement Direction: Quadratic Component of Objective Function 

The EMI was extended to include mapping of MVs to the quadratic component of the 

objective function in order to determine whether their movement is in the most economically 

favourable direction. This task presented an increased level of complexity as the optimal MV 

movement direction as defined by the quadratic coefficients is dependent on the MVs current 

position. 

While the linear objective function is typically used for product value optimization, the 

quadratic objective is used to push the process to a defined ‘ideal operating point’, defined for 

each CV and MV as desired resting values, CV0 and MV0. 



39 
 

If CVi has a quadratic coefficient ci, then the quadratic component of the objective function 

associated with this CV is 

   2
,01, )( iiCViQ CVCVcJ −=      (14) 

If CV1 has a non-null sub-process relationship with MV1 only, with steady-state gain jiK , , 

then the above term can be expressed as a function of MV1 such that 

  2
,0,

2
, )( ijjiiMVjQ CVMVKcJ −=     (15) 

Including the linear component provides the complete term for the objective function 

associated with MV1. The objective coefficients for MVs have not been included in this 

derivation as the SLAC MVs have none.  

 

 2
,0

2
, )()( ijijjiijMVj CVkMVcMVKbaJ −++=     (16) 

Expanding the quadratic and combining terms yields 

2
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Taking the derivative with respect to MVi gives 
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j

MVj CVcKbaMVKc
dMV

dJ
−++=     (18) 

Setting the above term equal to zero and solving for MVi yields the extremum for the objective 

function to MVi curve, which further inspection shows is a minimum for all SLAC MVs This 

point is the value for MVi that minimises the part of the objective function mapped to MVi.  

Therefore 
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=      (19)  

Having obtained optimumiMV ,  for each MV which is mapped to a quadratic term in the objective 

function, scores, I for MV movement can be determined for each MV at each interval 

If MVi < optimumiMV ,  
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or if MVi = optimumiMV ,  
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The same issues associated with assigning a neutral index arise as in the purely linear case. A 

more difficult problem however is the question of how to weight those MVs with quadratic 

components when rolling them into the overall EMI.  

Figure 6 shows the objective function mapped to SLAC MV7 plotted against MV7 values.  

 

Figure 6 Objective function mapped to MV7  
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The impact a change the MV will have on the overall objective function value will vary 

depend upon the MVs current proximity to the minimum, with a change further away having 

considerably more bearing than one close to it. The method for weighting individual MV 

EMIs for an assessment period has therefore been to take the value of the partial derivative of 

the objective function with respect to each MV (as derived in equation 9) at each interval,  

and averaging them over the period.  

 

Thus 

N

CVcKbakMVKc

Weight

N

j
iijiijjjii
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∑
=

−++
= 1
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2

,
2

,
2 )2(,2

    (21)
 

where N is the number of intervals in the assessment period.  

This is essentially the same as using the LCnet to weight the MVs with only linear objective 

terms; however the changing slope of the quadratic term requires averaging of the derivative 

values for each interval.  While weighting the index assigned to each individual move on the 

basis of the corresponding read value would provide even more accuracy, it increases the 

computational burden significantly and the average has been considered adequate at this 

stage. 

2.4.2 Additional Assessment Period 

 

In light of the 6 month gap between periods R and P2, it was desirable to apply the EFPI 

metric to a 7th period between these two. It was believed that this would help validate 

previous results and the general performance trend for all periods. 
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2.4.3 EFPI Revision C: Results 

 

Table 7 EFPI results subsequent to Revision C 

SLAC EFPI -Revision C 

Period CAI EMI CR 

OFA 

(5%) 

OFA 

(3%) 

OFA 

(1%) MI TIN EFPI 

EFPI w/o 

TIN 

15/04/2007 - 14/05/2007 

(G1) 0.989 0.510 0.173 0.964 0.945 0.765 0.953 0.960 0.685 0.714 

1/06/2007 - 30/06/2007 

(G) 0.980 0.504 0.130 0.984 0.937 0.747 0.908 0.981 0.678 0.692 

1/08/2007 - 30/08/2007 

(R1) 0.961 0.520 0.144 0.898 0.815 0.428 0.946 0.959 0.649 0.677 

1/10/2007-30/10/2008 

(R) 0.966 0.515 0.145 0.891 0.754 0.296 0.935 0.997 0.661 0.663 

1/02/2008 - 28/02/2008 

(P2) 0.960 0.512 0.135 0.885 0.777 0.384 0.924 0.991 0.655 0.661 

1/04/2008 - 30/04/2008 

(P1) 0.969 0.509 0.159 0.973 0.946 0.783 0.926 0.790 0.554 0.702 

1/05/2008-30/05/2008 

(P) 0.968 0.504 0.180 0.997 0.983 0.763 0.948 0.957 0.686 0.717 

 

 

Figure 7 EMI results before and after Revision C 
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Figure 7 shows the economic movement index before and after inclusion of movement 

direction. The EMI values for all periods are all slightly larger than 0.5 indicating that overall 

the controller has spent more time pushing MVs in an economic direction. While the values 

are all very close to 0.5 and there is very little differentiation between different scores, the 

value of the economic objective function has changed considerably between periods, as 

shown in Table 6. This appears to indicate that the revised EMI does not accurately reflect 

how effectively the controller is using MVs to optimise the process. 

