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Abstract 
The aim of this project was to build a supercapacitor bank, dc to dc converter, and testing 

rig to perform efficiency testing for various configurations of the super capacitor bank 

against various hybrid electric vehicle regenerative braking profiles. 

A bank of 10 25F cells was constructed along with a bidirectional DC to DC converter 

allowing practical testing of two of the four possible bank configurations. 

An average of 55% and 63% end to end efficiency was found for the two configurations 

respectively when tested under three different scaled regenerative braking profiles.  

It was found that capacitor banks with a higher maximum voltage i.e. more cells in series 

were more efficient as there were lower input and output currents and most of losses were 

restricted to the converter. 
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1 Introduction 

The purpose of this project was to evaluate the use of supercapacitors as storage devices for 

regenerative breaking in hybrid vehicles. 

Supercapacitors are high capacitance capacitors with a large power density that are filling 

the gap between batteries and capacitors.  

A lot of attention has been given in the last decade to using supercapacitors in hybrid 

vehicles to overcome the deficiencies of batteries especially when it comes to harnessing 

and releasing the power generated in regenerative breaking.  

As supercapacitors have much higher power densities than batteries, the devices can 

successfully absorb the power produced by the regenerative braking, which is normally 

over a short time interval. To achieve this with batteries, large battery banks need to be 

installed which are costly, inefficient and heavy.  

There has been a lot of work done on this topic but this thesis is going to focus on testing 

the efficiency of the charging and discharging of supercapacitor banks in different 

configurations with regenerative breaking profiles.   

2  Aims 

The aims of the proposed project are to 

• Design a scaled down capacitor bank for regenerative breaking. i.e. size a capacitor 

bank based on the scaled powered requirements. 

• Design a DC to DC converter to regulate the output of the capacitor bank and 

allows both charging and discharging of the capacitors. 

• Test the capacitor bank and DC to DC converter efficiency by charging and then 

discharging the setup in line with various regenerative breaking profiles. 

• Repeat efficiency testing with the capacitors in the capacitor bank in various setups 

i.e. various parallel/series arrangements. 

When the project is complete, a capacitor bank with a corresponding DC to DC converter 

which is capable of charging and discharging should have been constructed. Also a test rig 
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with voltage and current monitoring with appropriate power for charging and load banks 

for discharging should have been constructed.  

Various setups of the capacitor bank will be tested against a number of regenerative 

breaking profiles.  

3 Project Management 

A project plan was created at the start of the project covering the expected completion of 

the major milestones. 

Figure 1 displays the plan for the completion of the major stages of the project. It is broken 

up into research, design, construction, testing (including experiments), analysis and report 

completion. Completion of these stages were defined as being the key milestones for the 

project and as can be seen in Figure 1 certain tasks are dependent on completion of other 

tasks, while other tasks can run in parallel.  

ID Task Name Start Finish Duration
Aug 2009 Sep 2009 Oct 2009 Nov 2009

2/8 9/8 16/8 23/8 30/8 6/9 13/9 20/9 27/9 4/10 11/10 18/10 25/10 1/11 8/11 15/11 22/11

1 16d24/08/20093/08/2009Research

2 16d7/09/200917/08/2009Design

3 6d15/09/20098/09/2009Construction

4 21d14/10/200916/09/2009Testing

5 25d30/10/200928/09/2009Analysis

6 6d9/11/20092/11/2009Completion of report

 
Figure 1 Project Plan 

The actual project followed the original plan to the end of the design phase, after the design 

phase the plan fell considerable behind schedule.  

While the project was completed on time, not all of the original objectives were met.   

There were delays in acquiring parts and there were considerably more difficulties in the 

construction phase than expected. The construction phase ended up absorbing the testing 

phase and the testing and analysis phases were reduced to 1.5 weeks. 

This project would have been better suited to a longer time period, of either 6 months at full 

load or over 12 months at half load.  

The practicalities of obtaining parts on short notice and the construction and testing of a 

working practical system was challenging in the 14 weeks available for the project. 
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4 Literature Review 

This project uses supercapacitors, regenerative braking theory and DC to DC converters. 

The background, theory and interconnections will be explained in this section.  

4.1 Capacitors 

Supercapacitors, also known as ultracapacitors, electric double layer capacitors and 

electrochemical double layer capacitors, are capacitors with high capacitance and high 

power density, with commercially available capacitances up to 5000 F and power densities 

up to 20kW/Kg.[1] 

Supercapacitors are not new technology, as the first patent was issued in 1957 to General 

Electric for a low voltage electrolytic capacitor. [2] They are now in thousands of consumer 

electronics, mainly to provide backup power for memory in electronic devices such as 

PDAs, mobile phones and DVDs players. They are also used to supplement battery power 

for power intensive applications as a means to extend battery life.[3] A study by Maxwell 

technologies has shown that the cycle life of a battery can be drastically increased by the 

addition of a supercapacitor from around 180 cycles of a regular AA to about 580 cycles.[4]  

 

Improvements in design and material technology are allowing supercapacitors to be used in 

much higher power applications such as UPS and hybrid cars.  

Modern supercapacitors have many advantages over traditional capacitors and secondary 

batteries such as lithium ion batteries such as:  

• They can provide high amount of power in a short period of time. 

• As no chemical reactions take place the cycle life is over 500,000 cycles. The 

manufacture Panasonic states an unlimited number of cycles for their gold cap 

series [5]. On the other hand rechargeable batteries usually degrade in a few 

thousand cycles.[3] This results in a device that can out last the product it was 

designed for and requires lower maintenance. 

• They have very good temperature operational characteristics and can operate as low 

as -40C°, where batteries have poor performances at low temperatures. This makes 

them suitable to assist batteries in low temperatures as the batteries can trickle 
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charge the capacitors and the capacitors can then provide enough current to start a 

motor in a car. 

• No special charging equipment is necessary. As long as the capacitor’s voltage and 

current ratings are not exceeded, the capacitors cannot overcharge. 

• They have high efficiencies of up to 95% [6] 

 

While supercapacitors have much higher power densities than batteries they have much 

lower energy densities.  

 
Figure 2 Ragone Plot[1] 

As can be seen in Figure 2; supercapacitors have much higher power densities so their 

energy can be released in a fraction of the time taken by secondary batteries. But an 

supercapacitor has about 5% the energy density of a lithium ion battery. However studies 

are being undertaken at MIT to try increase this value to 50% with the introduction of 

bonded carbon nanotubes. [3] 

At the moment supercapacitors cannot replace most battery applications but they can assist 

batteries where high currents over short periods and large number of cycles are needed. 

 

Supercapacitors are fundamentally different to normal capacitors. They were first 

discovered by General Electric in the 1950s and then developed by the Standard Oil 

Company Ohio in 1966.[7] Capacitors store energy in an electric field which is created by 

applying a voltage across two plates. The two plates are separated by a thin insulator to stop 
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the plates from shorting out. This process stores energy without the need for a chemical 

reaction, but as a consequence, the energy is stored on the plates of the device, not in the 

bulk of the material. This lack of a chemical process infers that a capacitor has a nearly 

unlimited cycle life.[3]  

Supercapacitors address two of the three features that affect capacitance in a capacitor, 

which are the surface area of the plates, the distance between plates and the dielectric of the 

material separating them. While the supercapacitor has basically the same structure as a 

capacitor i.e. two plates separated by a thin insulator, the construction of the plates and the 

electrolyte that fills them is vastly different. The two plates or electrodes are covered in a 

thin layer of activated carbon, giving them an effective surface area 100,000 times larger 

than a traditional capacitor. The insulator is a porous insulator that allows the flow of ions 

in the electrolyte. As the electrolyte can flow in the capacitor the positive and negative ions 

flow to the respective electrodes. [8] At the interface between two dissimilar materials or 

phases an array of charged particles is formed and this is known as the electric double 

layer. [9] As ions cling to the electrodes of opposite charge, this electrical chemical double 

layer forms a capacitor between the electrode and the electrolyte ions on the electrode, 

giving an effective plate separation of the size of a few molecules. [8]  

The basic equation for capacitors is: 

d
AC ε=  (1) 

 

Where C is capacitance, ε is the product of the permeability of free space and the dielectric 

constant, A is the area of the plates and d is the distance between the plates. 

