

MURDOCH RESEARCH REPOSITORY
http://researchrepository.murdoch.edu.au/1881/

Paper presented at the 14th Australasian Conference on Information Systems, in
networked environments.

Hobbs, V.J., Pigott, D. and Toohey, D.P. (2003) Situation

abstraction modelling: a pattern language for databases. In: 14
th Australasian Conference of Information Systems, 26 - 28

November , Perth.

Copyright: Valerie J. Hobbs, Diarmuid J. Pigott, and Daniel P. Toohey © 2003

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Repository

https://core.ac.uk/display/11232444?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://researchrepository.murdoch.edu.au/1881/�
http://researchrepository.murdoch.edu.au/view/author/Hobbs,%20Val.html�
http://researchrepository.murdoch.edu.au/view/author/Pigott,%20Diarmuid.html�
http://researchrepository.murdoch.edu.au/view/author/Toohey,%20Daniel.html�

Situated Abstraction Modelling: a pattern language for databases

Valerie J. Hobbs, Diarmuid J. Pigott and Daniel P. Toohey
School of Information Technology

Murdoch University
Perth, Western Australia

Email: {v.hobbs, d.pigott, d.toohey}@murdoch.edu.au

Abstract
Reusable, “standard” data models have long been an aim of the data modelling community, most recently with
an emphasis on patterns. However, many standard pattern approaches call for a close modelling of the subject
domain itself, and are not easily transferable to other domains. The approach we describe here, situated
abstraction modelling (SAM) describes an approach to data modelling that defines a template for the functional
“shape” of the solution, which is then instantiated for a particular set of circumstances. In effect, we have a
template not for the data model, but for the situation to which it applies. We describe a set of six data model
templates that can be instantiated over a wide range of application domains.

Keywords
Data modelling, entity-relationship modelling, template, pattern, situated abstraction modelling.

INTRODUCTION
When we design a database, we can call on formalisms in normalisation (to ensure that regularised structures are
obtained), integrity constraints (to ensure integrity and consistency) and the relational algebra and calculus (to
ensure the establishment of optimal design). These techniques have been established in theory and verified in
implementation, and together make up the basis for education and practice. However, before such formalisms
can be called upon, the initial task of analysis of any system for salient features must be carried out, and although
we have a set of primitives and rules for combining them (entity-relationship diagrams, UML, data flow
diagrams), we have nothing beyond that to guide the instantiation apart from verification against the world.
What is needed is a similar formalism that would enable us to have the same sort of rigorous approach to being
able to model, based on first principles and experience. Reusable, “standard” data models have long been an aim
of the data modelling community, for reasons of economy, reliability, and effective training. Rather than re-
establish methods for every new database, the goal has been to capitalise on the intellectual and financial
investment in previous design work, and the search has been for a framework within which this could be
established.
One suggestion that addresses the problem of adapting experience both to further design and to education is to
make use of pattern languages, a convention adopted from the arts of ornamentation and architecture by the
“Gang of Four” (Gamma, Helm, Johnson, & Vlissides, 1995). Pattern languages are reusable elements of design
derived from experience, but abstracted by an act of analysis into reusable components: pattern books formed the
basis for design distribution in a pre-literate society (Alexander, 1979). If the expertise of designers could be
stored in such a pattern language for databases, then the problem of design would then become the relatively
straightforward task of recognising a need for a pattern and then applying the appropriate pattern to the situation
in hand.
In architecture, use of patterns consists of selecting components at an appropriate level - from that of doors,
windows and walls making rooms, up to the siting of particular buildings or aspects of buildings, up to creating
communities. In hypothesising a pattern language for databases, however, the selection of an appropriate level
for a pattern is left largely untouched by the various pattern authors.

