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Abstract

Generalized cross-validation (GCV) is a widely used parameter selection
criterion for spline smoothing, but it can give poor results if the sample size
n is not sufficiently large. An effective way to overcome this is to use the
more stable criterion called robust GCV (RGCV). The main computational
effort for the evaluation of the GCV score is the trace of the smoothing
matrix, trA, while the RGCV score requires both trA and trA2. Since 1985
there has been an efficient O(n) algorithm to compute trA. This paper
develops two pairs of new O(n) algorithms to compute trA and trA2, which
allow the RGCV score to be calculated efficiently. The algorithms involve
the differentiation of certain matrix functionals using banded Cholesky de-
composition.

Keywords: Cholesky decomposition, Generalized cross-validation,
Smoothing matrix, Smoothing parameter, Spline, Trace
2000 MSC: 65F30, 65D10, 62G08

1. Introduction

A common task in data analysis is to fit a smooth curve to noisy data

yi = f(xi) + εi, a ≤ x1 < x2 < · · · < xn ≤ b, i = 1, . . . , n, (1)
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where it is assumed that the random errors εi are uncorrelated with zero
mean and equal variance σ2. Smoothing splines are widely used for this
purpose [1, 2]. The natural polynomial smoothing spline of degree 2m − 1
can be defined as the minimizer fλ of the functional

n−1
n∑

i=1

(yi − f(xi))
2 + λ

∫ b

a
(f (m)(x))2dx (2)

over all functions f for which f (m) is square integrable. The most frequently
used smoothing spline is the cubic spline, for which m = 2.

It is well known that the quality of the fit depends critically on the
choice of the smoothing parameter λ > 0. If λ is too small, then fλ is too
rough, and, if λ is too large, then fλ is overly smooth and is not faithful to
the data. In fact, as λ → ∞, fλ approaches the least squares polynomial
of degree m − 1. A popular and practical parameter selection criterion is
generalized cross-validation (GCV) [3, 2]. This criterion usually performs
well for problems with large sample size n. However, it can be unreliable
for smaller n, and, even for large n, it occasionally gives a parameter value
that is far too small. For this reason, two more stable extensions of GCV
called robust GCV (RGCV) [4, 5, 6] and modified GCV [7] were developed.
The RGCV and modified GCV criteria have favourable small-sample and
large-sample properties, and they perform very well in simulations [8, 9].

Denote fλ = (fλ(x1), . . . , fλ(xn))T and let A(λ) be the smoothing matrix
defined by fλ = A(λ)y. The main computational effort in using GCV
is the calculation of the trace trA(λ), which is often referred to as the
degrees of freedom for the spline. With the representation of fλ in [10, 11],
the smoothing matrix can be written in terms of the inverse of a certain
banded matrix of bandwidth 2m+1. Using the band structure and Cholesky
decomposition, Hutchinson and de Hoog [12] developed an efficient O(m2n)
algorithm to compute the diagonal elements of A(λ), and hence to find
trA(λ). The diagonal elements of A(λ), called the leverage values, are also
used to obtain confidence intervals for the spline estimate [13]. With the
local support basis for fλ in [14], the method in [15] yields another O(m2n)
algorithm for the calculation of trA(λ) and the leverage values (see also
[16, sect. 3.8.1]). There are also efficient O(m2n) algorithms for the GCV
criterion based on QR factorization [17, 18]. The modified GCV criterion
requires the same calculations as GCV, and so the same O(m2n) algorithms
can be used.

The aim of this paper is to develop and investigate efficient exact algo-
rithms for the RGCV criterion. The RGCV score function requires the cal-
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culation of both trA(λ) and trA2(λ). We develop two pairs of new O(m2n)
algorithms to calculate these quantities. The algorithms use an approach
involving the differentiation of certain matrix functionals [19], and are based
on the Cholesky decomposition of a banded matrix. One of the algorithms
for trA(λ) is similar to the algorithm in [12].

