
354 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 5, NO. 2, JUNE 2010

A Method for Automatic Identification of Signatures of
Steganography Software

Graeme Bell and Yeuan-Kuen Lee

Abstract—A fully automated, blind, media-type agnostic approach to ste-
ganalysis is presented here. Steganography may sometimes be exposed by
detecting automatically characterized regularities in output media caused
by weak implementations of steganography algorithms. Fast and accurate
detection of steganography is demonstrated experimentally here across a
range of media types and a variety of steganography approaches.

Index Terms—Blind, media-type agnostic, steganalysis, steganography.

I. INTRODUCTION

Steganography is the field of research that studies how secret data can
be hidden in carrier media, without being detectable either to normal
human observation or programmatic scrutiny. Steganalysis [1]–[5] is
the field of research that (primarily) seeks methods to detect stegano-
graphic media. Broadly speaking, steganalysis can be separated into
targeted steganalysis, which aims to break a particular known stegano-
graphic embedding scheme, and blind steganalysis, which attempts to
identify the existence of steganography without a priori knowledge of
the specific algorithm that was used. Universal steganalysis may be
used to refer to those methods that are potentially capable of identifying
many forms of steganography through a single system. Here, we add
the idea of being media-type agnostic, whereby a method makes no as-
sumptions regarding steganography, steganography algorithms, media
type (e.g., pictures, music, text), or media data format (e.g., TIFF, JPG),
making it suitable in principle for use against any steganography ap-
proach. The problem addressed here is that of blind, media-type ag-
nostic steganalysis. It is well-established that it is very difficult but also
very useful to develop techniques that work broadly and blindly against
steganography, without knowledge of the algorithm being attacked, the
secret message or the original carrier media [1], [5], [6]. For example,
Fridrich notes in [5] that

having a few candidate stego-objects without any additional in-
formation (e.g., “JPEG in the wild”) is the hardest case for ste-
ganalysis.

In this paper, blind steganalysis is attempted by attacking the imple-
mentations of steganography algorithms rather than the steganography
algorithms themselves. Consequently, steganalysis may be achieved by
proxy, when the attack is successful. The principle of the technique is
as follows.

In order to make steganographic research applicable in the real
world, it is necessary to implement theoretical steganography algo-
rithms as executable programs. In the process of realizing an abstract
algorithm as a concrete piece of code, mistakes may be made by the
programmer that allow the presence of steganography to be exposed.
Where they exist, these implementation-induced artefacts are separate
to those produced by the nature of a steganographic embedding

Manuscript received June 27, 2009; revised March 13, 2010; accepted March
13, 2010. Date of publication March 29, 2010; date of current version May 14,
2010. The associate editor coordinating the review of this manuscript and ap-
proving it for publication was Dr. Nasir Memon.

G. Bell is with the School of Information Technology, Murdoch University,
Perth, WA 6150, Australia (e-mail: stego@graemebell.net).

Y.-K. Lee is with the Department of CSIE, Ming Chuan University, Gueishan
333, Taiwan.

Digital Object Identifier 10.1109/TIFS.2010.2046985

method, such as the “pair of values” artefact [2], which the majority of
research attention in steganalysis has been directed towards until now.
Implementation-induced artefacts are, however, a valid and interesting
target for steganalytic research, as the primary goal of steganography
(covert communication) is defeated whenever steganographic and
nonsteganographic media can be easily distinguished by any means.
As Westfeld states in [2]

The goal is to modify the carrier in an imperceptible way only,
so that it reveals nothing—neither the embedding of a message
nor the embedded message itself.