Pattern languages of databases
Silverston (2001) addresses the problem at the table level: by producing a vast enumeration of tables, the
designer (or educator) selects the table most likely to fill the need, trusting to the skill of the language preparer to
have dealt successfully with all possible cases. However, the problem arises of recognising what selection
amounts to a lossless decomposition: if this is the skill that is being taught to the students in the first place,
selecting one of a number can’t be guaranteed to teach the problem of noticing the salient, as a process of trial
and error is not guaranteed to produce appropriate results. Moreover, a failure of the pattern language to meet a
particular need is addressable only by referring ex cathedra to the source for either a new table, or a permissible
extension to an existing one – this is not a substitute for the analysis skills needed.

Fowler (1997) borrows directly from the Gang of Four in observing components of database systems as
functional subunits (Composite, Observer, Proxy, Singleton, Factory, Visitor etc) of a design whole. This
concentration on the functionality is useful in the creation of a greater whole out of a set of components, but falls
prey to the same problems that exist at a higher level: identification of the salient features within these pattern
elements still remains to be done when the identification of the components has been made, and the bulk of
Fowler’s text is involved in showing how the components can be made to accommodate different data contexts.
Hay (1996) uses patterning to analyse the subcomponents at a higher level of abstraction than Silverston, and in
a manner that is more data-centric than Fowler: using higraph formalisms he shows how the data components of
various common database scenarios can be shown to have a commonality, and how these components can be
reused. However, the problem remains of identification of data-relevant features in areas not previously
enumerated, and ultimately suffers in the same way as Silverston’s solution.
In the final analysis, the solutions Fowler provides are insufficient because they come from a systems analysis,
rather than a database, perspective. On the other hand, Hay and Silverston begin with a problem domain such as
accounting or stock control, and provide adaptable patterns within that domain, trusting in their skill to make
similar solutions in other domains.
Interestingly enough, we can see the presence of similar levels in the automated design solutions offered by
vendors such as Microsoft: we can see the wizards at the table, database and application level in Microsoft
Access™ and Visual Basic corresponding to Silverstein, Hay and Fowler respectively. Such utilities, while
useful as a shortcut for rapid application development, do not fulfil the required level of reused expertise either.
More importantly perhaps, Alexander (1979) stipulates that a pattern language should begin with the general,
and only then work towards the specific. By establishing the work in the way that they have, the authors have
already begun it at a level below that of general abstraction (or in the case of Fowler, in a functional abstraction
that almost immediately has to be followed by a quest for instantiation). In other words, it is not possible to carry
out an abstractive design of a database that makes use of experience via patterns using these methods: any
attempt immediately returns to the concrete.
There is another, allied problem: not only are these patterns grounded in examples where the functional nature of
the system is inextricable from its subject domain, but they are also tied far too closely to the sort of
transactional systems that make up the majority of business data texts. The domain of science or humanities
databases has proven to have different modelling problems (McCarty, 1998; Williams, Messina, Gagliardi,
Darlington, & Aloisio, 1999), and business-grounded analyses are not going to provide reliable guides to
analysis for those systems.
What we ultimately seek from pattern languages is a way in which the benefits of experience (situating;
enframing; putting in context) can sit easily with the needs of abstraction in design (working with late-binding
variables, models that can be placed with each other without reference to the specific). It was in search of such a
modelling process that we began our analysis, described next.

What we needed
Our own approach to database pattern languages arose from a pedagogical need to be able to model non-
transactional systems on any topic. Our situation was that of using entity-relationship modelling to create data
models on a variety of themes in a course in multimedia databases. The issues we faced were:
 The models had to be fairly simple, since the exercise focused on the use of different media types for

illustration, yet they still had to be able to support the media modelling precisely and to provide for varied
and interesting views of the database.

 Students had a free choice of database theme, so selected anything that interested them (as long as it had
potential for the multimedia component) – this resulted in a very wide range of themes not often met with in
undergraduate database texts, such as cookery, horror movies, bonsai, wrestling, and frog ecology.

 Students seldom had much idea of how to begin modelling once they had chosen a topic – selecting (say)
“cricket” is not sufficient in itself, as the focus could be on players and teams, or on details of matches in a
competition.