The suspected reason for this is the small, equally bi-directional MV movement which occurs 

almost continuously. While this movement may not affect the overall optimisation as it 

averages to zero, it occurs so frequently that it will dominate the metric result, bringing it 

close to 0.5 and obscuring MV move values which more truly reflect whether the controller is 

using MVs to optimize.  

Incorporating the magnitude of the move values into the metric was originally thought to be a 

possible solution to this problem. This however poses another problem: the move magnitudes 

associated with optimization are generally smaller than those calculated for regulatory 

control. Thus, if the process is experiencing higher levels of upstream disturbances and the 

controller is forced take regulatory action which results in MV movement away from an 

optimum, a metric incorporating move magnitude will score less despite the controller 

performing as designed and to the best of its capabilities. It results in over-penalising the 

controller on the basis of process performance, as opposed to control performance.  

 

Figure 8 EFPI before and after Revision C  

Figure 8 shows the overall EFPI for the seven assessment periods before and after inclusion 

of the revised EMI. The lower EMI scores have significantly decreased the composite metric 

for each period. Further, the difference between the scores for each period has been reduced, 
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as a score of 0.5 for the EMI for each period effectively removes its effect from the overall 

score.  

 

2.5 EFPI Final Results and Analysis 

 

No further revisions were made to the EFPI subsequent to Revision C. The final overall 

results for each assessment period are displayed again in Table 7. 

Table 8 EFPI final results 

SLAC EFPI -Revision C 

Period CAI EMI CR 

OFA 

(5%) 

OFA 

(3%) 

OFA 

(1%) MI TIN EFPI 

EFPI w/o 

TIN 

15/04/2007 - 14/05/2007 

(G1) 0.989 0.510 0.173 0.964 0.945 0.765 0.953 0.960 0.685 0.714 

1/06/2007 - 30/06/2007 

(G) 0.980 0.504 0.130 0.984 0.937 0.747 0.908 0.981 0.678 0.692 

1/08/2007 - 30/08/2007 

(R1) 0.961 0.520 0.144 0.898 0.815 0.428 0.946 0.959 0.649 0.677 

1/10/2007-30/10/2008 

(R) 0.966 0.515 0.145 0.891 0.754 0.296 0.935 0.997 0.661 0.663 

1/02/2008 - 28/02/2008 

(P3) 0.960 0.512 0.135 0.885 0.777 0.384 0.924 0.991 0.655 0.661 

1/04/2008 - 30/04/2008 

(P1) 0.969 0.509 0.159 0.973 0.946 0.783 0.926 0.790 0.554 0.702 

1/05/2008-30/05/2008 

(P) 0.968 0.504 0.180 0.997 0.983 0.763 0.948 0.957 0.686 0.717 

 

The total EFPI and its component metrics are plotted in Figure 9. It should be noted that for 

those months for which data was not obtained the results have been interpolated. 
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Figure 9 EFPI monthly results 

The general trend for each metric except for the EMI and MI was congruent with what was 

expected for the assessment periods. That is, control performance for the post-commissioning 

period (Periods G1 and G) was expected to be very good, followed by a gradual decline in 

performance due to factors such as the degradation of model quality (Period R1). From 

October 2007 to February 2008 (Periods R and P3) there were no control engineers 

permanently on site and SLAC performance was expected to be at its worst due to a lack of 

general maintenance and attention. By April of 2008 SLAC was being maintained by a 

control engineer permanently on site and control was expected to have been improving. These 

expectations were generally reflected by the results obtained.  

The exceptions to this were the EMI and MI components. The EMI actually suggests a curve 

that moves in the opposite direction to that expected, while the MI after a short initial decline 

for the second period, improves, declines marginally over the subsequent months and 

improves in the final period.  

 

2. 5.1 Reporting Frequency 

 

While the monthly figures shown in Figure 9 may reasonably reflect control improvement or 

degradation after the fact, monthly information on control performance is of little use in 

identifying problems and taking appropriate steps to deal with them before process 

productivity is severely impacted. An important aspect of control performance assessment is 
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determining the optimum reporting frequency which enables diagnosis and correction of 

control problems within an acceptable time-frame.   

Figures 10, 11, 12, 13, 14 and 15 show the daily averages for the CAI, CR, EMI, MI and EFPI 

respectively, for all seven assessment periods. Again, despite the fact that the data is not 

absolutely continuous because it was not obtained for several months, the daily scores for 

each assessment period are shown as a contiguous plot in order to better identify general 

trends. 

 

Figure 10 Daily CAI Values 

 

Figure 11 Daily CR values 
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Figure 12 Daily EMI values 

 

Figure 13 Daily MI values 

 

Figure 14 Daily OFA values 
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Figure 15 Daily EFPI values 

While the general, overall trends for each of these components can still be discerned from 

these daily plots when viewed for all the assessment periods together, they offer little value 

with regard to identifying trends in performance improvement or degradation on a short-term, 

actionable level. Due to the ‘noise’ associated with each component, a significant decrease in 

an EFPI component on one day does not indicate a negative trend in controller performance.  

Daily reporting and interpretation of these indices may be of value with regard to identifying 

short term, temporary but frequently occurring control problems, such as operators setting 

MV limits too tightly, resulting in downward spikes in the CAI on certain days.  This could be 

an occurrence associated with one operator in particular and by determining the days on 

which this occurs, the operator may be identified and advised of the problem.  