In the past, discovery of implementation artefacts during research
has occurred infrequently and on an ad-hoc basis. This paper discusses
a new steganalytic method by which the attempted discovery of these
implementation-induced peculiarities can be automated. The method is
applied in two stages. First, some known-stego training examples pro-
duced by a steganography tool are presented to a training algorithm,
along with a larger number of examples of nonstego files of the same
media type.1 The training algorithm attempts to identify any character-
istic regularities in the binary representation of the known-stego files
that are not present in the nonstego files. If regularities are found, then
a signature is immediately produced that may be used to help detect
output from that steganography tool, and by proxy, to help detect the
existence of steganography. Conversely, this means that this method
will not operate at all against implementations of algorithms that do
not produce characteristic regularities in their output. Tool signatures,
where they are found, may be used by comparing the bits of a given file
against the known bit values representing the regularities of the signa-
ture. This test of binary data values against signature values may be car-
ried out very quickly. Unfortunately, a match against a signature does
not provide a guarantee that a particular tool has been used, nor does
it guarantee that steganography is present, as sources of false-positives
may exist. However, a match against a stego-signature can provide a
useful indication that a particular tool may have been used and con-
sequently an indication that the file may contain steganography. This
property means that this method can effectively complement existing
steganalysis techniques and help to improve overall accuracy.

The structure of this paper is as follows. Section II introduces
the background and principles. Section III presents an algorithm.
Sections IV and V measure and evaluate the technique experimen-
tally. Section VI proposes developer guidelines. Section VII presents
conclusions, and is followed by references.

II. BACKGROUND AND MOTIVATION

The approach described in this paper was inspired by an observation
regarding the implementation of F5 [7]. Provos observed [5] that the F5
implementation added a characteristic header field which was seldom
seen in nonsteganographic media. The presence of this characteristic
field allowed the presence of secret data to be reasonably assumed. An-
other well-known example is provided by the GIF steganography tool,
STools [8]. It was observed that STools accidentally outputs a char-
acteristic palette which is not commonly seen in GIF files [9]. Conse-
quently, stego-media produced by this program can be very rapidly and
reliably identified. Unfortunately, this style of steganalysis is time con-
suming, and requires an expert with plenty of free time, patience, and
a measure of good luck. Nonetheless, these anecdotes provide a com-
pelling motivation for the construction of a similar, but more system-
atic and automated “blind regularity detection” attack against steganog-
raphy tools (and thus steganography, by proxy).

1Though it is blind, this technique still requires some output samples from a
steganography tool in order to attempt an attack.

1556-6013/$26.00 © 2010 IEEE

Authorized licensed use limited to: Murdoch University. Downloaded on June 21,2010 at 06:38:26 UTC from IEEE Xplore. Restrictions apply.

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Research Repository

https://core.ac.uk/display/11232461?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 5, NO. 2, JUNE 2010 355

Fig. 1. (a) The average of the first 100 bits of 40 stego-GIFs produced with STools. (b) The average of the first 100 bits of 40 randomly selected nonstego GIFs.
(c) The most “unusual” characteristic bits of the stego-GIFs. In (c), uninteresting bit positions are assigned the value 0.5 to distinguish them from positions that
are characteristically 1 or 0 only in the stego-media.

To understand the principle of this technique, imagine that “cow,”
“dog,” “cat,” and “fox” represent the output of a steganography pro-
gram given different secret messages and different carrier media. The
output data clearly changes each time at the human-observable and se-
mantic level. Even at the byte-level, there is no obvious regularity that
is always present in the output. However, if we look at the bit-level
representation of these ASCII characters, we see that several bit posi-
tions never change in value. Additionally, any regularity in the byte-
level representation will necessarily also appear as a regularity in the
bit-level representation. This means that the “obvious” types of regu-
larities noted by human researchers in the past can be discovered along
with new, more subtle vulnerabilities. This paper will, therefore, look
at how the bit-representation of files may be used to quickly and effec-
tively discover fixed, unchanging patterns of bits in files, particularly in
the header data of files. Here, a fixed-bit-signature for some file might
appear as “� � � �������������������� � � �,” where � is a wild-card
bit, a bit-position whose value we are unconcerned about when deter-
mining the possible presence of steganography. More general attacks
also exist. For example, it is possible to look for values that occur “un-
usually often,” rather than “every time.” Statistical or AI-based classi-
fication could be performed using each separate bit position of the file
as a feature to be considered. Another form of attack might look for
fixed patterns of values whose location in the file may vary (rather than
remain fixed in one position).