 Most of the data modelling students had done in previous courses was of the transactional variety, and they
had difficulty in applying the examples they had learned there to many of the situations they wanted to
model.

We soon realized that there were certain common data models that applied no matter what the topic theme was,
and that we could quickly recognize the appropriate model or suggest alternatives. We wanted to formalize this
expertise so that we could make it available to the students, and so fast track the data modelling part of the
exercise (since it was occupying a disproportionate amount of time). And, by providing a variety of models, we

wanted the students to be able to consider the different perspectives on a topic and their implications explicitly,
thus increasing their appreciation of the subtleties of their theme and its modelling potential.
We turned to the pattern literature (as discussed above) to see what comparable solutions had been met. We
found that the typical pattern approaches did not meet our needs. And, as we have seen, modelling each system
from first principles was not a viable option as it meant foregoing experience gained from previous similar
systems.

Our method
We decided to identify genera of modelling situations and matching modelling templates. By concentrating on
the logical entities, their interaction with the world, the system’s portrayal of time and context, we established a
set of descriptors with which to describe these circumstances. Using the situated activity framework (Clancey,
1993), we sought a level of abstraction that was firmly grounded in universal data practices, while at the same
time permitting fully portable modelling tools: more abstracted than Fowler, Silverston and Hay, yet more
situated than the fully abstract tools such as entity-relationship modelling (Chen, 1976) or UML (Object
Management Group, 2003). We call this method Situated Abstraction Modelling (Figure 1).

Figure 1. Comparison of Situated Abstraction Modelling with other approaches to standard data models in terms
of level of instantiation (situatedness) and universality (abstraction)

SITUATED ABSTRACTION MODELLING
We begin with the recognition that modelling is a situated activity because all cognitive activities are situated
Clancey (1993; 1997). This means that we should not look for an absolute abstraction in our modelling, but look
instead for how the modelling activity draws on norms to establish appropriate rules for analysis and
optimisation. Any models formed must reflect the circumstances in which they were created, and are ultimately
reflective of the world: models break down when they are taken too far from their point of formation. By the
same token, the application of models in new domains consists of their contextualisation – the late-binding of
value to slot that is part of the explicative and analytical process – and our modelling formalism must reflect all
of these features.
Richards (2000) also draws on Clancey (1993) to make an analysis of conceptual modelling, and remarks on the
close interaction of modelling and experience: “It is not just the external environment that will affect the context
but that thinking itself modifies further action and context occurs at a conceptual level that exists within a social
setting”. While we do not support the sceptical position that Richards adopts, the inclusion of knowledge of
circumstance and feedback from users is significant for our purposes: the elicitation of salient features in a
database system begins with the knowledge of the system, and an awareness of rules that might apply and a
knowledge of how those rules have applied in similar circumstances. We see the establishment and encoding of
such rules, together with their appropriate domains of application, as the soundest approach to the creation of a
pattern language for database design.
Thus, the templates that we have developed are not metamodels, but standardised rulesets of situations where
data is used, and how those rules must be applied.
We identified six templates: Organisational, Events, Performance, Distribution, Sociological, and Construction,
based on our analysis of common situations across a broad range of database designs. Within that template set,
we defined a limited set of logical entities, which exist in a particular pattern of relationships that together
characterise the particular template. The use of a template lies in establishing the genera of the particular
database system, instantiating the logical data entities, and establishing the grounds for integrating with
neighbouring data systems through the use of intersection entities.
The logical entities are replaced by actual entities when the template is instantiated. For example the logical
entity AGENT may be instantiated as PERSON, SINGER, BRANCH, TEAM, as required for the particular

All data models in the world

Hay; database wizards

SITUATED ABSTRACTION MODELLING

Entity-relationship modelling primitives

Silverston; table wizards

Fowler; application wizards

U
ni

ve
rs

al
ity

Instantiation

domain. Most of these logical entities are specific to the template in which they are used, but some (notably
AGENT) occur across multiple templates. Although they may typically be instantiated in different ways, the
main features and principles of their use is the same no matter where they are used.
Within these logical entities, we then prescribe some required attributes – specifically primary keys, foreign keys
and human-readable identifiers (names for the instantiated logical entities, labels for the typifying ones) and give
rules for recursion in instantiation (described next).