In addition to exact methods, there are other methods that approx-
imate trA(λ) and trA2(λ). In particular, using the known asymptotic
behaviour of the eigenvalues τi in the Demmler-Reinsch diagonalization
A(λ) = Qdiag(1 + λτi)

−1QT , asymptotic estimates of both trA(λ) and
trA2(λ) can be obtained [20]. The estimate of trA(λ) was used in [21]
to derive an asymptotic GCV selection criterion. By using the asymptotic
estimate of trA2(λ), one can also derive an asymptotic RGCV criterion.
A different approach is to use a stochastic estimator of trA(λ) and so ap-
proximate the GCV score [22, 23]. This can be extended easily to estimate
trA2(λ) with little extra effort (since, having estimated trA(λ) by uT Au for
a pseudo-random vector u, then trA2(λ) can be estimated by ‖Au‖2).

Besides its use in the RGCV criterion, the function trA2(λ) also arises
in the variance estimate [24]

σ̂2 = ‖(I − A(λ))y‖2/tr((I − A(λ))2),

where A(λ) is the smoothing matrix above. Therefore, the algorithms de-
veloped here also apply to the calculation of σ̂2. The three quantities trA,
trA2 and tr(2A − A2), which coincide for parametric linear regression, all
have useful interpretations as degrees of freedom in the smoothing situation
[25].

The paper is organized as follows. After some preliminaries in Section
2, the first pair of algorithms for trA(λ) and trA2(λ) is developed in Section
3. These algorithms use an approach that yields the diagonals of A(λ) and
A2(λ). The second pair of algorithms, based on log determinant relation-
ships for trA(λ) and trA2(λ), is developed in Section 4. We compare the
efficiencies of the algorithms in Section 5.

2. Preliminaries

The smoothing spline fλ can be computed efficiently using a local sup-
port spline basis for f

(m)
λ [26, 10, 11], that is, with the representation

f
(m)
λ =

n−m∑
i=1

ciMi,
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where the Mi are B-splines. Owing to the continuity conditions at the knots,
the spline fλ is uniquely determined by the coefficients c = (c1, . . . , cn−m)T

and values a = (fλ(x1), . . . , fλ(xn))T . These coefficients and values can be
computed by solving

(H + nλGT G)c = GT y, (3)

a = y − nλGc, (4)

where H and GT G are symmetric, positive definite band matrices of band-
width 2m− 1 and 2m + 1, respectively. The (n−m)× (n−m) matrix H
has elements

hij =
∫ b

a
Mi(x)Mj(x)dx

and the n× (n−m) matrix G is an (m+1)-banded lower triangular matrix
with the non-zero elements of column i equal to the coefficients of the mth
divided difference based on xi, . . . , xi+m.

Let p = λ−1 and define B = B(p) = nGT G + pH . Then, from (3) and
(4), the smoothing matrix A(λ), defined by fλ = A(λ)y, satisfies

I − A(λ) = nGB−1(p)GT . (5)

Note that A(λ) is symmetric and I − A(λ) is non-negative definite.
The GCV criterion selects λ as the minimizer of the GCV function

V (λ) =
n−1‖(I − A(λ))y‖2

[n−1tr(I − A(λ))]2
, (6)

where ‖ · ‖ is the Euclidean norm. Let µ2(λ) denote the normalized trace
µ2(λ) = n−1trA2(λ). The RGCV criterion selects λ as the minimizer of the
weighted sum

V (λ) = [γ + (1− γ)µ2(λ)]V (λ), (7)

where γ ∈ (0, 1) is a robustness parameter. Clearly, the RGCV function
requires the computation of ‖(I − A(λ))y‖2 and tr(I − A(λ)) (as in GCV)
and also trA2(λ).

Obviously, when γ = 1, the RGCV criterion reduces to GCV. As γ is
decreased from 1, the RGCV criterion becomes more stable and it performs
very well for γ ∈ [0.2, 0.4] [9]. Note that for both GCV and RGCV, no
knowledge of the error variance is required.