In this paper, a simple approach is sufficient to introduce and demon-
strate steganalysis based upon automated regularity discovery at the
bit-level. This provides advantages in terms of a straightforward imple-
mentation and small, quick-to-check signature profiles. No attempt is
made to understand media files; for example, by analyzing the meaning
of data content, or the nature of data structures or metadata fields. In
this way, this paper’s attack can be generally and directly applicable
(without modification or parameterization) against susceptible imple-
mentations of steganography utilizing any present or future form of
digital media.

III. METHOD

To determine the locations of candidate fixed-bits in stego-media
files, it is necessary to take into consideration the typical value of a bit
in a particular location in the files, and how it varies from natural, non-
stego media. The typical value of a bit position in a nonstego media file
is not 0.5, as might be expected [Fig. 1(b)2]. Rather, it depends on the
kind of file that is being considered. For a JPEG file, we might expect
some fixed value bit-positions making up “0xFF” or “JFIF” to occur

2This example shows that the most characteristic areas may be only 1 or 2 bits
wide, and difficult to observe as a regularity at the byte-level. It also shows the
average for bits 87-88 and 90-95 varied somewhat between stego and nonstego
GIFs.

naturally within a normal file simply because it is a JPEG, without
being indicative of stego-media.

The method of this paper is, therefore, to first take average (mean) of
the bit value at each bit position, across several examples3 of a partic-
ular tool’s outputted steganographic files. We record the bit locations
which are “unusual,” i.e., vary dramatically from the expected average
value of 0.5. In this implementation, we only record the bits that always
have a value of “1,” or always have a value of “0.” In other words, what
is unusual about the bit values at each position of the average stego-file
produced by a particular steganography tool (e.g., a stego-GIF)? An
example is shown in Fig. 1(a).

Next, to try to avoid accidentally recognizing nonsteganographic
files, we consider the mean bit-position values of several natural, non-
stego examples of the same kind of media file. In other words, what is
unusual in the average normal media file (e.g., a GIF)? An example is
shown in Fig. 1(b).

Finally, we remove from our stego fixed-bit-signature those bits that
regularly have the same particular values even in nonsteganographic
examples of that data type, as shown in Fig. 1(c). Any remaining fixed-
value bits will represent a short, highly characteristic fixed-bit-signa-
ture, or fingerprint of the output, for a particular version of a steganog-
raphy tool. Where such signatures are found, they allow steganalysts
to very quickly determine if a file could or could not be an example of
stego-media produced by that particular version of the tool.

This whole process can be conveniently summarized in the form of a
single question: What unusual characteristics exist in the bit-represen-
tation of the average output from a single steganographic tool, when
it is compared against the average output of nonsteganographic tools
that use the same medium?

The algorithms for constructing signatures and testing media are
very brief, and operate as follows:

1) First, calculate the fixed stego bits. � is an empty set. At every bit
position � in a number of stego-files of a given media type:

a) Calculate the average bit value. If position � has an average
bit value of “1” or “0” (always ON–OFF), record it as a stego-
media signature bit position in �: e.g., “� : fixed value: 0.”

2) Next, remove weakly characteristic bits. At every bit position �
in a number of nonstego-files, of the same media type:

a) Calculate the average bit value. If bit position � “naturally”
has an average value of “0” (or thereabouts4), and if position

3This approach can work with as few as 10–50 training examples, which is
important given that many steganography programs have only a GUI interface,
and no facility for convenient batch production of samples.

4“Thereabouts” is intentionally imprecise. The algorithm performs similarly
in practice over a wide range of values. In this paper’s experiments, signature
bits were those with a fixed value of 1 (or 0) in positions where nonstego pictures
had average values of 0.6 or less (or 0.4 or more, respectively). Other cut-off
values generally produced similar, often near-identical results.

Authorized licensed use limited to: Murdoch University. Downloaded on June 21,2010 at 06:38:26 UTC from IEEE Xplore. Restrictions apply.