Recursive hierarchies
Instantiation of the logical entity may well require its expansion into a hierarchy of entities (for example, the
AGENT entity could represent the progressive grouping from Person to Department to Branch). This expansion
is indicated on the template as a standard recursive relationship symbol (and is written in the text with an arrow
symbol; e.g. Person  Department  Branch) but it is important to note that the recursion differs depending on
the logical entity involved. We present a brief summary of the recursion types here, and will provide a fuller
treatment of them elsewhere.
Several of the recursion types identified map on to types noted by other authors, for example Simsion (1994).
Simsion recognized three different types of recursive relationship, 1:1, 1:N, and M:N, and within 1:N (which he
called hierarchical) three different types: contains, classifies and controls.
 Traditional recursion. This is the “bill of materials” recursion, where we have hierarchies consisting of

parts-subparts. Simsion calls this a contains hierarchy. In our templates, traditional recursion is found in the
Construction template, around the COMPONENT and PROCESS entities.

 Hierarchical recursion. This type of recursion is a classification, in the sense of taxonomic classifications. It
is characterized by inheritance from top to bottom: everything that is true at the highest level of the
hierarchy is also true at all lower levels. A typical example would be Species  Genus  Family in a
taxonomy. Simsion refers to this as classifies. In our templates Hierarchical recursion is found in SPECIES
(in the Distribution template) and SITUATION (Distribution and Sociological). These hierarchies often tend
to be permanent schemes that exist outside of the immediate domain of the data model.

 Constitutional recursion. In this type of recursion the hierarchy is rule-determined, for example in a
bureaucratic management regime, such as Staff  Department  Branch; or performance-based
hierarchies such as Episode  Season  Series. The rules for hierarchical membership are not
automatically the same at each level in the hierarchy; moreover, the rules may be established by act of fiat,
and a review of the rules possible at any moment, which would lead to an immediate reappraisal of the data.
Simsion calls this a controls hierarchy. Constitutional recursion occurs in the AGENT, THING, PLAN and
PERFORMANCE entities.

 Aggregative recursion. This type of recursion is similar to Hierarchical, but differs in that what is true of the
highest level of the hierarchy is not necessarily true for every lower level. An example would be City 
State  Country. Simsion calls this type of recursion contains. In our templates we find Aggregative
recursion in LOCATION (Distribution and Sociological) and EVENT (Events template).

THE TEMPLATES
We now describe the six templates. For each template, we show entity-relationship diagrams (ERDs) of the
template and an example instantiation, and a table summarising the main features of the template.

Organisational template
This template is used to represent individuals or hierarchical organisations of groups and individuals, and
historicised facts about them.
The Organisational template (Figure 2) is probably the simplest of the templates. At its most extreme, it could be
a single logical entity, Agent. Expansion of the Agent entity is in the form of recursion to a hierarchy of groups,
and at the terminating end, to a weak entity (Agent-History) that records (usually summary) information about
circumstances of interest to the Agent.
Typical instantiations are found in organisational hierarchies of companies, such as Staff  Department 
Branch, or Employee  Manager  Franchise; but also in sporting domains such as Player  Team  Club
 League, or Driver  Crew  Team.
In the Organisational template time qualifies the recursive hierarchy for Agent: for example, players may belong
to different clubs in different years. This is modelled by extending the hierarchy to many-to-many, with an
indicative temporal attribute (and possibly a role) for the intersection entity.

Instantiations of the Organisational template may be found combined with those of others, such as Event or
Sociological, where it effectively provides the recursive expansion seen in the Agent entity of those templates.
However, the Organisational template exists in its own right, as it is required to model instances where there is
insufficient detail about the weak entity to regularise it further (for example, the “fact sheets” assembled for pop
stars and sporting figures).
Variations within the Organisational template include:
 Expansion of Agent into a hierarchy
 Inclusion or exclusion of Agent-History; or multiple Agent-Histories.