The function µ2(λ) is important in its own right. The reason for this,
and why it is in (7), is that it is proportional to the variance v(λ) of the

4
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spline in a mean square sense. In fact, under the assumption of uncorrelated
errors with equal variance σ2, the variance equals

v(λ) = n−1E‖fλ − Efλ‖2 = σ2n−1tr(AT (λ)A(λ)) = σ2µ2(λ),

where E denotes expectation.
To minimize the GCV and RGCV scores in practice, the functions V (λ)

and V (λ) need to be computed efficiently for many different values of λ.
Because B is banded, symmetric and positive definite, one can efficiently
compute the Cholesky decomposition B = UT U , where U = U(p) is an
(m + 1)-banded upper triangular matrix with positive diagonal elements.
This requires approximately (m2 + 3m)n/2 operations (assuming m << n)
and (n − m) square roots [27]. Here and throughout, the approximate
operation count has the correct O(n) term, and an operation consists of a
multiplication/division and an addition/subtraction. As in [10], the sum of
squared residuals is

‖(I − A(λ))y‖2 = ‖nGB−1(p)GT y‖2 = n2‖Gz‖2, (8)

where z satisfies UT Uz = GT y. This can be used to efficiently compute the
numerator of V (λ) in approximately (4(m + 1) + 1)n additional operations.
Similarly, the numerator can be computed in the same number of operations
from a Cholesky decomposition of H + nλGT G.

The next two sections present algorithms for the computation of tr(I −
A(λ)) and trA2(λ). Because these algorithms are also based on a Cholesky
decomposition, we will suppose, for the operation counts, that this decom-
position is already known.

3. Algorithms that compute the diagonals

In this section, we develop algorithms for tr(I − A(λ)) and trA2(λ) us-
ing an approach that yields the diagonals of A(λ) and A2(λ). In the first
algorithm, tr(I −A(λ)) is calculated in a similar way to that in [12].

From the Cholesky decomposition B = UT U , let S = diag(u−1
ii ). In

addition, denote B−1 = [̂bij ]. The equation B = UT U can be written in the
form

B−1 = SU−T + (I − SU)B−1,

where SU−T is lower triangular with diagonal [s2
11, . . . , s

2
n−m,n−m] and SU

is unit upper triangular. By considering the diagonal part and the strictly

5
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upper triangular part of this equation, the elements b̂ij of the upper cen-
tral m + 1 band of B−1 can be computed recursively as in [12], starting
with b̂n−m,n−m = un−m,n−m. This requires approximately ((m + 1)2 + 2)n
operations (approximately 2n for S2, (m + 1)n for SU , and m(m + 1)n for
the recursive procedure in [12]), and, since B−1 is symmetric, it gives the
central 2m + 1 band of B−1. With this band, we can compute the diagonal
elements of GT GB−1 in approximately (m + 1)n operations (utilizing the
symmetry of GT G and B−1), and thereby find

tr(I − A(λ)) = tr(nGB−1(p)GT ) = tr(nGT GB−1(p)),

where the last equality follows from the general identity tr(XY ) = tr(Y X).
Alternatively, with the central 2m + 1 band of B−1, we can compute

the diagonal elements of nGB−1(p)GT in approximately (m + 1)(m + 2)n
operations ((m + 1)2n operations for GB−1 and (m + 1)n operations for
the diagonal of GB−1GT ) and thereby find tr(I − A(λ)). This also yields
the diagonal elements of A(λ), the leverage values, which are useful for
construction of confidence intervals for the spline estimate [13]. Thus, we
can compute tr(I −A(λ)) in about ((m + 1)2 + m + 3)n operations without
the leverage values or about (2(m + 1)2 + m + 3)n operations with the
leverage values.

Remark. The algorithm in [12], which is based on a rational Cholesky
decomposition of B, requires approximately (m + 1)2n operations with-
out leverage values and approximately 2(m + 1)2n operations with leverage
values, and so it is somewhat more efficient than the algorithm above. How-
ever, for our approach, the ordinary Cholesky decomposition above is better
suited to the calculation of trA2(λ).

