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Abstract

This report details development and evaluationadéptial performance measures for
Advanced Process Control (APC) applications impletee across Alcoa sites. The final
measure would ideally aid in the diagnosis of pamrtrol and enable comparison between
the performances of separate controllers.

In particular, the work has focused on the develepnof a suitable control performance
index for Honeywell’'s Robust Model Predictive Cattfechnology (RMPCT — Profit
Controller) as implemented on an evaporator prolesged at Alcoa’s Kwinana alumina
refinery.

Research in the field of controller performanceeasment, particularly the performance of
multivariate Model-based Predictive Controllersswavestigated. Existing performance
indices proposed in the literature were assesgetiéa suitability to Alcoa’s applications.
For the greater part, these methods are not stattae specific characteristics and
functionality of Honeywell RMPCT.

A CPA metric entitled Event Frequency Performamaiek (EFPI) is proposed in this report.
It is a composite metric comprising five componeatrics each of which are designed to
gauge different aspects of RMPCT performance tdiges of development are described and
it is applied to seven periods of RMPCT historitala. The metric results are analysed and
compared to general expectations about controligopnance for these assessment periods
in order to determine the utility of the proposggm@ach.

A historical benchmarking method for performancgeasment is also proposed. This
involves the identification of a period of conteglloperation that is known to be good and
then comparing subsequent assessment periods toethchmark. This approach is applied to
three different aspects of RMPCT performance: @Mtlviolation, MV movement and
economic optimisation. Performance indices usimgniethod are obtained for six periods of
RMPCT historical data.
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1 Introduction

1.1 Control Performance Assessment

Controller performance assessment (CPA) aims tluateathe performance of controllers
from routine operating data. It is necessary tasneffectiveness of process control and
consequently safe and profitable plant operation.

The initial design of control systems includes mangertainties caused by approximations in
process models, estimations of disturbance dynaamdanagnitudes, and assumptions about
operating conditions. These uncertainties can tegudiant performance that may differ
significantly from the design specifications. Evkoontrollers perform well initially, many

factors can cause their abrupt or gradual perfocmaleterioration over time.

It is often difficult to effectively monitor the prmance and diagnose problems from raw
data trends as they tend to show complicated regpoatterns resulting from the presence of
disturbances, noise or non-linearities. CPA isdafae primarily concerned with the
development of statistics that are able to measitexia that have been identified as
reflecting aspects of control performance. Whilke diegnosis and correction of control issues
indicated by these statistics may be consideradtagral part of CPA, in this report CPA

refers only to the application of the indices tagga control performance.

Effective CPA is also important with regard to agprate allocation of resources. A plant
may have a number of different control assets. laimg them based on their respective
conditions requires an effective way to determhrertperformance and prioritise action. In
order to enable this comparison between control@PA metrics’ upper and lower bounds
should indicate the best and worst performancengr@iter is capable of.

Alcoa does not currently have any standard CPAquoes in place, other than measuring
Manipulated Variable (MV) utilization, which inditzs the percentage of critical Manipulated
Variables (MVs) the controller is using over anesssnent period. It is predicted that, without
the adoption of effective CPA methods, the perforcesof Alcoa’s Advanced Process
Control (APC) applications will be significantlydeced. This is especially the case given the

predicted increase in the number of their APC asset






1.2 State of CPA Research

A number of algorithms for estimating a CPA indeg proposed in the literature. The
conventional method involves comparing the existiogtroller to a theoretical benchmark

such as the Minimum Variance Controller (MVC).

Harris (1989) laid the theoretical groundwork fd?A of single loop controllers from routine
operating data. He proposed a comparison of theubutriance term with the minimum
achievable variance. Desboroug and Harris (1998lydhis idea to assessing
feedback/feedforward control schemes. Harris €tl8P06) and Huang et al. (1997b) applied
the generalized the minimum variance benchmarkdanultivariate case based on the

multivariate interpretation of the delay term, knmoas the interactor matrix.

Kozub and Garcia (1993) proposed more practical desgned benchmarks based on settling
times, and rise times. The settling time or rigeetifor a process can often be chosen based on
process knowledge. A correlation analysis of theraging data is used to determine whether

the desired closed loop characteristics were aeliev

Tyler and Morari (1995) proposed a CPA method baselikelihood methods and
hypothesis testing. Performance assessment of mamom phase and open loop unstable
systems was also addressed by Tyler and Morarb(18® and Edgar (2000) addressed the

issue of cascade control system performance assassm

Huang and Shah (1999) proposed the Linear Quadatissian (LQG) control as the
benchmark instead of MVC. This technique also takpst variance into account. The input
variance is often of major concern as it is fredlyes utility such as steam or power with
significant cost. A model of the process and ttstudbances is required to do the LQG
benchmarking. Kammer et al. (1996) used non-pargmabdelling in the frequency domain
to ascertain the optimality of a LQG controllersed on the comparison of the optimal and

the achieved cost functions.

A constrained Model Predictive Controller (MPC)¢cklas RMPCT, is essentially a non-
linear controller, especially when operating atstomints. Conventional MVC benchmarking
techniques which rely on linear time-series analgse therefore infeasible. Patwhardan et al.
(1998) attempted to address this issue by usingitterical (control) objective function as a
practical performance benchmark. This techniquebleas adapted to assessment of RMPCT

in this report.



Ko and Edgar (2001a) propose a benchmark basdukedintte horizon MVC derived from
closed loop data and knowledge of the order ofldlay matrix. This was extended to the
constrained MPC case in Ko and Edgar (2001b). Whiteidea has merit, it relies on
accurate data for all of the process’s disturbantesder for the benchmark to be realistic.
The number of unmeasured disturbances in a tyRMEPCT application prohibits this.
Accurate process and disturbance models are ajsared. Any model uncertainty will also

result in inaccurate estimation of the benchmark.

Patwhardan et al. (2002) propose a performancaaietsed on comparison of the designed
and achieved MPC objective functions. This metlak@$ into account the structure of the
controller along with its design specificationssas the weighting factors associated with
different variables. While this approach is attrastits use for RMPCT assessment is
precluded by the fact that the RMPCT control olyectunction is not obtainable as
historized data.

A data-based covariance benchmark is proposed b ahd Qin (2001). The scheme uses
generalized eigenvalue analysis to extract thectiimes with degraded or improved control
performance against a benchmark period. It wasddhbat application of this method to large
multivariable controllers often results in indexues so large or small (from $@o 1¢) that
the exact level of performance improvement of degtian is difficult to interpret.

1.3 Honeywell Robust Model Predictive Control Technology (RMPCT -
Profit Controller)

Honeywell's Robust Model Predictive Control Tectogyt (RMPCT), or Profit Controller,
program controls and optimizes the operation oE@sses that have significant interaction

between variables.

The controller employs a model of the process dyosim order to explicitly predict future
process behaviour and determines the control mosesssary to bring all process variables
to setpoints or within constraints. If there arg dagrees of freedom remaining to the
controller it adjusts the process to optimize opens, for example by maximizing product

quality.

Profit Controller, as with Multivariable Model-Prietive Controllers (MPCs) generally,
considers an entire process as a single entitgrétian as a collection of isolated control

loops. As such, it is more appropriate to the adrdf highly interactive variables than many



single loop controllers. Profit Controller is essalty a tool to keep the process within

operational restraints while optionally optimizisgme performance measure.

The following is an introduction to some of the méaatures of Profit Controller and those
that are deemed to offer some insight into therotiat’s performance in terms of what to

expect from the controller under varying processigons.

1.3.1 Profit Controller Implementation

RMPCT employs three types of process variablepasa input and output:

Controlled Variables (CVs) are variables the controller attempts to keep tpogat

or within an Operator specified range with prigatiion given to maintaining them
within their restraints.

Manipulated Variables (MVs) are adjusted by the controller in order to keep CVs
within restraints and to optimize the process whaéviolating restraints placed on
the MVs.

Disturbance Variables (DVs)are variables which, although measured, are natrund
control of the controller but affect the valuesdfs. The controller, on the basis of
feed-forward information, may predict the futuréeef of DVs on process response
and take action to prevent CV excursions outsiaestraints before they develop.

RMPCT uses a process model to predict process lmelmavhe overall model comprises a
matrix of dynamic sub-process models which desdhbesffect of the MVs and DVs on

CVs. Each sub-process is of a generic form thatiges a reasonably accurate description of
the behaviour of the majority of processes thatlmafound in processing industries. They
contain a number of coefficients whose values datex the dynamic response of the sub-

process.

The sub-process models are specified for a giveoass by determining the coefficient
values by model identification which involves odenp step testing. This is typically done

when the controller is first commissioned.



1.3.2 Robustness Features

Profit Controller'srobustnessefers to its ability to maintain good control afjhly
interactive processes even in the event of sigmtienodel error. An understanding of these
robustness features impact on what can be exp&otedProfit Controller’'s performance.

These features include:

Range Control Algorithm (RCA) as opposed to setpoint tracking. Where range
control is common, performance measures such tingeime and offset are less
applicable than for conventional feedback contopis. While RMPCT allows
setpoints to be implemented and changed and threref® servo performance
assessed, this is not usual under normal oper&tatistically derived measures

concerning the violation of restraints and MV moeginmay be more appropriate.

Singular Value Thresholding (SVT) is employed to correct poor conditioning loé¢ t
matrix used for control calculations. The contnodéfectively drops any of the
matrix’s singular values which are below a spedifiereshold. This is done in order
to desensitise the controller to model error arey@nt excessive MV movement. One
of the implications of which is that if a contrallie Singular Value Thresholding it
may result in no MV action being taken despite aligihg outside the desired range.
While this may appear to be poor performance, it fs.ct appropriate to the
controller’s objective, i.e. preventing overly aggsive MV movement for little

benefit in CV response

1.3.3 CV Characteristics

In a typical Profit Controller process, there igrsficant interaction between CVs. This means
that action taken to change the value of a CV nisxy éhange the value of other CVs. The
controller must therefore coordinate changes toralrer of MVs in order to move a

particular CV as desired without causing undestfe@hges in other CVs.

As in conventional MPC a CV can have a setpoirtdiefines the desired value for the CV. It
IS more common, at least in Alcoa’s RMPCT applmadi, that the CV will have a high a high
and low limit that define a range of allowable teat. This is one of RMPCT’s robustness

features. The controller will not take correctivantrol action provided CVs are within their



limits which minimises unnecessary MV movement arakes the controller less susceptible

to plant-model mismatch.

In addition to these ‘hard’ limits, it is also pdde to define soft limits for each CV. These
limits, defined as an offset within the hard limsggecify the allowable limits for optimisation
of the process. They effectively provide a buffériah allows the controller to push the CVs
close to restraints while retaining the abilityatassorb disturbances without violating those

restraints.

CV tracking results in the controller adjusting théernal (Operator-set) limit or setpoint and
the internal (controller-honoured) violated limat that there is no CV error on initialisation.

The Operator must then return the limit or setptorthe desired value.

Limit ramping adjusts only the internal, violatewhit to the current CV value. The controller
then returns the internal limit gradually to théezral limit or setpoint. Both CV tracking and
limit ramping aim to minimize the initial jolt thatn result when CVs exhibit large error

when control is initiated.

Limit ramping also applies when the operator mak&sge change in a limit or setpoint. It
minimizes the disruption by establishing the rate/laich the controller moves the old limit

towards the new limit.



