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Abstract 
A recent study to determine the cause of collar and root rot disease outbreaks of cold 

tolerant Eucalyptus species in South Africa resulted in the isolation of two putative new 

Phytophthora species. Based on phylogenetic comparisons using the ITS and β-tubulin 

gene regions, these species were shown to be distinct from known species. These 

differences were also supported by robust morphological characteristics. The names, 

Phytophthora frigida sp. nov. and Phytophthora alticola sp. nov. are thus provided for 

these taxa, which are phylogenetically closely related to species within the ITS clade 2 

(P. citricola, P. tropicali and P.multivesiculata) and 4 (P. arecae and P. megakarya), 

respectively. Phytophthora frigida is heterothallic, and produces stellate to rosaceous 

growth patterns on growth medium, corraloid hyphae, sporangia with a variety of 

distorted shapes and has the ability to grow at low temperatures. Phytophthora alticola is 

homothallic and has a slower growth rate in culture. Both P. frigida and P. alticola are 

pathogenic to Eucalyptus dunnii. In pathogenicity tests, they were, however, less 

pathogenic than P. cinnamomi, which is a well-known pathogen of Eucalyptus in South 

Africa. 
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Introduction 
Cold-tolerant Eucalyptus spp. are grown extensively for pulpwood production in summer 

rainfall areas of South Africa with an altitude above 1150 m (Swain & Gardner 2003). 

During the mid-1980s, an increased demand for pulpwood led to the expansion of cold-

tolerant Eucalyptus plantations (Darrow 1996). This period also marked the beginning of 

breeding programmes for cold-tolerant Eucalyptus spp. and the introduction of several 

alternative Eucalyptus spp. from seeds collected in natural stands in Australia ([Darrow, 

1994] and [Swain and Gardner, 2003]). Several cold-tolerant species with high 

commercial potential have since been reported ([Clarke et al., 1999] and [Little and 

Gardner, 2003]). However, some species such as E. fastigata and E. fraxinoides are well 

known for their susceptibility to infection by Phytophthora cinnamomi (Wingfield & 

Kemp 1994), which is considered to be an introduced pathogen in South Africa (Linde 

et al. 1999).  
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Phytophthora collar and root rot is a widespread disease affecting a number of cold-

tolerant Eucalyptus spp. in South Africa ([Linde et al., 1994a] and [Linde et al., 1994b]). 

This disease hampers progress towards introducing alternative Eucalyptus species 

yielding high pulp volumes. The most common disease symptom is progressive wilting 

of the leaves due to the girdling of the root collars. When the bark is removed, brown 

lesions extending from the roots are typically observed. Other disease symptoms include 

root disease, bleeding lesions from diseased stem tissue, and the formation of epicormic 

shoots on the stems of dying trees. Dying trees are usually present in small patches 

throughout the plantations, especially in areas prone to water-logging during the rainy 

seasons. 

 

Phytophthora spp. known to be associated with collar and root rot of Eucalyptus spp. in 

South Africa include P. boehmeriae, P. cinnamomi, and P. nicotianae (Linde et al. 

1994b). In 2001, P. nicotianae caused disease outbreaks on several cold-tolerant 

Eucalyptus spp. in South Africa (Maseko et al. 2001). This was particularly interesting as 

P. cinnamomi, rather than P. nicotianae, has typically been associated with mortality of 

cold-tolerant Eucalyptus spp. (Linde et al. 1994b). During the same period, new and 

invasive Phytophthora spp. such as P. ramorum and P. quercina were emerging as 

important pathogens in Europe and North America ([Jung et al., 1999], [Werres et al., 

2001] and [Rizzo et al., 2002]). This prompted extensive surveys of cold-tolerant 

Eucalyptus stands to assess the presence of P. nicotianae and other possible invasive 

Phytophthora spp. that might be present on Eucalyptus spp. in South Africa. 

Isolations of Phytophthora spp. during surveys of cold-tolerant Eucalyptus spp. yielded 

two groups of isolates that could not be assigned to known species. The aim of this study 

was to characterise these new Phytophthora spp. based on comparisons of DNA sequence 

data and morphology. Pathogenicity tests were also conducted with isolates representing 

the two unknown species, as well as P. cinnamomi, which was included for comparative 

purposes. 
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Material and methods 
Sampling and isolation of isolates 

Between 2000 and 2004, Phytophthora root rot was recorded in several plantations of 

cold-tolerant Eucalyptus spp. in KwaZulu-Natal Province (Swain et al. 2000). In 

particular, three areas severely affected by this disease were located in Sutton plantation 

near Ixopo (29° 58′S, 30° 08′E), Mid-Illovo (29° 53′S, 30° 24′E), and Paulpietersburg 

(27° 31′S, 30° 47′E) provenance/progeny trials. Four soil samples from the top 10 cm at 

the bases of dying trees were pooled in a single plastic bag. In addition, plant tissue was 

collected from infected root collars. Isolation from soil and diseased plant samples was 

performed within 48 h of collection. A total of 368 diseased trees and 240 soil samples 

were collected and assayed for the presence of Phytophthora spp. 

 

Soil samples were flooded with distilled water and baited using citrus leaf discs (5 mm, 

diam) or Eucalyptus sieberi cotyledons as described by Grimm & Alexander (1973) and 

Marks & Kassaby (1974), respectively. After incubation at room temperature in the dark 

for 2–3 d, the leaf discs or cotyledons were plated on modified selective NARPH agar 

[Difco, Detroit, MI, corn meal agar (CMA), 17 g l−1 amended with 50 μg ml−1 nystatin, 

200 μg ml−1 ampicillin, 10 μg ml−1 rifampicin, 25 μgml−1 pentacloronitrobenzene 

(PCNB), and 50 μgml−1 hymexazol 3 hydroxy-5-methylisoxazole, Sigma-Aldrich, St. 

Louis] (Hüberli et al. 2000). Small pieces of diseased plant tissue were plated directly on 

NARPH. Petri dishes were incubated at room temperature in the dark and examined after 

2–3 d using a compound microscope. Hyphal tips were cut from the edges of growing 

colonies and subcultured onto clarified V8 juice agar (V8A, Campbell's V8 juice 340 ml, 

5 g CaCO3, 15 g agar and 900 ml distilled water) and CMA for further study and storage. 