Alternatively weekly reporting may be preferable. Figures 16, 17, 18, 19 and 20 show the 

weekly averages for the CAI, CR, EMI, MI and EFPI respectively, for all seven assessment 

periods: 
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Figure 16 Weekly CAI values 

 

Figure 17 Weekly CR values 
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Figure 18 Weekly EMI values 

 

Figure 19 Weekly MI values 
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Figure 20 Weekly OFA values 

 

Figure 21 Weekly EFPI values 

 

The noise associated with each metric is significantly reduced from the daily averages. The 

EFPI and its components each evidence spikes or troughs that do not fit the trend, but 

generally a few weeks worth of EFPI information could indicate the overall trajectory of each 

metric.  

The most notable exception to this is the MI component for which it is difficult to verify any 

sort of trend without more than several months’ data. This metric is susceptible to factors such 

as an increase in disturbance frequency and size and inappropriately set operator limits. This 

could possibly explain the high, virtually stochastic variation in the metric over the 

assessment periods, although the same could be said of the other components. 
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2.5.2 EFPI Trends and Relationships 

 

  CAI CR EMI MI OFA EFPI 

CAI 1      

CR 0.370818 1     

EMI -0.28147 -0.19595 1    

MI 0.062157 0.431007 0.014164 1   

OFA 0.588947 0.444703 -0.36281 0.096072 1  

EFPI 0.588976 0.696213 -0.23495 0.239923 0.923191 1 

Table 9 Correlation coefficients between EFPI components 

The correlation coefficients between individual EFPI components may be used, to indicate 

whether the trends of each metric are congruent with each other or not.    

The correlation matrix for the weekly averages of the EFPI and its component metrics (Table 

8) confirms the general conclusions based on a visual inspection of the results. That is, the 

CAI, CR, OFA and overall EFPI show the general trajectory expected for the year of 

assessment periods. The MI does not have a significant correlation to any of the other metric 

components except a relatively weak positive relationship with CR, while the EMI exhibits a 

trajectory which is the inverse of that expected for the overall performance during the 

assessment periods. 

The MI’s apparently positive relationship with CR is to be expected if a larger amount of MV 

movement, which corresponds to a lower MI, results in MVs hitting limits more frequently. If 

this is the case, and MVs are becoming constrained more of the time then a lower CR will 

result provided that this effect is not outweighed by an increase in the number of CVs at 

limits.  

Of interest is the apparently inverse relationship between the EMI, which measures the 

amount of time spent pushing MVs towards an economic optimum and the OFA which 

measures the amount of time the objective function spends within, in this case, 3% of the 

steady state objective function. While at first this seems counterintuitive, it can be explained 

by interpreting a high OFA score as the situation where a significant number of MVs have 

been pushed close to their optimisation limits and therefore cannot move further in that 

direction which will result in a decrease in the EMI. 

This suggests that it may be important to examine the results for these two metrics together. If 

the OFA score is low but the EMI is high, it may be that the controller is in the process of 

optimising and the OFA can be expected to rise. However, if both the EMI and OFA are low, 
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the controller may not be free to optimise and other factors such as tight MV limits or process 

problems or disturbances need to be investigated.       

The above explanation does not account for the apparently inverse relationship between the 

EMI and CAI. The controller will only optimise when it has non-negative degrees of freedom, 

defined as: 

DOF = No. of MVs not at a constraint – No. CVs at a setpoint or within limits 

Thus with a higher level of constraint violation, that is a lower CAI, we should expect the 

controller to be optimizing less of the time, resulting in a lower EMI. 

However, this negative CAI-EMI relationship could possibly be interpreted as occurring as a 

result of degraded model quality. If the controller has DOF with which to optimize the 

process, but its ability to predict the resultant CV output is compromised by poor model 

quality, then it may push MVs to values which the model prediction indicates will not cause 

CV violations, but in fact will. 

2.5.3 Significance and Sensitivity of EFPI and Individual Components 

 

It is clear from plotting the EFPI components over the assessment periods and the correlation 

coefficients between individual components, that the component whose trend bears the 

strongest resemblance to the EFPI is the OFA index. This is because it exhibits the largest 

variations between assessment periods and therefore significantly influences the trajectory of 

the composite metric. This is in contrast to the EMI which exhibits the least variation and thus 

influences the shape of the EFPI plot very little, although it does offset it somewhat.  

This evidences one of the weaknesses of the EFPI metric and also suggests problems with 

comparability between the individual component results and those that may be obtained for 

other controllers. That is, the significance of the effect of each component on the overall 

metric and the different levels of sensitivity each component has with regard to changes in 

controller performance. 

Significance 

The CR index, for instance, was consistently low for all seven assessment periods, ranging 

between around 0.05 and 0.25. This may not necessarily mean that the controller is 

performing consistently poorly; it may be more accurate to assume that these CR scores are a 

representative sample which includes the best and worst of what the controller is capable of in 

this regard. For example a large number of CVs means that the likelihood of a significant 

number of them being at a soft constraint most of the time is small.  A score or 0.25 may 
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therefore be the best that could reasonably expected for the SLAC CR index, while a score of 

0.8 might be expected when applied to a different controller. 