1.3.4 MV Characteristics

Each MV has a high and low limit which the conteolvill never violate of. The controller
will return the MV to within limits when the contlier is started with the MV outside its
limits (except when tracking is on) or when therap@ changes an MV limit such that the

MV value is outside of it.

Rate-of-change limits may also be set in orderéwgnt excessive MV action when an
abnormal event occurs. If these are being hit rieyoibg the limits are possibly being set too

small and the controller therefore has less freettodetermine the optimum trajectory.

Limit ramping for MVs determines the minimum ratendnich an MV must move towards a
violated limit (in the event of initialisation oné Operator changing a limit such that it is

violated).

MV weighting is analogous to CV weighting. Gred#v movement weights discourage the
movement of particular MVs to resolve CV error. Shesults in greater movement of larger
MVs. When there are more MVs than required in otdeneet control objectives, the

controller minimizes the sum of the squared chawjdése MVs, with each change multiplied

by its respective MV weight.

Movement weights do not affect the speed of respongontroller stability. Movement
weights are only used to set priorities with regard/hich MVs it is preferable to move in the
event that more than one MV will suffice.

1.3.5 Feedback Performance Ratio

The feedback performance ratio is a tuning paranuetined as the ratio of the closed-loop
to open-loop settling times for a CV. The nominaén-loop settling time is the gain-
weighted average of the settling times for allhef sup-process models of a given CV. The
nominal dead-time is gain-weighted average of gedimes for the CV.

A performance ratio is therefore used to tune cietrresponse. A performance ratio of 1.0
means the CV is returned to zero error within thmimal open-loop settling time, while a

ratio of 0.5 means it will be returned to zero efmhalf that time.

The performance ratio determines the inherent offgléen controller performance that are

associated with speed of response, model accurati& movement. That is, a smaller
10



performance ratio results in faster setpoint tnagland disturbance rejection, larger MV

movement and higher sensitivity to model error. Tbeverse is also true.

11



1.3.6 Degrees of Freedom (DOF)

Profit Controller maintains all CVs at setpointvathin range provided there are sufficient
DOF to do so. The number of DOF is the number ofshigt at a limit, minus the number of

CVs that either have a specified setpoint or am autside a limit.

So long as the degrees of freedom are zero o€l constraints can be satisfied. If they

become negative it is physically impossible to keefpoints within range.

When there are negative degrees of freedom, REofitroller attempts to maintain a

compromise by minimizing the weighted sum of theasgqd CV error:

v . . - -
minimize ZH'E‘!ght:‘ X errorT

(1)
where ¢ is the CV index.

In the above formula the error is the scaled Cdreifhis scaling results in equal increments
of different CVs having equal importance on thecess. Error trade-off between CVs may
be influenced by specifying engineering unit giyesdor each of the CVs. Weights are

inversely related to scaling factors and EU give-hy:

1
(CV scaling factor)x J(EU give —up) )

weight; =

The smaller the Engineering Unit ( EU) give-up there the controller attempts to minimize
the error for that CV. The EU give-ups are relatveach other. That is, if CV1 has an EU
give-up of 3.0 while CV2 has a give-up of 1.0, QWill exhibit approximately 3 units of

error to every 1 of CV2's.

EU give-ups have no effect when there are sufftaegrees of freedom to bring CV errors to
zero. Further, give-ups do not affect the speet which the controller corrects CV errors.

12



1.3.7 Economic Optimization

If the controller has degrees of freedom remaindni, it is able to optimize an objective
function that represents one or several aspedtseqgirocess, for example, improvement of

product throughput or lower utility costs.

The controller will minimize the objective functigar maximize its negative) subject to

keeping all CVs and MVs within limits.

The general form of the objective function is

Minimize J =3 aCV, + Y b*(CV, —CV,;)* + > c MV, + > d*(MV, - MV,)?
i i i i (3)

wherea;and ¢, are the linear coefficients of the CVs and MVeedively,b andd, are the

quadratic coefficients of the CVs and MVs a@dl, and MV,, are the desired steady state

values of the CVs and MVSs.

1.4 Case Study Controller - SLAC

The evaporation area of Alcoa’s Kwinana refinerg tiee process objective of concentrating
the Spent Liquor (SL) from the precipitation areddoe returning to the Digestion Feed
Tanks. This is achieved by heating the SL in stuadl tube heat exchangers and then flashing

off water vapour by dropping the temperature am$guire in a series of flash tanks.

Evaporation Optimisation application, also knowrires Spent Liquor Advanced Controller
or SLAC, aims at managing the levels of the spignbk stock tanks that feed into the

evaporation units whilst optimising the evaporatoiiding.

SLAC is the Profit Controller application that Haeen selected for this study and

development of possible CPA methods. The firstabje of the controller is to maintain safe

13



operating conditions in the evaporation units. €@ints have therefore been included in the
controller design to ensure that the operatinggues and tank levels are within safe limits.
The second control objective is to maximise thaltevaporation rate of the building, thereby
increasing the caustic recovery, reducing refiroasts and increasing production. The third
objective is to control the stock tank levels tsume liquor stocks are balanced to maximise

liquor circuit flow.

Prioritising these control objectives ensures Had¢ operation of the evaporation process is
not compromised by the controller. The evaporapimtess is thus prevented from reaching
safety override trip settings that would cause sidble flow cuts.

SLAC is a large controller, even by Advanced Predesntrol standards. 87 CVs, 27 MVs
and 16 DVs in total are used in the application.

14



2 Event Frequency Performance Index (EFPI)

A comprehensive Control Performance Assessment J@R¥edure would ideally
incorporate several methods that reflect diffeesmmects of control performance. The goal of
creating the EFPI is the development of a metriclvhombines several component metrics,
each of which measures a different aspect of RMp&iormance and therefore provides a

general indication of how well, or poorly the cailer is performing.

The name, Event Frequency Performance Index, cthoresthe fact that each of the
component metrics measures the average frequerceyrtain events, or the time the
controller spends in certain states. This appreehpredicted to have several advantages,

not least of which is mathematical simplicity.

Also, each individual metric is normalized basetary on time, but also the controller
parameters, such as number of variables and lahiteg. It is therefore hoped that the metric
can be applied consistently to different contrallesthout the need for scaling, as the metrics

are already scaled using the intrinsic charactesistf the controller.

Six aspects of control performance are measuratebfzFPI. The individual, component
metrics were initially defined as follows:

1. Constraint Ratio (CR) — This measures how the controller uses its capacadd
value. At each interval, all MVs are checked towbether they are at a constraint
and given a value of ‘1’ if they are and ‘0’ if ndthe scores are averaged over time

and the resulting values for each MV are then sudhme

Similarly each CV is checked to see whether it ig soft constraint. In the absence of
historized data for the CV soft limits, a valueséb of the CVs operating range from
the hard limits was used. If the CV read valuediointerval is within this range
without violating the hard restraint a value of i&’assigned for that CV at that
interval. Otherwise a value of ‘0’ is assigned. Tesult for each CV is averaged over

the sampling interval and the CV results are summed
A normalized result for the CR is then obtainedHhsy following calculation:

CV,
CVC, Max'MVC, Max

CR= (MVC,Max -MV;) (4)

15



WhereCV, and MV, are the average number of CVs and MVs respecthittipg a

constraint per interval over the assessment pamodC\,, .., and MV, are the

Max
total number of CVs and MVs that could be hittingomstraint at a given interval.
The metric therefore penalizes for MVs hitting doasmits and rewards CVs at

constraints.

The metric ostensibly penalizes those controlleas &re not optimizing to constraints
or who are not optimizing at all. The measure sdoleon the assumption that a
controller is at its most useful when only CV coasits are being hit. It may be useful
in the diagnosis of problems arising from operasatsing MV constraints too narrow

and thereby limiting a controller’s capacity to pu3Vs to optimal operating points.

. Economic Movement Index(EMI) — This metric aims to measure how necessary the
controller is to economic unit operation. It isidetd by mapping the economic
objective function to the controller MVs. The reden MVs are identified by whether
they possess a linear/quadratic economic coeffiaea non-null sub-process
relationship to CVs with a linear/quadratic econogoefficient.

These MVs are checked for a non-zero gradientct gae interval. EMI is then
defined as the time-averaged ratio of those MV&hihse a non-zero gradient to the
total number of MVs.

This component is based on the assumption thattaodier is more economic if all
MVs are pushing in an economic direction and vdd#ally penalize those controllers

that are not used to optimize operation or thay paltially use MVs.

It may be that this component also enables inferaout the degrees of freedom
(DOF) available to the controller. A controller mggnerally be considered to be
performing well in this regard if it has DOF > Oiakas the capability to correct for

disturbances. If the controller is optimizing itlioates that this is the case.

. Objective Function Attainment (OFA) — This metric aims to measure how much
value the controller is generating. It is definedtze percentage of time the current
objective function value is within a certain rargjéhe steady-state objective
function. This condition is checked at every in&drand if the current objective
function is within the desired range of the steathte value a score of ‘1’ is assigned.

A ‘0’ is assigned if it is not. These scores them averaged for the assessment period

16



The metric is based on the assumption that a dtettie generating more profit if it
spends a lot of time at its steady-state objedtinetion value. Initially the range
within which the current objective function hadadl, or theOFA Thresholdyas 5%

of the stead-state.

Movement Index MI) — This attempts to measure how smoothly the cdetrid
operating and therefore decreases with increasivigridvement. It is calculated by
measuring the movement of each MV as a percenfate onaximum allowable
move at each sampling instant. The maximum allogvaibve value will depend on
the MV direction, so this is ascertained for eagimgling instant. A score between ‘0’
to ‘1’ is assigned for each interval and each MY #re result is averaged over the

assessment period and all MVs then subtracted @moen

Gating was implemented such that if a MV is nofama given interval , that is, it is
not being used by the controller at that pointntiiés not included in the metric for
that interval. This prevents the metric from reviiagdthe controller for not moving a

MV that is not being used for control.

The metric penalises those controllers that areimgothe process around
significantly. For the initial EFPI implementatidims is the only component metric
that does not rely entirely on the frequency ofaiarevents, as it incorporates the

magnitude of MV movement as a percentage of thammax move limits.

It should be noted that because MI penalises MVeannt, while EMI rewards
movement of certain MVs, a perfect EFPI score tspossible, even in theory.
However, it was believed that those controllers fhesh towards optimization with a

minimum of MV movement may still score highly.

. Constraint Adherence Index(CAl) — This measures how well the CV constraints are
honoured. It is calculated by taking the averagalmer of constraint violations per

CV, per interval occurring over the assessmenbgeresulting in a value between ‘0’
and ‘1’. The result is then subtracted from onee &ksumption is that a controller that
Is not keeping the process within defined limitagsther reliable nor safe.