Isolates could be divided into four groups based on colony morphology. These 

corresponded to P. cinnamomi or P. nicotianae and two unknown groups (unpublished 

data). Single zoospore cultures for isolates residing in each of these two groups, 

tentatively treated as Phytophthora sp. A, and Phytophthora sp. B, were made using the 

method described by Wang-Ching & Wen-Hsiung (1997). Ten isolates were randomly 

selected from each of the unknown Phytophthora spp. for more detailed study. 
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All but one of the isolates of Phytophthora sp. A were from dying Eucalyptus smithii in 

Sutton plantation after extensive sampling during 2000 and 2001 (unpubl. data). The only 

exception was an isolate (CMW 19428) from Acacia decurrens, which was received by 

the diagnostic clinic of the Tree Protection Cooperative Programme 

(http://www.fabinet.up.ac.za/tpcp). Six isolates representing Phytophthora sp. B were 

from diseased E. bajensis (CMW19416–21) in provenance/progeny trials at Mid-Illovo 

and Paulpietersburg in the KwaZulu-Natal Province. Four additional isolates included in 

this study were from diseased E. dunnii (CMW19422–24) and E. macarthurii 

(CMW20393) samples submitted to the diagnostic clinic. Cultures of P. arecae, P. 

colocasiae, P. multivesiculata, and P. nicotianae, included in this study for comparative 

purposes, were obtained from the Centraalbureau voor Schimmelcultures (CBS; Table 1). 

In addition, isolates of several Phytophthora spp. found in South Africa were also 

included (Table 1). All isolates used are maintained in the culture collection (CMW) of 

the Forestry and Agricultural Biotechnology Institute (FABI) and representative isolates 

of the new taxa have been deposited with the Centraalbureau voor Schimmelcutlures 

(CBS), Utrecht, The Netherlands. 
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Table 1.  

Species and isolates of Phytophthora species examined in this study 

Isolate number Species aGroup bClade Host Location ITS β-tubulin 

CMW21922 Phytophthora cactorum I 1a Apple rootstock Stellenbosch, W. Cape DQ988205 DQ988244

CMW19445 P. cactorum I 1a Apple rootstock Stellenbosch, W. Cape DQ988206 DQ988245

CMW19442 P. nicotianae II 1b Citrus jambhiri Tzaneen, Limpopo DQ988174 DQ988213

CMW19443 P. nicotianae II 1b Acacia mearnsii Lions River, KZN DQ988175 DQ988214

CMW19444 P. nicotianae II 1b Eucalyptus smithii Hodgsons, KwaZulu-Natal DQ988176 DQ988215

CMW19441 P. boehmeriae II 9 & 10 E. smithii Ixopo, KwaZulu-Natal DQ988207 DQ988246

CMW19440 P. boehmeriae II 9 &10 E. smithii Howick, KwaZulu-Natal DQ988208 DQ988247

CMW19439 P. boehmeriae II 9 &10 E. smithii Ixopo, KwaZulu-Natal DQ988209 DQ988248

CBS 305.62 P. arecae II 4 Areca catechu India DQ988202 DQ988241

CMW19437 P. arecae II 4 Unknown Stellenbosch, W. Cape DQ988203 DQ988242

CMW19436 P. arecae II 4 Unknown Stellenbosch, W. Cape DQ988204 DQ988243

CMW19425 P. alticola II 4 E. dunnii PaulPetersburg, KZN DQ988196 DQ988235

CMW19424 P. alticola II 4 E. macarthurii Midillovo, KwaZulu-Natal DQ988197 DQ988236

CMW19423 P. alticola II 4 E. dunnii Paulpetersburg, KZN DQ988198 DQ988237

CMW19422 P. alticola II 4 E. dunnii Paulpetersburg, KZN DQ988199 DQ988238

CMW19421 P. alticola II 4 E. dunnii Paulpetersburg, KZN DQ988200 DQ988239

CMW19420 P. alticola II 4 E. badjensis Midillovo, KwaZulu-Natal   
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Isolate number Species aGroup bClade Host Location ITS β-tubulin 

CMW19419 P. alticola II 4 E. badjensis Paulpetersburg, KZN DQ988201 DQ988240

CMW19418 P. alticola II 4 E. badjensis Midillovo, KwaZulu-Natal   

CMW19417 P. alticola II 4 E. badjensis Midillovo, KwaZulu-Natal   

CMW19416 P. alticola II 4 E. badjensis PaulPetersburg, KZN   

CMW20206 P. citrophthora II 2 Citrus rootstock W. Cape DQ988186 DQ988225

CMW20204 P. citrophthora II 2 Citrus rootstock W. Cape DQ988187 DQ988226

CMW20198 P. citrophthora II 2 Citrus rootstock W. Cape DQ988188 DQ988227

CMW19415 P. citricola III 2 C. limonia W. Cape DQ988183 DQ988222

CMW19414 P. citricola III 2 C. limonia W. Cape DQ988185 DQ988224

CMW19413 P. citricola III 2 C. limonia W. Cape DQ988184 DQ988223

CMW19435 P. frigida IV 2 E. smithii Ixopo, KwaZulu-Natal DQ988177 DQ988216

CMW19434 P. frigida IV 2 E. smithii Pietermaritzburg, KZN DQ988178 DQ988217

CMW19433 P. frigida IV 2 E. smithii Lions River, KZN DQ988179 DQ988218

CMW19432 P. frigida IV 2 E. smithii Ixopo, KwaZulu-Natal DQ988180 DQ988219

CMW19431 P. frigida IV 2 E. smithii Pietermaritzburg, KZN DQ988181 DQ988220

CMW20311 P. frigida (ex-type) IV 2 E. smithii Ixopo, KwaZulu-Natal DQ988182 DQ988221

CMW19429 P. frigida IV 2 E. smithii Ixopo, KwaZulu-Natal   

CMW19428 P. frigida IV 2 Acacia decurrens Seven Oaks, KZN   

CMW19427 P. frigida IV 2 E. smithii Bloemendal, KZN   
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Isolate number Species aGroup bClade Host Location ITS β-tubulin 

CMW19426 P. frigida IV 2 E. smithii Shafton, KwaZulu-Natal   

CBS545.96 P. multivesiculata IV 2 Cymbidium sp Netherlands DQ988192 DQ988231

CBS 955.87 P. colocasiae IV 2 Colocasia esculenta India   

CMW22018 P. colocasiae IV 2 Protea sp W. Cape DQ988191 DQ988230

CMW20195 P. colocasiae IV 2 Protea sp W. Cape DQ988190 DQ988229

CMW19410 P. cryptogea VI 8a Vitis vinifera W. Cape DQ988194 DQ988233

CMW19411 P. cryptogea VI 8a Vitis vinifera W. Cape DQ988193 DQ988232

CMW20393 P. cryptogea VI 8a Vitis vinifera W. Cape DQ988195 DQ988234

CMW19408 P. cinnamomi VI 7a E. fraxinoides Hodgsons, KwaZulu-Natal DQ988171 DQ988210