Similarly, the EMI evinces little variation around its mean as a result of the previously 

discussed small, bidirectional MV movement occurring frequently. This suggests that, for this 

controller, the most significant figure of the EMI score may be the second or third decimal 

place. Conversely, the OFA index (with a threshold of 3%) exhibits variations as large as 0.3. 

Combining these components into a composite metric as an unweighted average can therefore 

result in obscuring different aspects of control performance by hiding variations in certain 

metrics that may be significant. Or the overall metric may appear to indicate control 

performance which is better or worse than it actually is due to the inclusion of a component 

metric that, due to the inherent characteristics of the controller and process, is consistently 

high or low or exhibits large or small variation. 

An alternative approach to rolling each component metric into a composite index is to 

normalise each individual index value on the basis of its expected minimum and maximum 

values prior to combining them. This would scale each index on the basis of the controller’s 

expected capabilities.  Values and variations in each metric would therefore be comparable to 

each other and the composite measure would be more equally representative of the five 

aspects of control performance.   

This approach however, would require a priori knowledge of the expected maximum and 

minimum values of each index which would not be available before applying the metrics to a 

sufficiently long period of historical data. How long exactly would need to be determined and 

would likely be different for separate controllers. 

Sensitivity 

The issue of metric variability is closely related to the sensitivity of the component metrics, 

that is, how well a change in the metric reflects changes in the aspect of controller 

performance it is designed to measure. This sensitivity varies between individual metrics and 

very likely between the same metrics for different controllers. 

Figure 22 shows a hypothetical example where CAI indicates all CVs are initially within 

limits, then over time one CV progressively violates a limit for 1% of the assessment period, 

then 2% etc. until it is outside its constraints continuously. Similarly plotted is the EMI 

function with all 27 MVs initially moving economically 100% of the time, followed by one 

MV moving in the wrong direction 1% of the time, then 2% and so on, until it is moving in 

the wrong direction for an entire period while all other MVs are still moving towards their 

optimum   
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Figure 22 Sensitivity comparison between CAI and EMI 

 

If the system under control is highly non-square in favour of the CVs, the metrics derived 

from CV parameters are less sensitive to changes in what they are measuring than those 

concerning MVs. This is fairly unavoidable without some form of scaling of the indices; 

however it becomes problematic when the metrics are combined, unweighted and unscaled in 

a composite metric. 

The issue of sensitivity also raises concerns regarding the comparison of metrics between 

controllers. The EFPI metrics for a large controller such as SLAC will be less sensitive to 

changes than a smaller one. This may or may not be appropriate to the importance associated 

with changes in each controller’s performance, but it must be taken into account when 

comparing their respective scores. 
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3  Historical Benchmarking 

 

One of the key difficulties in developing CPA indices is ensuring that they adequately reflect 

a controller’s true performance capabilities. For instance, an index’s theoretically possible 

values range from zero to one, but in reality the controller’s behaviour, when gauged by this 

metric, will only register from 0.4 to 0.6. For the EFPI indices this challenge has manifested 

as determining the basis on which the metrics for individual variables at each interval should 

be scaled. 

Incorporating the magnitude of limit violation at each interval into the CAI posed difficulties 

because it was hard to define what the maximum ‘acceptable’ magnitude should be in any 

statistical, consistent way. The theoretical at maximum violation was often unrealistic and 

what may be considered a completely unacceptable violation was often well within this 

theoretical upper bound. Similarly, although the maximum MV move limits were used to 

normalize the move values each interval for the MI, these limits are often set very high and 

are only hit in the event of emergency. 

The vast majority of the academic work in CPA has been concerned with defining 

benchmarks for the upper bounds of some aspect of controller performance. The current 

performance can then be gauged against this benchmark, indicating whether the controller is 

performing to the best of its capabilities. 

A number of such CPA methods involve a mathematical derivation of the process output if it 

was under some form of ‘ideal’ control, thereby establishing the theoretical best control 

performance that could be achieved for the process.  For the various reasons discussed in 1.2, 

these methods have mostly been deemed unsuitable for application to RMPCT applications. 

Rather than establishing a theoretical upper performance bound, it is possible to benchmark 

some period of operation that is considered to be very good on the basis of some criteria. 

Subsequent results can then be compared to this benchmark period thereby gauging the 

control performance on the basis of the best the controller has previously been capable of.  

This method is extremely attractive given its simplicity to implement and interpret. It enables 

much better comparability between the performances of different controllers, as they are 

being gauged on a scale of what they are historically capable of. It was applied to the two 

aspects of control performance that presented the most difficulty for the EFPI: CV limit 

adherence and MV move minimisation. The post commissioning period from 1/06/2007-
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30/06/2007 was identified as the benchmark period for SLAC as control performance during 

this time was identified by engineers to be highly satisfactory.  
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3.1 Constraint Adherence Benchmark  

 

Patwardhan et al. (1998) propose calculating the following quantity which is based on the 

least-squares control calculation employed in conventional model predictive control. This 

value is then compared for the benchmark and assessment periods.  

     (22) 

where E(.) denotes the expectation operator, w, y and u are the measured values of the 

setpoints, CVs and MVs during the period of good performance. The matrices Q and S are 

matrices that can be used to weight the output error and MV moves respectively.  