Supercapacitors increase the area A by using activated carbon and reduce d by using the 

electric double layer; this combines to give supercapacitors a high capacitance.[8] This is 

illustrated in Figure 3. 
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Figure 3 Cross sectional view of a supercapacitor[8] 

There are numerous works being conducted to reduce the internal resistance, increase the 

current carrying capacity and capacitance. Some of the work being undertaken to increase 

the capacitance are through the use of carbon  nanotubes to increase the electrode area and 

coating the electrode in a dielectric to increase ε. 

The voltage of these capacitors needs to be low to stop reduction and oxidation from taking 

place at the electrodes. The voltage differs depending on the electrolyte in the capacitor. 

For aqueous capacitors the voltage has to be around 1V, while for organic electrolytes they 

can be as high as 3V, with 2.5V being typical. [1] 

These low voltages are a weakness of supercapacitors. To get a reasonable voltage drop, 

many supercapacitors have to be placed in series. As capacitance is reduced when 

capacitors are placed in series, placing them in series results in both a loss of capacitance 

and a higher loss of power due to the increasing equivalent series resistance (ESR). Placing 

capacitors in parallel increases the overall capacitance and lowers ESR but then a DC to 

DC converter is needed which adds weight, cost, and introduces its own losses.  
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4.2 Regenerative braking 

Hybrid electric vehicles aim to combine the best parts of combustion engine design and 

electrical technology (electric motors and storage devices) to make a car more efficient. 

This allows a car engine to be sized to handle cruising loads and uses the energy storage 

components to provide peak load power such as acceleration. Currently, most hybrids use 

batteries as the secondary energy source. 

The disadvantages with using only batteries are:[6] 

• Batteries don’t function well at low temperatures. 

• Sophisticated charging equipment is needed. 

• Low life cycles mean that batteries need to be replaced often in the life of a single 

vehicle. 

• Poor ability to retrieve and provide short bursts of high power. 

 

The aim of regenerative braking in hybrid electric vehicles is to recover as much of the 

kinetic energy as possible when braking the vehicle. Most systems use a combination of 

friction brakes and a generator to achieve this, with the energy being put back in the 

electrical storage device of the vehicle.[10]  

 

Regenerative breaking provides high current over a short period with a high  number of 

cycles. Supercapacitors have the ability to absorb all of this energy at a high efficiency, 

while batteries on the other hand can not readily absorb high current. The supercapacitor 

can then be used to provide high current during acceleration. In addition, it can provide 

trickle charge for the batteries and can be used for other electrical loads, such as power 

steering. This increases the life of the batteries as there may be tens of thousands of 

regenerative cycles per year while a battery can only accept a few thousand cycles. Another 

factor which reduces the life of a battery is deep current draw, which can be avoided if the 

capacitors are used for high current loads. Therefore, using capacitors increases battery life 

and allows a smaller and lighter battery pack to be installed, and also helps the batteries 

operate at low temperatures. They also don’t need sophisticated charging equipment and 

are low maintenance.  
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4.3 DC to DC converter  

Supercapacitors operate on extra low voltages, while most hybrid electric vehicles, such as 

the Toyota Prius 2 operate their batteries at  voltages of 202VDC, and the motor and 

generator runs off 500VAC. [10] To get 202 VDC from a supercapacitor bank requires 80 

supercapacitors to be placed in series. 

This may be impractical or increases the weight and cost by having a larger bank than 

required. Also, unlike batteries, capacitors lose their voltage quickly with the discharge of 

energy. For example, if a bank was reduced to half of its voltage it would have discharged 

75% of its energy. Thus to allow better sizing of banks and allow for a higher discharge of 

energy a DC to DC converter is needed.  

There are a vast number  of different DC to DC converter topologies available, but in the 

regenerative braking application  the converter will need to be able to increase the voltage 

for discharge, decrease the voltage of charging and be able to operate over a large voltage 

range. Two converters which satisfy this condition are the buck boost and full/half bridge 

converters.  

Buck boost converters are able to increase or decrease the output voltage relative to the 

input voltage depending on how they are set up. While they have many advantages, such as 

having commercially available control chips, they are only unidirectional. This would result 

in a need for either two converters, one for charging one for discharging, or a switching 

arrangement that changes the input and output connections when charging/discharging is 

needed.   

Full bridge dc-dc converters allow for bidirectional flow but the switching and control is 

more complicated. There are many topologies for full bridge and half bridge converters 

designed for supercapacitors and fuel cells which are highly efficient. [11, 12] 

 

A dc to dc converter fits in to the hybrid electric power train as shown in Figure 4. 
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Figure 4 DC to DC converter [11] 

5 Design 

The design stage was completed in a methodical way to ensure both an accurate and 

efficient outcome. The process involved 3 phases: 

• Selection of capacitor bank size 

• Assessment of driving cycles to determine charging times and power 

• Design of the DC to DC converter  

5.1 Capacitor bank selection 

The first stage in the design process was to determine the size of the supercapacitor bank. 

There were a number of considerations to take into account, such as voltage range, cost, 

flexibility, current and energy limitations, and lead time. It was decided that in order to 

lower lead time and cost, the parts would be sourced from local suppliers such as Altronics 

and Jaycar. Altronics had a number of super capacitors ranging from 5 F to 100F which 

appeared to be suitable. 

The number of cells was selected to be 10 as it offered the most flexible bank 

configuration. By selecting 10 cells 4 different parallel/series arrangements could be made.  

The capacitor size was selected as 25F. This value was chosen because when parts were 

sourced, it was the largest size available in the quantities required. It also meant that new 

power supplies and large MOSFETs were not required. The power supplies available could 
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provide enough power for the experiments and large MOSFETS were not required, as the 

current output was within tolerance of locally available MOSFETs. 

 

The specifications of the different bank configurations are shown in table 1. 

 
Table 1 Bank Specifications  

Configuration Series Parallel Capacitance (F) ESR (Ohms) Voltage (V) 

1 10 1 2.5 0.4 27 

2 5 2 10 0.1 13.5 

3 2 5 62.5 0.016 5.4 

4 1 10 250 0.004 2.7 
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5.2 Driving cycles  

The second stage was to assess driving cycles to obtain braking times and velocities that 

could be used to determine the power and the times used in the experiments 

The braking profile selected for the experiments and for the sizing of the capacitor banks 

was the US06 driving cycle[13] as seen in Figure 5. 

