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Abstract  
Reusable, “standard” data models have long been an aim of the data modelling community, most recently with 
an emphasis on patterns. However, many standard pattern approaches call for a close modelling of the subject 
domain itself, and are not easily transferable to other domains. The approach we describe here, situated 
abstraction modelling (SAM) describes an approach to data modelling that defines a template for the functional 
“shape” of the solution, which is then instantiated for a particular set of circumstances. In effect, we have a 
template not for the data model, but for the situation to which it applies. We describe a set of six data model 
templates that can be instantiated over a wide range of application domains. 
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INTRODUCTION  
When we design a database, we can call on formalisms in normalisation (to ensure that regularised structures are 
obtained), integrity constraints (to ensure integrity and consistency) and the relational algebra and calculus (to 
ensure the establishment of optimal design). These techniques have been established in theory and verified in 
implementation, and together make up the basis for education and practice. However, before such formalisms 
can be called upon, the initial task of analysis of any system for salient features must be carried out, and although 
we have a set of primitives and rules for combining them (entity-relationship diagrams, UML, data flow 
diagrams), we have nothing beyond that to guide the instantiation apart from verification against the world. 
What is needed is a similar formalism that would enable us to have the same sort of rigorous approach to being 
able to model, based on first principles and experience.  Reusable, “standard” data models have long been an aim 
of the data modelling community, for reasons of economy, reliability, and effective training. Rather than re-
establish methods for every new database, the goal has been to capitalise on the intellectual and financial 
investment in previous design work, and the search has been for a framework within which this could be 
established. 
One suggestion that addresses the problem of adapting experience both to further design and to education is to 
make use of pattern languages, a convention adopted from the arts of ornamentation and architecture by the 
“Gang of Four” (Gamma, Helm, Johnson, & Vlissides, 1995). Pattern languages are reusable elements of design 
derived from experience, but abstracted by an act of analysis into reusable components: pattern books formed the 
basis for design distribution in a pre-literate society (Alexander, 1979). If the expertise of designers could be 
stored in such a pattern language for databases, then the problem of design would then become the relatively 
straightforward task of recognising a need for a pattern and then applying the appropriate pattern to the situation 
in hand. 
In architecture, use of patterns consists of selecting components at an appropriate level - from that of doors, 
windows and walls making rooms, up to the siting of particular buildings or aspects of buildings, up to creating 
communities. In hypothesising a pattern language for databases, however, the selection of an appropriate level 
for a pattern is left largely untouched by the various pattern authors.  

Pattern languages of databases 
Silverston (2001) addresses the problem at the table level: by producing a vast enumeration of tables, the 
designer (or educator) selects the table most likely to fill the need, trusting to the skill of the language preparer to 
have dealt successfully with all possible cases. However, the problem arises of recognising what selection 
amounts to a lossless decomposition: if this is the skill that is being taught to the students in the first place, 
selecting one of a number can’t be guaranteed to teach the problem of noticing the salient, as a process of trial 
and error is not guaranteed to produce appropriate results. Moreover, a failure of the pattern language to meet a 
particular need is addressable only by referring ex cathedra to the source for either a new table, or a permissible 
extension to an existing one – this is not a substitute for the analysis skills needed. 