To compute trA2(λ), first note that, from (5),

trA2 = n− 2tr(I − A) + tr(I − A)2

= m + tr(I − nB−1GT G)2 = m + p2tr(B−1HB−1H). (9)

The right hand side of (9) can be computed using the fact that

dB

dp

−1

= −B−1 dB

dp
B−1 = −B−1HB−1, (10)

where the first equality follows from differentiating BB−1 = I [28, p. 307].
To compute dB−1/dp, we first compute the derivative U ′ = dU/dp.

Differentiation of UT U = B(p) yields

(U ′)T U + UT U ′ = dB/dp = H.
6
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This equation can be solved recursively for the elements of U ′, starting with
the first row of U ′. The procedure is:
For i = 1, . . . , n−m

u′
ii =

hii

2
−

i−1∑
k=max{1,i−m}

u′
kiuki

 /uii (11)

For j = i + 1, . . . , min{i + m, n−m}

u′
ij =

hij − u′
iiuij −

i−1∑
k=max{1,j−m}

(u′
kiukj + ukiu

′
kj)

 /uii (12)

The multiplications/divisions involved in this procedure are in a one-to-one
correspondence with those needed to compute (U ′)T U +UT U ′ = (UT U ′)T +
UT U ′, i.e. to compute UT U ′, for known (m+1)-banded matrices U and U ′.
Therefore, the number of operations required is approximately (m + 1)2n.

To obtain a system for (B−1)′ = dB−1/dp, we differentiate the equation
B−1UT = U−1 to obtain

(B−1)′UT + B−1U ′T = −U−1U ′U−1.

By considering the lower triangular part of this equation, it follows that

((B−1)′UT )ij = −(B−1U ′T )ij − u−2
ii u′

ijδij , i ≥ j.

From these equations, the elements b̂′ij in the central 2m + 1 band of the
symmetric matrix (B−1)′ can be computed recursively by the procedure:
For i = n−m, n−m− 1, . . . , 1

b̂′ii = −
u−2

ii u′
ii + b̂iiu

′
ii +

min{i+m,n−m}∑
k=i+1

(b̂iku
′
ik + b̂′ikuik)

 /uii

For j = i− 1, i− 2, . . . , max{1, i−m}

b̂′ij = −
u′

iib̂ij +
min{i+m,n−m}∑

k=i+1

(u′
ikb̂kj + uikb̂

′
kj)

 /uii

b̂′ji = b̂′ij

Since U and U ′ have bandwidth m+1, this procedure requires approximately
(2(m + 1)2 + 1)n operations (where the extra 1 is for u−2

ii u′
ii, since u−2

ii
7



AC
C

EP
TE

D
M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

is known from S2 above). Thus, from (10), the central 2m + 1 band of
B−1HB−1 can be computed efficiently. Lastly, since H is (2m− 1)-banded,
we can compute the diagonal of B−1HB−1H , and hence trA2(λ) from (9),
in approximately (m−1)n operations (utilizing the symmetry of B−1HB−1

and H).
Combining all the steps above, we have an O(m2n) algorithm for tr(I −

A(λ)) and trA2(λ), which requires approximately (4(m + 1)2 + 2m + 3)n
operations without the leverage values and (5(m+1)2+2m+3)n operations
with the leverage values. When m = 2, these numbers are 43n and 52n
operations, respectively.