356 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 5, NO. 2, JUNE 2010

TABLE I
EXPERIMENTAL RESULTS SHOWING EFFECTIVENESS AGAINST WELL-KNOWN STEGANOGRAPHY TOOLS

� is noted as a “0” stego-media fixed signature bit, then dis-
card signature bit position � from �.

b) If bit position � “naturally” has an average value of “1” (or
thereabouts), and if position � is noted as a “1” stego-media
fixed signature bit, then discard signature bit position� from
�.

3) To test a file � , compare the signature-bit positions in � against
the bits of file � using boolean AND. If every bit-signature value
perfectly matches, and no values fail to match, we consider the
file to be stego-media.5 Otherwise, the file is not considered to be
an example of stego-media.

IV. EXPERIMENTATION

To test this technique, output files from six steganography tools
were compared with regular stego-free examples of the same kind of
media. These six tools are the only steganography programs that have
ever been tested by the authors using this attack, i.e., no other positive
or negative known results have been excluded from this experiment.
The steganography programs tested here operate on different kinds
of media, use different steganography algorithms, and were imple-
mented by different authors. Two of these programs are current-day
commercial products intended for the serious purpose of real-life
data hiding: “Invisible Secrets” and “Steganos Data Security Suite.”
These products were evaluated using trial editions from late 2008.
The other programs tested were “OutGuess,” “JSteg,” “MP3Stego,”
and “STools.” In all cases, the most recently available version of the
program was used. A maximum signature limit of 400 fixed bits was
used to avoid unnecessarily large fingerprints. Wherever possible,
default settings were used for each program, to represent the most
common form of use of each tool. In each case, messages embedded
into the files were short, less than 50 bytes long. The message content,
message length, and password selected were varied between samples.
The carrier media files used here varied in file-size, dimensions, and
original content, and averaged approximately 100 KB (JPEG, GIF).
The relationship between the carrier file size and the secret data
size allows this experiment to test whether this attack can identify
steganographic media even when only a tiny fraction of the available
secret data capacity has been used. In the past, specialized steganalysis
techniques have had to be developed to specifically tackle this situ-
ation [10]. In other words, we seek to uncover steganography in the
challenging situation of minimal secret data, where even the most fa-
mous techniques for traditional steganalysis—such as the chi-squared
attack [2], the block-discontinuity attack [11], and RS-steganalysis
[12]—may fail.

To build the signature for each program, 40 samples of clear-media
were gathered and 40 samples of stego-media were produced. Addi-
tionally, 500 nonsteganographic JPEGs and 500 nonsteganographic
GIFs were gathered from over 50 different internet sources (excluding

5Requiring a perfect match is strict, but it is essential for steganalytic tech-
niques to target a very low false-positive rate [4].

steganography sites) and used to measure the false-positive rate.
Similarly, 100 nonsteganographic MP3s were gathered from over
30 different internet sources. To measure the true-positive rate, 10
previously unencountered test samples were produced from each
steganography program. Stego-media files were generated manually
using program GUIs or with batch interfaces.

The bit-signature produced by the attack was then tested to see if this
technique could reliably separate the 10 previously unencountered ex-
amples of stego-media from up to 500 previously unencountered non-
stego-media files. At no point was human interaction, selection of fea-
tures, customization, or parameter tuning necessary; the experimental
software was simply presented with a set of clear images, a set of stego
images for a particular tool, and a set of test images to be separated into
stego and clear. Images were tested in isolation, and were not ranked to
determine the likelihood of containing steganography. An image was
only classified as steganographic (positive, +ve) if 100% of the bits in
the fixed-bit-signature matched perfectly.6 Otherwise, the image was
classified as “clear” (negative, -ve) in this experiment.

V. DISCUSSION OF RESULTS

Table I (excluding the bottom row) shows the results of the exper-
iment. The approach proved capable of reliably separating clear files
from stego-media produced by a relatively wide range of products, in-
cluding one commercial steganography product, and even when the
embedded data size was less than 0.05% of the original file size. This
approach can be very computationally efficient at detecting steganog-
raphy, given the small number of bits to be checked per media file,
and the extremely low computational cost of comparing a bit position
against a known signature value.