CMW19406 P. cinnamomi VI 7a E. dunnii Ixopo, KwaZulu-Natal   

CMW19405 P. cinnamomi VI 7a E. dunnii Piet Retif, Mpumalanga DQ988172 DQ988211

CMW19404 P. cinnamomi VI 7a E. smithii Hodgsons, KwaZulu-Natal DQ988173 DQ988212

CMW19403 P. cinnamomi VI 7a E. elata Piet Retif, Mpumalanga   
a Groups according to Waterhouse (1963). 
b Clades according to (Cooke et al., 2000) and (Kroon et al., 2004).  
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DNA isolation, PCR reactions, and sequencing 

An agar block derived from a single zoospore culture for each of the 20 isolates 

representing the two unknown Phytophthora spp. was grown in 50 ml of 25 % clarified 

V8 broth at room temperature for 3–5 d. After harvesting, mycelium was freeze-dried and 

stored in Eppendorf tubes at room temperature. DNA was extracted using a phenol–

chloroform DNA extraction method slightly modified from that described by Al-Samarrai 

& Schmid (2000). The ITS regions of the rDNA gene repeat for the unknown 

Phytophthora spp. was amplified using the forward ITS 6 (5′GAA GGT GAA GTC TAA 

CAA GG 3′) and reverse ITS 4 (5′TCC TCC GCT TAT TGA TAT GC 3′) primers 

(Cooke & Duncan 1997). Amplification of the β-tubulin gene was done using the Oom-

Btub-up415 F (5′ CGCATCAACGTGTACTACAA 3′) and Oom-Btub1o1401 R (5′ CGC 

TTG AAC ATC TCC TGG 3′) universal primers and PCR protocol of Bilodeau et al. 

(2007). The PCR reaction mixture (50 μl) contained DNA template (50–90 ng) 10 mm 

Tris–HCl (pH 8.3), 1.5 mm MgCl2, 50 mm KCl, 200 μm of each deoxynucleotide 

triphosphate, 150 nm of each primer and 1.25 U of Taq polymerase (Fermentas, UAB, 

Lithuania). The PCR conditions included an initial DNA template denaturation at 96 °C 

for 2 min, fol′owed by 30 cycles of denaturation at 96 °C for 30 s, annealing at 55 °C for 

30 s, extension 72 °C for 1 min, and final cycle at 72 °C for 10 min. A negative control 

consisting of all ingredients excluding template was also included. Amplicons were 

visualised on 1 % agarose gel stained with ethidium bromide and visualised under uv 

light. Resulting band size estimates we′e achieved using GeneRuler™ 100 bp DNA 

ladder (Fermentas). The PCR products were purified using a PCR products purification 

kit (Roche Molecular Biochemicals, Almeda, CA). They were then sequenced using the 

forward and reverse primers used in the amplification of the ITS and β-tubulin gene 

regions. Reactions were performed using the ABI PRISM™ Big dye terminator 

sequencing reaction kit according to the manufacture's instructions (Perkin-Elmer 

Applied BioSystems, Foster City, CA). Sequencing was done using an ABI 3100™ 

automated DNA sequencer. 
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Phylogenetic analysis of the sequence data 

In order to compare the new Phytophthora spp. from this study with other closely related 

species, additional sequences of representative species from Cooke et al. (2000) were 

obtained from GenBank. Phylogenetic analyses were done using MP methods in PAUP 

software version 4.0b10 (Swofford 2003) and Bayesian analysis (Ronquist & 

Heuelsenbeck 2003). 

 

The initial analysis was performed on an ITS dataset alone and subsequent analyses were 

performed on a combined dataset of ITS and β-tubulin sequence, after a partition 

homogeneity test (PHT) had been performed in PAUP to determine whether sequence 

data from the two separate gene regions were statistically congruent ([Farris et al., 1994] 

and [Huelsenbeck et al., 1996]). The most parsimonious trees were obtained using 

heuristic searches with random stepwise addition in 100 replicates, with the tree 

bisection-reconnection branch-swapping option on and the steepest-descent option, off. 

Maxtrees were unlimited, branches of zero length were collapsed and all multiple, 

equally parsimonious trees were saved. Estimated levels of homoplasy and phylogenetic 

signal (retention and consistency indices) were determined (Hillis & Huelsenbeck 1992). 

Characters were unweighted and unordered, branch and branch node supports were 

determined using 1 K BS replicates (Felsenstein 1985). 

 

Bayesian analysis was conducted on the same aligned combined dataset. First Mr 

Modeltest v2.2 (Nylander 2004) was used to determine the best nucleotide substitution 

model. Phylogenetic analyses were performed with MrBayes 3.1 applying a general time 

reversible (GTR) substitution model with a gamma (G) and proportion of invariable site 

(I) parameters to accommodate variable rates across sites. The MCMC analysis of four 

chains started from random tree topology and lasted 2 M generations. Trees were saved, 

each resulting in 1 K trees. Burn-in was set at 200 K generations after which the 

likelihood values were stationary, leaving 950 trees from which the consensus trees and 

PPs were calculated. PAUP 4.0b10 was used to construct the consensus tree and 

maximum PPs assigned to branches after 50 % majority rule consensus tree was 

constructed from the 950 sampled trees. 
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Morphological, cultural, and physiological characteristics 

Starter cultures (five per taxon examined) were grown on V8A incubated at room 

temperature for 5 d. A 4 mm cork borer was used to cut agar discs from the colony edges 

and these were placed at the centre of clarified V8 juice agar (Erwin & Riberio 1996), 

carrot agar (CA) (Erwin & Riberio 1996), CMA, potato dextrose agar (Difco; 24 gl−1), 

and malt extract agar (MEA; 20 gl−1 Biolab, Johannesburg). Two lines intersecting at 

right angles at the centre of a 90 mm Petri dish were drawn on the outside of Petri dishes 

as reference growth points for each isolate. Five isolates of each taxon were transferred to 

the different media in triplicate and incubated at temperatures ranging from 5–35 °C, at 

5 °C intervals. The colony diameters were measured daily with electronic digital callipers 

until the colonies reached the edges of the Petri dishes. 

 

Sporulation on solid media was induced by adding Petri's mineral salt solution to cultures 

growing on V8A or CMA (Ribeiro 1978). Sporangial production and release of zoospores 

into liquid media was achieved using a modified mycelial matt method (Chen & 

Zentmyer 1970). Agar blocks bearing mycelium were cut from the edges of colonies and 

transferred into 20 ml clarified V8 juice broth and incubated at room temperature for 4 d. 

Mycelial mats were harvested, rinsed twice with sterile distilled water and Petri's mineral 

salt solution was added. Sporangia were produced after 2–3 d incubation in the dark and 

zoospore release was achieved by chilling the Petri dishes at 10 °C for 30 min and then 

returning them to 25 °C. 