 
Figure 5 US06 Driving Cycle [13] 

As a part of the design process this driving cycle was evaluated for a Toyota Prius 2. Each 

of the braking sections in Figure 5 was evaluated for the amount of power and energy that 

could be produced by the 47.6 kW engine of the 1254 Kg vehicle. While a number of 

assumptions were made, such as all of the kinetic energy during the braking could be 

converted to electrical energy ( i.e. frictional and air resistance effects were ignored and the 

motor generator was assumed to be 100% efficient), it still provides insight into the amount 

of energy produced by regenerative braking. By using basic physics equations from [10, 

14],  Table 2 was produced.  
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Table 2 Braking Profiles 

Braking 

Section 

Change in 

Velocity (m/s) Time (s) 

Force 

Produced by 

Braking (N) 

Power 

generated 

(kW) Energy(kWh) 

1 19.75 18 1376.14 27.18 0.136 

2 31.6 32 1238.52 39.14 0.348 

3 6.21 13 599.12 3.72 0.013 

4 28.16 26 1358.4 38.25 0.276 

5 9.42 6 1968.26 18.53 0.031 

6 12.17 9 1695.96 20.64 0.052 

7 11.44 8 1793.51 20.52 0.046 

8 13.41 8 2102.54 28.2 0.063 

9 23.06 15 1928.12 44.46 0.185 

 

It was also found that if the air effects were ignored and the generator was 100% efficient 

that frictional brakes would not be needed to supplement the braking as the regenerative 

braking had enough force to stop the vehicle in the required time. 

A number of these sections were chosen for the experiments. 

From this table the braking section which produces the largest amount of energy was 

identified (no. 2) and used to size the power to be used in the experiments.  
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5.3 Charging characteristics  

Using the process found in Douglas’s Sizing Ultracapacitors for Hybrid Electric 

Vehicles[14], a scaled down charging power was selected for braking section 2 taken from 

Table 2.  

The equations used were: 

 

 

(2) 

 

 

 

(3) 

Where E is the terminal voltage, C is the cell capacitance, R and RESR is the capacitors 

equivalent series resistance (ESR) and p is the charging power. 

These equations were placed into a MATLAB script which takes the specifications of a 

capacitor such as current rating and voltage. A minimum bank voltage is calculated from 

the constant discharge power and current rating. Then using equation 2 in a while loop the 

equation is resloved until the number of cells is high enough so the finial discharge voltage 

of the cell is greater than the minimum voltage. The MATLAB script is located in the 

appendices. 

  

This process was then used to asses using a bank of Maxwell technologies 3000F cells is 

for the powers calculated in Table 2, using equations 2 and 3 it is found that due to the 

maximum current of 150A per cell[15] 208 cells needs to be added in series in order to 

absorb the highest power calculated in Table 2 of 39.14kW for the 32s braking time. This 

result in a maximum peak power of 84240 kW. Using data from [14], this equates to a DC 

converter weight of 16.84kg and a bank weight of 114kg giving a total weight of 130.84kg 

for the system. The weight could easily be reduced by using cells with a higher current 

rating. The cells used in this simulation evaluation only had a continuous current rating of 

150A,  resulting in a high minimum voltage.  
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 As the system used in the project is based around a scaled system this process was used 

again but instead of the number of cells being the unknown the power was the unknown. 

Solving using an iterative process for a bank of 10 25F cells in the four configurations 

stated in the previous section, it was found that 25W was the recommended rated power. 

The results for the selected power of 25W for 32 seconds for the four configurations are 

shown in the charging profiles of Figure 6. 

 
Figure 6 Charging Profile 

25W for 32 seconds was a representation of the largest amount of energy in the braking 

profiles so for the experiments the other braking sections power was a ratio of 25W. 
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For the experiments three braking sections have been identified to be used and are 

summarised in Table 3. 
Table 3 Selected Braking Profiles 

no. ΔV (m/s) Time (s) Charging Power (W) Charging Energy (Wh) 

8 13.4 8 18.01 0.0400 

2 12.2 9 13.18 0.0330 

2 31.6 32 25.00 0.2222 

  

 

As can be seen in comparison with Table 2, the charging powers are all ratios of those 

calculated previously from the US06 driving cycle. The chosen experiments provide a 

range in both time and energy to give a good indication of the characteristics of the 

supercapacitors.  

The capacitors will be discharged into a load bank of resistors, discharging at a rate of 25W 

to simulate acceleration of the vehicle after the braking section. 

5.4 DC to DC converter design 

The DC to DC converter was designed around the maximum currents and voltages 

calculated in the previous section.  

 

While realistically the high voltage bus of a hybrid vehicle is around 200 VDC, due to 

safety concerns the high voltage bus for these experiments will be kept at 45 VDC to stay 

below the extra low voltage limit of 50 VDC.  As was shown in the previous sections, the 

voltage of the supercapacitor bank will vary from 2.7 VDC to 27 VDC, meaning that the 

DC to DC converter will need to be able to switch from 45 VDC to a minimum voltage of 

2.7 VDC. 

 

There are a number of complexities when designing a converter for this kind of unique 

application, which means that an off-the-shelf device is not suitable.  

Firstly, the device needs to be a bidirectional two quadrant converter, meaning that the 

converter needs to be able to switch current in both positive  and negative directions of 
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flow. The output voltage varies over a large range and considerations in inductor selection 

need to be made carefully.  

As the aim of the system is to simulate a regenerative braking system, constant power needs 

to be delivered to the load, which makes voltage regulation inappropriate and a new 

controller needs to be developed.  

 

While there are a few topologies designed for supercapacitors in hybrid vehicles (see [11, 

12]) these topologies are too complex to build in the limited time frame available for this 

project. Most of these topologies are full or half bridge arrangements that use zero voltage 

switching (ZVS) resonant circuits to reduce switching losses and increase the system 

frequency thus decreasing the size of the inductive components. They also include an 

isolation transformer which acts not only as isolation, but also as the inductor for the 

resonant circuit and assists in switching between large voltages.  

With the currents involved with this design there are no off the shelf transformers suitable 

for the task, so that a transformer would need to be designed and wound for the converter.  

To stay within the limited time frame, and to reduce circuit complexity a half bridge non-

isolated topology was used. The circuit is shown in Figure 7.  
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Figure 7 DC to DC converter design 

The operation of the converter is relatively simple and is essentially a buck converter 

stacked on top of a boost converter.  

When operated in buck mode the MOSFET X2 switches with a duty cycle which is directly 

proportional to the output voltage, when the switch is in the off mode the energy stored in 

the inductor is discharged through D2, and when the switch is on energy is transferred from 

the input to the output.  

When operated in boost mode the bottom switch is used: when switched on the energy is 

stored in the inductor and when switched off the inductor energy flows to the input thus 

transferring negative current.  

5.4.1 Driver circuits 

Switch mode power supply chips SG3524 were chosen to produce the pulse width 

modulation (PWM) to drive the MOSFETS. Though during testing it was discovered that 

the chips used did not provide enough current to quickly switch on the MOSFETs, to 

overcome this, for the low side n channel MOSFET, a transistor totem pole was 

implemented. The signal from the PWM chip goes through an inverter that provides 0 to 12 

VDC signal to Q3. When the input is high Q1 switches on causing the MOSFET to turn on. 
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When the input is low Q2 turns on causing the MOSFET to turn off. The advantage of this 

system is that it provides the required current with low resistance to charge and discharge 

the gate of the MOSFET reducing the time required to turn on.  

 

The high side MOSFET is a p channel MOSFET which required a more sophisticated 

design. To turn on the high side switch, the gate voltage needs to be 10 to 15 VDC below 

the source voltage which is the 45V rail.  The driver circuit is similar to the low side switch 

but uses Q6 as a current source and selects the value for R1 so the voltage drop across the 

resistor becomes 15V when the input is high. When the input is low Q4 switches on 

bringing the gate voltage to 45V switching off the MOSFET.  