A final, overriding performance factor is contrellEme in Normal (TIN). The controller

parameterControllerModeis used to determine whether the controller is@Br the

assessment period. A value of'1’ is assigned ifcimatroller is ON and ‘0’ if it is not. The

results are then averaged for the period.
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The composite EFPI metric is defined as

EFPI=TIN %x{(0.2 CR +0.2 EMI +0.2 MI + 0.2 CAI + 0.20F4) (5)

While each EFPI factor is given an equal weightihgjay be necessary to individually
weight the variables used in the calculations ttebeeflect the design objectives of a
controller. For example, the restraints on a gi@&hmay have been deliberately set such that
they are violated frequently. This may have beamedatentionally so as to elicit a specific
desired behaviour from the controller and prockserder to reflect this design objective, the
Reliability of this individual CV could be givenlawer weighting than others. This

customization will enable better comparability beén controllers.
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2.1 Initial EFPI Implementation: Results and Discussion

Table 1 First run EFPI results

SLAC EFPI -All CVs/MVs

Period CAl EMI CR OFA | MI TIN EFPI | EFPIw/o TIN

1/06/2007 - 30/06/200f

(G) 0.908 | 0.739| 0.1221 0.984 0.908B 0.980 0.718 0.732

1/10/2007-30/10/2007

(R) 0.861 | 0.664| 0.103 0.898 0.935 0.998 0.691 0.692

1/05/2008-30/05/2008

P) 0.710 | 0.669| 0.138 0.998 0.948 0.9%7 0.663 0.693

The EFPI metrics as defined in Table 1 were implaeakon three periods of historical data
for SLAC. These were initially classified as ‘GoptReasonable’ and ‘Poor’ periods of
controller operation, based on the amount of atarthe controller was receiving during
these periods, length of time since the contrell@as commissioned and the ‘gut feel’ of

engineers familiar with the controller.

The results for the first run application of theFEFdisplayed in Table 1, suggest a definite
overall degradation in performance between thé fiesiod (period G) and the second (R) and
between period G and the third period (P). Whepieeformance has improved or worsened
between periods R and P however, depends on whéatheontroller's Time in Normal (TIN)

statistic is included.

The overall EFPI is calculated both with and with®IN as it is debatable whether or not it is
really a measure of control performance. Despiefact that the controller is on for a greater
percentage of R than for P, R has a lower averadgxifor the other components. This
suggests that the controller has maintained otsygecs of control more effectively over
period P despite being active less of the time.
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Further to consideration of the TIN statistic,ahdoe observed from the daily component
averages for period P shown in Figure 1 that agtnan TIN corresponds to decreases in all
other components. This level of interdependenc@RA metrics is undesirable, particularly if
the end goal is a composite, ‘rolled up’ metricitassults in the repetitive inclusion of

certain aspects of performance.

1.2
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Figure 1 First run EFPI results for 1/05/2008-30/0%2008

For these reasons the TIN component should nobhsidered as a CPA metric but rather as
a potential diagnostic. For example, if severakothdicators drop below a specified level

and the TIN for that period is also low, it is likéo be a root cause.

This evidences one of the problems with implemenéitomposite index of this type, that is
outlying components can skew the overall metrihdhat it does not present an accurate
picture of control performance. The same may be asbother components: the OFA factor
for P is considerably better than for any of itsestcomponents, or for those of the other

assessment periods.

The above results suggest an apparently inveragamship between CAl and MI. That is,
where the controller is reducing CV constraint atan, MV movement increases. However,
this relationship is not supported by inspectiothef daily averages obtained for these two

components, or calculation of their correlationfGornts shown in Table 2.

20



Table 2 Correlation coefficients between EFPIs for ttee assessment periods

Period Correlation Coefficient for CAl and Ml daily figures
1/06/2007 - 30/06/2007 (G) -0.2672
1/10/2007-30/10/2007 (R) 0.0476
1/05/2008-30/05/2008 (P) 0.4933

While a daily relationship is not supported by thégures, it does not disprove the notion
that if the controller is averaging high scoresdonstraint adherence it is likely to be moving
MVs more. In fact, the overall CAI-MI correlatiomefficient for daily values for all three
periods combined approaches -0.6, suggesting armably strong inverse relationship

between the two indices.

This relationship further highlights a key problanth a “rolled-up” metric, that the
controller performance can exhibit very differehtacacteristics which are hidden by

combining the scores of different indices.

Of further note is the very low scores attainedtfie CR all three periods. This is less likely
to indicate poor control performance than it ddesibherent nature of the system being

controlled. The CR is defined as

CVe g MV
CVC,MaX MVC,MaX

CR=
(6)

WhereCV, and MV, are the average number of CVs and MVs respecthi¢tipng a

constraint per interval over the assessment pemadCV,, .., and MV, are the total

Max
number of CVs and MVs that could be hitting a coaist at a given interval, in this case 87,
the total number of CVs or 27 the total number M\I$fie metric therefore penalizes for MVs

hitting constraints and rewards CVs at constraints.

It was apparent during the course of calculating rietric that the term concerning MV
constraints would have very little impact on the@l score as the average number of MVs
at constraints, at each sampling interval, oveh emsessment period was of the order &t 10

An additional problem was in defining what congetlia restrained CV. It was not desirable
to use the CV hard constraints as a SLAC CV seldoghes against a hard constraint without
violating it. To reward those CVs that were viatgtilimits would create a number that was
the inverse of the CAI. The optimisation limitsd®lta-soft limits (defining an offset from the
hard limits for optimisation) were the preferredues to use. However, it was determined
later that many of the values for these from tlexess data historian were not correct.
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It was decided to choose some arbitrary off-senhftbe hard limits, defined as a percentage
of the CV operating range, and if a CV was betwhénpoint and the nearest hard limit it

was assumed to be restrained.

This solution was not ideal, as those CVs with \large operating ranges would have
inordinately large regions where they were assutodx restrained. Further it was later
discovered that not all SLAC CVs have hard limike values being used for hard limits were
extrapolations by the data historian based ondithiat may have once existed. This fact also
significantly affected the CAl and was the firsimido be addressed when revising the

metrics.

Ultimately the low CR scores attained for each sssent period were a result of the fact that
very few of the SLAC CVs typically operated closehe limits defined for the metric. The
controller was performing very well with respectMi&%/s not becoming restrained but this is
not evident from the scores. This is another exarmptombining two or more factors into a

metric obscuring the true picture of controllerfpamance.

Perhaps one of the most interesting observatianghifirst application the EFPI was the
fact that period P, expected to exhibit the woositml performance, had an OFA score close
to perfect. That is, the Current Objective Functiaiue was within 5% of the Steady State
Objective Function value for almost the entire amenth period.

2.2 EFPI Revision A

A number of initial revisions to the EFPI comporsewere performed. These revisions were
primarily concerned with incorporating design knedgde into the CAl. The revised metrics
were applied to the original three assessment gieribhey were also applied to data obtained

for a further three periods which were similarlgssified as ‘Good’, ‘Reasonable’ or ‘Poor’.
The revisions to the CAIl were as follows:

Correct Hard Limits — Some of the hard limits initially obtained from tuszed data did

not actually exist, or were different from the @t limits. These were corrected.

Activated Limits — Some limits are activated by other variables.&@mple certain flowrate
limits are activated in the event of valve satamatiThis was handled by gating all values

when the limits weren't activated in the controller

Deliberate Violation of Limits — Several of the SLAC CVs violate one or both ofrthenits
by design. These CVs have been excluded from theomoe had the deliberately violated CV

removed
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CV Weighting — The ability to weight CVs has been incorporatdd the EFPI program. At
this point, all CVs’ CAl have a weighting of 1, epting those that are indicator CVs only or
others that are not representative of APC perfoomam some way. These are given a weight
of zero. These zero-weighted CVs have not beerud&d all-together as their individual CAI

may provide useful information at the CV level,a@posed to controller level.
Spare CVs —These have been removed from the metric altogether

All the above revisions were also applied to the @vhponent of CR.
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2.2.1 EFPI Revision A: Results

Table 3 EFPI results for Revision A

SLAC EFPI -Revision A

Period CAI| EMI| CR | OFA| Ml TIN | EFPI| EFPIw/o TIN
15/04/2007 - 14/05/2007 (G1)0.973| 0.829| 0.173| 0.964| 0.953( 0.96 | 0.747 0.778
1/06/2007 - 30/06/2007
0.949] 0.739| 0.13 | 0.984 0.908| 0.981( 0.728 0.742
(©)
1/08/2007 - 30/08/2007
0.94 | 0.668 0.144( 0.897| 0.946| 0.959| 0.689 0.719
(R1)
1/10/2007-30/10/2008
0.948] 0.665| 0.145]| 0.896| 0.935] 0.997( 0.716 0.718
(R)
1/04/2008 - 30/04/2008
0.955( 0.567| 0.159] 0.946| 0.926( 0.79 | 0.545 0.711
(P1)
1/05/2008-30/05/2009
0.958] 0.664| 0.18 | 0.998 0.948| 0.957( 0.718 0.750

(P)

The revisions detailed in 2.2 yielded the EFPI Itssn Table 3. The only metrics affected

are the CAIl, EMI and the composite metrics. Eacthe$e was improved significantly for the

three original assessment periods. Period G rexddhre best overall performer.

Period P’s overall EFPI is now considerably bettan period R, which at the time of data

collection was expected to be of reasonable pedao®m. The original ‘Good’, ‘Reasonable’

and ‘Poor’ classifications for assessment periodevibased on length of time since controller

rebuild, the utilization figures, engineer’s intait and the attention the controller was

receiving at that point. The classifications wereisited subsequent to obtaining these latest

results and it was determined that during periodoRtroller attention and maintenance had

increased significantly and the period should lotassified as reasonable to good.
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The reclassification of assessment periods is mumte congruent with the performance
indices obtained, the general trend of which isaalgal decrease throughout the 2007 and
early 2008 before a significant improvement in Méy2008. The EFPI trend for the

assessment periods is shown in Figure 2.
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Figure 2 EFPI for six periods of SLAC operation

A correlation analysis was performed on the 5 kEfPEcomponents and the coefficients
displayed in the matrix of Table 4. The first pauted was that the inverse relationship
between CAIl and MI was no longer present. Theiggiahip identified in the first EFPI
implementation did not likely exist, as the CAldigs were calculated using limits that did

not exist, CVs not used in the controller calcuias and bad data.

The most significant relationship suggested bycthreelation matrix is between the EMI and
CAl. A possible explanation for this may be foundhe derivation of the Economic
Movement Index. At this stage in the EFPI developiniteis calculated by checking the MVs
that have been mapped to the objective functiom foon-zero gradient at each interval. A
score of ‘1’ is assigned if the MV is moving andifat is not.

This method is flawed in that an MV will exhibitreemovement only if it has been dropped
and is not being used to control the process, wikerit will exhibit at least some movement,
however small. This implies that the EMI as it steidoes not measure the economic
movement of MVs, but rather the average number \d§ Mvailable to control the process. A
decrease in this index then, reflects fewer degséégedom with which to handle
disturbances which may lead to an increased frexyueihconstraint violation and a poorer
CAL.
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Although not as strong, EMI also correlates to @Rpmponent of which measures the
average number of CVs at constraints. The degifefesamlom available to the controller also
affect its ability to optimise the process, whiohn the greater number of CVs involves
pushing them to a constraint. Thus a lower EMI sstgjthat the controller may not be able to

do this (without violating a hard limit) and theve incurs a lower CR index.

This weakness in the EMI derivation, along with thet that the MVs’ movement direction
and relative impact on optimisation of the objegetiunction are not incorporated, are
addressed in EFPI Revision C.