 

Sexual structures of Phytophthora sp. B were induced by growing ten test isolates on 

10 % V8 agar and MEA at room temperature for 10–15 d. Single zoospore isolates 

produced oospores independently without crossing and were thus considered homothallic. 

Isolates of Phytophthora sp. A did not produce oospores independently, and thus, were 

tested for their ability to cross using the method outlined in Erwin & Riberio (1996).  

Matings were performed by pairing all ten Phytophthora sp. A isolates with known A1 

and A2 (CMW21989, CMW21993) strains of P. nicotianae on 65 mm Petri dishes 

containing CA. In order to determine which isolates produced the oogonia in compatible 
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pairings, a sterile polycarbonate membrane (47 mm diam, 0.2 μm pore size; Millipore) 

was used as described by Ko (1978). 

 

A light microscope was used to examine the reproductive structures and to compare the 

morphology of isolates with the aid of the revised tabular key of Stamps et al. (1990). For 

detailed microscopic examinations and measurements, sporulating mycelium was 

mounted on glass slides in lactophenol. Measurements of 50 randomly selected 

sporangia, oogonia, antheridia, chlamydospores, and hyphae were made for a single 

representative isolate of each of the two unknown Phytophthora spp. In addition, 20 of 

the above-mentioned structures were measured for each of the remaining nine isolates of 

each species. 

 

The mean ranges and confidence limits for all taxonomically relevant structures were 

recorded and are presented as (min–) (0.95 lower conf limit– 0.95 upper conf limit) (–

max). Photographs captured with a HRc Axiocam (Carl Zeiss, München) digital camera 

and complementary Axiovision® 3.1 software were used to measure all morphological 

characters. 

 

Petri dishes containing CMA and amended with different concentrations of hymexazol 

were prepared to give final concentrations between 10 and 50 μgml−1 at 10 μgml−1 

increments. A similar set of Petri dishes was amended with malachite green (125 μgml−1). 

Small (5 mm diam) agar discs bearing mycelium of each of the ten test isolates of each 

unknown species were placed on the surface of the amended agar and incubated at 20 °C 

in the dark for 5 d ([Shepherd, 1976] and [Kennedy and Duncan, 1995]). Three replicate 

Petri dishes for each of the ten isolates were used and the sensitivity of the isolates to the 

test compounds was expressed as percentage growth rate versus that of isolates on control 

Petri dishes that were free of the test compounds. 

 

Ten isolates of each of the unknown Phytophthora spp. were tested for their ability to 

utilise nitrate as a sole nitrogen source. Agar discs (5 mm diam) were placed on the 

surface of agar growth media containing l-asparagine (P3) and nitrate (P4) as described 
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by Hohl (1975). After incubation for 5 d at 20 °C, the colony growth was measured and 

expressed as increase in colony diameter in millimetres per day (mm d−1). Pigment 

production of the test isolates was assessed on casein hydrolysate tyrosine (CHT) agar 

(Shepherd 1976). Petri dishes were incubated at 20 °C the dark for 15–20 d. The resulting 

extent of pigmentation was compared with control cultures grown on casein hydrolysate 

agar (casein hydrolysate broth 29.33 gl−1, Sigma-Aldrich, St. Louis, Biolab, JHB agar 15 

gl−1). Petri dishes were examined on a light box and scored as having no (0), slight (1), 

moderate (2) or abundant (3) pigment (Shepherd 1976). 

 

Pathogenicity tests 

Ten isolates of each of the unknown Phytophthora spp. and five isolates of P. cinnamomi 

were used to inoculate one-year-old Eucalyptus dunnii trees in the field (Table 1). The 

pathogenicity trial was located in a commercial stand of trees at Sutton plantation, near 

Ixopo in the KwaZulu-Natal Province, South Africa. E. dunnii trees were inoculated 

using a 9 mm diam cork borer to remove the bark from each tree at breast height in 

March and November 2002. An agar plug removed from a one-week-old PDA culture of 

each of the test isolates, was inserted into the wound and sealed with masking tape to 

reduce desiccation. Controls were included by inoculating trees with sterile PDA plugs. 

Ten trees were inoculated for each of the 25 test isolates and five trees were used as 

controls. A completely randomised block design was used for the inoculations and the 

entire trial was repeated in November during the summer season. Lesion lengths on the 

inner bark of trees were measured six weeks after inoculation. Lesion lengths were 

compared and analysed using one way analysis of variance (ANOVA), and the 

inoculations tests were also compared with each other using ANOVA and the 

STATISTICA (version 6), data analysis software. 

 

Results 
DNA amplification and sequence data analysis 

The PCR product of the ITS-rDNA regions yielded a single band of approximately 

900 bp for all the undescribed Phytophthora isolates used in this study. The aligned 

dataset consisted of 885 characters of which 381 were parsimony informative. These data 
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contained significant phylogenetic signal (P < 0.01; gl = −0.627) to allow for meaningful 

analysis. Initial heuristic searches of unweighted characters in PAUP resulted in two most 

parsimonious trees of 900 steps (CI = 0.627, RI = 0.90). The two new Phytophthora 

species formed well-supported terminal clades (Fig 1, TreeBASE = SN3042). 

Phytophthora sp. A grouped together with an undescribed Phytophthora sp. associated 

with Rosaceae hosts (GenBank AF408625) of Abad et al. (2001) (Fig 1). Phytophthora 

sp. B isolates grouped together with P. arecae, Peronophythora litchii, Phytophthora 

megakarya, and Peronospora sparsa (Fig 1). However, Phytophthora sp. B isolates were 

closest to an isolate of another undescribed species from the US oak forests namely, 

Phytophthora sp. MD92, GenBank DQ313223). 
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Fig 1. One of two most parsimonious phylogenetic trees of 900 steps obtained from 

analysis of ITS sequence data. Branch support (BS value) is given above the branches 

and PP from the Bayesian analysis in brackets. 
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PCR amplification of the β tubulin regions yielded a single band (ca 900 bp) for 

Phytophthora isolates examined in this study. The aligned dataset for the combined ITS 

and β -tubulin sequences consisted of 1689 characters, of which 318 were parsimony 

informative and were included in analysis. The partition homogeneity test showed no 

significant difference (P = 0.91) between the data from the different gene regions (sum of 

lengths of original partition was 778, range for 1000 randomisations was 771–779). 

Phytophthora sp. A and Phytophthora sp. B also formed highly supported terminal clades 

in the combined ITS and β-tubulin tree (not shown; Tree BASE = SN3042). However, 

they grouped in an unresolved clade, but remained within their respective sub-groups 

with closely related species as the ITS tree. Based on sequence data comparisons for the 

combined ITS-rDNA and β-tubulin gene regions, isolates of Phytophthora sp. A and 

Phytophthora sp. B from cold-tolerant Eucalyptus spp. represent undescribed taxa. 