The authors were surprised to discover that most of the tested
steganography implementations, and in particular a current-day com-
mercial product, had so many characteristic bit values present in all
outputted stego-media. It seems that the practically minded, real-world
steganalyst can sometimes side-step the need to break theoretical
steganographic algorithms when aiming to detect steganography.

The authors note that the true-positive rate found in the five suc-
cessful cases (against previously unencountered samples) was 100%
in almost all studied cases, with the exception of a single “near-miss”
result for MP3Stego, where one stego-file resulted in a 99% match
against the signature rather than 100%. The false-positive rate seen
here across all tested signatures is also good, and in two of the studied
cases, optimal within these experiments. A low false-positive rate is an
extremely important characteristic for steganalytic attacks [4].

Considering the results for each tool in turn: Steganos is a
modern-day commercial steganography tool. Steganos did not prove
vulnerable to this attack. Examination of the media produced by
Steganos indicated that it does not alter the information present at the

6For general use, we recommend further classification steps, i.e., this tech-
nique is best used to complement rather than replace other methods—as there
is no guarantee that a signature corresponds uniquely to a stego-tool.

Authorized licensed use limited to: Murdoch University. Downloaded on June 21,2010 at 06:38:26 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 5, NO. 2, JUNE 2010 357

start of files (the header), but instead keeps the original file’s header
data as much as possible. Consequently, this paper’s attack technique
was unable to identify any characteristic bits within the file at fixed
positions. This negative result demonstrates that well-implemented
steganography tools can overcome the attack of this paper.

Invisible Secrets is a modern-day commercial steganography tool.
However, here it was possible to reliably and correctly separate 100%
of all tested examples of previously unencountered regular media and
stego-media by analyzing only 22 bits of data from each file. The au-
thors feel this result effectively demonstrates the potential of this ste-
ganalysis technique.

STools is an older GIF-based steganography program. It was
straightforward to reliably and correctly separate all tested examples
of previously unencountered regular media and stego-media. This
demonstrates that the method of this paper operates successfully
across different media types besides JPEG. The result for STools was
quite interesting to the authors, because STools is known to produce
characteristic output [1], previously discovered by human researchers.
However, this technique automatically identified several areas of
the stego-media that were unusually characteristic in STools output,
that were unmentioned in steganalysis literature previously. A visual
example is provided in Fig. 1 of this paper. This result is perhaps
unique within steganalysis research, in that it appears to be an example
of a software steganalysis system improving upon a previous human
research finding, by automatically discovering a selection of further
new regularities that are only observable at the bit-level.

JSteg and OutGuess, two older but famous JPEG-based steganog-
raphy tools, proved very vulnerable to the attack and have identical
fingerprint results. This is perhaps unsurprising, as both of these pro-
grams are based on the same IJG reference source code. Both of these
tools were used with a 75% quality setting, as this is the default value
automatically provided by OutGuess. However, the size of the signa-
ture may suggest that (in part) it is the “75%” default quality setting of
these programs that is being attacked, which produces a large charac-
teristic pattern near the start of the file. Very few natural images were
found that had been output by programs developed from the IJG source
code, using a quality setting of 75%. This result raises an important
issue—the default settings of a steganography tool should not make
steganalysis straightforward!7 Consequently, a second experiment was
conducted to investigate the consequences of varying quality settings.
OutGuess allows values in the range 75–100, so 26 different files were
generated. Training was conducted using 16 randomly chosen files, and
the resulting signature was used to try to detect the remaining 10 un-
encountered files with previously unencountered quality settings. The
result is shown in the bottom row of the table. The false-positive rate
increased, but the technique successfully generalized in this situation
where a program parameter was varying. This allowed detection of
steganography in cases where previously unencountered nondefault pa-
rameters were used.

