PHOSPHITE: ITS PHYTOTOXICITY AND EFFECTIVENESS IN THE PROTECTION OF *EUCALYPTUS MARGINATA* FOREST FROM *PHYTOPHTHORA CINNAMOMI*

RA BENNALLICK¹, IJ COLQUHOUN², BL SHEARER³ and GE ST J HARDY¹

¹Murdoch University, Murdoch 6150, Western Australia; ²Alcoa of Australia Limited, Booragoon 6154, Western Australia; ³Department of Conservation and Land Management, Como 6152, Western Australia

Background and objectives

Recent trials conducted by the Western Australian Department of Conservation and Land Management have shown that phosphite protects trees in *E. marginata* forest from *P. cinnamomi*. However, phytotoxicity has been observed in some plant species, and phytotoxic concentrations of phosphite have increased the susceptibility of *Banksia coccinea* to *P. cinnamomi*.

The aim of this project was to examine the effect of phosphite concentration on phytotoxicity and on colonisation by *P. cinnamomi* in three understorey species of the *E. marginata* forest.

Materials and methods

Adenanthos barbiger, Daviesia decurrens and Xanthorrhoea preissii plants at Alcoa of Australia Limited's Jarrahdale mine were sprayed to run-off with 0, 0.2, 0.5 and 2% phosphite. Plants were monitored regularly for phytotoxicity symptoms. One week after phosphite treatment, stems of *A. barbiger* and *D. decurrens* were underbark inoculated with *P. cinnamomi*. In *X. preissii*, roots were underbark inoculated with *P. cinnamomi*. In *X. preissii*, roots were underbark inoculated with *P. cinnamomi*. In *X. preissii*, roots were underbark inoculated with *P. cinnamomi*. In *X. preissii*, roots were underbark inoculated with *P. cinnamomi*. In *X. preissii*, roots were underbark inoculated with *P. cinnamomi*. In *X. preissii*, roots were underbark inoculated with *P. cinnamomi*. In *X. preissii*, roots were underbark inoculated with *P. cinnamomi*. In *X. preissii*, roots were underbark inoculated with *P. cinnamomi*. In *X. preissii*, roots were underbark inoculated with *P. cinnamomi*. In *X. preissii*, roots were underbark inoculated with *P. cinnamomi*. In *X. preissii*, roots were underbark inoculated with *P. cinnamomi*. In *X. preissii*, roots were underbark inoculated with *P. cinnamomi*. In *X. preissii*, roots were underbark inoculated with *D. cinnamomi*. In *X. preissii*, roots were underbark inoculated with *D. cinnamomi*. In *X. preissii*, roots were underbark inoculated with *D. cinnamomi*. In *X. preissii*, roots were underbark inoculated with *D. cinnamomi*. In *X. preissii*, were analysed for phosphite content using gas chromatography and a flame photometric detector.

Results and conclusions

The foliar application of 0.2, 0.5 and 2% phosphite was effective in restricting colonisation by *P. cinnamomi* in stems of *A. barbiger* and *D. decurrens*, but not in the roots of *X. preissii*. However, treatment with 2% phosphite resulted in severe phytotoxicity symptoms. Plants with severe phytotoxicity symptoms recovered by producing new growth. Leaf necrosis developed in all three species at a phosphite concentration as low as 0.2%, which is in contrast with the reported low phytotoxicity of phosphite [1]. However, the observed phytotoxicity symptoms were not severe in the 0.2 or 0.5% phosphite treatments. Phytotoxic concentrations of phosphite did not predispose *A. barbiger* or *D. decurrens* to more colonisation by *P. cinnamomi*.

Although phosphite is phloem mobile and has been detected in the roots of treated plants [2], very little is known about the distribution of phosphite after foliar application. Very low concentrations of phosphite were detected in the roots of *X. preissii* in comparison with the phosphite concentration measured in the foliage of *A. barbiger* and *D. decurrens* plants treated with phosphite. This suggests that phosphite was not translocated from the leaves to the roots in *X. preissii*.

The results indicate that phosphite has the potential to contain *P. cinnamomi* in native plants. It is generally accepted that phosphite does not eradicate the pathogen, but it may slow the destruction of native plant communities long enough for a more permanent solution to be found.

References

- 1. Guest DI and Grant BR, 1991. Biological Review 66, 159-87.
- 2. Ouimette DG and Coffey MD, 1989. Plant Disease 73, 212-15.