

MURDOCH RESEARCH REPOSITORY

This is the author’s final version of the work, as accepted for publication following

peer review but without the publisher’s layout or pagination.
The definitive version is available at

http://doi.acm.org/10.1145/1709424.1709448

Ritter, N., McGill, T.J. and Thompson, N. (2009) Incremental

submission of programming code using object-oriented classes.
ACM SIGCSE Bulletin, 41 (4). pp. 66-70.

http://researchrepository.murdoch.edu.au/1708/

© ACM

It is posted here for your personal use. No further distribution is permitted.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Repository

https://core.ac.uk/display/11232271?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://doi.acm.org/10.1145/1709424.1709448
http://researchrepository.murdoch.edu.au/1708/

Incremental Submission of Programming Code
Using Object-Oriented Classes

Nicola Ritter, Tanya McGill, and Nik Thompson
School of Information Technology

Murdoch University
Murdoch WA 6150, Australia nritter@globaldial.com, [t.mcgill,

n.thompson]@murdoch.edu.au

Abstract: Given increasing adoption of agile software development methodologies it is essential that information technology
students are exposed to them. This paper describes and evaluates an attempt to introduce agile programming into a core
second year programming course. The initiative appeared to be associated with improvements in both drop out and pass rate, and
student perceptions of the innovation were largely positive.

Categories and Subject Descriptors: K3.2 [Computers and Education]: Computer and Information Science Education-
Computer Science Education;Curriculum
General Terms: Design, Measurement
Keywords: Agile methods, software development, software engineering education

1. INTRODUCTION
There has been a shift in work practices within the software
engineering industry in the recent years. A new generation
of software development methodologies, known as agile
methodologies, have gained in popularity. Examples
include Extreme Programming (XP) and Scrum. These
approaches to development place a strong emphasis on
iteration; design, coding and testing are done repetitively
with re-work as necessary. There is also a much greater
emphasis on on-going testing than in previous
methodologies. Team work is encouraged, and there is a
focus on rapid delivery of quality software. Agile
methodologies are considered light-weight and impose less
process burden upon the developers and because of their
capacity to deal with volatile requirements they have
received acclaim from practitioners [Reifer 2002].

Given the increased interest in, and adoption of, agile
software development methodologies it is essential that
information technology (IT) students are exposed to them.
The IEEE/ACM Computer Science - Software Engineering
Curriculum [2004] lists agile concepts and several agile
practices (such as refactoring, test-driven development) as
essential topics, but they have yet to be fully embraced by
academic institutions. The study described in this paper,
addressed this issue by evaluating an attempt to introduce
agile programming into a core second year university
programming course.

2. LITERATURE REVIEW
A number of authors have discussed the issues associated
with the teaching of agile development processes. Hazzan
and Dubinsky [2007] argue strongly for increased teaching

of agile software development. Their reasons include the
fact that the approach evolved in and is used in industry
and that it emphasises teamwork and the human aspects of
software development. They also argue that it supports
learning processes, encourages diversity, emphasises
management skills and provides a single teachable
framework. Schneider and Johnston [2005] argue however
that while exposure to agile practices is beneficial when
learning about small-scale development, they do not
believe that agile approaches are appropriate for learning
about large-scale system development.

The descriptions in the literature of experiences
introducing agile software development in tertiary courses
appear to be largely positive. Melnik and Maurer [2005]
investigated the perceptions of a wide range of students
who had been exposed to agile programming, and found
that students were very positive about core agile practices
and keen to continue to use agile methods in the workplace
after graduation. Kessler and Dykman [2007] combined a
traditional software engineering focus and an agile process
in the domain of PDA programming using C#. The agile
process was the last phase of the course and was worth
30%, and designed to be very hands-on. They concluded
from the positive student feedback that they had found a
good balance. Similarly, Layman, Cornwell and Williams
[2006], Loftus and Ratcliffe [2005] and Sherrell and
Robertson [2006] all reported positive student perceptions
and evaluations of classes when they introduced agile
methods.

3. BACKGROUND TO THE PROJECT
The Data Structures and Abstractions course is considered
to be one of the hardest IT courses at the university. It has a
high failure and withdrawal rate independent of the quality
of the teacher (as measured by student evaluations). It
covers C++; object orientation and class design; data
structures from stacks to B+ trees; and algorithms from
linear search to quicksort, including discussion of
algorithmic techniques such as back-tracking.

In a traditional manner, this course has been assessed
with one or two small assignments plus a major assignment
and an exam. This assessment has caused many problems.
Students do three courses in a semester. Due to the need to
teach students sufficient material before they do a major
assignment, students inevitably end up with three major
assignments due in the last 1-2 weeks of semester. This
means that the students have an almost intolerable burden,
leading to high levels of stress and high rates of late
semester drop-out.