Finally, MP3Stego is a steganography program that embeds data in
the frames of MP3 music files. Here, the signature that was automati-
cally produced resulted in a 90% true-positive rate and a 0% false-pos-
itive rate during experiments. A single case was observed where the
signature resulted in a 99% match (81 bits rather than 82) which was
classed as a false-negative. The MP3Stego result demonstrates that
this paper’s technique is effective for blind steganalysis of other media
types besides image files.

These results represent all of the programs that the authors have
tested so far against this new technique. There remain hundreds of other

7One way for steganography tool implementers to address this challenge may
be to remove default settings from their programs, and instead force users to
provide values, or auto-configure from a range of acceptable values.

steganography programs that have never been tested for such vulner-
abilities. The only factor that seemed to distinguish vulnerable imple-
mentations from nonvulnerable implementations in these experiments
was the issue of whether a “fresh” file was generated by the software,
or whether the steganography software “meddled” with an original file.
If all programmers took care to retain the original headers and struc-
ture of cover media files, it would be hard for the attack in this paper to
be so successful. Generating a fresh output file with predictably struc-
tured headers and data fields is no doubt convenient and pleasant for
programmers, but the price is the failure of steganography when at-
tacked by the method of this paper. It was also found that basing a
steganography tool upon a particular reference implementation can be
dangerous in its own right. If a tool is not updated, and the reference
code becomes less commonly used, that style of output may become
characteristically associated with the stego-tool. It appears that the use
of default values may make steganographic output from tools easier to
detect via the method of this paper. We also note, as a warning, that
other media tools will exist (now or in future) whose output is not
represented within the media samples used here. Such tools could in
principle raise or lower false-positive rates. This is a danger that all
steganalysis experiments face: false-positives may be generated in the
real world by causes that are not represented in experimental sample
sets. We suggest real-world steganalysts can most effectively address
the problem of unanticipated causes of false-positives by combining
many steganalysis techniques.

Finally, the authors wish to report a further result that came to their
attention during peer review. An anonymous referee has privately pro-
duced an independent implementation of this technique based upon the
text of this paper, and has tested it on a privately selected data-set, in-
dependently and without involving the authors. The referee noted that
they have confirmed the results of this paper.

VI. PROPOSED GUIDELINES

The authors suggest the following guidelines for those implementing
steganography tools.

1) Avoid creating fresh new media files. Instead, “meddle” with a
copy of the carrier file directly.

2) Avoid altering carrier file metadata wherever possible.
3) Produce varied output rather than having a fixed output format.
4) Do not give default parameter values for the user’s convenience.
5) Avoid output that “merges with the crowd” by explicitly mim-

icking particular nonstego programs, or by using popular refer-
ence code. In future, the output may not resemble “the crowd” at
all.

6) Automatically retest each new version of your program against
the method of this paper.

7) If your implementation is only intended to demonstrate an algo-
rithm, rather than for serious use in hiding data, then make this
very clear to all potential users.

VII. CONCLUSIONS AND FUTURE WORK

This paper has presented an automated bit-signature-building ste-
ganalytic attack that can be applied against any susceptible implemen-
tations of any type of steganography algorithm. This is achieved here
in a blind and media-type agnostic manner, under traditionally chal-
lenging conditions (steganography-only, across multiple media types,
against tiny data payloads, against multiple different unknown algo-
rithms, against multiple different implementations, without parame-
terization, and without the assistance of stego-features provided by
human steganalysts). This attack has demonstrated clear vulnerabili-
ties in popular, current-day steganography software, circa late 2008,
and in a range of older, famous software. Future research might involve

Authorized licensed use limited to: Murdoch University. Downloaded on June 21,2010 at 06:38:26 UTC from IEEE Xplore. Restrictions apply.

358 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 5, NO. 2, JUNE 2010

the implementation of unexplored ideas that were mentioned in this
paper—such as header-parsing-based analysis, as opposed to flat-file,
fixed-bit, media-type agnostic analysis.