Fowler (1997) borrows directly from the Gang of Four in observing components of database systems as 
functional subunits (Composite, Observer, Proxy, Singleton, Factory, Visitor etc) of a design whole. This 
concentration on the functionality is useful in the creation of a greater whole out of a set of components, but falls 
prey to the same problems that exist at a higher level: identification of the salient features within these pattern 
elements still remains to be done when the identification of the components has been made, and the bulk of 
Fowler’s text is involved in showing how the components can be made to accommodate different data contexts. 
Hay (1996) uses patterning to analyse the subcomponents at a higher level of abstraction than Silverston, and in 
a manner that is more data-centric than Fowler: using higraph formalisms he shows how the data components of  
various common database scenarios can be shown to have a commonality, and how these components can be 
reused. However, the problem remains of identification of data-relevant features in areas not previously 
enumerated, and ultimately suffers in the same way as Silverston’s solution. 
In the final analysis, the solutions Fowler provides are insufficient because they come from a systems analysis, 
rather than a database, perspective. On the other hand, Hay and Silverston begin with a problem domain such as 
accounting or stock control, and provide adaptable patterns within that domain, trusting in their skill to make 
similar solutions in other domains.  
Interestingly enough, we can see the presence of similar levels in the automated design solutions offered by 
vendors such as Microsoft: we can see the wizards at the table, database and application level in Microsoft 
Access™ and Visual Basic corresponding to Silverstein, Hay and Fowler respectively. Such utilities, while 
useful as a shortcut for rapid application development, do not fulfil the required level of reused expertise either. 
More importantly perhaps, Alexander (1979) stipulates that a pattern language should begin with the general, 
and only then work towards the specific. By establishing the work in the way that they have, the authors have 
already begun it at a level below that of general abstraction (or in the case of Fowler, in a functional abstraction 
that almost immediately has to be followed by a quest for instantiation). In other words, it is not possible to carry 
out an abstractive design of a database that makes use of experience via patterns using these methods: any 
attempt immediately returns to the concrete.  
There is another, allied problem: not only are these patterns grounded in examples where the functional nature of 
the system is inextricable from its subject domain, but they are also tied far too closely to the sort of 
transactional systems that make up the majority of business data texts. The domain of science or humanities 
databases has proven to have different modelling problems (McCarty, 1998; Williams, Messina, Gagliardi, 
Darlington, & Aloisio, 1999), and business-grounded analyses are not going to provide reliable guides to 
analysis for those systems. 
What we ultimately seek from pattern languages is a way in which the benefits of experience (situating; 
enframing; putting in context) can sit easily with the needs of abstraction in design (working with late-binding 
variables, models that can be placed with each other without reference to the specific). It was in search of such a 
modelling process that we began our analysis, described next. 

What we needed 
Our own approach to database pattern languages arose from a pedagogical need to be able to model non-
transactional systems on any topic. Our situation was that of using entity-relationship modelling to create data 
models on a variety of themes in a course in multimedia databases. The issues we faced were: 
 The models had to be fairly simple, since the exercise focused on the use of different media types for 

illustration, yet they still had to be able to support the media modelling precisely and to provide for varied 
and interesting views of the database. 

 Students had a free choice of database theme, so selected anything that interested them (as long as it had 
potential for the multimedia component) – this resulted in a very wide range of themes not often met with in 
undergraduate database texts, such as cookery, horror movies, bonsai, wrestling, and frog ecology. 

 Students seldom had much idea of how to begin modelling once they had chosen a topic – selecting (say) 
“cricket” is not sufficient in itself, as the focus could be on players and teams, or on details of matches in a 
competition. 

 Most of the data modelling students had done in previous courses was of the transactional variety, and they 
had difficulty in applying the examples they had learned there to many of the situations they wanted to 
model. 

We soon realized that there were certain common data models that applied no matter what the topic theme was, 
and that we could quickly recognize the appropriate model or suggest alternatives. We wanted to formalize this 
expertise so that we could make it available to the students, and so fast track the data modelling part of the 
exercise (since it was occupying a disproportionate amount of time). And, by providing a variety of models, we 



wanted the students to be able to consider the different perspectives on a topic and their implications explicitly, 
thus increasing their appreciation of the subtleties of their theme and its modelling potential. 
We turned to the pattern literature (as discussed above) to see what comparable solutions had been met. We 
found that the typical pattern approaches did not meet our needs. And, as we have seen, modelling each system 
from first principles was not a viable option as it meant foregoing experience gained from previous similar 
systems.  