5.4.2     Control Method 

Due to the need for constant power delivery to the load, the control method for the 

switching of the MOSFETs cannot be the standard voltage mode control. Originally it was 

proposed to use proportional integral derivative control (PID) in a feedback loop, but due to 

the quick high order response of the system the control was unstable causing erratic 

unstable behaviour.  

 

The difficulty with constant power control in this application is a step change in voltage 

does not result in a response that can be modelled by a first order circuit. It results in a large 

rapid positive change in power quickly followed by a rapid negative change in power. This 

is due to the rising capacitor bank voltage, as the bank voltage reaches the step input level 

the power returns to zero as there is no voltage difference. 

 

The controller that was used is a model based controller with a proportional integral 

controller making minor adjustments. The concept behind the controller is that to obtain 

constant power with a capacitor bank the input voltage needs to be rising at the same speed 

as the capacitor bank voltage creating a voltage difference which is proportional to the 

required power. 

This was achieved by sampling the capacitor bank voltage and then feeding it into equation 

4. 
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𝑉𝑉𝑃𝑃𝑃𝑃𝑃𝑃 = 𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠 (𝐾𝐾1 − 𝐾𝐾2𝑒𝑒−𝐾𝐾3𝑉𝑉𝑜𝑜𝑜𝑜𝑜𝑜 ) (4) 

 

Where VPWM is the voltage output of the converter, Pset the power setpoint, K1, K2 and K3 

tunning parameters and Vout the capacitor bank voltage.  

This creates a reference trajectory for the control input voltage where the voltage difference 

starts off large as the capacitor bank voltage is low and gets smaller as the capacitor bank 

voltage increases thus keeping constant power.  

The output from the above equation is then fed into a 4th order polynomial which is a 

linearization of the PWM chip to produce the PWM chip’s input voltage.  

The buck converter was much simpler, as the load bank was resistive it was essentially a 

voltage controller not a power controller.  The controller read in the capacitor bank voltage 

and calculated the duty cycle required to reach 45V and outputted that value. There was a 

small PI loop performing minor corrections on the power.  

 

5.5 Data acquisition 

A labVIEW program with a National Instruments USB-6008 data acquisition card was used 

for the data acquisition. The program has four analog inputs  

• Voltage input 

• Voltage output 

• Current input 

• Current output 

The voltage signals are dropped down to a 0-10V input through a voltage divider and the 

current inputs are read in from two LEM LTS 15-NP Hall Effect sensors.  

The software records all the data into a .csv file which is time stamped. 

The front panel of the labVIEW program is displayed in Figure 8. 
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Figure 8 DAQ front page 

The labVIEW program also has the controller onboard and outputs a 0-5VDC signal to the 

PWM chips to produce the PWM of the appropriate duty cycle. 

From the front panel all of the major measurements are displayed along with all of the 

controller parameters and switches for the converter.  
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5.6 Integration  

Figure 9 shows a system overview. 

 

 

 
 

 

As can be seen in the figure the controller takes in all of the process information and 

outputs the PWM command to the PWM controller and passes the information to the 

database. 

6 Construction and testing 

The DC to DC converter and data acquisition system needed considerable testing and 

debugging to achieve satisfactory operation. 

6.1 DC to DC converter 

The DC to DC converter worked as expected after some modifications to the original 

design. 

Originally the design did not include MOSFET driving circuits, which caused the 

MOSFETs to switch on very slowly which was causing them to burn out. Once driver 

circuits were added the boost converter was successfully operated at 133 kHz. The gate 

switching voltage contained a significant oscilliatiorycomponents as seen in Figure 10.  

PWM 

Controller 

45VDC 

Power Supply 
Hall Effect Current Sensor 

Vin Iin 

DC 

DC-DC Converter 
Hall Effect Current Sensor 

Iout Vout DC 

Capacitor Bank 

Database 

Figure 9 System overview 
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Figure 10 Boost mode gate switching 

 

The boost converter was tested with an 8VDC input across its full range of duty cycles with 

a 28.4Ohm resistive load. The efficiency is shown in Figure 11. 

 
Figure 11 Boost mode efficiency 

For this test, it became obvious that the converter would not be able to boost the voltage up 

from the lower voltages to 45 VDC which was the original intention.  

The converter was able to step the voltage by a factor of three with a duty cycle of 66%. 

This will have an effect on the subsequent experiments later. 

The efficiency will be different for the experiments as they will be operating at higher 

currents, but it gives an indication of the characteristics of the converter.   
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During testing in boost mode with the capacitor bank as the input voltage source it was 

noticed that, as expected, the converter was operating in continuous conduction mode as 

indicated in Figure 12, which is a differential measurement of the inductor voltage.  

 
Figure 12 Boost mode inductor voltage 

The buck converter had significantly more problems than the boost converter which was 

the result of using a p-channel MOSFET.  When trying to switch the MOSFET at 133 kHz 

it was found that at lower duty cycles the MOSFET did not properly switch on as seen in 

Figure 13 which shows the MOSFETS gate to ground voltage.  

 
Figure 13 133 kHz switching 

This resulted in an unstable controller as the converter had bad resolution at low duty 

cycles and didn’t start operating correctly till the output voltage was around 15V. 
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To solve this problem the switching frequency was dropped down to 16 kHz. If more time 

was available the driver circuitry would have been improved to allow faster switching.  

An example of the low duty cycle switching is shown in Figure 14 as can be seen the gate 

signal is much sharper and drops the required 10V to switch on the MOSFET. 

 
Figure 14 Low duty cycle 16Hz switching 

While lowering the frequency increased the controller’s stability it had some negative 

effects. Lowering the frequency meant that the inductor which was sized for 100kHz 

switching was much too small, making the converter operate in discontinuous mode which 

means that the inductor current falls to zero during the off state. While the converter will 

still work it complicates the characteristics of the converter. The output frequency was no 

longer just dependant on the duty cycle and input voltage but also on the output current. 

The discontinuous conduction operation is shown in Figure 15. 
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Figure 15 discontinuous operation 

 

The buck converter was tested with a 45VDC input for all duty cycles from 8% to 60% 

with a 28.4Ohm resistive load. The efficiency is shown in Figure 16 

 
Figure 16 Buck Mode Efficiency measurements 

 

 

The efficiency varies considerable across its range with higher efficiency at higher duty 

cycles. This will have repercussion on the experiments as the capacitor banks with a lower 

voltage are likely to have greater losses due to converter inefficiencies at low duty cycles. 
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6.2 Data acquisition system 

The data acquisition system was relatively simple due to the programming nature of 

labVIEW. The major configuration that needed to be performed on the system was 

calibrating the voltage and current inputs. The voltage inputs were simple to calibrate using 

a simple calculation based on the input impedance of the analog input and the resistive 

divider values. However the current inputs were not as simple.  

The original design used 20A 50 mV current shunts in conjunction with a -100 to 100mV 

to -5 to 5VDC signal conditioners. This was found to be unsuitable for a number of 

reasons. Most of the currents used in the experiments were low values for this size of 

current shunt, resulting in low values being passed to the signal conditioner.  

The second problem is that there was considerable noise circulating in the circuit due to the 

high frequency switching. This noise impressed onto the current shunt was larger than the 

voltage output of the current shunt. This caused errors in the output which could not be 

filtered out in the software. 

 While a number of solutions were tried such as using shielded cables and shielding the 

inductors, this did not solve the problem. As the problem was enhanced by the low output 

value of the current shunt a different approach was taken.  