A second problem is the quality of the work produced
by the students. The students need to code large numbers of
classes to do anything significant for the major assignment
and end up losing marks because they make the same
mistakes in each class. To ‘save time’ they often have poor
class split-up as they think that the more classes they have
the longer it will take to code. They do little unit (class)
testing and what they do is only because marks have been
awarded for a test plan. They generally do design after they
have finished the code; not as a tool for getting things right,
but again as a way of fulfilling requirements. In other
words the assignment is truly an assessment tool and not a
learning tool; this is frustrating for both student and teacher
alike.

The aim of this study was to see if we could
successfully apply agile development to the assessment
process in this course, and hence solve the assessment
problems described above, as well as to introduce students
to agile software development.

4. DESCRIPTION OF THE STUDY

4.1 Changes to the Course
The previous type of assessment was replaced with a single
project that involved building the business (back-end) part
of a DVD Collection program. The students were required
to work with C++ and were not allowed to use a database
or any of the STL classes other than string. As students
rarely write pseudo-code in advance it was decided that
design would consist of UML class diagrams, test plans,
version information within class header files and pseudo-
code as comments within the program where they had a
need to do design before coding.

In the first week students were taught about UML class
diagrams and incremental programming techniques and
given the coding standards to be followed for the course.
The UML class design covered how to decide on classes,
rules of inheritance and composition etc., and UML class

diagram notation. The incremental programming covered
the building of an individual class. Each class was
considered to need a test plan, header file, implementation
file and a test program. Each method within the class was
then to be coded by deciding on what tests would confirm it
worked and recording them in the test plan, coding the
method, and then implementing code within the test
program that would perform the tests listed in the test plan.
This was to be done before coding the next method.

In the first and second weeks of the twelve week
course the students then practiced producing a UML class
design for specific problems. Their initial class diagram for
their DVD collection program was then due at the end of
the second week. This first class diagram was worth 10%
of the marks for the project and was returned within a week
to the students with detailed comments about where it was
wrong and where it could be improved.

Thereafter students were required to submit, at their
own pace, each class as it was completed. Each submission
was required to include an updated and corrected class
diagram, a spreadsheet containing all the test plans for the
project—each class in its own named worksheet—plus the
three code files: header, implementation and test.

Each submission was then marked within two days and
returned to the student. If the class was very poorly done,
students were required to resubmit it before it was marked.
If it had medium level problems they were required to
resubmit a corrected version before submitting more
classes. If it had minor problems then they were allowed to
resubmit it with the next class. All resubmitted or new
work that did not correct previous mistakes was rejected
out of hand.

Each updated class diagram was worth 2 marks and
each class was given a mark based on its adherence to the
course standards, coding efficiency and the quality of its
test plan. Correctness of the code was judged by the
comprehensiveness of the test plan and checking that the
test program’s output exactly matched the expected output
in the test plan. The mark for the class was then weighted
based on its complexity, ensuring that a simple class such
as “Person” was worth less marks than a container class.
Similarly a container that used a more complicated data
structure was worth more marks than one that did not.
Finally, a class that was similar to either a previously
submitted class or one provided in the lectures was given
less marks. Marking was severe: students were required to
get it right, not allowed to be nearly good. Students were
allowed to keep submitting classes until they scored 100%
in total for the project.

4.2 Evaluation of the Changes
Ninety three students were initially enrolled in the course.
The changes to assessment applied to all students.
Evaluation of the changes was undertaken in several ways.
Changes in drop out rate and pass rate were considered.
Students’ perceptions were also obtained via a web survey.
Several weeks before the semester ended all students were
emailed inviting them to participate in the evaluation of the

introduction of agile programming by completing a
questionnaire on the web. Completion of the questionnaire
was voluntary and all responses were anonymous. The
questionnaire included the following types of questions.

• A series of statements listing the assumed
positive aspects of the changed assessment were
presented and students were asked to rate their
agreement with them on a Likert scale labelled
from 1 (Strongly Disagree) to 5 (Strongly Agree).

• A series of statements about the way the
assessment process was handled were also
presented and students were asked to rate their
agreement with them on a Likert scale labelled
from 1 (Strongly Disagree) to 5 (Strongly Agree).

• Students were also encouraged to provide
additional comments about the assessment and
their experiences with it.

5. FINDINGS

5.1 Retention and Pass Rate
The percentage of students who dropped out was only 17%
in contrast to the previous year where the drop out rate was
22%. The percentage of students who passed the course
went from 46% in the previous year to 60%, with no
lowering of standards. This was due to the fact that
students got much higher marks in the assignment than in
prior years: the agile methodology was very successful in
teaching students to build a large complicated system. In
particular, middle-of-the range students, who used to
struggle with an assignment of this scope, not only passed
but excelled when using the agile paradigm.

5.2 Instructor Perceptions
From a course coordinator’s perspective the results of using
the agile paradigm were mixed. To make it work there has
to be a guarantee that students will get back a checked class
quickly: the aim was to return work within 2 days. This
requirement meant that tutors had to do an average of 1
hour marking every day. This does not sound that much,
and indeed equates to the total amount of time spent on
marking in previous years. However the relentless nature
of it became tiring towards the end of semester.
Furthermore it affected research output as it made it
difficult to concentrate on research for a whole day:
students complained bitterly if the 2 day deadline was not
met. Part-time tutors found it nearly impossible to adhere
to, and yet the fast checking of work quickly is central to
the concept.