Our method 
We decided to identify genera of modelling situations and matching modelling templates. By concentrating on 
the logical entities, their interaction with the world, the system’s portrayal of time and context, we established a 
set of descriptors with which to describe these circumstances. Using the situated activity framework (Clancey, 
1993), we sought a level of abstraction that was firmly grounded in universal data practices, while at the same 
time permitting fully portable modelling tools: more abstracted than Fowler, Silverston and Hay, yet more 
situated than the fully abstract tools such as entity-relationship modelling (Chen, 1976) or UML (Object 
Management Group, 2003). We call this method Situated Abstraction Modelling (Figure 1). 

 
Figure 1. Comparison of Situated Abstraction Modelling with other approaches to standard data models in terms 
of level of instantiation (situatedness) and universality (abstraction) 

SITUATED ABSTRACTION MODELLING 
We begin with the recognition that modelling is a situated activity because all cognitive activities are situated 
Clancey (1993; 1997). This means that we should not look for an absolute abstraction in our modelling, but look 
instead for how the modelling activity draws on norms to establish appropriate rules for analysis and 
optimisation. Any models formed must reflect the circumstances in which they were created, and are ultimately 
reflective of the world: models break down when they are taken too far from their point of formation. By the 
same token, the application of models in new domains consists of their contextualisation – the late-binding of 
value to slot that is part of the explicative and analytical process – and our modelling formalism must reflect all 
of these features. 
Richards (2000) also draws on Clancey (1993) to make an analysis of conceptual modelling, and remarks on the 
close interaction of modelling and experience: “It is not just the external environment that will affect the context 
but that thinking itself modifies further action and context occurs at a conceptual level that exists within a social 
setting”. While we do not support the sceptical position that Richards adopts, the inclusion of knowledge of 
circumstance and feedback from users is significant for our purposes: the elicitation of salient features in a 
database system begins with the knowledge of the system, and an awareness of rules that might apply and a 
knowledge of how those rules have applied in similar circumstances. We see the establishment and encoding of 
such rules, together with their appropriate domains of application, as the soundest approach to the creation of a 
pattern language for database design. 
Thus, the templates that we have developed are not metamodels, but standardised rulesets of situations where 
data is used, and how those rules must be applied.   
We identified six templates: Organisational, Events, Performance, Distribution, Sociological, and Construction, 
based on our analysis of common situations across a broad range of database designs. Within that template set, 
we defined a limited set of logical entities, which exist in a particular pattern of relationships that together 
characterise the particular template. The use of a template lies in establishing the genera of the particular 
database system, instantiating the logical data entities, and establishing the grounds for integrating with 
neighbouring data systems through the use of intersection entities. 
The logical entities are replaced by actual entities when the template is instantiated. For example the logical 
entity AGENT may be instantiated as PERSON, SINGER, BRANCH, TEAM, as required for the particular 

All data models in the world

Hay; database wizards

SITUATED ABSTRACTION MODELLING

Entity-relationship modelling primitives

Silverston; table wizards

Fowler; application wizards

U
ni

ve
rs

al
ity

Instantiation



domain. Most of these logical entities are specific to the template in which they are used, but some (notably 
AGENT) occur across multiple templates. Although they may typically be instantiated in different ways, the 
main features and principles of their use is the same no matter where they are used. 
Within these logical entities, we then prescribe some required attributes – specifically primary keys, foreign keys 
and human-readable identifiers (names for the instantiated logical entities, labels for the typifying ones) and give 
rules for recursion in instantiation (described next). 