Table 4 EFPI results for Revision A

CAl Ml CR EMI OFA
CAl 1
Mi 0.193069| 1
CR 0.347267] 0.48006f 1
EMI 0.522823( 0.306454 0.472541 1
OFA 0.166984] 0.104438 0.14414 0.153p9 1

Table 5 EFPI Correlation coefficients for Revision A

The second highest correlation, between componetriaa Ml and CR, was also not strong

and has been treated as coincidental.
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2.3 EFPIRevision B
2.3.1 Potential Methods for Incorporation of Constraint Violation Magnitude into CAI

Up until this point, all the component metrics caising the EFPI, with the exception of the
MI, were based entirely on the frequency of certigfined events occurring over the
assessment periods, for example, constraint vaoiair the Objective Function being within a
certain threshold of its steady-state value. It desired to revise the CAI such that it not only
measured the frequency of constraint violation,dish incorporated the magnitude of each

violation.

This significantly increased the complexity of f@blem. It was desirable to maintain the
CAl as a normalized index in order for it to beigasterpreted and to enable better
comparability with other controllers. This is nbetcase with traditional measures of error
such as Integral Absolute Error (IAE). For example JAE score for SLAC would convey
very little information to someone without exteresexperience and knowledge of the system.
Similarly a certain IAE may be high for SLAC butidor another controller. It was

therefore necessary to normalize, or at least $balgiolation magnitudes on some basis that
could be applied universally to other controll&saling or weighting of the violation
magnitudes for the individual CVs was also necegsgae to the fact that some CV constraint
violations are considerably more important tharecth

Normalization Based on Range of Violation Magnitude

The first approach considered was similar to thke¢m for calculation of the MI metric which
normalized each individual MVs movement at evetgiival based on its maximum possible

movement. This approach can be expressed as

5 = u"Gm;  1=12..N

" dmax,j _dmin,j J = lZ,,M (7)
whered, ; = magnitude of violation at intervig|
d,ax; = the maximum possible magnitude of violation @

d... . = minimum possible magnitude of violation 0§, presumably zero,

min, j

J,; = magnitude o€Vj’s violation at intervali normalized between zero and one,
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N = number of intervals in an assessment period and

M = number of CVs

The question is how to defing,, ; . The theoretical maximum violation magnitude is th

difference between the violated hard limit andclosest CV engineering limit, which is the
absolute outer bound for that CV’s region of operatUsing this value as the basis for
normalization was not done for two main reasonstlji the engineering limits are generally
well outside the typical regions of operation. Usthis value would scale the violation to a
number so small as to be virtually meaninglesstahne least very hard to interpret. Secondly
the distance of the engineering limit from the hiardt is generally unrelated to the
importance of a unit violation for a given CV. Huet, the SLAC engineering limits were not

commonly used, accurate or available for the necgsslculations.

Defining d,,, ; as the maximum violation incurred BV for the assessment period was also

considered. However the resultant metric only iatis how much time the CV spends close

to its maximum violation magnitude for the period.

Scaling Based on CV Allowable Operating Range

Alternatively the violation magnitude could be sxhbn the basis of the CV’s allowable
operating range as defined by the CV hard limitasThethod is based on the assumption that
if a CV has a larger allowable operating rangesilgaificance of a unit violation is less than
that for one with narrower limits. The obvious dlaek in this case is that not all CVs have
both an upper and lower hard limit. Those that dbaould be treated differently in some way
but this would potentially compromise comparabibgtween controllers as some will have

more or less of these bounded CVs than others.
Scaling Based on CV Standard Deviation

The notion of scaling the constraint violationsdayiding by the permissible operating range
suggested a further option: that of scaling bya&dard deviations of the CV read value. This
approach assumes that greater CV variance wilespond to a wider allowable operating

range and therefore less importance would be asgalcwith a unit constraint violation.

Scaling by the standard deviation was deemed tmbeceptable for several reasons. The
first being that the notion the approach is pretidaipon is not correct; a wider acceptable

operating range will often have no bearing on wlethviolation is more or less acceptable
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than that for a CV with a narrower limits. Thiseisemplified by those CVs with no upper
limits. Their allowable range may be very largeutsg in a high standard deviation, but it
may be considered relatively crucial that theiréowonstraints are not violated.

A further drawback is if the CV is exhibiting ireased variance due to degradation in model
quality or increased disturbances, in which casalthturbance magnitude will be scaled
down as a result. In the case where the increaseainee is due to model quality, the metric
effectively allows greater violations for a conteslwhich is actually performing worse,

which may have been the cause of the violations.
Scaling Based on CV Average Read Value

The final method investigated for incorporating th@ation magnitude into the CAl involved
dividing each CV violation at each interval by agantage of the average read value for the
CV, such that

o = ds

) N
ax N_lz Yi
®)

Where a = scaling percentage, initially set to 5%, and

y, = CVi measured value )

The highest value ofj, ; was capped at 1, thus a score of 1 for an inteveald indicate that

CV; was violating at or greater than the maximum a@t@ptlevel. Calculation of the overall

CAl for the assessment period was as per the atignethod: finding the average for each

CV and then for the entire system.

The method assumes that if a CVs average valugh&h then a unit constraint violation is
less important than for CVs with lower averagesb§agcaling the violations by a percentage
of the mean, they will be expressed as values mmmemensurate with their relative
importance. Despite several obvious exceptionkitoassumption, this method was

implemented, mainly as a starting point for develgpndividual scaling factors for each CV.

Scaling factors were calculated with the above wethen the resultant value was checked
by a control engineer familiar with SLAC to enstinat the values were appropriate for both
scaling and defining the maximum acceptable viofatA large number of the values did not
need to be changed, but the fact that severalrdidteat they all required verification

indicated that it would have been just as, or noamvenient for someone with knowledge of

the process and control system to simply assigsdheng factors in the first place.
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Prior to acquiring results, the procedure was wgulatich that the average value used was
taken from all assessment periods. This was dooedier to ensure that scaling was
consistent for each assessment period. Also, SLé@pcises five basically identical
processing units whose CVs are essentially the samniéwas desired to scale them all by the
same value. Therefore, the individual average waloethe corresponding CVs of different
units were not applied to each respectively, biteiathe median average was determined and

applied to all.
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2.3.2 Experimentation with Different Threshold Percentages for Calculation of OFA

The 5% range of the steady-state objective fundtahthe current objective function must
fall within for a given interval to be assignedlavalue, was chosen arbitrarily. It was
desired to apply different threshold percentagetetermine whether and how significantly
the selected threshold percentage affects theanelhree thresholds were implemented, 5%,
3% and 1%.

31



2.3.3 EFPI Revision B: Results

Table 6 Monthly EFPI results subsequent to Revision B

Table 5 displays the monthly EFPI results for tixeassessment periods having applied the

revision to calculation of the CAIl outlined in 2RBgures 3 and 4 compare the results prior

and subsequent to these revisions for the CAIl aedatl EFPI (w/o TIN) respectively.
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Figure 3 CAIl before and after inclusion of violation magnitude
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Figure 4 EFPI before and after inclusion of violatiom magnitude (OFA threshold 5%)
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For the CAl, the overall performance trend is altribe same, however for Revision A,
period P scored better than P1. After incorporatingation magnitude into the metric,
however, period P1 and P CAl scores are almostic#nSo while period P has a greater
frequency of limit violation, the average violatioragnitude during the two periods is very
similar. This is potentially useful information, tamould not be available without applying
both versions of the metric. CAl Rev B alone witt@iscern whether CV limit violations are

infrequent and large or frequent and small.

The CAI scores for all periods increased considgrimv Revision B. This is to be expected,
as when the CAl indicated the frequency of violatomly, every interval where a violation
occurred was assigned a ‘1’. The revised CAl ass@gil’ only for those intervals where the

violation is considered equal to, or greater therhaximum acceptable magnitude.

The overall RFPI has also improved for all peridts, best improvement being for P1 which
now has greater parity with R and R1. For theseethworst performing’ periods, the effect
of changing the CAI such that it effectively measutwo aspects of performance, magnitude
and frequency of violation, has been to reducedtbeernible difference in the overall EFPI.

Changing the OFA threshold yielded the resultstptbin figure 5. In addition to reducing the
OFA scores for all six periods, narrowing the raggaerally had the effect of increasing the
difference between the scores for each periodpadth in some cases the difference had

increased. Further, the metric indicated bettefoperance for some periods when the range

was greater and the opposite when it was tightened.

While the objective function for some periods maysipending more time within a certain
range of its steady state value than for otheropsritightening the range reveals that it may
be spending more time at the outside limit of Hikdwable range. Other periods’ objective
functions may spend more time outside the largestiold, but exhibit more frequent

excursions into a tighter range.
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SLAC EFPI -Revision B

Period

CAl

EMI

CR

OFA
(5%)

OFA
(3%)

OFA
(1%)

Mi

TIN

EFPI

EFPl w/o
TIN

15/04/2007

14/05/2007
(G1)

0.989

0.829

0.173

0.964

0.945

0.765

0.953

0.960

0.746

0.782

1/06/2007 -
30/06/2007
(G)

0.980

0.739

0.130

0.984

0.937

0.747

0.908

0.981

0.725

0.748

1/08/2007 -
30/08/2007
(R1)

0.962

0.668

0.144

0.898

0.815

0.428

0.946

0.959

0.678

0.723

1/10/2007-
30/10/2008
(R)

0.966

0.665

0.145

0.891

0.754

0.296

0.935

0.997

0.691

0.720

1/04/2008 -
30/04/2008
(P1)

0.970

0.567

0.159

0.973

0.946

0.783

0.926

0.790

0.564

0.719

1/05/2008-
30/05/2008
(P)

0.970

0.664

0.180

0.997

0.983

0.763

0.948

0.957

0.717

0.752
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Figure 5 OFA with thresholds of 5%, 3% and 1%

For subsequent revisions of the EFPI the OFA tlolelshas been selected as 3% as this
appears to offer greater differentiation betweeadgand poor performing assessment periods,
without narrowing the range so much as to overlyatise even the periods where

performance may be deemed good.
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2.4 EFPI Revision C

2.4.1 Economic Movement Index - Revised Mapping of Objective Function to MVs

The current method of calculation for the EconoMmvement Index (EMI) is unsatisfactory.
This method maps MVs to the objective functionthia gain array and the MV and CV linear
and quadratic objective function coefficients. Safrgain or magnitude of the coefficients is
not taken into account, so although a MV that intgp#we objective function may be moving,
there is no way of knowing whether that movemeim ign economically favourable

direction. At present the index is more an indmatf MV utilization.

It was desired to discern appropriate move diraedbased on the objective function
coefficients and sub-process steady state gainsoandight each MVs individual EMI on the

basis of its respective impact on the objectivecfiom.

Optimum MV Movement Direction: Linear Component of Objective Function —The
linear component of the objective function was nexpfo each MV in order to determine a
net linear coefficient,.C netfor each MV. The revised method used the steaate-stub-
process gains and the linear coefficients for CMs$ Vs to determine if the move direction
of each MV at each interval was appropriate togb@omic objective and to provide a

weighting factor for each MV based on its respectimpact on the total objective function.

For example, if MV, has a non-null sub-process relationship v@t only, with a steady
state gairK; ; and the MV and CV'’s linear economic coefficients denoteda; andb,

respectively, then the linear component of thehefdbjective function corresponding to MV1

can be expressed as

Jimia =@MV, +BCV,
Jiwi =MV, + b K; MV,
Jiwi = (aj +b Ki,j)MVj (10)
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where
(a; +bK; ;) = LCnet (11)

For an MV with non-null sub-processes with morentbae CV,LCnetcan be expressed as

LCnet =a +BK (12)

whereB is a column vector containing the linear coeffitgeaf each CV and is a column

vector containing the steady-state gains betweemitt and each CV.