 

The next approach was to use Hall Effect sensors. It was believed that as the problem was 

with noise over laid on a voltage signal, if current could be sensed directly and then 

amplified, a lot of the noise problems could be avoided.  

This solved many of the problems but there was still noise overlaid on the Hall Effect 

sensor outputs. After some investigation it appeared that there was a ground loop in the 

system once the ground system was simplified and a two-stage second-order RLC filter was 

added prior to the DAQ card. 

The two stage second order filter is shown in Figure 17 and its frequency response is shown 

in Figure 18. The high frequency noise is expected to output at 133kHz and 16kHz in line 

with the switching frequencies.  
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Figure 17 filter 

 

 
Figure 18 filter bode plots 
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6.3 Control loop 

The control loop worked well once it was tuned, but needed retuning for different power set 

points. This was due partially to the model and to the converter operating in discontinuous 

conduction mode. A few examples of the controllers operation are shown in Figure 19 and 

Figure 20. 

 
Figure 19 Controller response 

 

 
Figure 20 Controller response 2 
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These are examples of the tuned controllers, which as can be seen from the figures the buck 

operation has a very fast response and then settles on the set point for the duration of the 

test.  

The controller worked best for lower powers; 25W appeared to be near its stability point. 

The controller was more likely to be unstable at higher set points if the tuning parameters 

were not quite right than at the lower set points.  

The boost controller was much simpler due to the load being resistive and relied more 

heavily on the PI loop.  

This controller was a linear controller that worked well for higher bank voltages. Once the 

voltage of the bank dropped below 15VDC the converter could no longer switch it up to the 

45volts required to produce 25W, which explains the power drop off. 

6.4 Capacitors 

As supercapacitors, like electrolytic capacitors, have a tolerance of ± 20%, the capacitance 

needs to be verified for validation of experimental results.  

As the capacitors were too large to be measured by multi meters that have an upper range in 

the order of micro Farads, a voltage step was performed on the capacitor bank to determine 

the capacitance.  

Performed on the 27V capacitor bank over a 15V change the calculated capacitance was 

2.495F where the expected nominal capacitance was 2.5F.   

One of the practical factors in the construction of the capacitor banks was the inclusion of 

passive voltage balancing and over voltage protection. As supercapacitors have a large 

tolerance when they are placed in series there is the potential for some capacitors to have an 

unequal voltage drop across each cell, where a cell could have a voltage drop of over 

2.7VDC, thereby damaging that capacitor. The passive voltage balancing was achieved by 

using high value low tolerance resistances across each capacitor cell to ensure the voltage 

was the same across each resistor.  

The over voltage protection was a zener diode equal to the maximum voltage of the bank, 

This diode would discharge the bank to ground if the voltage exceeded the zener 

breakdown voltage.  
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7 Experimental method 

The aims of the experiments are to measure the efficiency of charging and discharging a 

supercapacitor bank to/from a DC bus. 

While the original intention was to do experiments for all four possible bank 

configurations, it became apparent that for the DC to DC converter testing it would not be 

possible to perform the required experiments on bank configurations 3 and 4 due to the low 

bank voltage.   

 

7.1 Setup 

Firstly the test rig, DC to DC converter and supercapacitor bank need to be set up using the 

following equipment or equivalents. 

 

Equipment: 

• 2 ESCORT 303TD power supplies 

• 10 Vina 2.7V-25F  Supercapacitors 

• 2 LEM LTS 15-NP hall effect current sensors 

• 1 NI USB-6008  DAQMX card 

• Computer installed with labVIEW 

• DC to DC converter in accordance with. schematic  

• 2 low pass filters in accordance with schematic 

• 2 SG3524 SMP control IC 

• 4 270ohm 10W resistors 

• 1 100uF capacitor 

• Electronic consumables  

The equipment is to be set up in accordance with the description given in section 5.6.  
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7.2 Method 

The experiments to be performed are detailed in Table 4. 

 
Table 4 Experiments 

Test 

Series 

Capacitors 

Parallel 

Capacitors Time (s) 

Power 

(W) 

Max Capacitor 

Voltage (V) 

1.1 10 1 32 25.00 27 

1.2 5 2 32 25.00 13.5 

2.1 10 1 8 18.01 27 

2.2 5 2 8 18.01 13.5 

3.1 10 1 9 13.18 27 

3.2 5 2 9 13.18 13.5 

 

Tests are to be carried out in accordance with the above table with each test repeated 3 

times or until the results are consistent.  

 

The basic procedure for the experiments is as follows: 

1. Connect the test rig as described in section 5. 

2. Set up the labVIEW program for the test including setting time limits and voltage 

limits in the program 

3. Set up the capacitor bank in the required configuration 

4. Run the converter in buck mode at the appropriate power set point. 

5. Disconnect the power supply and  replace with a load bank 

6. Run the converter in boost mode onto the load bank 

7. Complete for all tests. 

 

The general philosophy for each test is to charge the capacitor bank with constant power 

from the power supply through the DC to DC converter until the capacitor bank nears its 

maximum voltage rating and then to remove the power supply replace it with a load bank 
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and the converter then operates in boost mode to discharge the capacitor bank at a constant 

25W.  

8 Theoretical experiments 

8.1 Theoretical results 

A MATLAB script was created to assess the system’s efficiency using the equations in 

section 5.3 as the capacitor model and using the following equations from Mohan[16] to 

model the losses in the DC to DC converter. 

𝑃𝑃𝑠𝑠 =
1
2
𝑉𝑉𝑑𝑑𝐼𝐼𝑜𝑜𝑓𝑓𝑠𝑠(𝑡𝑡𝑐𝑐(𝑜𝑜𝑜𝑜 ) + 𝑡𝑡𝑐𝑐(𝑜𝑜𝑜𝑜𝑜𝑜 )) (5) 

𝑃𝑃𝑜𝑜𝑜𝑜 = 𝑉𝑉𝑜𝑜𝑜𝑜 𝐼𝐼𝑜𝑜
𝑡𝑡𝑜𝑜𝑜𝑜
𝑇𝑇𝑠𝑠

 (6) 

In the equation, 𝑉𝑉𝑑𝑑  is the voltage seen by the MOSFET in the off position, 𝐼𝐼𝑜𝑜  is the on state 

current. 𝑓𝑓𝑠𝑠 is the switching frequency, and 𝑡𝑡𝑐𝑐(𝑜𝑜𝑜𝑜 ) and 𝑡𝑡𝑐𝑐(𝑜𝑜𝑜𝑜𝑜𝑜 ) are the MOSFET’s switching 

delays times.  

When capacitor internal loss due to ESR and inductor resistance are included, the total 

losses are given by: 

 

𝑃𝑃𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 = 𝑃𝑃𝑠𝑠 + 𝑃𝑃𝑜𝑜𝑜𝑜 + 𝐼𝐼𝑜𝑜2 × (𝑅𝑅𝐸𝐸𝐸𝐸𝐸𝐸 + 𝑅𝑅𝐿𝐿𝐿𝐿𝐿𝐿) (7) 

 

This approach gives an indication of the losses of the converter but is not highly 

representative of the actual system as the calculations assumed a true square wave gate 

signal into the MOSFETs but in reality the system input waveforms are warped by the input 

capacitance of the MOSFET gate and the waveforms are rather noisy. 

 

The MATLAB script uses the following equation and can be found in the appendices  

  



 

 

 

David Napier (30499055) 33 

 

 

(8) 

 
Equation 8 is designed to obtain voltage discharge curves.  

A script is first run to measure the discharge curve for the selected power and the final 

voltages are recorded.  