Recursive hierarchies 
Instantiation of the logical entity may well require its expansion into a hierarchy of entities (for example, the 
AGENT entity could represent the progressive grouping from Person to Department to Branch). This expansion 
is indicated on the template as a standard recursive relationship symbol (and is written in the text with an arrow 
symbol; e.g. Person  Department  Branch) but it is important to note that the recursion differs depending on 
the logical entity involved. We present a brief summary of the recursion types here, and will provide a fuller 
treatment of them elsewhere.  
Several of the recursion types identified map on to types noted by other authors, for example Simsion (1994). 
Simsion recognized three different types of recursive relationship, 1:1, 1:N, and M:N, and within 1:N (which he 
called hierarchical) three different types: contains, classifies and controls.  
 Traditional recursion. This is the “bill of materials” recursion, where we have hierarchies consisting of 

parts-subparts. Simsion calls this a contains hierarchy. In our templates, traditional recursion is found in the 
Construction template, around the COMPONENT and PROCESS entities. 

 Hierarchical recursion. This type of recursion is a classification, in the sense of taxonomic classifications. It 
is characterized by inheritance from top to bottom: everything that is true at the highest level of the 
hierarchy is also true at all lower levels. A typical example would be Species  Genus  Family in a 
taxonomy. Simsion refers to this as classifies. In our templates Hierarchical recursion is found in SPECIES 
(in the Distribution template) and SITUATION (Distribution and Sociological). These hierarchies often tend 
to be permanent schemes that exist outside of the immediate domain of the data model.  

 Constitutional recursion. In this type of recursion the hierarchy is rule-determined, for example in a 
bureaucratic management regime, such as Staff  Department  Branch; or performance-based 
hierarchies such as Episode  Season  Series. The rules for hierarchical membership are not 
automatically the same at each level in the hierarchy; moreover, the rules may be established by act of fiat, 
and a review of the rules possible at any moment, which would lead to an immediate reappraisal of the data. 
Simsion calls this a controls hierarchy. Constitutional recursion occurs in the AGENT, THING, PLAN and 
PERFORMANCE entities.  

 Aggregative recursion. This type of recursion is similar to Hierarchical, but differs in that what is true of the 
highest level of the hierarchy is not necessarily true for every lower level. An example would be City  
State  Country. Simsion calls this type of recursion contains. In our templates we find Aggregative 
recursion in LOCATION (Distribution and Sociological) and EVENT (Events template). 

THE TEMPLATES  
We now describe the six templates. For each template, we show entity-relationship diagrams (ERDs) of the 
template and an example instantiation, and a table summarising the main features of the template.  

Organisational template 
This template is used to represent individuals or hierarchical organisations of groups and individuals, and 
historicised facts about them.  
The Organisational template (Figure 2) is probably the simplest of the templates. At its most extreme, it could be 
a single logical entity, Agent. Expansion of the Agent entity is in the form of recursion to a hierarchy of groups, 
and at the terminating end, to a weak entity (Agent-History) that records (usually summary) information about 
circumstances of interest to the Agent. 
Typical instantiations are found in organisational hierarchies of companies, such as Staff  Department  
Branch, or Employee  Manager  Franchise; but also in sporting domains such as Player  Team  Club 
 League, or Driver  Crew  Team. 
In the Organisational template time qualifies the recursive hierarchy for Agent: for example, players may belong 
to different clubs in different years. This is modelled by extending the hierarchy to many-to-many, with an 
indicative temporal attribute (and possibly a role) for the intersection entity. 



Instantiations of the Organisational template may be found combined with those of others, such as Event or 
Sociological, where it effectively provides the recursive expansion seen in the Agent entity of those templates. 
However, the Organisational template exists in its own right, as it is required to model instances where there is 
insufficient detail about the weak entity to regularise it further (for example, the “fact sheets” assembled for pop 
stars and sporting figures). 
Variations within the Organisational template include: 
 Expansion of Agent into a hierarchy  
 Inclusion or exclusion of Agent-History; or multiple Agent-Histories. 

 

 
Figure 2. The Organisational template (left) and an example instantiation.  
 

Logical entity Subject matter represented by 
the logical entity 

Nature of recursion Candidate keys 

AGENT A named instance of a person or 
group  

Constitutional A unique identifier for the instance 
of the person or group 

AGENT-HISTORY A weak entity recording 
something of interest about the 
person or group, often summary 
in nature 

No recursion A unique identifier for the 
historical instance; possibly a 
compound key that includes the 
Agent candidate key 

Table 1. Main features of the Organisational template. 