The values calculated fdrCnet for each MV were used to determine whether they had
moved in an optimal economic direction for each 3btarval for the seven assessment

periods. A score was assigned for each MV at eveeyval based oi.Cnet as follows

If LCnet< O

| =1  for AMV, >0
| =05 for AMV, =
=0 for AMV, <0

If LCnet> 0

=1  for AMV, <0
I =05 for AMV, =
=0 for AMV, >0

and if LCnet= 0, MV, is not included in this metric. (13)

Because the controller optimizer attempts to minérihe objective function, a negative net
linear coefficient for a given MV means that maxsmg MV is desirable. Conversely a
negative coefficient implies that there are ecorobeanefits to be gained by decreasing the
MV

An average overall score of 1 for an MV indicatest the MV been moving in an
economically favourable direction for the entireessment period, while a score of zero
indicates that it has been moving in a directiat thinimizes economic benefits. A score of

0.5 indicates that there has been no net movemaithier direction.

The assignment of a neutral score of 0.5 to an BA&ah interval in which no net movement
was exhibited is somewhat problematic in that zeovement can mean one of several things
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about the controller’s operation. For example tfa case where the MV is not being used to
optimize but is nevertheless not moving away franeeonomic optimum a neutral score is
appropriate. However, if the MV has optimized tooastraint (a soft limit) and is incapable
of moving further it will receive a neutral scorespite the fact that the controller is
performing to the best of its capabilities under ¢fiven circumstances. The latter scenario
may or may not be the result of operator-set M\MitBrbeing set too tightly which is
something that should be investigated in the coofsgagnosis in the event of a poor

criticality score.

Further to the issue of assigning a neutral saotka event of zero movement, it was
questioned whether it was appropriate for the edsre the MV was not being used for
control. It was decided to still assign 0.5 aségbenomic benefits being accrued as a result
were the same as if the controller was not optingizHowever, this is another factor that

would need to be investigated in a diagnostic phase

The overall Economic Movement Index (EMI) is calteld by taking the weighted average of
the individual scores for each MV over the assessiperiod, where each weighting factor is
defined as the net linear objective function cagfits for the individual CVs. The EMI is
therefore more sensitive to those MVs whose vahaee a greater impact on the economic
objective function and will not include those MVf&at do not have individual economic

coefficients or are not mapped to CVs that do.

The above weighting approach was considered vatlidnegard to the linear component of
the economic objective function because at anytpoian MVs operating range an
incremental increase/decrease will increase orcethe overall objective function value as if
the MV had started form any other point. Thathg, partial derivative of the linear
component of the objective function with respecamoMV is a constant,Cnet This is not

true for the quadratic components of the objediinmetion as discussed below.
Optimum MV Movement Direction: Quadratic Component of Objective Function

The EMI was extended to include mapping of MVshie quadratic component of the

objective function in order to determine whethesittmovement is in the most economically
favourable direction. This task presented an irewddevel of complexity as the optimal MV
movement direction as defined by the quadraticfeneits is dependent on the MVs current

position.

While the linear objective function is typicallyedfor product value optimization, the
quadratic objective is used to push the proceasdefined ‘ideal operating point’, defined for

each CV and MV as desired resting valuesg @ M\,
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If CV; has a quadratic coefficiegt then the quadratic component of the objectivetion

associated with this CV is
Jocvi =€ (CV, -CV,; )2 (14)

If CV1 has a non-null sub-process relationship Witti1 only, with steady-state gaiK, ;,

then the above term can be expressed as a furaftid'1 such that
‘]Q,MVj = Ciz(Ki,j MV] _CVO,i)2 (15)

Including the linear component provides the congptetm for the objective function
associated with MY The objective coefficients for MVs have not beecluded in this

derivation as the SLAC MVs have none.

Juy = (@, +bK; )MV, +c*(kMV, -CV,;)? (16)
Expanding the quadratic and combining terms yields

) 2 2 2 2 2
Jwy =CGKi;"MV," +(a, +b K, ; —2¢°CV,; )MV, +C"CV,, a7)

Taking the derivative with respect kV; gives

d‘]MV' _ 2 2 2
dMVJ. = 267K "MV, +(a; +bK;; —2¢°CV,,) (18)

J

Setting the above term equal to zero and solving/i\g yields the extremum for the objective
function toMV; curve, which further inspection shows is a minimiamall SLAC MVs This
point is the value foMV, that minimises the part of the objective functioapped tavV;

Therefore
_(a; +bK;; _Zcizki,'CVO,i)
MVi,optimum - : ZéigKiyj 2 J (19)
Having obtainedVV, ..., for each MV which is mapped to a quadratic terrthimobjective

function, scored, for MV movement can be determined for each MVaatheinterval

If MVi< MV,

i,optimum

39



I, =1  for AMV, >0
I, =05 for AMV, =
I, =0 for AMV, <0

If MVi> MV,

i,optimum

I, =1  for AMV, <0
I, =05 for AMV, =
I, =0 for AMV, >0

or if MV, = MV

i,optimum

I, =1 for AMV, =0
I, =0 for AMV, £0
(20)
The same issues associated with assigning a nauded arise as in the purely linear case. A

more difficult problem however is the question ofihto weight those MVs with quadratic

components when rolling them into the overall EMI.

Figure 6 shows the objective function mapped to SIMV7 plotted against MV7 values.

6000

5000

4000

3000

2000

1000

-1000

Objective Function Mapped to MV7

-2000

-3000

-4000

Mv7

Figure 6 Objective function mapped to MV7
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The impact a change the MV will have on the ovesh|ective function value will vary
depend upon the MVs current proximity to the minimwvith a change further away having
considerably more bearing than one close to it. mithod for weighting individual MV

EMIs for an assessment period has therefore bekeahe value of the partial derivative of
the objective function with respect to each MV dasived in equation 9) at each interval,

and averaging them over the period.

Thus

N
> 2¢°K, ,*MV, k +(a, +b K, -2¢°CV,))
Weight =12

N (21)
whereN is the number of intervals in the assessment period

This is essentially the same as usingliG@etto weight the MVs with only linear objective
terms; however the changing slope of the quadtatio requires averaging of the derivative
values for each interval. While weighting the irdessigned to each individual move on the
basis of the corresponding read value would progin more accuracy, it increases the
computational burden significantly and the averag®e been considered adequate at this

stage.

2.4.2 Additional Assessment Period

In light of the 6 month gap between periods R agditfvas desirable to apply the EFPI
metric to a 7 period between these two. It was believed thatwuld help validate

previous results and the general performance tienall periods.
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2.4.3 EFPI Revision C: Results

Table 7 EFPI results subsequent to Revision C

SLAC EFPI -Revision C

OFA | OFA OFA EFPI w/o
Period CAl EMI | CR (5%) | (3%) (1%) | Mi TIN EFPI | TIN
15/04/2007 - 14/05/2007
(G1) 0.989 | 0.510 | 0.173 [ 0.964 | 0.945 | 0.765 | 0.953 | 0.960 | 0.685 0.714
1/06/2007 - 30/06/2007
(G) 0.980 | 0.504 | 0.130 [ 0.984 | 0.937 | 0.747 | 0.908 | 0.981 | 0.678 0.692
1/08/2007 - 30/08/2007
(R1) 0.961 | 0.520 | 0.144 [ 0.898 | 0.815 | 0.428 | 0.946 | 0.959 | 0.649 0.677
1/10/2007-30/10/2008
(R) 0.966 | 0.515 | 0.145 [ 0.891 | 0.754 | 0.296 | 0.935 | 0.997 | 0.661 0.663
1/02/2008 - 28/02/2008
(P2) 0.960 | 0.512 | 0.135 [ 0.885 | 0.777 | 0.384 | 0.924 | 0.991 | 0.655 0.661
1/04/2008 - 30/04/2008
(P1) 0.969 | 0.509 | 0.159 [ 0.973 | 0.946 | 0.783 | 0.926 | 0.790 | 0.554 0.702
1/05/2008-30/05/2008
(P) 0.968 | 0.504 | 0.180 [ 0.997 | 0.983 | 0.763 | 0.948 | 0.957 | 0.686 0.717
0.9
0.8 +
0.7 ~
0.6 -
0.5 +
04 | H EMI Rev B
mEMIRev C
0.3 +
0.2 ~
0.1 ~
o -
G1 G R1 R P2 P1 P

Figure 7 EMI results before and after Revision C
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Figure 7 shows the economic movement index befodeadter inclusion of movement
direction. The EMI values for all periods are dilistly larger than 0.5 indicating that overall
the controller has spent more time pushing MVsnirreonomic direction. While the values
are all very close to 0.5 and there is very litigerentiation between different scores, the
value of the economic objective function has changmnsiderably between periods, as
shown in Table 6. This appears to indicate that¢hesed EMI does not accurately reflect
how effectively the controller is using MVs to apise the process.

The suspected reason for this is the small, eqbéaltirectional MV movement which occurs
almost continuously. While this movement may né&etfthe overall optimisation as it
averages to zero, it occurs so frequently thailitdeminate the metric result, bringing it
close to 0.5 and obscuring MV move values whichentasly reflect whether the controller is

using MVs to optimize.

Incorporating the magnitude of the move values theometric was originally thought to be a
possible solution to this problem. This howevergsoanother problem: the move magnitudes
associated with optimization are generally smdhean those calculated for regulatory
control. Thus, if the process is experiencing higbeels of upstream disturbances and the
controller is forced take regulatory action whielsults in MV movement away from an
optimum, a metric incorporating move magnitude wabre less despite the controller
performing as designed and to the best of its dified. It results in over-penalising the

controller on the basis of process performancepassed to control performance.

0.8

0.78

0.76

0.74
0.72 +

0.7

W EFPIRev B
0.68

mEFPIRev C
0.66

0.64
0.62

0.6 -
G1 G R1 R P2 P1 P

Figure 8 EFPI before and after Revision C

Figure 8 shows the overall EFPI for the seven assest periods before and after inclusion
of the revised EMI. The lower EMI scores have digantly decreased the composite metric

for each period. Further, the difference betweensttores for each period has been reduced,
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as a score of 0.5 for the EMI for each period effety removes its effect from the overall

Score.

2.5 EFPI Final Results and Analysis

No further revisions were made to the EFPI subsatgqoeRevision C. The final overall

results for each assessment period are displayed agTable 7.