These values are then placed into another script as the capacitor banks initial voltage. The 

equation is then run with a negative power to simulate charging. Once the time reaches its 

prescribed limit, the script feeds the equation a positive 25W, until the voltage of the bank 

is equal to or lower than the initial voltage. The script then outputs voltage, current and 

efficiency curves as well as calculations of energy.  

 

The outputted graphs display voltage, current and efficiency. The curves have a positive 

gradient while the capacitor bank is being charged, and a negative gradient while the bank 

is being discharged.  

8.2 Test 1 

The first test applies 25W for 32 seconds. The results for all bank configurations are shown 

in Figure 21 and Table 5 and then discharged at a constant 25W. 

 
Table 5 Test 1 Results 

Bank 

Input 
energy 
(Wh) 

Capacitor 
energy 
(Wh) 

Input 
efficiency 
(%) 

Output 
energy 
(Wh) 

Output 
efficiency 
(%) 

Overall 
efficiency 
(%) 

1 0.2222 0.2160 97.20 0.2054 95.09 92.44 
2 0.2222 0.2147 96.62 0.2035 94.78 91.57 
3 0.2222 0.2061 92.75 0.1871 90.78 84.21 
4 0.2222 0.1793 80.69 0.1274 71.05 57.31 
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Figure 21 Test 1 
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8.3 Test 2 

The second applies 18.01W for 8 seconds. The results for all bank configurations are shown 

in Figure 22 and Table 6 and then discharged at a constant 25W. 

 
Table 6 Test 2 Results 

Bank 

Input 
energy 
(Wh) 

Capacitor 
energy 
(Wh) 

Input 
efficiency 
(%) 

Output 
energy 
(Wh) 

Output 
efficiency 
(%) 

Overall 
efficiency 
(%) 

1 0.0400 0.0395 98.70 0.0381 96.46 95.25 
2 0.0400 0.0394 98.45 0.0378 95.94 94.55 
3 0.0400 0.0386 96.45 0.0358 92.75 89.42 
4 0.0400 0.0361 90.20 0.0282 78.12 70.54 
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Figure 22 Test 2 
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8.4 Test 3 

The third test applies 13.18W for 9 seconds. The results for all bank configurations are 

shown in Figure 23 and Table 7 and then discharged at a constant 25W. 

 
Table 7 Test 3 Results 

Bank 

Input 
energy 
(Wh) 

Capacitor 
energy 
(Wh) 

Input 
efficiency 
(%) 

Output 
energy 
(Wh) 

Output 
efficiency 
(%) 

Overall 
efficiency 
(%) 

1 0.0330 0.0326 98.94 0.0315 96.63 95.61 
2 0.0330 0.0326 98.94 0.0313 96.01 94.91 
3 0.0330 0.0321 97.42 0.0296 92.21 89.88 
4 0.0330 0.0306 92.87 0.0235 76.80 71.39 
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Figure 23 Test 3 
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8.5 Discussion  

The four tests show a discernable pattern, the charging of the capacitor bank is highly 

efficient with low losses. 

The major losses occur when the capacitors are being discharged, with the banks with a 

higher voltage being more efficient. This is the expected result due to the fact that the major 

losses are i2R  losses.  

When the converter is operating in buck mode the switch only sees the higher currents of 

the lower banks for small time periods. The higher voltage configurations have the switch 

on for longer but at a much lower current. This results in lower losses in the buck mode 

then the boost mode.  

When the converter is operating in boost mode the switch sees the output current from the 

capacitor bank which varies greatly with capacitor bank configuration. The lower voltage 

configurations have a higher capacitance, higher current output, and higher on switch time 

than the smaller capacitance higher voltage configurations. This results in larger switching 

losses and i2R losses for these bank configurations.  

 

Capacitors also have an internal equivalent series resistance (ESR), which as more 

capacitors are in parallel the resistance gets smaller due to the resistances being in parallel; 

the opposite occurs for series arrangements. While the ESR gets lower with more capacitors 

in parallel the current gets higher resulting in all the configurations having the same energy 

and same i2R  losses due to the ESR. 

 

From the theoretical results it is clear that a capacitor bank with a higher voltage, while 

having less capacitance and a higher ESR ,is more efficient, as it will result in lower losses 

due to the lower current, while the configurations have the same losses due to ESR the 

MOSFET on state resistance and inductor resistance stay the same. As these configurations 

have lower current it will also result in a converter that is smaller, lighter and cooler, all of 

which are important factors in automotive applications. 
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9 Practical experimental results   

The original intention was to test the four bank configurations but due to the operational 

characteristics of the converter it was decided to only test banks 1 and 2. A modification 

was also made to bank 2. Rather than switching to 45VDC and discharging at 25W (this 

was  impractical as the highest gain possible out of the converter is roughly 3) it was 

switched to 30VDC and discharged at 25W. 

Three tests were performed as outlined in the methods section, for each test tables were 

prepared with the following information. 

• Buck 

o Ein, the energy delivered by the supply 

o Eout, the energy after the buck converter stage 

o Mean Pout, the power at the capacitor bank after the buck converter 

o ΔT which is the time period over which energy transfer was recorded over 

• Boost 

o Eout, the energy out of the bank 

o Ein the energy into the load bank after the boost converter 

o Mean Pout, the mean power into the load bank after the converter 

• Efficiency buck, the efficiency of the buck converter 

• Efficiency capacitor is the efficiency of the capacitor bank 

• Efficiency boost, the efficiency of the boost converter  

• Efficiency total, the overall efficiency of the system 

Bank 1 refers to the 27V arrangement and bank 2 to the 13.7V arrangement 
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9.1 Test 1 25W for 32s 

The results for test 2 are depicted in Table 8, Table 9, Figure 24, Figure 25, Figure 26 and 

Figure 27. 

 
Table 8 Test 1 energy 

    Buck       Boost     

Bank Test 

Ein 

(Wh) 

Eout 

(Wh) 

Mean Pout 

(W) ΔT (s) 

Eout 

(Wh) 

Ein 

(Wh) 

Mean Pout 

(W) 

1 1 0.2558 0.2054 23.3936 31.60 -0.1884 -0.1563 -14.8060 

  2 0.2797 0.2277 25.6134 32.00 -0.2035 -0.1706 -14.6198 

  3 0.2530 0.2085 25.3619 29.60 -0.1904 -0.1599 -15.6483 

  4 0.2724 0.2222 24.9955 32.00 -0.2097 -0.1741 -13.9930 

  Mean 0.2652 0.2159 24.8411 31.2998 -0.1980 -0.1652 -14.7668 

2 1 0.2841 0.2183 24.56 32.00 -0.1946 -0.1598 -10.421 

  2 0.2942 0.2188 25.91 30.40 -0.1929 -0.1604 -11.021 

  3 0.2938 0.2265 25.49 32.00 -0.2022 -0.1683 -12.021 

  4 0.2902 0.2238 25.17 32.00 -0.1993 -0.1660 -12.250 

  Mean 0.2927 0.2230 25.52 31.47 -0.1982 -0.1649 -11.76 
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Table 9 Test 1 efficiency 

Bank Test 

Efficiency 

buck (%) 

Efficiency 

capacitor (%) 

Efficiency 

boost (%) 

Efficiency 

total (%) 

1 1 80.28 91.74 82.96 61.10 

  2 81.39 89.40 83.79 60.98 

  3 82.43 91.32 84.00 63.23 

  4 81.57 94.37 83.04 63.93 

  mean 81.42 91.71 83.45 62.31 

2 1 76.858 89.139 82.108 56.252 

  2 74.375 88.178 83.143 54.527 

  3 77.111 89.273 83.219 57.287 

  4 77.104 89.064 83.314 57.213 

  mean 76.20 88.84 83.23 56.34 

 

 
Figure 24 Test 1 bank 1 controller 
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Figure 25 Test 1 bank 2 controller 

 

 
Figure 26 Test 1 voltage 
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Figure 27 Test 1 Current 

 

A few explanations are in order for the graphs. The start of the graphs display the buck 

mode with constant power of 25 watts in reference to the output power.  