Events template 
This template is found where something of interest occurs in time: this may be either a regular occurrence, or a 
one-off historical moment. People or groups are always involved in the event. The basic template is thus a 
simple many-to-many relationship between the logical entities Agent and Event, with the entity Participation 
recording the circumstances of the involvement or its outcome (Figure 3). 
The events of interest may be of a regular occurrence with a predefined structure (such as sporting fixtures, or 
the Oscars) or be part of chronicles of unique historical events such as wars or the space race. The events may 
also be transactions such as are encountered in financial or medical record systems, and this template is the one 
where typical transaction systems live.  
Variations within the Events template include: 
 Expansion of either of the outer entities into a hierarchy (such as Player  Team  Club, or Match  

Competition  Season). 
 Modelling the participation of Agents as an ordered pair (e.g. the home team and away team participating in 

a match) 
 Enforcing rules for simultaneous participation (e.g. the number of runners in a heat) 
 Modelling events that take place in a sequence (e.g. the draw for a tennis competition) 
 The level of detail in recording the outcome of the event, especially for sporting events. (For example, in the 

instantiation in Figure 3 we could aggregate the goals scored by individual players as recorded in Plays-In, 
or store only the final score in Match.) 

AGENT
HISTORYAGENT
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WONPLAYERCLUB

STATE

POSITION AWARD



 

 
Figure 3. The Events template (left) and an example instantiation. 
 

Logical entity Subject matter represented by 
the logical entity 

Nature of recursion Candidate keys 

AGENT A named instance of a person or 
group  

Constitutional A unique identifier for the 
instance of the person or group 

EVENT A named and timed instance of 
an occurrence  

Aggregative A unique identifier for the 
instance 

PARTICIPATION   The combination of a particular 
person/ group and occurrence 

No recursion, but records 
may be able to be viewed in 
different grouping patterns. 

The combination of agent and 
event primary keys is sufficient 
(no partial data is permitted). 

Table 2. Main features of the Events template. 

Performance template 
This template is typically found where a performer or group of performers are following the instructions of a 
performance designer, which are set out as a blueprint or plan. It is characterised by two different sorts of agents, 
which are subtypes of the Agent logical entity: a Creator (such as a songwriter) who is responsible for producing 
the plan, and a Performer (such as a singer) responsible for performances of the plan (Figure 4). 
The Performance template is used for databases where we are recording details about performances of music, 
film, plays, TV shows or other cultural artefacts. Typical instantiations would be a playlist database for a radio 
station, with songwriter, singer/group, song and rendition; or an online movie database with a complete cast and 
production details. 
Variations within the Performance template include: 
 Expansion of the Agent or Performance entities into a hierarchy (such as Singer  Group, or Episode  

Series). 
 The number of subtypes of Agent involved, and the way that they are subsequently converted to relational 

tables (see for example Elmasri and Navathe; 1999). 
 Multiple variants of same performance – with the release of compilation albums, and the reissue of albums 

with extra tracks, physical artefacts (albums) may have components (tracks) shared with other albums 
(where the tracks may even have different names). Although this may seem counter-intuitive, it is 
straightforward to model with this template: the performance participates in a many-to-many hierarchical 
relationship.  
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Figure 4. The Performance template (left) and an example instantiation. 
 

Logical entity Subject matter represented by the  
logical entity 

Nature of 
recursion 

Candidate keys 

AGENT A named instance of a person or group, with 
subtypes CREATOR and PERFORMER, 
each involved in separate relationships 

Constitutional A unique identifier for the 
instance of the person or group 

PLAN A named and timed instance of a plan Constitutional A unique identifier for the 
instance of the plan 

PERFORMANCE   A named and timed instance of a 
performance 

Constitutional A unique identifier for the 
instance of the performance  

Table 3. Main features of the Performance template. 