4. Algorithms based on the log determinant

The algorithms in this section are based on differentiation of the log
determinant of a matrix. Define P = P (λ) = H + nλGT G, which satisfies
P = λB. Then, from (3) and (4), it follows that I−A(λ) = nλGP−1(λ)GT ,
and hence

λ−1tr(I − A(λ)) = ntr(GP−1GT ) = ntr(P−1GT G)

= tr(P−1P ′) =
d

dλ
log(det P (λ)), (13)

where P ′(λ) = dP/dλ and the last equality is a general identity [28, p. 305].
Similarly, since P ′′(λ) = 0, we also have

λ−2tr(I − A(λ))2 = n2tr(P−1GT GP−1GT G)

= −[tr(P−1P ′′)− tr(P−1P ′)2] = − d2

dλ2
log(det P (λ)),(14)

where the last equality is another general identity [28, p. 309].
The right hand sides of equations (13) and (14) can be computed ef-

ficiently as follows. We start by computing the Cholesky decomposition
P (λ) = LLT , where L = L(λ) is lower triangular. This notation for the
decomposition is used in this section to clearly distinguish it from the de-
composition B(p) = UT U in Section 3. (Note that L and U are related by
L =

√
λUT .) Differentiating P (λ) = LLT gives

P ′(λ) = L′LT + LL′T = R1, (15)

where L′ = dL/dλ and R1 = nGT G. This provides a system of linear
equations for the elements of L′, which can be solved using the procedure
in (11) and (12) in approximately (m + 1)2n operations.

8
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The second derivative of P (λ) satisfies

P ′′(λ) = L′′LT + 2L′L′T + LL′′T = 0,

so (L′′/2)LT + L(L′′/2)T = R2, where R2 = −L′L′T , which is of the same
form as (15). After computing the (2m + 1)-banded symmetric matrix R2

in approximately (m + 1)(m + 2)n/2 operations (by calculating the lower
triangular part of L′L′T and using symmetry), we compute L′′/2 in approx-
imately (m + 1)2n operations by using the same procedure as for L′ above.
Then, the right hand sides of (13) and (14) are computed as

d

dλ
log(det P (λ)) =

d

dλ
log((det L)2) = 2

n−m∑
i=1

l′ii
lii

,

− d2

dλ2
log(det P (λ)) = − d2

dλ2
log((det L)2) = 2

n−m∑
i=1

(
l′ii
lii

)2

− 4
n−m∑
i=1

(l′′ii/2)

lii

(requiring about 3n operations), and, finally, we calculate

trA2(λ) = n− 2tr(I − A(λ)) + tr(I −A(λ))2.

Combining the steps above, we have an O(m2n) algorithm, which re-
quires approximately ((m + 1)2 + 1)n operations for tr(I −A(λ)) only, and
approximately ((5m + 6)(m + 1)/2 + 3)n operations for both tr(I − A(λ))
and trA2(λ). When m = 2, these numbers are 10n and 27n operations,
respectively.

5. Conclusions

First we compare the approaches in Sections 3 and 4 without comput-
ing leverage values. For the calculation of tr(I − A(λ)), the algorithm in
Section 4 (requiring approximately ((m+1)2 +1)n operations) is very close
in efficiency to the algorithm in [12] (requiring approximately ((m + 1)2n
operations). For the calculation of both tr(I − A(λ)) and trA2(λ), the al-
gorithm in Section 4 (requiring approximately ((5m + 6)(m + 1)/2 + 3)n
operations, i.e. 27n when m = 2) is significantly more efficient than the one
in Section 3 (requiring approximately (4(m+1)2 +2m+3)n operations, i.e.
43n when m = 2).

If leverage values are wanted in addition to both tr(I − A(λ)) and
trA2(λ), then one can use the corresponding complete algorithm in Sec-
tion 3 (requiring approximately (5(m + 1)2 + 2m + 3)n operations, i.e. 52n

9
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when m = 2). Alternatively, one can combine the first part of it to generate
the leverage values together with the complete algorithm in Section 4 (re-
quiring approximately (2(m+1)2 +(5m+6)(m+1)/2+m+6)n operations,
i.e. 50n when m = 2).

For the calculation of both tr(I − A(λ)) and trA2(λ) without leverage
values, the algorithms in Sections 3 and 4 were implemented in MATLAB
and tested on several examples with cubic splines (m = 2) and n up to
1600. It was found that they both performed very well in terms of speed
and accuracy. For large n, the algorithm in Section 4 was noticeably faster
than the one in Section 3, which is consistent with the operation counts
above.
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