Figure 2. The Organisational template (left) and an example instantiation.

Logical entity Subject matter represented by
the logical entity

Nature of recursion Candidate keys

AGENT A named instance of a person or
group

Constitutional A unique identifier for the instance
of the person or group

AGENT-HISTORY A weak entity recording
something of interest about the
person or group, often summary
in nature

No recursion A unique identifier for the
historical instance; possibly a
compound key that includes the
Agent candidate key

Table 1. Main features of the Organisational template.

Events template
This template is found where something of interest occurs in time: this may be either a regular occurrence, or a
one-off historical moment. People or groups are always involved in the event. The basic template is thus a
simple many-to-many relationship between the logical entities Agent and Event, with the entity Participation
recording the circumstances of the involvement or its outcome (Figure 3).
The events of interest may be of a regular occurrence with a predefined structure (such as sporting fixtures, or
the Oscars) or be part of chronicles of unique historical events such as wars or the space race. The events may
also be transactions such as are encountered in financial or medical record systems, and this template is the one
where typical transaction systems live.
Variations within the Events template include:
 Expansion of either of the outer entities into a hierarchy (such as Player  Team  Club, or Match 

Competition  Season).
 Modelling the participation of Agents as an ordered pair (e.g. the home team and away team participating in

a match)
 Enforcing rules for simultaneous participation (e.g. the number of runners in a heat)
 Modelling events that take place in a sequence (e.g. the draw for a tennis competition)
 The level of detail in recording the outcome of the event, especially for sporting events. (For example, in the

instantiation in Figure 3 we could aggregate the goals scored by individual players as recorded in Plays-In,
or store only the final score in Match.)

AGENT
HISTORYAGENT

AWARDS
WONPLAYERCLUB

STATE

POSITION AWARD

Figure 3. The Events template (left) and an example instantiation.

Logical entity Subject matter represented by
the logical entity

Nature of recursion Candidate keys

AGENT A named instance of a person or
group

Constitutional A unique identifier for the
instance of the person or group

EVENT A named and timed instance of
an occurrence

Aggregative A unique identifier for the
instance

PARTICIPATION The combination of a particular
person/ group and occurrence

No recursion, but records
may be able to be viewed in
different grouping patterns.

The combination of agent and
event primary keys is sufficient
(no partial data is permitted).

Table 2. Main features of the Events template.

Performance template
This template is typically found where a performer or group of performers are following the instructions of a
performance designer, which are set out as a blueprint or plan. It is characterised by two different sorts of agents,
which are subtypes of the Agent logical entity: a Creator (such as a songwriter) who is responsible for producing
the plan, and a Performer (such as a singer) responsible for performances of the plan (Figure 4).
The Performance template is used for databases where we are recording details about performances of music,
film, plays, TV shows or other cultural artefacts. Typical instantiations would be a playlist database for a radio
station, with songwriter, singer/group, song and rendition; or an online movie database with a complete cast and
production details.
Variations within the Performance template include:
 Expansion of the Agent or Performance entities into a hierarchy (such as Singer  Group, or Episode 

Series).
 The number of subtypes of Agent involved, and the way that they are subsequently converted to relational

tables (see for example Elmasri and Navathe; 1999).
 Multiple variants of same performance – with the release of compilation albums, and the reissue of albums

with extra tracks, physical artefacts (albums) may have components (tracks) shared with other albums
(where the tracks may even have different names). Although this may seem counter-intuitive, it is
straightforward to model with this template: the performance participates in a many-to-many hierarchical
relationship.

EVENT
PARTICIP-

ATIONAGENT

MATCHPLAYS-INPLAYER

COMPET-
ITIONTEAM

CLUB

Figure 4. The Performance template (left) and an example instantiation.