The next section, where the values go to zero in the controller/current graphs, is when the 

test was stopped due to the capacitor bank voltage reaching maximum bank voltage. Where 

the power drops down to a few watts the power supply has been disconnected and  the load 

bank connected. 

Finally the last section is when the converter is operating in boost mode.  

One important aspect of this test is noticing that the converter does not boost the voltage up 

to 45V (for bank 1) and 30V (for bank 2) for the entire discharge period. This is because 

the bank voltage drops too low to be switched that high. This explains why the mean boost 

output power is -12W and -14W for bank 1 and bank 2 respectively rather then -25W as it 

should be. 
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9.2 Test 2 18W for 8s 

The results for test 2 are depicted in Table 10, Table 11, Figure 28, Figure 29, Figure 30 

and Figure 31 
Table 10 Test 2 energy 

    Buck       Boost     

Bank Test 

Ein 

(Wh) 

Eout 

(Wh) 

Mean Pout 

(W) ΔT (s) 

Eout 

(Wh) 

Ein 

(Wh) 

Mean Pout 

(W) 

1 1 0.0452 0.0380 17.10 8.00 -0.0318 -0.0284 -23.213 

  2 0.0509 0.0424 17.36 8.80 -0.0355 -0.0315 -23.592 

  3 0.0460 0.0387 17.41 8.00 -0.0322 -0.0290 -23.692 

  4 0.0437 0.0369 17.49 7.60 -0.0310 -0.0279 -22.800 

  mean 0.0464 0.0390 17.3395 8.1013 -0.0326 -0.0292 -23.3244 

2 1 0.0460 0.0359 16.55 7.80 -0.0307 -0.0258 -24.312 

  2 0.0499 0.0393 17.68 8.00 -0.0323 -0.0268 -21.931 

  3 0.0472 0.0368 16.55 8.00 -0.0315 -0.0264 -23.728 

  4 0.0474 0.0373 17.66 7.60 -0.0318 -0.0269 -21.971 

  mean 0.0482 0.0378 17.29 7.87 -0.0319 -0.0267 -22.54 
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Table 11 Test 2 efficiency 

Bank Test 

Efficiency 

buck (%) 

Efficiency 

capacitor (%) 

Efficiency 

boost (%) 

Efficiency 

total (%) 

1 1 84.06 83.71 89.13 62.72 

  2 83.34 83.68 88.57 61.77 

  3 84.11 83.20 89.94 62.94 

  4 84.58 83.99 89.84 63.82 

  mean 84.02 83.65 89.37 62.81 

2 1 77.987 85.685 83.793 55.993 

  2 78.790 82.269 82.978 53.786 

  3 77.814 85.608 83.835 55.847 

  4 78.644 85.428 84.400 56.704 

  mean 78.42 84.44 83.74 55.45 

 

 

 
Figure 28 Test 2 bank 1 controller 

-50

-40

-30

-20

-10

0

10

20

30

0 5 10 15 20 25

Po
w

er
 (W

)

Time (s)

Test 2 bank 1 controller

SP

PV



 

 

 

David Napier (30499055) 47 

 
Figure 29 Test 2 bank 2 controller 

 
Figure 30 Test 2 voltage 
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Figure 31 Test 2 current 

The average powers are very close to the SP which means that  the controller and converter 

operated as expected.  

The way the data was analysed was that the experiment was started with the capacitor bank 

at a low voltage, when the voltage reached the maximum voltage of the bank it was 

switched from supply to load and then operated in boost mode till the capacitor bank was at 

a low voltage.   

As the data only needed to be analysed for a constant power for 8 seconds, the analysed 

data  was  the data  for the 8 seconds preceding the end of the buck mode. For the 

discharge, as there was some voltage drop due to the time taken to switch from buck to 

boost mode, the discharge data was taken by measuring the change in voltage during the 

buck mode and taking the data for the same voltage difference once the boost controller had 

started. 
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9.3 Test 3 13W for 9s 

The results for test 3 are depicted in Table 12, Table 13, Figure 32, Figure 33, Figure 34 

and Figure 35. 
Table 12 Test 3 energy 

    Buck       Boost     

Bank Test Ein (Wh) Eout (Wh) Mean Pout (W) ΔT (s) 

Eout 

(Wh) Ein (Wh) 

Mean Pout 

(W) 

1 1 0.0387 0.0343 14.03 8.80 -0.0276 -0.0253 -22.79 

  2 0.0371 0.0316 12.94 8.80 -0.0254 -0.0228 -22.85 

  mean 0.0379 0.0330 13.4860 8.8005 -0.0265 -0.0241 -22.8208 

2 1 0.0377 0.0295 12.63 8.40 -0.0219 -0.0190 -34.34 

  2 0.0419 0.0319 13.05 8.80 -0.0266 -0.0226 -33.19 

  3 0.0424 0.0309 12.10 9.20 -0.0268 -0.0226 -22.54 

  4 0.0417 0.0317 12.96 8.80 -0.0260 -0.0218 -28.05 

  mean 0.0420 0.0315 12.70 8.93 -0.0265 -0.0223 -27.92 

 

 
Table 13 test 3 efficiency 

Bank Test 

Efficiency 

buck (%) 

Efficiency 

capacitor (%) 

Efficiency 

boost (%) 

Efficiency 

total (%) 

1 1 88.65 80.41 91.80 65.44 

  2 85.28 80.35 89.89 61.59 

  mean 86.96 80.38 90.85 63.51 

2 1 78.08 74.19 87.12 50.47 

  2 76.04 83.35 84.98 53.86 

  3 72.91 86.78 84.02 53.16 

  4 76.04 81.94 84.05 52.37 

  mean 75.00 84.02 84.35 53.13 
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Figure 32 Test 3 bank 1 controller 

 
Figure 33 Test 3 bank 2 controller 

 
Figure 34 Test 3 voltage 
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Figure 35 Test 3 current 

The converter was not operating correctly in  boost mode. For bank 2 the output voltage 

was too high, which explained the larger mean boost input powers. There were only two 

bank 1 measurements as the other measurements taken had erroneous current 

measurements.  

9.4 Discussion 

The results confirm the theoretical results and show that bank 1 is more efficient than bank 

2. Looking at Table 14 and Table 15 some interesting trends have emerged.  

 
Table 14 Bank 1 summary 

Power 
Efficiency 
buck (%) 

Efficiency 
capacitor (%) 

Efficiency 
boost (%) 

Efficiency 
total (%) 

13 86.96 80.38 90.85 63.51 
18 84.02 83.65 89.37 62.81 
25 81.42 91.71 83.45 62.31 

 

For bank 1 the buck converter was more efficient at the lower powers with the capacitor 

more efficient at higher powers. The buck converter efficiency stayed relatively stable 

except for the 25W case and this decreased efficiency may be due to the large switching 

range. 
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The buck converter is more efficient at the lower powers. This was unexpected as the 

testing of the converter showed higher efficiencies with higher duty cycles. This can be 

explained, as the experiments had higher currents then the testing resulting in i2R losses to 

dominate.   