Table 8 EFPI final results

SLAC EFPI -Revision C

OFA | OFA OFA EFPI w/o
Period CAl EMI [ CR (5%) | (3%) (1%) | mi TIN EFPI | TIN
15/04/2007 - 14/05/2007
(G1) 0.989 | 0.510 | 0.173 [ 0.964 | 0.945 | 0.765 | 0.953 | 0.960 | 0.685 0.714
1/06/2007 - 30/06/2007
(G) 0.980 | 0.504 | 0.130 [ 0.984 | 0.937 | 0.747 { 0.908 | 0.981 | 0.678 0.692
1/08/2007 - 30/08/2007
(R1) 0.961 | 0.520 | 0.144 | 0.898 | 0.815 | 0.428 [ 0.946 | 0.959 | 0.649 0.677
1/10/2007-30/10/2008
(R) 0.966 | 0.515 | 0.145 [ 0.891 | 0.754 | 0.296 | 0.935 | 0.997 | 0.661 0.663
1/02/2008 - 28/02/2008
(P3) 0.960 | 0.512 | 0.135 [ 0.885 | 0.777 | 0.384 | 0.924 | 0.991 | 0.655 0.661
1/04/2008 - 30/04/2008
(P1) 0.969 | 0.509 [ 0.159 | 0.973 | 0.946 | 0.783 | 0.926 | 0.790 | 0.554 0.702
1/05/2008-30/05/2008
(P) 0.968 | 0.504 [ 0.180 [ 0.997 | 0.983 | 0.763 | 0.948 | 0.957 | 0.686 0.717

The total EFPI and its component metrics are platteé=igure 9. It should be noted that for

those months for which data was not obtained thelthave been interpolated.
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Figure 9 EFPI monthly results

The general trend for each metric except for thd BMI Ml was congruent with what was
expected for the assessment periods. That is,alqrérformance for the post-commissioning
period (Periods G1 and G) was expected to be vaog gollowed by a gradual decline in
performance due to factors such as the degradatiomodel quality (Period R1). From
October 2007 to February 2008 (Periods R and R3g tiwere no control engineers
permanently on site and SLAC performance was erpect be at its worst due to a lack of
general maintenance and attention. By April of 280&C was being maintained by a

control engineer permanently on site and contrad xgected to have been improving. These

expectations were generally reflected by the resaitained.

The exceptions to this were the EMI and MI compdsiefhe EMI actually suggests a curve
that moves in the opposite direction to that exgecivhile the Ml after a short initial decline
for the second period, improves, declines margmaler the subsequent months and
improves in the final period.

2.5.1 Reporting Frequency

While the monthly figures shown in Figure 9 mays@aably reflect control improvement or
degradation after the fact, monthly informationcamtrol performance is of little use in
identifying problems and taking appropriate stepddal with them before process

productivity is severely impacted. An important @sipof control performance assessment is
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determining the optimum reporting frequency whidlalges diagnosis and correction of

control problems within an acceptable time-frame.

Figures 10, 11, 12, 13, 14 and 15 show the daikyayes for the CAIl, CR, EMI, Ml and EFPI
respectively, for all seven assessment periodsinAdaspite the fact that the data is not
absolutely continuous because it was not obtaioeddveral months, the daily scores for
each assessment period are shown as a contiguaius pkder to better identify general

trends.
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Figure 10 Daily CAIl Values
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Figure 11 Daily CR values
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Figure 15 Daily EFPI values

While the general, overall trends for each of them®mponents can still be discerned from
these daily plots when viewed for all the assesspenods together, they offer little value
with regard to identifying trends in performancepinovement or degradation on a short-term,
actionable level. Due to the ‘noise’ associatedhweiich component, a significant decrease in

an EFPI component on one day does not indicatg@atine trend in controller performance.

Daily reporting and interpretation of these indicesy be of value with regard to identifying
short term, temporary but frequently occurring cohproblems, such as operators setting
MV limits too tightly, resulting in downward spikés the CAl on certain days. This could be
an occurrence associated with one operator inqodati and by determining the days on

which this occurs, the operator may be identified advised of the problem.

Alternatively weekly reporting may be preferablegutes 16, 17, 18, 19 and 20 show the
weekly averages for the CAl, CR, EMI, Ml and EFE3dpectively, for all seven assessment

periods:
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Figure 16 Weekly CAl values
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Figure 17 Weekly CR values
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Figure 20 Weekly OFA values
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Figure 21 Weekly EFPI values

The noise associated with each metric is signitigaeduced from the daily averages. The
EFPI and its components each evidence spikes wghsothat do not fit the trend, but
generally a few weeks worth of EFPI information lcbimdicate the overall trajectory of each

metric.

The most notable exception to this is the MI comgrdrior which it is difficult to verify any
sort of trend without more than several monthsad@his metric is susceptible to factors such
as an increase in disturbance frequency and sixénappropriately set operator limits. This
could possibly explain the high, virtually stochastariation in the metric over the

assessment periods, although the same could befshie other components.
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2.5.2

EFPI Trends and Relationships

CAl CR EMI Mi OFA EFPI
CAl 1
CR 0.370818 1
EMI -0.28147 | -0.19595 1
mi 0.062157 | 0.431007 | 0.014164 1
OFA 0.588947 | 0.444703 | -0.36281 | 0.096072 1
EFPI 0.588976 | 0.696213 | -0.23495 | 0.239923 | 0.923191

Table 9 Correlation coefficients between EFPI compomgs

The correlation coefficients between individual EEBmponents may be used, to indicate
whether the trends of each metric are congruetit @ach other or not.

The correlation matrix for the weekly averageshaf EFPI and its component metrics (Table
8) confirms the general conclusions based on alisgpection of the results. That is, the
CAl, CR, OFA and overall EFPI show the generalkitiyry expected for the year of
assessment periods. The MI does not have a signifaorrelation to any of the other metric
components except a relatively weak positive refeiip with CR, while the EMI exhibits a
trajectory which is the inverse of that expectettifie overall performance during the

assessment periods.

The MI's apparently positive relationship with C&Rto be expected if a larger amount of MV
movement, which corresponds to a lower M, resalfglVs hitting limits more frequently. If
this is the case, and MVs are becoming constraime@ of the time then a lower CR will
result provided that this effect is not outweighwgdan increase in the number of CVs at

limits.

Of interest is the apparently inverse relationdieépveen the EMI, which measures the
amount of time spent pushing MVs towards an econampiimum and the OFA which
measures the amount of time the objective functfmends within, in this case, 3% of the
steady state objective function. While at firssteeems counterintuitive, it can be explained
by interpreting a high OFA score as the situatidrere a significant number of MVs have
been pushed close to their optimisation limits tredefore cannot move further in that

direction which will result in a decrease in the EM

This suggests that it may be important to exantieaésults for these two metrics together. If
the OFA score is low but the EMI is high, it maythat the controller is in the process of

optimising and the OFA can be expected to rise. élew, if both the EMI and OFA are low,
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the controller may not be free to optimise and othetors such as tight MV limits or process

problems or disturbances need to be investigated.

The above explanation does not account for therapfg inverse relationship between the
EMI and CAl. The controller will only optimise whenhas non-negative degrees of freedom,

defined as:
DOF = No. of MVs not at a constraint — No. CVs aedpoint or within limits

Thus with a higher level of constraint violatiohat is a lower CAl, we should expect the

controller to be optimizing less of the time, résg in a lower EMI.

However, this negative CAI-EMI relationship couldsgibly be interpreted as occurring as a
result of degraded model quality. If the controlas DOF with which to optimize the
process, but its ability to predict the resultait @itput is compromised by poor model
quality, then it may push MVs to values which thedal prediction indicates will not cause
CV violations, but in fact will.

2.5.3 Significance and Sensitivity of EFPI and Individual Components

It is clear from plotting the EFPI components otrexr assessment periods and the correlation
coefficients between individual components, that¢bmponent whose trend bears the
strongest resemblance to the EFPI is the OFA indlis. is because it exhibits the largest
variations between assessment periods and thergfpriéicantly influences the trajectory of
the composite metric. This is in contrast to thelEMich exhibits the least variation and thus

influences the shape of the EFPI plot very litdkhough it does offset it somewhat.

This evidences one of the weaknesses of the EFficraed also suggests problems with
comparability between the individual component lssand those that may be obtained for
other controllers. That is, the significance of #ffect of each component on the overall
metric and the different levels of sensitivity eatdmponent has with regard to changes in

controller performance.
Significance

The CR index, for instance, was consistently lowalbseven assessment periods, ranging
between around 0.05 and 0.25. This may not necsseran that the controller is

performing consistently poorly; it may be more aetel to assume that these CR scores are a
representative sample which includes the best andtwf what the controller is capable of in
this regard. For example a large number of CVs mdaat the likelihood of a significant

number of them being at a soft constraint mosheftime is small. A score or 0.25 may
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therefore be the best that could reasonably expgdoteahe SLAC CR index, while a score of
0.8 might be expected when applied to a differentmller.

Similarly, the EMI evinces little variation arouitd mean as a result of the previously
discussed small, bidirectional MV movement occgriirequently. This suggests that, for this
controller, the most significant figure of the EBtiore may be the second or third decimal

place. Conversely, the OFA index (with a threshafl8%) exhibits variations as large as 0.3.

Combining these components into a composite masri@an unweighted average can therefore
result in obscuring different aspects of contraf@enance by hiding variations in certain
metrics that may be significant. Or the overall meethay appear to indicate control
performance which is better or worse than it atyualdue to the inclusion of a component
metric that, due to the inherent characteristichefcontroller and process, is consistently

high or low or exhibits large or small variation.

An alternative approach to rolling each componeetritiinto a composite index is to
normalise each individual index value on the basits expected minimum and maximum
values prior to combining them. This would scaleheimdex on the basis of the controller’s
expected capabilities. Values and variations sheaetric would therefore be comparable to
each other and the composite measure would be eqoialy representative of the five

aspects of control performance.

This approach however, would requargriori knowledge of the expected maximum and
minimum values of each index which would not beilatde before applying the metrics to a
sufficiently long period of historical data. Hownlg exactly would need to be determined and

would likely be different for separate controllers.
Sensitivity

The issue of metric variability is closely relatedthe sensitivity of the component metrics,
that is, how well a change in the metric refle¢targes in the aspect of controller
performance it is designed to measure. This seitgitiaries between individual metrics and

very likely between the same metrics for differeantrollers.

Figure 22 shows a hypothetical example where Cdicates all CVs are initially within
limits, then over time one CV progressively viokgelimit for 1% of the assessment period,
then 2% etc. until it is outside its constraintatoouously. Similarly plotted is the EMI
function with all 27 MVs initially moving economittg 100% of the time, followed by one
MV moving in the wrong direction 1% of the timegth2% and so on, until it is moving in
the wrong direction for an entire period while @er MVs are still moving towards their

optimum

54



1.01

1 _v
0.99 \ ————
0.98
\ . B A\ |
0.97
\ —EMI

0.96

0.95

0,94 T T T T T T T T T T 1

Figure 22 Sensitivity comparison between CAl and EMI

If the system under control is highly non-squaréwour of the CVs, the metrics derived

from CV parameters are less sensitive to change$at they are measuring than those
concerning MVs. This is fairly unavoidable with@aame form of scaling of the indices;

however it becomes problematic when the metricxanebined, unweighted and unscaled in

a composite metric.

The issue of sensitivity also raises concerns tiggrthe comparison of metrics between

controllers. The EFPI metrics for a large contmodlech as SLAC will be less sensitive to

changes than a smaller one. This may or may nappeopriate to the importance associated

with changes in each controller’s performance,iboiust be taken into account when

comparing their respective scores.
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3 Historical Benchmarking

One of the key difficulties in developing CPA indgis ensuring that they adequately reflect
a controller’s true performance capabilities. Fmtance, an index’s theoretically possible
values range from zero to one, but in reality thietller's behaviour, when gauged by this
metric, will only register from 0.4 to 0.6. For tB#PI indices this challenge has manifested
as determining the basis on which the metricsridividual variables at each interval should

be scaled.