Logical entity Subject matter represented by the
logical entity

Nature of
recursion

Candidate keys

AGENT A named instance of a person or group, with
subtypes CREATOR and PERFORMER,
each involved in separate relationships

Constitutional A unique identifier for the
instance of the person or group

PLAN A named and timed instance of a plan Constitutional A unique identifier for the
instance of the plan

PERFORMANCE A named and timed instance of a
performance

Constitutional A unique identifier for the
instance of the performance

Table 3. Main features of the Performance template.

Distribution template
This template is typically found where we wish to represent co-location that is independent of time or agency. It
is characterised by three logical entities, Species, Situation and Location, which meet in a triple intersection as a
fourth entity, Distribution (Figure 5).
The Distribution template is used for databases where we are recording instances of types of items and the
manner in which they occur, but where the temporality of the instances is abstracted to time of day or year,
rather than a chronological timeline.
Typical instantiations of the template are where a classified life form (such as a species of plant or animal) is to
be found in terms of habitat and location, and where the temporality of the distribution represents migration or
diurnal behaviour. Another example would be meteorology, where we observe the distribution of different
weather phenomena (such as cyclones and ocean currents) across geographic regions and local topographical
conditions.
Variations within this template include:
 Expansion of any of the outer entities into a hierarchy (such as Bird Species  Family  Order).
 Replacement of any of the outer entities by a lookup table to the central entity, thus enforcing a domain

constraint where only the label or name of the record is of interest.
 Replacement of any of the outer entities to a business rule (effectively collapsing them to a single value); for

example restricting to a particular geographical region.

CREATOR

PLAN PERFORM-
ANCE

PERFORM-
ER

AGENT

WRITER

SCRIPT FILM

ACTOR/
PRODUC-

TION

PERSON

ACTORS PLAY
CHARACTERS;

PRODUCTION TEAM
HAVE ROLES

Figure 5. The Distribution template (left) and an example instantiation.

Logical entity Subject matter represented
by the logical entity

Nature of recursion Candidate keys

SPECIES A named type of item Hierarchical A unique identifier for the type of item

LOCATION A named instance of a place,
usually spatial

Aggregative A unique identifier for the instance of
place

SITUATION A named type of context of
the item occurrence

Hierarchical A unique identifier for the type of
situation

DISTRIBUTION The combination of a
particular item, place and
context, resulting in a
distribution pattern.

No recursion, but
records may be able to
be viewed in different
grouping patterns.

A unique identifier for the distribution
occurrence. A candidate key made up
of the foreign keys of species, location
and situation is inadequate because of
the potential for partial data.

Table 4. Features of the Distribution template.

Sociological template
This template is similar to the Distribution template in that it represents co-occurrence, but it differs in that the
notions of agency and time are now significant in determining the co-occurrence. Within the context determined
by Situation and Location we have two entities, Agent and Thing, which are linked by an Actor-ActedUpon
relationship (such as design or celebration). The result of this relationship is what is recorded in the central entity
Occurrence, along with its date or sequence (Figure 6). Both Agent and Thing are individuated, so that their
records are of named instances rather than types.
The Sociological template is typically used for databases where we are recording designed items or events of
cultural significance: the important feature is that there is (explicitly or implicitly) a designer and something of
significance to the model that is the result of that design.
Typical instantiations of the template are where we have a product item such as a car model that is designed by
an architect. Another example would be a database of world festivals, where the celebration of a particular
festival (such as Christmas) would differ according to cultural group, their geographic location and the context
of the festival.
Variations within the Sociological template include:
 Expansion of any of the outer entities into a hierarchy (such as Car Model  Marque  Manufacturer).
 Replacement of any of the outer entities by a lookup table to the central entity, thus enforcing a domain

constraint where only the label or name of the record is of interest.
 Replacement of any of the outer entities to a business rule (effectively collapsing them to a single value); for

example restricting to a particular geographical region or a particular designer.

SPECIES DISTRIB-
UTION

LOCATION

SITUATION

BIRD
SPECIES

OCCUR-
RENCE

REGION

HABITAT

FAMILY

STATE

Figure 6. The Sociological template (left) and an example instantiation.