This notion of error as an offset from a setpoint does not often apply to RMPCT and certainly 

not to SLAC which employs range control exclusively on all variables. The analogous 

parameter however is the magnitude of violation of CV hard limits. Thus we can define a 

quantity 

         (23) 

where R is the vector of CV limit violation magnitudes at a sampling instant and Q is a 

diagonal matrix whose non-zero entries are the engineering unit (EU) give-ups for each CV. 

EU give-ups are set based on the relative importance of keeping a CV within constraints. V 

then provides a measure of the scaled, average CV limit violation over a period. 

Calculation of V for both the benchmark and assessment periods and taking the ratio of the 

two yields and index which indicates whether there has been any significant improvement or 

degradation of the controller’s performance with regard to keeping CVs within constraints.  

Benchmark

Current
V V

V
I =          (24) 

A value less than 1 indicates a higher level of constraint violation while a value greater than 1 

indicates that there has in fact been an improvement in the control performance. This 

approach is therefore very easy to interpret provided that the benchmark period has been 

selected appropriately. 

This index was applied to the five assessment periods following the benchmark period of June 

2007. The results are shown in Table 9 and plotted in Figure 23. 
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Table 10 Iv values for 6 assessment periods 

Period V IV 

Jun - 2007 (Benchmark) 136176 1.000 

Aug - 2007 187755 0.725 

Oct - 2007 325717 0.418 

Feb - 2008 246163 0.553 

Apr - 2008 183470 0.742 

May - 2008 92031 1.480 

 

Figure 23 Iv values for 6 assessment periods 

 

The IV  trend concurs with the control performance expected for these six periods. 

Performance falls from the benchmark and remains low until the second last period which 

saw some improvement. By the final period performance has improved significantly and is in 

fact better than the benchmark period.  

This final period may now be set as the new benchmark. By resetting the benchmark with 

every improved score, the metric’s ability to gauge performance on the basis of what the 

controller is capable of is improved over time.  
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3.2 MV Movement Benchmark  

 

A historical benchmarking method was also applied to SLAC’s MV movement over the 

assessment periods from June 2007 to May 2008. The second term of equation 17 was used to 

calculate a quantity representing the average, scaled MV movement for a given assessment 

period: 

 

where , as in the MPC context, is the vector of control moves for each MV at each 

interval. S is a diagonal matrix containing the MV movement weights for each MV. These 

weights are used to discourage the use of particular MVs in resolving CV error. There is a 

slight distinction between these weights and the move suppression factors employed in 

conventional MPC. Movement weights are only used to set priorities with regard to which 

MV to use when more than one can do the job. If there are redundancies in the MVs, the 

movement weights have no affect on movement or speed of response. 

As with the MI component of EFPI, it was desired to exclude individual MVs from the metric 

for an interval if they were not being used to control the process. This involved removing MV 

move values that were not being used from vector  at each interval and adjusting the 

weighting matrix S accordingly. 

Once again, by taking the ratio of M for the benchmark and subsequent assessment periods, a 

value is obtained which indicates whether the controller is moving the process around more or 

less than for the benchmark period. Results are shown in Table 10 and plotted in Figure 24.  

Table 11 IM values for 6 assessment periods 

Period M IM 

Jun-07 

(Benchmark) 228.645 1.000 

Aug-07 86.669 2.638 

Oct-07 148.325 1.542 

Feb-08 160.199 1.427 

Apr-08 66.049 3.462 

May-08 74.434 3.072 



61 
 

 

Figure 24 IM values for 6 assessment periods 

IM does not reflect the overall control performance expected for these periods, nor do these 

values agree with those obtained for the MI, although the overall trend is one of improvement 

for the year. However, it is assumed to be a better reflection of the actual increase or decrease 

in MV movement over time than the MI component of EFPI. 

It appears from these results that the benchmark for M should be reset to the value obtained 

for Aug 2007. Observing the value of IV for this period shows that the controller is not 

keeping CVs within constraints well at this time. This may indicate that the controller may not 

be able to move this little without allowing significant limit violation, which raises the 

question of whether selecting different benchmark periods for different CPA components is 

appropriate, given that at some level they may be mutually exclusive.  

3.3 Economic Objective Function Benchmark  

 

Historical benchmarking was also applied to the objective function values obtained by the 

controller in order to gauge the economic benefits, as defined by minimisation of the 

economic objective function, the controller is generating. The quantity to be benchmarked is 

defined as  

))(( CAbsEJ =  (25) 

where C is the current objective function value at each interval of the assessment or 

benchmark period. The controller attempts to minimise this value and for SLAC it is 

invariably a minimum, hence taking the absolute value of C. The economic index is then 

defined as  
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Current

Benchmark
ObjFcn J

J
I =  (26) 

IObjFcn for the benchmark and 5 assessment periods are shown in Table 11 and Figure 25. 