Incorporating the magnitude of limit violation aah interval into the CAl posed difficulties
because it was hard to define what the maximumejaiable’ magnitude should be in any
statistical, consistent way. The theoretical at imasn violation was often unrealistic and
what may be considered a completely unacceptablation was often well within this
theoretical upper bound. Similarly, although thexmmum MV move limits were used to
normalize the move values each interval for thethBse limits are often set very high and
are only hit in the event of emergency.

The vast majority of the academic work in CPA hasrbconcerned with defining
benchmarks for the upper bounds of some aspecndfailer performance. The current
performance can then be gauged against this bemkhmdicating whether the controller is

performing to the best of its capabilities.

A number of such CPA methods involve a mathematlealvation of the process output if it
was under some form of ‘ideal’ control, therebyabsishing the theoretical best control
performance that could be achieved for the procEss.the various reasons discussed in 1.2,

these methods have mostly been deemed unsuitatdefbcation to RMPCT applications.

Rather than establishing a theoretical upper perdmice bound, it is possible to benchmark
some period of operation that is considered todsg good on the basis of some criteria.
Subsequent results can then be compared to thehibvemk period thereby gauging the
control performance on the basis of the best tidrolber has previously been capable of.

This method is extremely attractive given its sicipf to implement and interpret. It enables
much better comparability between the performanéesfferent controllers, as they are
being gauged on a scale of what they are histdyicapable of. It was applied to the two
aspects of control performance that presented e difficulty for the EFPI: CV limit
adherence and MV move minimisation. The post corsimisng period from 1/06/2007-
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30/06/2007 was identified as the benchmark permo&t.AC as control performance during

this time was identified by engineers to be higsdyisfactory.

57



3.1 Constraint Adherence Benchmark

Patwardhan et al. (1998) propose calculating theviing quantity which is based on the
least-squares control calculation employed in cativeal model predictive control. This

value is then compared for the benchmark and assegperiods.
Jem = Eu w — _v}'u:TQ(u' — v+ Au Tﬁﬂm} (22)

whereE(.) denotes the expectation operatary andu are the measured values of the
setpoints, CVs and MVs during the period of goodgrenance. The matriced andS are

matrices that can be used to weight the output arnd MV moves respectively.

This notion of error as an offset from a setpoimesinot often apply to RMPCT and certainly
not to SLAC which employs range control exclusivetyall variables. The analogous
parameter however is the magnitude of violatio@W@fhard limits. Thus we can define a

quantity
[V =E(RI"QR) (23)

whereR is the vector of CV limit violation magnitudes asampling instant an@ is a
diagonal matrix whose non-zero entries are thereaging unit (EU) give-ups for each CV.
EU give-ups are set based on the relative impoetah&eeping a CV within constrainié.
then provides a measure of the scaled, averagen@itiolation over a period.

Calculation ofV for both the benchmark and assessment periodsa&imgjtthe ratio of the
two yields and index which indicates whether theas been any significant improvement or

degradation of the controller’s performance withaw to keeping CVs within constraints.

V urren
l, = VC—I (24)

Benchmark

A value less than 1 indicates a higher level ofst@int violation while a value greater than 1
indicates that there has in fact been an improvémehe control performance. This
approach is therefore very easy to interpret peidhat the benchmark period has been

selected appropriately.

This index was applied to the five assessment gerfiollowing the benchmark period of June

2007. The results are shown in Table 9 and plottédgure 23.
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Table 10 |, values for 6 assessment periods

Period \' Iy

Jun - 2007 (Benchmark) 136176 | 1.000
Aug - 2007 187755 | 0.725
Oct - 2007 325717 | 0.418
Feb - 2008 246163 | 0.553
Apr - 2008 183470 | 0.742
May - 2008 92031 | 1.480

Figure 23 |, values for 6 assessment periods
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Thely trend concurs with the control performance expefitethese six periods.
Performance falls from the benchmark and remaiwsuotil the second last period which
saw some improvement. By the final period perforoeaimas improved significantly and is in

fact better than the benchmark period.

This final period may now be set as the new benckniy resetting the benchmark with
every improved score, the metric’s ability to gapgeformance on the basis of what the

controller is capable of is improved over time.
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3.2 MV Movement Benchmark

A historical benchmarking method was also appl@e8itAC’s MV movement over the
assessment periods from June 2007 to May 2008sdtwnd term of equation 17 was used to
calculate a quantity representing the averageedddV movement for a given assessment

period:
M = E(Au’Shu)

wheredu | as in the MPC context, is the vector of controles for each MV at each
interval.Sis a diagonal matrix containing the MV movementghés for each MV. These
weights are used to discourage the use of partibliés in resolving CV error. There is a
slight distinction between these weights and theersuppression factors employed in
conventional MPC. Movement weights are only usesktigpriorities with regard to which
MV to use when more than one can do the job. ifefaee redundancies in the MVs, the

movement weights have no affect on movement ordspeeesponse.

As with the Ml component of EFPI, it was desireceielude individual MVs from the metric
for an interval if they were not being used to cohthe process. This involved removing MV
move values that were not being used from vedtorat each interval and adjusting the

weighting matrixSaccordingly.

Once again, by taking the ratio Mffor the benchmark and subsequent assessment pexiods
value is obtained which indicates whether the adieris moving the process around more or

less than for the benchmark period. Results aresshio Table 10 and plotted in Figure 24.

Table 11 | values for 6 assessment periods

Period M I

Jun-07
(Benchmark) | 228.645 1.000

Aug-07 [ 86.669 2.638

Oct-07 | 148.325 1.542

Feb-08 | 160.199 1.427

Apr-08 | 66.049 3.462

May-08 | 74.434 3.072
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Figure 24 |, values for 6 assessment periods

Im does not reflect the overall control performancpested for these periods, nor do these
values agree with those obtained for the MI, altothe overall trend is one of improvement
for the year. However, it is assumed to be a begfifzction of the actual increase or decrease

in MV movement over time than the Ml component &P

It appears from these results that the benchmarki fehould be reset to the value obtained
for Aug 2007. Observing the value lgffor this period shows that the controller is not
keeping CVs within constraints well at this timéid may indicate that the controller may not
be able to move this little without allowing sigi#nt limit violation, which raises the
question of whether selecting different benchmamiaals for different CPA components is

appropriate, given that at some level they may beually exclusive.

3.3 Economic Objective Function Benchmark

Historical benchmarking was also applied to thesotiye function values obtained by the
controller in order to gauge the economic benedissgefined by minimisation of the
economic objective function, the controller is gextig. The quantity to be benchmarked is

defined as
J = E(Ab9qC)) (25)

whereC is the current objective function value at eackrnval of the assessment or
benchmark period. The controller attempts to miearthis value and for SLAC it is
invariably a minimum, hence taking the absoluteigalfC. The economic index is then

defined as
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J
— “~ Benchmark
I ObjFen — (26)

J

Current

lobjrenfor the benchmark and 5 assessment periods arensholable 11 and Figure 25.

Period Abs(C) | I opjren

Jun-07
(Benchmark) 8060 1

Aug-07 7638 0.948

Oct-07 8081 1.003

Feb-08 6016 0.746

Apr-08 13910 1.726

May-08 7959 0.987

Table 12 loyjecn Values for 6 assessment periods

IObchn

g A
1:4 / \
0.8 \-...._,/

0.4
0.2

Jun-07 Aug-07 Oct-07 Feb-08 Apr-08 May-08

Figure 25 lopjecn Values for 6 assessment periods

As with I these results do not reflect what was expecteth&sse periods. The objective
function was fairly constant until early 2007 atierhpoint a significant decrease in the
controllers ability to optimise occurred, whetheledo an increase in disturbances or operator
set limits being placed to tightly. Between Febyuand April 2008 the controller was able to
minimise the objective function to an order of miagghe less than the other periods, before it
returned to a value on par with the benchmark. &lgh this period was expected to be

exhibiting improvement, this spike is yet to basfattorily explained.
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3.4 Composite Metric Based on Historical Benchmarking

It is possible to combine the above three metrits & composite measure of control
performance. This presents the same fundamentblgmoas that identified for the EFPI
rolled up index, which is that a single metric cahadequately provide a complete picture of

the various different aspects of control perfornenc

An additional difficulty is selecting the criterfar defining the benchmark period, given that
control performance may be regarded as good ire@spect and bad in another for a given
period. If one benchmark period is chosen fortakké aspects a component that may have
been performing particularly badly for that periwidl exhibit inordinately large scores for

periods where it was performing well thereby obswipther aspects.

An overall metric), was defined by taking the unweighted averageldhede components.
The results are shown in Table 12 and Figure 26ty show that the components have
effectively balanced each other out, conveying mashk information about overall

performance than the three discrete metrics.

Table 13 | values for 6 assessment periods

Period |

Jun-07 1

Aug-07 | 1.0246

Oct-07 1.236

Feb-08 1.085

Apr-08 1.287

May-08 1.024
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Figure 26 | values for 6 assessment periods

3.5 Prediction Error Diagnostics

While the focus of this project is on the assesgmtoontrol performance as opposed to
diagnosis of performance issues, benchmarking dbpeance indicators suggests a possible

method to diagnose degradation in control.

The improvement or degradation of an aspect ofrobperformance can be measured, not
only for the overall controller, but also for thedividual variables. For instance, the
difference between the average constraint violatiomach CV between the benchmark and
subsequent assessment periods can be measurediabhitone for the historized assessment
periods and the results for each period normaligedh that those CVs exhibiting the largest
inflation of violation from the assessment pericdred ‘1’, while those who exhibited the
least, or actually showed improvement scored aTBeé results are shown in Table 13. The
results are colour coded where red indicates thstvdegradation, orange moderate and

green least or improvement in staying within restsa

It is a simple matter then to identify which of $keeCVs exhibits the worst degradation from
the benchmark. In order to determine whether degiaa of model quality has played a part
in increased restraint violation, the average tesh error was calculated for badly
performing CVs. This was done by taking the chaingbe unbiased prediction for these CVs

and comparing it to the change in there measurkeya
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Average Prediction Error = E(Aba(Unbiased Prediction ACV Read Value)) (27)

Differences in predictions are used because theset prediction does not take into account
unmeasured disturbances (as opposed to the biesdidtipn) so there is often a large offset
between this and the actual value, although if rhqdality is good, their respective
trajectories should be very similar.

The normalized increase in constraint violatiomsrfithe benchmark to period P2 suggests
CV77 is the worst comparative performer for theigukrComparison of the prediction errors
for the CV between the benchmark and assessmentipereal a 70% increase in prediction
error, suggesting a significant degradation in nhgdelity may be a possible root cause for
the increase in restraint violation. Similarlyethormalized differences suggest CV54 as the
most significant worst performer for period P1, ancomparison of the average prediction

errors again shows a decrease in prediction acgtimam the benchmark.