Logical entity Subject matter represented
by the logical entity

Nature of recursion Candidate keys

AGENT A named instance of a person
or group

Constitutional A unique identifier for the instance of
the person or group

LOCATION A named instance of a place,
usually spatial

Aggregative A unique identifier for the instance of
place

SITUATION A named type of context of the
item occurrence

Hierarchical A unique identifier for the type of
situation

THING A named instance of an item
that is of interest to the person
or group

Constitutional A unique identifier for the instance of
the item

OCCURRENCE The combination of a particular
person/group, item, place and
context. Date and/or sequence
are included.

No recursion A unique identifier for the occurrence.
A candidate key made up of the
foreign keys of Agent, Thing, Location
and Situation is inadequate because of
the potential for partial data.

Table 5. Main features of the Sociological template.

Construction template
With this template, we model processes and the components involved with them; we make an internal ordering
for the Process logical entity whereby we can stipulate listing order. Even though there are only two logical
entities in this model, they interact in such a complex and subtle way that we have elected to show the expanded
version as well as the simple one (Figure 7). The ordered components are part of each step, while the ordered
steps take components and make them into compound structures which in turn become components. The
recursive relationship each has is also complicated: a process may consist of many steps, with the output of one
step being input to another, while a component is likely to be made of other components, and be combined into
yet others.
Typical instantiations of the Construction template include any databases with the classic component assembly
nature, such as model boat building; dance (where steps combine into figures into dances), and recipes, where
raw ingredients are combined into parts of a dish and ultimately a complete meal.

AGENT OCCUR-
RENCE

LOCATION

SITUATION

THING

MODEL MODEL
+YEAR

COUNTRY

VEHICLE
TYPE

DESIGNERMARQUE

MAKER

--

Figure 7. The Construction template (left) and an example instantiation.

Logical entity Subject matter represented by
the logical entity

Nature of
recursion

Candidate keys

COMPONENT A named type of component that
can be simple or compound
(made up of other components)

Traditional
recursion

A unique identifier for the type of
component

PROCESS A named type of process Traditional
recursion

A unique identifier for the type of
process

PROCESS-STEP A named type of process step,
plus the sequence order

(not applicable)

A unique identifier for the process step

INVOLVED-IN The combination of a particular
component with a process step

(not applicable) The combination of component and
process-step primary keys is sufficient
(no partial data is permitted).

Table 6. Main features of the Construction template.

DISCUSSION
The formalisms of data modelling we can call upon provide both descriptive and normative roles in analysis. We
call upon the normative aspects to give guidance, and the descriptive to assist in communication of the solution.
By grounding the normative aspects in situated abstraction, we can provide workable precepts for both education
and practice. By providing a minimal set of templates with rules for expansion and for combining, we have
ensured that the functional requirements of the system are not lost by too early adoption of a model that is
domain-oriented. In the words of Alexander (Alexander et al., 1977):

“Each pattern describes a problem which occurs over and over again in our environment, and
then describes the core of the solution to that problem, in such a way that you can use this
solution a million times over, without ever doing it the same way twice”

Instantiation thus becomes a matter of naming the logical entities, giving appropriate names to the required
attributes, and then selecting the remaining attributes. Following Alexander et al’s (1977) patterns methodology,
we move from the highest level (templates) through the middle (logical entities) to the specific (required
attributes and relations). One advantage of our approach is that the instantiated templates can then draw on the
work of Fowler, Hay and Silverston at the appropriate point of the modelling exercise.
Teaching students and practitioners what template to use in their modelling work becomes a matter of showing
how to identify common situations, how to implement them from the template, and how to combine individual
templates to model complex data situations. Recognising the circumstances in which to use a particular template
then becomes a matter of familiarisation with the appropriate recognitors, for example:
 Is this a situation where basic information is being collected about individuals? Then you should use the

Organisational template.
 Is this a situation where goods are being bought and sold, and transactions recorded? Then you should use

the Events template.
 Is this a situation where details are being recorded for a process? Then you should use the Construction

template.
… and so on.