Period Abs(C) I ObjFcn 

Jun-07 

(Benchmark) 8060 1 

Aug-07 7638 0.948 

Oct-07 8081 1.003 

Feb-08 6016 0.746 

Apr-08 13910 1.726 

May-08 7959 0.987 

Table 12 IObjFcn values for 6 assessment periods 

 

Figure 25 IObjFcn values for 6 assessment periods 

As with IM these results do not reflect what was expected for these periods. The objective 

function was fairly constant until early 2007 at which point a significant decrease in the 

controllers ability to optimise occurred, whether due to an increase in disturbances or operator 

set limits being placed to tightly. Between February and April 2008 the controller was able to 

minimise the objective function to an order of magnitude less than the other periods, before it 

returned to a value on par with the benchmark. Although this period was expected to be 

exhibiting improvement, this spike is yet to be satisfactorily explained. 
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3.4 Composite Metric Based on Historical Benchmarking 

 

It is possible to combine the above three metrics into a composite measure of control 

performance. This presents the same fundamental problem as that identified for the EFPI 

rolled up index, which is that a single metric cannot adequately provide a complete picture of 

the various different aspects of control performance.  

An additional difficulty is selecting the criteria for defining the benchmark period, given that 

control performance may be regarded as good in one respect and bad in another for a given 

period. If one benchmark period is chosen for all three aspects a component that may have 

been performing particularly badly for that period will exhibit inordinately large scores for 

periods where it was performing well thereby obscuring other aspects. 

An overall metric, I, was defined by taking the unweighted average of all three components. 

The results are shown in Table 12 and Figure 26 and they show that the components have 

effectively balanced each other out, conveying much less information about overall 

performance than the three discrete metrics.   

Table 13 I values for 6 assessment periods 

Period I 

Jun-07 1 

Aug-07 1.0246 

Oct-07 1.236 

Feb-08 1.085 

Apr-08 1.287 

May-08 1.024 
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Figure 26 I values for 6 assessment periods 

 

3.5 Prediction Error Diagnostics 

 

While the focus of this project is on the assessment of control performance as opposed to 

diagnosis of performance issues, benchmarking of performance indicators suggests a possible 

method to diagnose degradation in control. 

The improvement or degradation of an aspect of control performance can be measured, not 

only for the overall controller, but also for the individual variables. For instance, the 

difference between the average constraint violation of each CV between the benchmark and 

subsequent assessment periods can be measured. This was done for the historized assessment 

periods and the results for each period normalized, such that those CVs exhibiting the largest 

inflation of violation from the assessment period scored ‘1’, while those who exhibited the 

least, or actually showed improvement scored a ‘0’. The results are shown in Table 13. The 

results are colour coded where red indicates the worst degradation, orange moderate and 

green least or improvement in staying within restraints. 

It is a simple matter then to identify which of these CVs exhibits the worst degradation from 

the benchmark. In order to determine whether degradation of model quality has played a part 

in increased restraint violation, the average prediction error was calculated for badly 

performing CVs. This was done by taking the change in the unbiased prediction for these CVs 

and comparing it to the change in there measured values.  
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Average Prediction Error = E(Abs(∆ Unbiased Prediction – ∆CV Read Value))  (27) 

 

Differences in predictions are used because the unbiased prediction does not take into account 

unmeasured disturbances (as opposed to the biased prediction) so there is often a large offset 

between this and the actual value, although if model quality is good, their respective 

trajectories should be very similar.  

The normalized increase in constraint violations from the benchmark to period P2 suggests 

CV77 is the worst comparative performer for the period. Comparison of the prediction errors 

for the CV between the benchmark and assessment period reveal a 70% increase in prediction 

error, suggesting a significant degradation in model quality may be a possible root cause for 

the increase in restraint violation.  Similarly, the normalized differences suggest CV54 as the 

most significant worst performer for period P1, and a comparison of the average prediction 

errors again shows a decrease in prediction accuracy from the benchmark. 

An increase in the average prediction error does not rule out other root causes of poor 

performance. However, a small or zero increase in prediction error can rule out model quality 

as a contributing factor.    
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Table 14 Normalized inflations/decreases in CV limit violation

 CV1 CV2 CV3 CV4 CV6 CV7 CV8 CV9 CV10 CV11 CV12 CV13 CV14 

Aug-07 0.573732 0.570925 0.573798 0.574738 0.57386 0.807434 0.574033 0.618729 0.572912 0.573837 0.574033 0.574033 0.574033 

Oct-07 0.262158 0.265933 0.265264 0.261709 0.263344 0.34396 0.263455 0.330794 0.262582 0.263302 0.268358 0.263455 0.263455 

Feb-08 0.226295 0.228375 0.228519 0.23098 0.228025 0.218074 0.227726 0.220518 0.259369 0.227914 0.227726 0.227726 0.227726 

Apr-08 0.362062 0.359967 0.363039 0.362871 0.36256 0.373566 0.362644 0.356397 0.361956 0.365373 0.368646 0.362644 0.362644 

May-08 0.577391 0.579334 0.581715 0.578839 0.578559 0.567057 0.578738 0.651629 0.577615 0.578542 0.578738 0.578738 0.578738 

 CV15 CV16 CV17 CV18 CV19 CV21 CV22 CV23 CV24 CV25 CV26 CV27 CV28 

Aug-07 0.663056 0.574033 0.710312 0.574033 0.546472 0.573992 0.777395 0.573704 0.570935 0.574064 0.573687 0.574033 0.574033 

Oct-07 0.550532 0.263455 0.551077 0.263455 0.238693 0.263419 0.382683 0.263198 1 0.264529 0.263185 0.263747 0.263455 

Feb-08 0.217431 0.227726 0.234501 0.227726 0.208599 0.227693 0.224734 0.227486 0.225871 0.227726 0.227474 0.227726 0.227726 