Distribution template 
This template is typically found where we wish to represent co-location that is independent of time or agency. It 
is characterised by three logical entities, Species, Situation and Location, which meet in a triple intersection as a 
fourth entity, Distribution (Figure 5). 
The Distribution template is used for databases where we are recording instances of types of items and the 
manner in which they occur, but where the temporality of the instances is abstracted to time of day or year, 
rather than a chronological timeline. 
Typical instantiations of the template are where a classified life form (such as a species of plant or animal) is to 
be found in terms of habitat and location, and where the temporality of the distribution represents migration or 
diurnal behaviour. Another example would be meteorology, where we observe the distribution of different 
weather phenomena (such as cyclones and ocean currents) across geographic regions and local topographical 
conditions. 
Variations within this template include: 
 Expansion of any of the outer entities into a hierarchy (such as Bird Species  Family  Order). 
 Replacement of any of the outer entities by a lookup table to the central entity, thus enforcing a domain 

constraint where only the label or name of the record is of interest. 
 Replacement of any of the outer entities to a business rule (effectively collapsing them to a single value); for 

example restricting to a particular geographical region. 
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Figure 5. The Distribution template (left) and an example instantiation. 
 

Logical entity Subject matter represented 
by the logical entity 

Nature of recursion Candidate keys 

SPECIES A named type of item  Hierarchical A unique identifier for the type of item 

LOCATION A named instance of a place, 
usually spatial 

Aggregative A unique identifier for the instance of 
place 

SITUATION A named type of context of 
the item occurrence  

Hierarchical A unique identifier for the type of 
situation 

DISTRIBUTION  The combination of a 
particular item, place and 
context, resulting in a 
distribution pattern.  

No recursion, but 
records may be able to 
be viewed in different 
grouping patterns. 

A unique identifier for the distribution 
occurrence. A candidate key made up 
of the foreign keys of species, location 
and situation is inadequate because of 
the potential for partial data. 

Table 4. Features of the Distribution template.  

Sociological template 
This template is similar to the Distribution template in that it represents co-occurrence, but it differs in that the 
notions of agency and time are now significant in determining the co-occurrence. Within the context determined 
by Situation and Location we have two entities, Agent and Thing, which are linked by an Actor-ActedUpon 
relationship (such as design or celebration). The result of this relationship is what is recorded in the central entity 
Occurrence, along with its date or sequence (Figure 6). Both Agent and Thing are individuated, so that their 
records are of named instances rather than types. 
The Sociological template is typically used for databases where we are recording designed items or events of 
cultural significance: the important feature is that there is (explicitly or implicitly) a designer and something of 
significance to the model that is the result of that design. 
Typical instantiations of the template are where we have a product item such as a car model that is designed by 
an architect. Another example would be a database of world festivals, where the celebration of a particular 
festival (such as Christmas) would differ according to cultural group, their geographic location and the context 
of the festival. 
Variations within the Sociological template include: 
 Expansion of any of the outer entities into a hierarchy (such as Car Model  Marque  Manufacturer). 
 Replacement of any of the outer entities by a lookup table to the central entity, thus enforcing a domain 

constraint where only the label or name of the record is of interest. 
 Replacement of any of the outer entities to a business rule (effectively collapsing them to a single value); for 

example restricting to a particular geographical region or a particular designer. 
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Figure 6. The Sociological template (left) and an example instantiation.  
 

Logical entity Subject matter represented 
by the logical entity 

Nature of recursion Candidate keys 

AGENT A named instance of a person 
or group  

Constitutional A unique identifier for the instance of 
the person or group 

LOCATION A named instance of a place, 
usually spatial 

Aggregative A unique identifier for the instance of 
place 

SITUATION A named type of context of the 
item occurrence  

Hierarchical A unique identifier for the type of 
situation 

THING A named instance of an item 
that is of interest to the person 
or group 

Constitutional A unique identifier for the instance of 
the item 

OCCURRENCE   The combination of a particular 
person/group, item, place and 
context.  Date and/or sequence 
are included.  