Descriptions for these new species are given below. 

 

Taxonomy 
Phytophthora frigida Maseko, Coutinho & M.J Wingf., sp. nov 

(Figs 2–4). 

MycoBank no.: MB511178 

Etym.: ‘frigida’ refers to the fact that this species is cold tolerant. 

Phytophthora frigida sp. nov. crescit stellater vel rosaceiter in mediis plurimis, et potest 

in frigidis crescere (ita nomen), heterothalla, sporangiis ovoideo-obpyriformibus 

papillatis. Inter Phytophthoris aeriis typica est, sporangiis caducis et chlamydosporis 

permultis. 

 

Typus: Republic of South Africa: Natal Province: Sutton plantation, Ixopo, Eucalyptus 

smithii, Feb. 2001, B.O.Z Maseko, (PREM 59222 — holotypus. dried culture with 

asexual structures on CMA with a corresponding microscope slide; ex-type culture 

CMW20311; paratypes PREM, (59218, 59218, 59220, 59221), dried cultures with 

asexual structures on CMA with matching microscope slides; ex-paratype cultures CMW 

19426 CMW 19428, CMW 19433, CMW 19435.) 
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Primary hyphae coralloid, irregular, and sympodially branched, fairly uniform in width 

measuring up to 5 μm, (3.5–) 4–5 μm (mean 4.5 μm) (Fig 2A–B). Hyphal swellings 

globose and intercalary (Fig 2C–D). Chlamydospores terminal, globose, (20–) 24–26 (–

35) diam, (mean 25 μm), thin or thick-walled and brown (Fig 2 and Fig 3). 

Sporangiophores thin branches, arising near or directly from hyphal swellings. Sporangia 

terminal or sometimes intercalary, readily produced in solid or liquid media, 

conspicuously papillate, exit pore (3–) 5–6 (7–) μm, (mean 5 μm), ovoid, obpyriform or 

irregular shaped, (l × b) (24–) 31–34 (–40) × (20–) 26–28 (–33) (mean 33 × 27 μm), 

caducous with short pedicels (Fig 4A–L). Oogonia produced only in dual cultures, 

terminal, spherical with smooth walls, often thicker and golden brown with age and 

mostly (25–) 31–34 (−42) (mean 33 μm) diam (Fig 3A–C). Oospores aplerotic (19–) 26–

30 (−38) μm diam (mean 28 μm), wall 1.5–2 (−3) μm thick, often light yellow or 

colourless. Antheridia amphigynous (95 %), elongated, cylindrical or spherical to 

ellipsoidal (Fig 3B). 
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Fig 2. Primary hyphae and chlamydospores of Phytophthora frigida: (A–B) Coralloid 

mycelia with sympodial branching on solid media. (C–D) Intercalary globose hyphal 

swellings. (E) Thin-walled chlamydospores. (F) Germinating sporangium. Bars= 10 μm, 

except (E) = 2 μm. 
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Fig 3. (A–C) Oogonia and oospores of Phytophthora frigida showing amphigynous 

antheridial attachment. (C–D) Thick-walled chlamydospores produced abundantly on 

liquid MEA. (E–F) Sporangium release from chlamydospore (rarely) observed. 

Bars= 10 μm. 
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Fig 4. Sporangia of Phytophthora frigida. (A–F) Papillate and semi-papillate, ovoid-

obpyriform, lateral attached and caducous sporangia. (G–L) Various distorted shapes 
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observed in liquid media. (H) Papillate sporangium with conspicuous basal plug. (J, L) 

sporangia with elongated necks sometimes with three apices. Bars= 10 μm. 

 

Cultural characterisitics: Phytophthora frigida produces stellate to rosaceous colony 

types (5 d at 20 °C in darkness) on V8A, CA, MEA, CMA, and PDA (10 d at 20 °C in 

darkness). Cottony colonies with irregular growth patterns are produced on V8A, CA, 

MEA, and PDA. Submerged colonies with only sparse aerial mycelium were produced on 

CMA (Fig 5). Primary hyphae corraloid measuring 5 μm in width (3.5–) 4–5 μm (mean 

4.5; Fig 2). Hyphal swellings intercalary and globose in solid and water media. 

Sporangiophores branched in sympodia arising near or directly from hyphal swellings. 

The cardinal temperatures for P. frigida isolates examined were 10 °C (mean 2 mm d−1) 

and 30 °C (mean 6 mm d−1). None of the P. frigida isolates grew at the lowest (5 °C) or 

highest (35 °C) temperatures. The mean growth rates on five test media at 20 °C for all 

ten P. frigida isolates are presented in Table 2. The growth temperature relationships of 

P. frigida on V8 and CA are illustrated in Fig 6. All P. frigida isolates examined in this 

study were able to utilise nitrate as sole nitrogen source. Isolates produced a black 

pigment on CHT agar within two to three weeks. None of P. frigida isolates grew on a 

medium containing malachite green. All isolates examined in this study were tolerant to 

hymexazol (Table 2). 
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Fig 5. Colony types of Phytophthora species grown on V8A, CA, MEA, CMA after 5 d 

at 20 °C and PDA after 10 d. P. frigida (column 1; left, top to bottom), P. multivesiculata 

(column 2), P. alticola (column 3), P. arecae (column 4). 
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Table 2.  

A comparison of morphological characteristics of Phytophthora isolates 

Character Phytophthora 
frigida sp. nov. 

Phytophthora 
multivesiculata 

Phytophthora 
alticola sp. nov. 

Phytophthora 
arecae 

No. of isolates 10 2 10 3 

 

Main hyphae Coralloid Coiled Smooth Smooth 

Hyphal swellings Spherical Catenulate Irregular Absent 

Mean width (μm) 4.5 6 5 4 

 

Sporangia Papillate Semi-papillate Papillate Papillate 

Range (μm) 24–40 × 20–33 30–60 × 20–41 (30–45) × (20–35) 35–60 × 25–35 

Length:breadth ratio 
(mean) <1.6 <1.6 <1.6 <1.6 

Shapes observed Ovoid-obpyriform Ovoid, obpyriform Ovoid, ellipsoidal 
obturbinate 

Ellipsoidal to 
obturbinate 

Distorted shapes + +  + 

Caducity Caducous Caducous Caduceus Caducous 

Pedicel (μm) Short (<5 μm) Short (<5 μm) Short (<5 μm) Short (<5 μm) 

Sporangiophores Simple 
sympodium 

Simple and twisted 
sympodium 

Simple or 
branched 
sympodium 

Simple or 
branched 
sympodium 

Exit pore (μm) Broad (5–10) Broad (8–12) Narrow (<7 μm) Narrow (<7 μm) 

 

Chlamydospores Abundant In some isolates 
only 

In some isolates 
only Absent 

Mean diam (μm) <35 μm  <35 μm  

 

Oogonia 

Mean diam (μm) 38 μm 41 μm 28 30 

Range diam (μm) 24–48 28–50 20–35 23–44 
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Character Phytophthora 
frigida sp. nov. 