Apr-08 0.35272 0.362644 0.363246 0.362644 0.344026 0.362616 0.52252 0.362442 0.363127 0.362644 0.362431 0.364008 0.362644 

May-08 0.56428 0.578738 0.574086 0.578738 0.551049 0.578693 0.575597 0.578409 0.705926 0.578738 0.578392 0.578755 0.578738 

 CV29 CV30 CV31 CV32 CV33 CV34 CV36 CV37 CV38 CV39 CV40 CV41 CV42 

Aug-07 0.574033 0.868201 0.574033 1 0.574033 0.544568 0.574167 0.515082 0.574033 0.473182 0.574033 0.557521 0.574033 

Oct-07 0.263455 0.561546 0.263455 0.675515 0.263455 0.270522 0.263437 0.170727 0.263455 0.224574 0.263455 0.250605 0.264018 

Feb-08 0.227726 0.225128 0.227726 0.235256 0.227726 0.202715 0.22779 0.136801 0.227726 0.177952 0.227726 0.215719 0.227768 

Apr-08 0.362644 0.360452 0.362644 0.872146 0.362644 0.341551 0.36263 0.305039 0.362644 0.528883 0.362644 0.358466 0.366265 

May-08 0.578738 0.575159 0.578738 0.577744 0.578738 0.544273 0.57874 0.477854 0.578738 0.497591 0.578738 0.574294 0.578738 

 CV43 CV44 CV45 CV46 CV47 CV48 CV49 CV51 CV52 CV53 CV54 CV55 CV56 

Aug-07 0.574033 0.574033 0.572173 0.574033 0.224766 0.574033 0.572772 0.574033 0.417119 0.574033 0.51935 0.570728 0.565536 

Oct-07 0.263455 0.263455 0.262007 0.263455 0 0.263455 0.265694 0.263455 0.253278 0.263455 0.366457 0.260883 0.256842 

Feb-08 0.227726 0.227726 0.242971 0.227726 0 0.227726 0.254656 0.227726 0.291318 0.227726 0.428819 0.274299 0.26866 

Apr-08 0.362644 0.362644 0.467209 0.362644 0.240516 0.362644 0.356749 0.362784 0.264061 0.362644 1 0.360616 0.35743 

May-08 0.578738 0.578738 0.877399 0.578738 0.26095 0.578738 0.570295 0.578738 0.441058 0.578738 0.553044 0.575427 0.570224 

 CV57 CV58 CV59 CV60 CV61 CV62 CV63 CV64 CV66 CV67 CV68 CV69 CV70 

Aug-07 0.574033 0.574033 0.574033 0.672316 0.574033 0 0.574033 0.575089 0.574231 0.668925 0.574033 0.576946 0.690974 

Oct-07 0.278122 0.263455 0.263455 0.603964 0.263455 0.203621 0.263455 0.264374 0.263455 0.432069 0.263455 0.294334 0.288845 

Feb-08 0.228003 0.227726 0.227726 0.784945 0.227726 0.311295 0.227726 0.227191 0.227726 0.479003 0.227726 0.226795 0.310319 

Apr-08 0.36349 0.362644 0.362644 0.405763 0.362644 0 0.362644 0.363391 0.362644 0.367848 0.362644 0.377341 0.362372 

May-08 0.578738 0.578738 0.578738 0.625507 0.578738 0 0.578738 0.578639 0.578738 0.667594 0.578738 0.837918 0.578294 

 CV71 CV72 CV73 CV74 CV75 CV76 CV77 CV78 CV87     

Aug-07 0.662987 0.576045 0.574033 0.574033 0.865045 0.574033 0.940548 0.574033 0.573589     

Oct-07 0.282544 0.268995 0.263455 0.263455 0.778028 0.263455 0.871141 0.263455 0.279906     

Feb-08 0.329311 0.231401 0.227726 0.227726 0.935524 0.227726 1 0.227726 0.231089     

Apr-08 0.366998 0.364 0.362644 0.362644 0.366676 0.362644 0.409441 0.362644 0.403054     

May-08 0.574926 0.578738 0.578738 0.578738 0.949553 0.578738 1 0.578738 0.581775     
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4 Conclusions and Future Needs 

 

Several potential methods for the Control Performance Assessment of Honeywell’s Profit 

Controller, as used in Alcoa’s refinery operations, have been researched or developed and 

evaluated in this project.  

Methods for CPA proposed in several academic studies have been researched and 

qualitatively evaluated for the suitability of application to RMPCT. The majority of the 

research in the field has focused on CPA for SISO systems or unconstrained multivariate 

control systems and thus the proposed benchmarking methods do not take into account the 

non-linearities associated with multivariable restrained systems. Further, most of these 

methods focus on calculating the error variance of the system under some form of ideal 

control which does not often apply to Profit Controller which typically uses range control as 

opposed to setpoints. Also, these solutions are only obtainable when the process disturbances 

are known and do not account for unmeasured disturbances. Model-based approaches do 

exist for benchmarking the performance of MPC which explicitly handle restraints. However 

these rely on being able to obtain the value of the control calculation objective function at 

every sampling interval and this was not possible with Profit Controller.     