Interestingly enough, more energy was retrieved from the capacitor when charged at higher 

power levels. This was unexpected as the capacitors losses were modelled as i2R  losses due 

to the capacitors ESR and as such was expected that the larger powers would lose more 

power.  

 The results for the boost converter are as expected as each test has the same power flowing 

as it is being discharged at a constant 25W. The exception with  the 25W test can be 

explained as the 25W test was run over 32 seconds for the buck mode causing the discharge 

to have to run for considerably longer than the other tests. This resulted in the converter 

having to operate over a much larger voltage range thereby decreasing the efficiency by 

increasing currents running through the MOSFET.  
Table 15 Bank 2 summary 

Power 
Efficiency 
buck (%) 

Efficiency 
capacitor 
(%) 

Efficiency 
boost (%) 

Efficiency 
total (%) 

13 75.00 84.02 84.35 53.13 
18 78.42 84.44 83.74 55.45 
25 76.20 88.84 83.23 56.34 

 

For bank 2 the results were much more consistent then for bank 1. It shows no discernable 

pattern for the buck mode and is relatively consistent for the capacitor and boost mode with 

a few variations. Similar to bank 1 the capacitor was more efficient at the higher powers 

and the buck converter was relatively constant.   
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Table 16 Bank 1 and 2 summary 

Bank 
Efficiency 
buck (%) 

Efficiency 
capacitor 
(%) 

Efficiency 
boost (%) 

Efficiency 
total (%) 

1 84.13 85.25 87.89 62.88 

2 76.54 85.77 83.77 54.97 
 

Table 16 displays the means of the efficiencies across all of the tests for each bank. This 

gives a clear indication into the performance difference between the bank configurations. 

As can be seen in the table, the capacitor efficiency is the same on average for both 

configurations where bank 1 has a more efficient buck and boost conversion.  

The end to end efficiency of both bank 1 and bank 2 did not vary significantly over the 

different powers but there is a marked difference in efficiency between the two banks. 

 

The difference in efficiency is in line with the theoretical results. Although the theoretical 

results were highly optimistic about the converters efficiency. 

 

9.5 Measurement uncertainties 

As with all physical measurement devices the devices used to obtain the results do have 

errors. While the hall effect current sensors had a very low error of .2%, the national 

instruments DAQ card has an absolute error of .0147 V. taking the error of the current 

measurements to. 

 

𝐼𝐼𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = ��𝐼𝐼𝑖𝑖𝑖𝑖
. 625

5
+ 2.5�

. 2
100

+ .0147 − 2.5�
5

. 625
 

 

(8) 

 

𝐼𝐼𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 = ��𝐼𝐼𝑜𝑜𝑜𝑜𝑜𝑜
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As the hall effect outputs a voltage signal the current measurement needs to be converted 

back to volts where it is times against its error, then the DAQ card error is added, then 

converted back into amps. 

The voltage was calibrated against a fluke 73 digital multimeters and thus the measured 

voltage errors are the same as the fluke device, which is 2%.  

This creates an power error equation of  

 

 

𝑃𝑃𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 = 𝐼𝐼𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑉𝑉𝑜𝑜𝑜𝑜𝑜𝑜
2

100
 (11) 

While this gives the theoretical uncertainties, in reality uncertainties will be higher due to 

noise on the system. While most of the noise for the current measurements was filtered out, 

some remained to add to the measurement error.  

10 Results discussion 

The efficiencies of the practical system were much lower than the theoretical results. This 

discrepancy is due mainly to the model not accurately representing the losses of the 

converter.  

Both tests showed that the bank configuration with more cells in series is the more efficient 

due to the major losses of the system being in the converter and the efficiencies of the 

capacitor were similar for the different bank configurations when subjected to the same 

power test. This was expected, as while the ESR goes down with more cells in parallel the 

current goes up, causing the losses to theoretically be the same for different configurations.  

 

While the converter could be redesigned to be more efficient for the lower bank 

configurations ( i.e. more MOSFETs in parallel to reduce the on state resistance) this would 

increase the overall weight of the system, which is not desirable in an automotive 

application.  

𝑃𝑃𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 𝐼𝐼𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑉𝑉𝑖𝑖𝑖𝑖
2

100
 (10) 
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It is expected in practice there would be a point of equilibrium where the advantages of the 

decreased output current  is out weighed by the large voltage that the converter has to 

operate over. For example if there was a maximum 500VDC rating on a bank the converter 

would have to be able to switch over at least a 250VDC range.  

11 Improvement, complications and possible further work 

As the project did not meet all of its original objectives due to time constraits, the major 

improvements are in line with the completion of the DC to DC converter design to get it to 

operate within the original expected behaviour.   

This involves: 

• Improvements of the driver circuits to get a higher boost duty cycle 

• Improvements in the driver circuits to allow the buck switching frequency to be 

increased to 133kHz 

• c 

• Implementation of the controller onto a microcontroller such as the 68HC11 to increase 

controller speed and controller performance.  

• Place circuits onto a PCB 

• Improve test rig to include relays to switch the load bank and power supply in and out 

 

With more time a more advanced DC to DC converter could be implemented such as an 

isolated ZVS resonant circuit. This would increase the operating efficiency. 

 

A real world application which takes the project to the next level such as using a generator 

as the power supply at high voltage to charge a much larger capacitor bank would be ideal. 

This would allow more realistic testing and is the next step to introducing it into an electric 

vehicle.  
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As this experiment was originally designed to test a number of bank configurations, the DC 

to DC converter was designed with a broad operational range. This resulted in a converter 

that in practice could not perform experiments on the two lower bank configurations.  

If a converter was designed for a particular configuration, an isolated topology would be 

ideal. This would allow the transformer to perform the majority of the voltage step-up and 

step-down. Coupled with zero voltage switching, which uses a resonant circuit to reduce 

switching losses, the converter would be more efficient and would be a more realistic real 

world solution, similar to [11, 12]. 

12 Summary 

The aims of this project were to build a supercapacitor bank, a DC to DC converter, and a 

testing rig to perform efficiency testing for various configurations of the super capacitor 

bank against various hybrid electric vehicle regenerative braking profiles .  

Most of the aims of the project were met. A DC to DC converter was designed, built and 

tested, a test rig was constructed and efficiency was tested for two bank configurations 

under three different braking profiles.  

While improvements in the operation of the converter would have been ideal to allow for 

more testing of the capacitor bank in different configurations, most of the aims of the 

project were still met. 

Both theoretical testing and practical experiments agreed that the configurations with 

higher maximum voltages, i.e. more cells in series were more efficient as they had lower 

output and input currents, which meant lower i2R losses in the circuit.  

In the practical apparatus, average efficiencies of around 63%were typical for the 27V bank 

arrangement and 55% for the 13.7V arrangement, showing a clear improvement in having 

more cells in series.   
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14 Appendices  

The Appendices are located on the attached CD under the following headings: 

• Data sheets 

• Programs 

o Matlab 

o Test rig 

• Reports 

• Results 

o Converter pictures 

o Processed 

 15V 

 27V 

o Raw data 

o Report data 

 

Data sheets contains the relevant data sheets i.e. MOSFETs, Transistors, DAQ cards. 

 

Programs contains the labVIEW test rig program and the MATLAB scripts used to create 

the theoretical results.  

 

Reports contains the project plan, presentation and progress report. 

 

Result contains all if the experimental data. Converter pictures contain the oscilloscope 

screen shots. Processed data includes the data that was used in the results sections. Raw 

data contains the unprocessed data and report data contains the tables for the report.   
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