Phytophthora 
multivesiculata 

Phytophthora 
alticola sp. nov. 

Phytophthora 
arecae 

Oospores 

Mean diam (μm) 33 40 30 30 

Range (μm) 25–42 28–46 24–36 25–40 

 

Antheridia Amphigynous Amphigynous Amphigynous Amphigynous 

Sex Heterothallic Homothallic Homothallic Heterothallic 

 

Growth media Colony and cultural characteristics 

V8A (a) Stellate-petaloid Smooth Smooth Smooth 

(b) Moderately fluffy Cottony Fluffy Fluffy 

CA (a) Stellate-petaloid Smooth Smooth Smooth 

(b) Moderately fluffy Cottony Fluffy Fluffy 

MEA (a) Stellate-Petaloid Smooth Smooth Smooth 

(b) Moderately fluffy Cottony Fluffy Fluffy 

CMA (a) Slight stellate Smooth Smooth Smooth 

(b) Appressed Appressed Appressed Appressed 

PDA (a) Stellate-petaloid Smooth Smooth Smooth 

(b) Moderately fluffy Cottony Fluffy Fluffy 

 Mean growth rate mmd−1 at 20 °C 

V8A 5 5.8 3 6.2 

CA 4.8 5 3.8 5.3 

CMA 4.6 5.2 2.4 5.5 

MEA 4 4.5 2 5 

PDA 3 2.6 1.5 4.2 

P3 (asparagine) 1.5 2.5 1 3 

P4 (nitrate) 0.6 1.5 0.2 2 

Sensitivity 
malachite green No growth No growth No growth No growth 
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Character Phytophthora 
frigida sp. nov. 

Phytophthora 
multivesiculata 

Phytophthora 
alticola sp. nov. 

Phytophthora 
arecae 

 

Percentage growth rate on CMA amended with different concentrations of hymexazol, isolate ranges in 
brackets 

10 μgml−1 92 (90–100) 95 (90–100) 80 (90–100) 85 (90–100) 

50 μgml−1 70 (60–90) 75 (45–96) 55 (51–65) 60 (40–65) 

CHT Agar Abundant (3) Moderate (2) None (0) slight (1) 

 

V8A, V8 juice agar; CA, carrot agar; CMA, corn meal agar; MEA malt-extract agar; 

PDA, potato dextrose agar; P3, agar growth media containing l-asparagine (P3); P4, agar 

growth media containing nitrate (P4); CHT agar, casein hydrolysate tyrosine. 

 

 
 

Fig 6. Growth–temperature graph of Phytophthora frigda and P. alticola on V8A and CA 

at temperatures ranging from 5–35 °C for 10 d. 

 

Asexual structures: Sporangia readily produced in solid and liquid media, caducous with 

short pedicels, terminal, and intercalary sporangia present. Sporangiophores irregular 

branched and with lax sympodia. Sporangia papillate often with various distorted shapes 

including bipapillate, elongated necks with three apices (observed in some isolates), 

conspicuous basal plugs, distinctly curved apices and lateral displacement of the papilla 

openUP (November 2007) 



(Fig 4). Sporangia primarily ovoid-obpyriform, however, irregular shaped sporangia with 

variable shapes and sizes observed in liquid media. The size range of sporangia (l × b) 

(24–)31–34(–40)×(20–)26–28(–33) (mean 33 × 27 μm). The exit pores range between 

(3–)5–6(7–) μm (mean 5 μm). 

 

Chlamydospores: Numerous thin-walled chlamydospores are produced in liquid and on 

solid media. Round thin-walled chlamydospores are produced terminally with diameters 

ranging between (20–)24–26(–35) mean 25 μm. Characteristic thick-walled 

chlamydospores, producing sporangia were observed on solid media. These thick-walled 

chlamydospores could easily be confused with oogonia (Fig 3D–F). However, they did 

not have antheridia. Occasionally, direct sporangial germination from thick-walled 

chlamydospores observed (Fig 3E–F). The P. multivesiculata isolates examined did not 

produce chlamydospores as readily as P. frigida, although some isolates produced 

chlamydospores after long storage. 

 

Sexual structures: Oogonia were produced only through pairing of opposite mating 

isolates, suggesting that the species is heterothallic. Isolates produced terminal oogonia, 

with spherical and smooth walls with diameters ranging between (25–)31–34(–42) (mean 

33 μm). Oospores had thick inner walls and were aplerotic with diameters ranging 

between (19–)26–30(–38) μm, with mean of 28 μm. Antheridia were elongated, 

cylindrical and amphigynous (95 %) and spherical to ellipsoidal in shape (Fig 3A–C). 

There are many key features that distinguish P. frigida from P. multivesiculata that is 

most closely related to it. In terms of mating behaviour, P. frigida is heterothallic whereas 

P. multivesiculata is homothallic. P. frigida has papillate sporangia rather than the semi-

papillate sporangia and P. frigida has corraloid hyphae rather than coiled hyphae and 

large spherical hyphal swellings rather than catenulate hyphal swellings found in P. 

multivesiculata. 

 

Phytophthora alticola Maseko, Coutinho & M.J Wingf., sp nov. (Figs 8–9) 

MycoBank no.: MB511177 
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Etym: Latin. The name refers to the fact that this fungus was first reported from high 

altitude sites. 

 

Phytophthora alticola sp. nov. crescit lente sine ordinatione proprio incrementi; 

phylogenetice P. arecae persimilis sed homothalla, sporangiis ovoideis papillatis vel 

bipapillatis, saepe forma distorta, differt. 

 

Typus: Republic of South Africa: Natal Province: Mid-illovo provenance/progeny trials, 

Richmond Eucalyptus badjensis, Mar. 2002, B.O.Z Maseko, (PREM 59215 — holotypus; 

dried culture with asexual and sexual structures on CMA with a corresponding 

microscope slide; ex-type culture CMW 19417; paratypes PREM 59214, PREM 59216, 

PREM 59217), dried cultures with asexual structures on CMA with matching 

microscopes slides, ex-paratype cultures CMW 19416, CMW 19424, CMW 19425.) 