No recursion A unique identifier for the occurrence. 
A candidate key made up of the 
foreign keys of Agent, Thing, Location 
and Situation is inadequate because of 
the potential for partial data. 

Table 5. Main features of the Sociological template. 

Construction template 
With this template, we model processes and the components involved with them; we make an internal ordering 
for the Process logical entity whereby we can stipulate listing order. Even though there are only two logical 
entities in this model, they interact in such a complex and subtle way that we have elected to show the expanded 
version as well as the simple one (Figure 7). The ordered components are part of each step, while the ordered 
steps take components and make them into compound structures which in turn become components. The 
recursive relationship each has is also complicated: a process may consist of many steps, with the output of one 
step being input to another, while a component is likely to be made of other components, and be combined into 
yet others. 
Typical instantiations of the Construction template include any databases with the classic component assembly 
nature, such as model boat building; dance (where steps combine into figures into dances), and recipes, where 
raw ingredients are combined into parts of a dish and ultimately a complete meal.  
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Figure 7. The Construction template (left) and an example instantiation. 
 

Logical entity Subject matter represented by 
the logical entity 

Nature of 
recursion 

Candidate keys 

COMPONENT A named type of component that 
can be simple or compound 
(made up of other components) 

Traditional 
recursion  

A unique identifier for the type of 
component 

PROCESS  A named type of process Traditional 
recursion 

A unique identifier for the type of 
process 

PROCESS-STEP   A named type of process step, 
plus the sequence order 

(not applicable) 

 

A unique identifier for the process step 

INVOLVED-IN The combination of a particular 
component with a process step 

(not applicable) The combination of component and 
process-step primary keys is sufficient 
(no partial data is permitted). 

Table 6. Main features of the Construction template. 
 

DISCUSSION 
The formalisms of data modelling we can call upon provide both descriptive and normative roles in analysis. We 
call upon the normative aspects to give guidance, and the descriptive to assist in communication of the solution. 
By grounding the normative aspects in situated abstraction, we can provide workable precepts for both education 
and practice. By providing a minimal set of templates with rules for expansion and for combining, we have 
ensured that the functional requirements of the system are not lost by too early adoption of a model that is 
domain-oriented. In the words of Alexander (Alexander et al., 1977): 

“Each pattern describes a problem which occurs over and over again in our environment, and 
then describes the core of the solution to that problem, in such a way that you can use this 
solution a million times over, without ever doing it the same way twice” 

Instantiation thus becomes a matter of naming the logical entities, giving appropriate names to the required 
attributes, and then selecting the remaining attributes.  Following Alexander et al’s (1977) patterns methodology, 
we move from the highest level (templates) through the middle (logical entities) to the specific (required 
attributes and relations). One advantage of our approach is that the instantiated templates can then draw on the 
work of Fowler, Hay and Silverston at the appropriate point of the modelling exercise. 
Teaching students and practitioners what template to use in their modelling work becomes a matter of showing 
how to identify common situations, how to implement them from the template, and how to combine individual 
templates to model complex data situations. Recognising the circumstances in which to use a particular template 
then becomes a matter of familiarisation with the appropriate recognitors, for example: 
 Is this a situation where basic information is being collected about individuals? Then you should use the 

Organisational template.  
 Is this a situation where goods are being bought and sold, and transactions recorded? Then you should use 

the Events template.  
 Is this a situation where details are being recorded for a process? Then you should use the Construction 

template. 
… and so on. 
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Our experience so far in using these templates to teach data modelling in courses where the emphasis is 
primarily on non-transactional data systems has been encouraging, and we intend to develop the approach further 
by developing such a set of guidelines for instantiation and combination. 
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