The primary contributions of this paper are first, drawing attention
to similarity detection at the bit-representation level as a way of at-
tacking weak implementations of steganography, and second, showing
how “fixed bits” provide a means to rapidly construct small and ef-
fective signature profiles that allow fast, effective, cross-media, blind
steganalysis. The authors observe that if this form of steganalytic at-
tack had ever been described previously, it is unlikely that so many
programs—in particular, at least one commercially produced steganog-
raphy product, circa late 2008—would today be so vulnerable to the at-
tack. Consequently, the authors consider this approach to be a simple,
novel, and useful contribution to the science of steganalysis.

ACKNOWLEDGMENT

The authors wish to thank the anonymous referee who independently
implemented and verified this technique during peer review.

REFERENCES

[1] N. F. Johnson and S. Jajodia, “Steganalysis of images created using
current steganography software,” in Proc. Int. Workshop Information
Hiding, ser. LNCS, London, U.K., 1998, vol. 1525, pp. 273–289.

[2] A. Westfeld and A. Pfitzmann, “Attacks on steganographic systems,”
in Proc. Int. Workshop Information Hiding, ser. LNCS, London, U.K.,
2000, vol. 1768, pp. 61–76.

[3] J. Fridrich and M. Goljan, “Practical steganalysis of digital images:
State of the art,” Proc. SPIE, Security and Watermarking of Multimedia
Contents IV, vol. 4675, pp. 1–13, 2002.

[4] N. Provos and P. Honeyman, “Hide and seek: An introduction to
steganography,” IEEE Security Privacy, vol. 1, no. 3, pp. 32–44,
May/Jun. 2003.

[5] J. Fridrich, “Steganalysis,” in Multimedia Security Technologies for
Digital Rights Management. Amsterdam, The Netherlands: Elsevier,
2006, ch. 14, p. 352.

[6] K. Curran and K. Bailey, “An evaluation of image-based steganography
methods,” Int. J. Digital Evidence, vol. 2, no. 2, 2003.

[7] A. Westfeld, “F5–a steganographic algorithm: High capacity despite
better steganalysis,” in Proc. Int. Workshop Information Hiding, ser.
LNCS, 2001, vol. 2137, pp. 289–302.

[8] A. Brown, STools v4.0 [Online]. Available: ftp://ftp.demon.net/pub/
mirrors/crypto/idea/code/s-tools4.zip

[9] N. F. Johnson and S. Jajodia, “Exploring steganography: Seeing the
unseen,” Computer, vol. 31, no. 2, pp. 26–34, 1998.

[10] A. Westfeld, “Detecting low embedding rates,” in Proc. Int. Workshop
Information Hiding, ser. LNCS, 2002, vol. 2578, pp. 324–329.

[11] J. Fridrich, M. Goljan, and D. Hogea, “Attacking the OutGuess,” in
Proc. ACM Workshop on Multimedia and Security, 2002, pp. 1–4.

[12] J. Fridrich, M. Goljan, and R. Du, “Detecting LSB steganography in
color and gray-scale images,” Special Issue on Security, IEEE Multi-
media, vol. 8, no. 4, pp. 22–28, Oct./Dec. 2001.

[13] G. Bell, “The dangers of webcrawled datasets,” First Monday vol. 15,
no. 2, Feb. 1, 2010 [Online]. Available: http://firstmonday.org/htbin/
cgiwrap/bin/ojs/index.php/fm/article/view/2739/2456

[14] T. Pevný and J. Fridrich, “Novelty detection in blind steganalysis,” in
Proc. ACM Workshop on Multimedia and Security, 2008, pp. 167–176.

[15] M. Kharrazi, H. T. Sencar, and N. Memon, “Benchmarking stegano-
graphic and steganalysis techniques,” Proc. SPIE, Security, Steganog-
raphy, and Watermarking of Multimedia Contents VII, vol. 5681, pp.
252–263, 2005.

Authorized licensed use limited to: Murdoch University. Downloaded on June 21,2010 at 06:38:26 UTC from IEEE Xplore. Restrictions apply.