Primary hyphae (5–)4–6 μm (mean 5 μm) wide. Sporangia papillate, occasionally 

bipapillate, variable size and shape. Other sporangial shapes include ovoid, globose, 

obturbinate, limoniform and various distorted shapes. Terminal sporangia, caducous, 

short pedicel, conspicuous basal plugs. Sporangia (30–)33–36(45–)×(20–)26–29(35–) 

(mean 36 × 28 μm), length:breadth ratio range, 1:2 and 1:4 (mean 1.4). Exit pores (4–) 5–

7 (8–) μm (mean 6 μm) diam. Chlamydospores, rarely produced, terminal and spherical, 

shape, between 20 and 35 μm (mean 28 μm; Fig 7). Oospores produced in single cultures, 

with thick inner walls, markedly aplerotic, diameters between 24–36 μm, with a mean of 

28.3 × 30.5 μm. Antheridia mainly amphigynous, paragynous antheridia also present. 
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Fig 7. Chlamydospores of Phytophthora alticola on V8 Agar. (A–D) Terminal 

chylamydospores, large and spherical. Bars = 10 μm. 

 

Cultural characteristics: Phytophthora alticola has smooth colonies with no distinctive 

growth pattern on V8A, CA, MEA, CMA, or PDA after 5 d incubation at 20 °C. 

Mycelium dome-shaped and fluffy with scant to moderate aerial mycelium on V8A, 

CMA, and MEA. However, colonies tend to be appressed with thinly spread aerial 

mycelium on CMA (Fig 5). The optimum growth temperature on V8 agar for the ten 

P. alticola isolates examined was 25–30 °C. The cardinal temperatures for P. alticola 

isolates examined were 15 °C (mean 1 mm d−1) and 30 °C (mean 4 mm d−1). None of the 

isolates examined grew at low temperatures (below 10 °C) or at high temperature (above 
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30 °C). P. alticola isolates examined grew slowly on all growth media tested at 20 °C. 

The mean growth rates for the isolates are listed in Table 2 and the growth temperature 

relationship on V8A and CA in Fig 6. All of the isolates examined were able to utilise 

nitrate as sole nitrogen source and did not produce pigment on CHT agar. None of the 

isolates were able to grow on malachite green media. All P. alticola isolates were 

sensitive hymexazol (Table 2). 

 

Primary hyphae in P. alticola were smooth, with irregular hyphal swellings, in liquid 

media (5–)4–6 μm (mean 5 μm) wide. Sympodially branched hyphae and irregular 

hyphal swellings were present. P. arecae, which is closely related to P. alticola, did not 

produce distinctive growth patterns but in that species, colonies were cottony, slightly 

radial and with abundant aerial mycelia on V8A, CA, MEA, PDA, and appressed 

colonies on CMA. P. arecae hyphae were smooth with no hyphal swelling and measured 

(3–)3.5–4.5 μm (mean 4 μm). There was a marked variation between isolates examined 

and the two species could not be readily distinguished from each other based on growth 

patterns in culture. 

 

Asexual structures: All isolates of P. alticola examined produced sporangia on agar as 

well as in liquid media. Sporangia were conspicuously papillate and occasionally 

bipapillate (Fig 8), with variable sizes and shapes including ovoid, obpyriform, and 

various distorted shapes. Sporangia were terminal, caducous with short pedicels (Fig 8E). 

Sporangia were (30–)33–36 (−45) × (20–) 26–29 (−35) (mean 36 × 28 μm) in size and 

had a length:breadth ratio ranging between 1:2 and 1:4 (mean 1.4). The mean zoospores 

exit pore width was 6 μm. Spherical and terminal chlamydospores were produced in 

some isolates and their diameter range between (22–) 25–45 (mean 35 μm). The shapes 

of the sporangia of the closely related P. arecae vary from ovoid, obturbinate, elongated 

and ellipsoidal, and measured (35–) 40–44 (−60) × (25–) 28–30 (−35) (mean 42 × 30 μm) 

with mean length:breadth ratio (1:3–) 1.4 (−1.6). Round and terminal chlamydospores 

produced in older cultures and their diameter measuring (14–) 19–40 mean (30 μm) for P. 

arecae. 
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Fig 8. Sporangia of Phytophthora alticola. (A–C) Papillate, ovoidobpyriform, terminal 

attached and caducous sporangia. (D–F) Ovoid and papillate sporangia. Distorted shapes. 

(G) Bipapillate sporangium. (H) Peanut-shaped sporangium. Bars= 10 μm. 
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Sexual structures: All isolates of P. alticola examined in this study were homothallic. 

Oogonia formed readily formed in solid and liquid media. Oogonia were terminal with 

tapered stalks and were smooth-walled with diameters ranging between (24–) 26–28 

(−31) (mean 26 μm). Oospores had thick inner walls with diameters ranging between 

(14–) 20–22 (mean 22 μm). Antheridia were predominantly amphigynous but paragynous 

antheridia were also observed in some isolates. Antheridia had a tendency to detach from 

the oogonia as illustrated in Fig 9. The obvious distinguishing feature between P. alticola 

and P. arecae is that the latter species is heterothallic. 
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Fig 9. Oogonia, antheridial and oospores characteristics of Phytophthora alticola. (A) 

Spherical thick-walled oogonium with tapered base. (B–F) markedly aplerotic oospores, 
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amphigynous antheridia often breaking-off from oogonia or attached to tapered oogonial 

stalk. Bars= 10 μm. 

 

Distribution and ecology 

Phytophthora frigida was first isolated from diseased plant material and rhizosphere soil 

samples taken around declining Eucalyptus smithii trees at Sutton during the spring of 

1999. Since then, P. frigida has been associated with root and collar rot disease of E. 

dunnii, E. smithii, Acacia mearnsii and A. decurrens in several forest plantations. 

Although, P. frigida, is well adapted for wind or splash dispersal, it has not been 

associated with shoot dieback of the above forest tree species. P. frigida is occasionally 

recovered from baited soil samples of cold-tolerant Eucalyptus species during routine 

disease monitoring. In past surveys conducted during 1999–2003 on several E. smithii 

stands, P. frigida was found to have a wide distribution in the Mpumalanga and 

KwaZulu-Natal provinces of South Africa. To date, P. frigida is predominantly 

associated with root and collar rot disease of E. smithii and is less prevalent on other 

forest tree species. 

 

P. alticola was first recovered in 2004 from dying E. bajensis in a mixed 

provenance/progeny trial at Mid-illovo and Paulpietersburg in the KwaZulu-Natal 

province. Subsequently, it was isolated from soil and diseased E. dunnii samples, 

established in a previous provenance/progeny trial with a history of site dieback in 

Paulpietersburg. In 2005, P. alticola was isolated from a stem canker of dying E. 

macarthurii in a plantation forest in a neighbouring country, Swaziland. The distribution 

of P. alticola is limited to provenance/progeny trials and single outlying plantations 

stands in the Mpumalanga and KwaZulu-Natal. 