PROCESSCOMPON-
ENT

PROCESS
STEP

INVOLVED
IN PROCESS

INCLUDES ORDER
OF STEPS

COMPON-
ENT

STEPCOMBIN-
ATION RECIPE

INCLUDES ORDER
OF STEPS

INGRED-
IENT

TECHNIQUE REGION

Our experience so far in using these templates to teach data modelling in courses where the emphasis is
primarily on non-transactional data systems has been encouraging, and we intend to develop the approach further
by developing such a set of guidelines for instantiation and combination.

REFERENCES
Alexander, C. (1979). The timeless way of building. New York: Oxford University Press.
Alexander, C., Ishikawa, S., Silverstein, M., Jacobson, M., Fiksdahl-King, I., & Angel, S. A. (1977). A Pattern

Language. New York: Oxford University Press.
Chen, P. P.-S. (1976). The entity-relationship model - toward a unified view of data. ACM Transactions on

Database Systems, 1(1), 9-36.
Clancey, W. J. (1993). Situated action: A neuropsychological interpretation (Response to Vera and Simon).

Cognitive Science, 17(1), 87-107.
Clancey, W. J. (1997). Situated Cognition: On Human Knowledge and Computer Representations (Learning in

Doing): Cambridge University Press.
Elmasri, R. A., & Navathe, S. B. (1999). Fundamentals of Database Systems (3rd ed.): Addison-Wesley

Publishing.
Fowler, M. (1997). Analysis patterns: reusable object models: Addison-Wesley Longman.
Gamma, E., Helm, R., Johnson, R., & Vlissides, J. (1995). Design patterns: elements of reusable object-oriented

software. Reading, MA: Addison-Wesley.
Hay, D. C. (1996). Data model patterns: conventions of thought. New York: Dorset House Publishing.
McCarty, W. (1998). Poem and algorithm: humanities computing in the life and place of the mind (Keynote

speech). Paper presented at the humanITies - Information technology in the arts and humanities: Present
applications and future perspectives, The Open University, Milton Keynes.

Object Management Group, I. (2003, March 17, 2003). UML Resource Page. Retrieved June 3, 2003, from the
World Wide Web: http://www.omg.org/uml/

Richards, D. (2000). A Situated Cognition Approach to Conceptual Modelling. Paper presented at the 33rd
Hawaii International Conference on System Sciences.

Silverston, L. (2001). The Data Model Resource Book, Revised Edition. Volume 1: A Library of Universal Data
Models For All Enterprises; Volume 2: A Library of Universal Data Models by Industry Types: Wiley
Computer Publishing.

Simsion, G. C. (1994). Data modelling essentials: analysis, design and innovation: International Thomson
Computer Press.

Williams, R., Messina, P., Gagliardi, F., Darlington, J., & Aloisio, G. (1999). Report on European-United States
joint workshop on Large Scientific Databases. Annapolis, Maryland, USA: Center for Advanced
Computing Research at the California Institute of Technology, European Laboratory for Particle
Physics (CERN).

COPYRIGHT
Valerie J. Hobbs, Diarmuid J. Pigott, and Daniel P. Toohey © 2003. The authors assign to ACIS and educational
and non-profit institutions a non-exclusive licence to use this document for personal use and in courses of
instruction provided that the article is used in full and this copyright statement is reproduced. The authors also
grant a non-exclusive licence to ACIS to publish this document in full in the Conference Papers and
Proceedings. Those documents may be published on the World Wide Web, CD-ROM, in printed form, and on
mirror sites on the World Wide Web. Any other usage is prohibited without the express permission of the
authors.

http://www.omg.org/uml/�

	Cover page
	Situated Abstraction Modelling
	Keywords
	Data modelling, entity-relationship modelling, template, pattern, situated abstraction modelling.
	SITUATED ABSTRACTION MODELLING
	THE TEMPLATES