A composite CPA metric initially comprising six separate performance indicators was 

proposed, developed and evaluated by application to seven periods of historical data for 

which a priori knowledge of the controller’s performance was available. The aspects of 

performance each of these were designed to measure were as follows: 

• CAI – How well the controller keeps CVs within defined limits; 

• MI – How much the controller moves MVs around; 

• OFA – How much value the controller can generate and model quality; 

• EMI – The extent to which the controller uses MVs to economically optimize the 

process; 

• CR – How the controller adds value to the process by pushing CVs to constraints and 

retaining availability of MVs; and 

• TIN – The amount of time the controller is on. 
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The last of these, TIN was later excluded from the overall metric as it was deemed more a 

diagnostic rather than performance assessment tool.   

The major revisions made to these metrics in the course of their development are outlined. 

The first of these revisions highlighted that a CPA tool must be highly flexible in its 

configurability. The CAI for instance, could not be applied indiscriminately to every SLAC 

CV, as a number of them were spares, were indicative only, or deliberately violated limits. It 

was necessary to include this knowledge of the controller into the metric in order to obtain a 

result that was reflective of performance. 

The majority of the EFPI component metrics were based on the frequency of certain events 

over the control period. This enabled the simple calculation of normalized metrics which it is 

fairly reasonable to assume could be applied to different controllers. The exception to this 

was the MI and subsequent to Revision B, the CAI. The MI normalized the magnitude of 

each MV’s move value on the basis of its maximum allowable value. These maximum values 

are in practice set very large for emergency contingencies and thus do not provide a good 

basis for scaling the controller’s MV moves. This is not a problem if the controller’s 

performance is only being evaluated with respect to its previous performance, but it 

compromises the ability to compare the metric across different controllers. 

The CAI presented the same problem. A satisfactory solution for incorporating the magnitude 

of CV limit violation into the metric and normalizing or scaling it on a statistical basis or on 

the basis of the controller’s parameters was not found.  

The frequency most appropriate for reporting of the EFPI and its components was 

investigated. Monthly reports can be used to identify long-term historical trends but are little 

use in predicting performance trends into the future. The daily averages for the metrics, 

because of their high variability or ‘noise’, offer little value with regard to identifying trends 

in performance improvement or degradation on a short-term, actionable level. The most 

appropriate reporting frequency, for the EFPI indicators is approximately weekly, as this 

enables trends to be identified which may be able to predict the future trajectory of control 

action allowing diagnosis and corrective action to be taken. 

Results for the EFPI reveal the principle problem with a composite metric of this type. 

Combining the individual components into a single number yields an index that provides very 

little real information about the controller performance. Components that are consistently low 
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or high can skew the overall metric. The low scores obtained for CR, for example, are less 

likely to indicate consistently poor performance but rather that these values are representative 

of what the controller is realistically capable of.  

Alternatively the changes in the different metrics may be hidden by others. Metrics with low 

sensitivity, or smaller ranges of scores should be scaled such that changes in these scores are 

better reflected in the overall metric. For example a change of 0.01 in the EMI is likely as 

significant as a change of 0.1 in the OFA index.  Similarly those metrics that are consistently 

low or high should also be scaled so as to better convey whether the controller is performing 

to the best of its abilities or not.  

The notion of whether a metric incorporates realistic expectations of the actual capabilities of 

the controller led to development and implementation of a historical benchmarking approach 

whereby aspects of control performance were gauged relative to what the controller had 

previously achieved. This approach was applied to three aspects of control performance: 

keeping CVs within restraints, minimising MV movement, and minimising the economic 

objective function. 

The results are very easy to interpret, as they simply indicate how well the controller has 

performed relative to a period of operation that was satisfactory. It is recommended that this 

method be used in the EFPI to replace the CAI and MI as it removes the need to find an 

appropriate basis on which to scale the CV limit violations and MV move magnitudes. If, 

however, the frequency of limit violation is also desired, the CAI in its original form should 

be retained. 

The results obtained for the EFPI show a trajectory that generally reflects what was expected 

in terms of control performance for the assessment periods. However, the rolled up metric 

conveys very little information without also observing its component metrics.  

More work is required to ensure that these individual metrics produce results that are 

comparable between different controllers. The measures should ideally be applied to several 

different controllers and scaling methods for the metrics further investigated.  

The relationships between the different metrics developed need to be further studied to 

improve their utility as a diagnostic tool. There is not a currently a good understanding of 

why some scores may be low and others high in differing combinations. It is believed that a 

detailed study of these relationships, combined with more information about what was 
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occurring in the process and with the controller during assessment will enable a better 

interpretation of the information the metrics convey. In particular, this further work should 

focus on investigation of the metrics in combination with process disturbances, changes in 

operator set limits and prediction error as an indicator of model quality. 

An inordinate amount of time was spent on applying revisions in the metrics to the historized 

data. Microsoft Excel was used for this as it was also used to recover the historized data for 

assessment. If further research is to be undertaken in this area it would be advisable to write a 

program with Matlab or some other mathematical program which can be coded to apply 

changes quickly to performance metrics. 

Finally, it is necessary to define further criteria for the evaluation of different metrics. At 

present, the main criterion is whether metric results concur with what was expected from the 

controller during assessment periods. It would be particularly desirable to investigate the 

relationship between the performance indices and other financial indicators of process 

performance. 
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