 

Pathogenicity tests 

All isolates inoculated on one-year-old Eucalyptus dunnii trees in the field were 

pathogenic and were consistently re-isolated from the resulting lesions. Discoloured 

lesions extending from the point of inoculation were produced in all inoculated trees. P. 

cinnamomi isolates were more aggressive than either P. frigida or P. alticola isolates (Fig 
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10). The mean lesion length produced by P. cinnamomi isolates was 12.7 cm compared 

with 7.7 and 3.8 cm produced by P. frigida and P. alticola, respectively. Control 

inoculations did not produce lesions. Mean lesion lengths for the different Phytophthora 

spp. compared were significant (P > 001) and different to each other and to those of the 

controls. 

 

 
 

Fig 10. Mean lesion length of selected isolates of Phytophthora alticola, P. frigida and P. 

cinnamomi, 36 d after under-bark inoculation of 12- m-old Eucalyptus dunnii in the field. 

 

Discussion 
Two previously unknown Phytophthora spp. consistently associated with collar and root 

disease outbreaks on non-native cold-tolerant eucalypts in South Africa were identified in 

this study. Phylogenetic analyses of the DNA sequence data for the ITS regions of rRNA 
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and β–tubulin region showed that these two taxa are distinct from all known species of 

Phytophthora. A number of unique morphological characteristics in these two species 

also support this view and we have thus described them as P. frigida and P. alticola. 

The ITS phylogeny produced in this study showed that P. frigida is related to species 

within the ITS clade 2 of Cooke et al. (2000), and that P. multivesiculata was one of the 

species most closely related to P. frigida. However, P. frigida shares 95 % homology 

with an undescribed Phytophthora sp., which was isolated from raspberry, rose, and 

strawberry in 2001. At the time of the current study this undescribed Phytophthora sp. 

was not available for morphological comparison. Both P. frigida and the undescribed 

Phytophthora sp. of Abad et al. (2001) belong to a separate sub-group within the ITS 

clade 2 of Cooke et al. (2000), but the significant genetic distance between the taxa 

provide good evidence that they are different species. The results of this study also show 

that the ITS clade 2 may include a greater number of sub-groups than previously reported 

by Cooke et al. (2000). 

 

The distinctive morphological features of P. frigida, which include papillate and 

caducous sporangia, indicate that it is adapted for wind or splash dispersal. P. frigida is 

homothallic in culture and thus likely to be an inbreeding species. P. frigida has 

predominantly been found on E. smithii, planted in areas with an altitude above 1150 m 

in South Africa. However, its host range could possibly include Acacia decurrens, 

because a few isolates of P. frigida were recovered from soil collected from around 

diseased A. decurrens trees. The ability to grow at temperatures lower than 15 °C 

indicates adaptation to a cool temperate climate. Distinctive morphological characteristics 

include a stellate to petalloid growth pattern on all five media tested, and the ability to 

utilise l-asparagine better than nitrate as sole nitrogen source. Our observations for 

P. multivesiculata, the species most closely related to P. frigida, are generally consistent 

with those reported by Ilieva et al. (1998). However, these authors reported a maximum 

growth temperature for P. multivesiculata, which is higher than those emerging from the 

present study. 
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The ITS sequence data presented in this study have shown that P. alticola clusters with 

taxa in ITS clade 4 of Cooke et al. (2000). P. arecae, which is conspecific with P. 

palmivora (Mchau & Coffey 1994) and Peronophythora litchii (Riethmüller et al. 2002) 

are the species most closely related to P. alticola. A single undescribed species listed in 

GenBank as Phytophthora sp. MD 92 (GenBank DQ313223) and reported as coming 

from eastern US oak forests is phylogenetically closely related to P. alticola and could 

represent another host and location for this species. 

 

P. alticola is a heterothallic species with ovoid-obpyriform conspicuously papillate 

sporangia. Consequently, it is in group II of the taxonomic scheme of Waterhouse (1963). 

In terms of DNA sequence data for the ITS region, it is phylogenetically placed in clade 4 

of Cooke et al. (2000) and is related to P. megakarya and P. arecae. Superficially, P. 

alticola shares a number of morphological features with P. arecae and the two species 

could be confused. However, P. alticola isolates produce smooth, dome-shaped cultures 

with moderate aerial mycelium on V8A and MEA, with faint stellate growth patterns on 

CA, PDA and submerged colonies on CMA. In contrast, P. arecae produces smooth 

colonies with fluffy aerial mycelium with faint stellate growths on V8A, CA, MEA, 

PDA, and submerged, thin mycelial growth with no obvious patterns on CMA. The most 

obvious differences distinguishing P. alticola from P. arecae include significantly slower 

growth rates in culture, irregular rather than absent hyphal swellings, ovoid-obpyiform 

rather than ellipsoid to obturbanate sporangia; large terminal chlamydospores in the 

former and no chlamydospores in the latter and oogonia produced abundantly rather than 

rarely in the latter. 

 

P. frigida and P. alticola were consistently isolated from diseased plant material and from 

rhizosphere soil associated with dying trees. Inoculation experiments conducted on one-

year-old E. dunnii in the field confirmed that both species are pathogenic. We thus 

believe that they are agents of the dieback and early death of the affected cold-tolerant 

Eucalyptus spp. in South Africa. These two new species have thus far been recovered 

from A. decurrens and non-native cold-tolerant eucalypts planted in high altitude areas. 

This is in contrast with previous reports that only three Phytophthora spp. are associated 
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with die-back of cold-tolerant eucalypts in South Africa (Linde et al. 1994c). However, 

P. frigida and P. alticola were substantially less pathogenic than P. cinnamomi, and their 

relative importance as tree pathogens will need to be determined. 

 

Although various studies on Phytophthora spp. have been conducted, there has never 

been a detailed survey of these pathogens in South Africa. As many Phytophthora species 

are a threat to agricultural crops, forest trees species and native vegetation, such surveys 

would be valuable and should be encouraged. The discovery of two new pathogenic 

Phytophthora spp. in this study provides a strong indication that other new species of 

Phytophthora await discovery in South Africa. Examples include the recently discovered, 

P. captiosa and P. fallax (Dick et al. 2006) from exotic Eucalyptus species in New 

Zealand. 
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Supplementary data 
Microsoft Powerpoint file 1.  

Supplementary Fig_D06_00234. (A–G) Aboveground and belowground disease 

symptoms of Phytopthhora root and collar rot in Eucalyptus spp. (A) Young E. badjensis 

killed by P. alticola in Midillovo progeny trial. (B–D) Collar rot and formation of 

epicormic shoots in E. badjensis. (E) Root rot of E. macarthurii caused by P. alticola. (F) 

Root rot of E. saligna caused by P. frigida. (G) Discolouration of the inner collar and 

kino exudation of E. smithii infected by P. frigida.>  
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