An increase in the average prediction error dog¢suie out other root causes of poor
performance. However, a small or zero increaseediption error can rule out model quality

as a contributing factor.
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Table 14 Normalized inflations/decreases in CV limiviolation

Aug-07
Oct-07
Feb-08
Apr-08
May-08

Aug-07
Oct-07
Feb-08
Apr-08
May-08

Aug-07
Oct-07
Feb-08
Apr-08
May-08

Aug-07
Oct-07
Feb-08
Apr-08
May-08

Aug-07
Oct-07
Feb-08
Apr-08
May-08

Aug-07
Oct-07
Feb-08
Apr-08
May-08

Cvl
0.573732
0.262158
0.226295
0.362062
0.577391

CvV15
0.663056
0.550532
0.217431

0.35272
0.56428

CvV29
0.574033
0.263455
0.227726
0.362644
0.578738

cva3
0.574033
0.263455
0.227726
0.362644
0.578738

CV57
0.574033
0.278122
0.228003

0.36349
0.578738

Cv71
0.662987
0.282544
0.329311
0.366998
0.574926

Ccv2
0.570925
0.265933
0.228375
0.359967
0.579334

CV16
0.574033
0.263455
0.227726
0.362644
0.578738

CV30

- 0.868201
0.561546
0.225128
0.360452
0.575159

Cva4
0.574033
0.263455
0.227726
0.362644
0.578738

CV58
0.574033
0.263455
0.227726
0.362644
0.578738

CV72
0.576045
0.268995
0.231401

0.364
0.578738

Ccv3
0.573798
0.265264
0.228519
0.363039
0.581715

Cv17
0.710312
0.551077
0.234501
0.363246
0.574086

Cv3l
0.574033
0.263455
0.227726
0.362644
0.578738

Ccv4s
0.572173
0.262007
0.242971
0.467209

CV59
0.574033
0.263455
0.227726
0.362644
0.578738

CvV73
0.574033
0.263455
0.227726
0.362644
0.578738

cv4 Cvée

0574738  0.57386 [[0.:807434  0.574033

0.261709  0.263344

023098  0.228025
0362871  0.36256
0.578839  0.578559

cvis cv19

0.574033  0.546472
0.263455  0.238693
0.227726  0.208599
0.362644  0.344026
0.578738  0.551049
Ccv32 cva3

B 0574033
0.675515  0.263455
0.235256  0.227726

08721468 0.362644
0.577744  0.578738

V46 cvaz

0.574033  0.224766
0.263455
0.227726
0.362644 = 0.240516

0.578738 0.26095
CV60 Cv6l

0.672316  0.574033 NG

0.603964  0.263455

| 0784945 0.227726

0.405763  0.362644
0.625507 0.578738

CV74 CV75
0.574033
0.263455
0.227726
0.362644  0.366676

cv7 cvs
0.34396  0.263455
0.218074  0.227726
0.373566  0.362644
0.567057  0.578738
cv21 cv22
0.573992 | 0.777395
0.263419  0.382683
0.227693  0.224734
0362616  0.52252
0.578693  0.575597
cv3a Ccv36
0.544568  0.574167
0.270522  0.263437
0202715  0.22779
0341551  0.36263
0.544273  0.57874
cvag cva9
0.574033  0.572772
0.263455  0.265694
0.227726  0.254656
0.362644  0.356749
0.578738  0.570295
Ccv62 Ccve3
0.574033
0.203621  0.263455
0311295  0.227726
0.362644
0.578738
CcvV76 cv77
0.574033
0.263455
0.227726
0.362644  0.409441

Cv9
0.618729
0.330794
0.220518
0.356397
0.651629

Ccva23
0.573704
0.263198
0.227486
0.362442
0.578409

Cv37
0.515082
0.170727
0.136801
0.305039
0.477854

CV51
0.574033
0.263455
0.227726
0.362784
0.578738

Cv64
0.575089
0.264374
0.227191
0.363391
0.578639

CV78
0.574033
0.263455
0.227726
0.362644

0.578738 [JI0I94SEE3] o0.57873s [N 0.578738

CV10
0.572912
0.262582
0.259369
0.361956
0.577615

Cv24
0.570935

0.225871
0.363127
0.705926
Cv38
0.574033
0.263455
0.227726
0.362644
0.578738
CV52
0.417119
0.253278
0.291318
0.264061
0.441058
CV66
0.574231
0.263455
0.227726
0.362644
0.578738
Ccvs7
0.573589
0.279906
0.231089
0.403054
0.581775

Cvil
0.573837
0.263302
0.227914
0.365373
0.578542

Cv25
0.574064
0.264529
0.227726
0.362644
0.578738

CV39
0.473182
0.224574
0.177952
0.528883
0.497591

CV53
0.574033
0.263455
0.227726
0.362644
0.578738

CvV67
0.668925
0.432069
0.479003
0.367848
0.667594

Cvi12
0.574033
0.268358
0.227726
0.368646
0.578738

CV26
0.573687
0.263185
0.227474
0.362431
0.578392

CV40
0.574033
0.263455
0.227726
0.362644
0.578738

CV54

0.51935
0.366457
0.428819

0.553044
CV68
0.574033
0.263455
0.227726
0.362644

Cvi3
0.574033
0.263455
0.227726
0.362644
0.578738

Ccv27
0.574033
0.263747
0.227726
0.364008
0.578755

Ccv4l
0.557521
0.250605
0.215719
0.358466
0.574294

CV55
0.570728
0.260883
0.274299
0.360616
0.575427

CV69
0.576946
0.294334
0.226795
0.377341

Cvia
0.574033
0.263455
0.227726
0.362644
0.578738

Cv28
0.574033
0.263455
0.227726
0.362644
0.578738

Cv42
0.574033
0.264018
0.227768
0.366265
0.578738

CV56
0.565536
0.256842

0.26866
0.35743
0.570224

CV70
0.690974
0.288845
0.310319
0.362372

0.578738 [10:837918" 0.578294
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4 Conclusions and Future Needs

Several potential methods for the Control Perforoeafissessment of Honeywell’s Profit
Controller, as used in Alcoa’s refinery operatidmasye been researched or developed and

evaluated in this project.

Methods for CPA proposed in several academic stuthee been researched and
qualitatively evaluated for the suitability of amaltion to RMPCT. The majority of the
research in the field has focused on CPA for SI$€Desns or unconstrained multivariate
control systems and thus the proposed benchmankétgods do not take into account the
non-linearities associated with multivariable rasted systems. Further, most of these
methods focus on calculating the error variancthefsystem under some form of ideal
control which does not often apply to Profit Coligowhich typically uses range control as
opposed to setpoints. Also, these solutions ang @btiainable when the process disturbances
are known and do not account for unmeasured dsads. Model-based approaches do
exist for benchmarking the performance of MPC wtegblicitly handle restraints. However
these rely on being able to obtain the value oftctir@rol calculation objective function at
every sampling interval and this was not possilitle Rrofit Controller.

A composite CPA metric initially comprising six septe performance indicators was
proposed, developed and evaluated by applicatieevwen periods of historical data for
which a priori knowledge of the controller’'s performance was aldé. The aspects of

performance each of these were designed to measuecas follows:

» CAI - How well the controller keeps CVs within ded limits;

* MI - How much the controller moves MVs around;

*  OFA - How much value the controller can generaterandel quality;

* EMI - The extent to which the controller uses M@stonomically optimize the
process;

* CR - How the controller adds value to the procgsgushing CVs to constraints and
retaining availability of MVs; and

* TIN — The amount of time the controller is on.
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The last of these, TIN was later excluded fromdterall metric as it was deemed more a

diagnostic rather than performance assessment tool.

The major revisions made to these metrics in thesmoof their development are outlined.
The first of these revisions highlighted that a C#8él must be highly flexible in its
configurability. The CAI for instance, could not Applied indiscriminately to every SLAC
CV, as a number of them were spares, were indieatiy, or deliberately violated limits. It
was necessary to include this knowledge of therotiat into the metric in order to obtain a

result that was reflective of performance.

The majority of the EFPI component metrics weresdasn the frequency of certain events
over the control period. This enabled the simplewation of normalized metrics which it is
fairly reasonable to assume could be applied femrint controllers. The exception to this
was the MI and subsequent to Revision B, the CAg MI normalized the magnitude of
each MV’s move value on the basis of its maximulovedble value. These maximum values
are in practice set very large for emergency cgetircies and thus do not provide a good
basis for scaling the controller's MV moves. Thisot a problem if the controller’s
performance is only being evaluated with respedistprevious performance, but it

compromises the ability to compare the metric axiferent controllers.

The CAI presented the same problem. A satisfactohytion for incorporating the magnitude
of CV limit violation into the metric and normaliay or scaling it on a statistical basis or on
the basis of the controller’'s parameters was naotdo

The frequency most appropriate for reporting of 1 and its components was
investigated. Monthly reports can be used to idgtiing-term historical trends but are little
use in predicting performance trends into the fitliihe daily averages for the metrics,
because of their high variability or ‘noise’, offidtle value with regard to identifying trends
in performance improvement or degradation on atgleom, actionable level. The most
appropriate reporting frequency, for the EFPI iaties is approximately weekly, as this
enables trends to be identified which may be ablarédict the future trajectory of control

action allowing diagnosis and corrective actiotéataken.

Results for the EFPI reveal the principle probleithwa composite metric of this type.
Combining the individual components into a singlenber yields an index that provides very
little real information about the controller penfioance. Components that are consistently low
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or high can skew the overall metric. The low scaretsined for CR, for example, are less
likely to indicate consistently poor performance tather that these values are representative

of what the controller is realistically capable of.

Alternatively the changes in the different metmeay be hidden by others. Metrics with low
sensitivity, or smaller ranges of scores shoulddaged such that changes in these scores are
better reflected in the overall metric. For exanmglehange of 0.01 in the EMI is likely as
significant as a change of 0.1 in the OFA indeimifarly those metrics that are consistently
low or high should also be scaled so as to bettevey whether the controller is performing

to the best of its abilities or not.

The notion of whether a metric incorporates reialisxpectations of the actual capabilities of
the controller led to development and implementatiba historical benchmarking approach
whereby aspects of control performance were gatgjative to what the controller had
previously achieved. This approach was appliethiteet aspects of control performance:
keeping CVs within restraints, minimising MV movemeand minimising the economic

objective function.

The results are very easy to interpret, as theplgimdicate how well the controller has
performed relative to a period of operation thas watisfactory. It is recommended that this
method be used in the EFPI to replace the CAl ahddvt removes the need to find an
appropriate basis on which to scale the CV limilations and MV move magnitudes. If,
however, the frequency of limit violation is alsesited, the CAl in its original form should

be retained.

The results obtained for the EFPI show a trajectioay generally reflects what was expected
in terms of control performance for the assessiperibds. However, the rolled up metric

conveys very little information without also obsiexyits component metrics.

More work is required to ensure that these indiglduetrics produce results that are
comparable between different controllers. The messsshould ideally be applied to several
different controllers and scaling methods for thetmas further investigated.

The relationships between the different metricsettgved need to be further studied to
improve their utility as a diagnostic tool. Theseniot a currently a good understanding of
why some scores may be low and others high inrélifecombinations. It is believed that a

detailed study of these relationships, combinet wibre information about what was
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occurring in the process and with the controlleririyassessment will enable a better
interpretation of the information the metrics copvia particular, this further work should
focus on investigation of the metrics in combinatwith process disturbances, changes in
operator set limits and prediction error as andattir of model quality.

An inordinate amount of time was spent on applyegsions in the metrics to the historized
data. Microsoft Excel was used for this as it Wias ased to recover the historized data for
assessment. If further research is to be undertiakiis area it would be advisable to write a
program with Matlab or some other mathematical mogwhich can be coded to apply
changes quickly to performance metrics.

Finally, it is necessary to define further critefioa the evaluation of different metrics. At
present, the main criterion is whether metric nsscbncur with what was expected from the
controller during assessment periods. It would &igularly desirable to investigate the
relationship between the performance indices ahdrdinancial indicators of process

performance.
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