A second problem was the difficulty in explaining the
methodology to the part-time tutors. Even after insisting
that they use the agile assessment whether they liked it or
not, it was found that at least one tutor regularly broke the
marking rules and marked students down for resubmitting
work, even though that was what they were required to do!
This meant that the course coordinator had to do regular

moderation at a greater depth than is normal in such a
course.

Despite these problems the rewards of using agile
methodology were great. For the first time students were
learning rather than simply being assessed. There was great
satisfaction in insisting that students get it right rather than
‘near enough is good enough’. It was much easier to help
the struggling middle-of-the-range students than in the past
because they were taking small steps, not trying to ‘leap to
the top of a building in a single bound’. The top students
excelled. They leapt into the project well in advance of
everyone else and completed it—doing advance reading
and study—by the end of the first half of the semester.
Furthermore this meant that problems encountered in the
project description itself were highlighted, and hence
clarified, long before the average student came across the
problem.

Since students were required to submit parts of the
project regularly they, and the teaching staff, were able to
track progress much more easily than in the past. Students
who were not submitting could be talked through the
problems they were encountering and encouraged to get a
single class in to get themselves going.

The final advantage of the system from a course
coordinators point of view was the reduction in cheating.
Students did their own initial designs and no attempt to
enforce uniformity was made. This meant that every
student had a slightly different model. Some wanted to
include detailed information about actors, some wanted to
include documentaries and TV-Series as well as just
‘DVD’, and no two people had exactly the same set of
attributes for every class. If two students had had the same
model it would have been very obvious, allowing collusion
to be picked up early. From then on students were
essentially working on individual projects which made
cheating nearly impossible.

5.3 Student Perceptions
This section describes the students and the feedback
received from them. Thirty six students completed the
online questionnaire. Of these students, 13 (36%) had
worked in the IT industry as programmers, but only 3
(8.3%) had written C++ as part of this employment.

Table 1 provides summary information about the
aspects of the assessment that students valued. In general
students were very positive about the changes. The
comment below encapsulates the positive nature of the
feedback

I definitely got more out of this project than any other
assessment in the degree so far, and it has made this
course the most interesting I have taken.

Table 1. Positive aspects

Mean Min. Max.

Std.
Dev.

Table 2 includes more specific feedback about the way
the assessment process was handled. All students were very
conscious of the need for rapid feedback, and there was

The ongoing assessment in this
unit has made it easier to fit this
unit around other units.
Software is easier to design if it
is coded incrementally as done
in the assessment project.
The ongoing assessment in this
unit has made it easier to fit this
unit around other commitments
such as work.
Being able to resubmit poor
work for extra marks was very
useful.
An ongoing project was useful

4.53 1 5 0.91

4.39 1 5 0.99

4.36 1 5 1.07

4.33 3 5 0.76

3.94 1 5 1.09

wide range of responses to the question relating to the
degree to which they believed this had been achieved. This
is attributable to the fact that some of the tutors were part-
time and had difficulty meeting the specified turnaround
times.

….projects were sometimes slow to be marked making
it difficult to correct the projects and resend them in a
quick enough manner...

Table 2. Feedback on implementation
Mean Min. Max. Std.

Dev.
experience for you for when
you work in industry.
I learnt more from this type of
assessment than from the
normal type of assignment.
Separate assignments are easier
to do than one ongoing project.

3.75 1 5 1.20

2.50 1 5 1.207

Fast feedback is crucial to the
usefulness of this type of
assessment.
The tutors gave feedback
quickly enough to be useful.
The process of resubmission of
the assignment worked well.
Having to get things completely
right before moving on was

4.67 3 5 0.59

3.64 1 5 1.25

3.97 1 5 1.11

2.83 1 5 1.36

In addition a number of students specifically commented
about the applicability of the nature of the assessment to
industry.

This was easily the best project I've ever received. I'm
a programmer by trade, I work on webapps in PHP.

 annoying.
Having to get the structure of
the directories and code correct
was annoying.

2.58 1 5 1.20

All of my work is 'agile' in nature, I find that the
waterfall method is out of date, time consuming and
just causes massive issues at the end when you have to
test everything at once, rather than testing as you go.

…the more the practical work reflects industry
methods better.

In particular students liked the flexibility that the ongoing
assessment provided, and they found it easier to design
software in an incremental fashion.

I thought the ongoing assessment was a great idea as it
made the project seem easier as it was broken up into
manageable problems rather than one large problem.
It also gave the opportunity to get constant feedback in
relation to how you were going and gave you a sense
of achievement as you saw your mark increase.

Students also noted the value of iterative development.

In previouscourses where there is only one big
assignment at the end I found I never actually learned
how to correct the mistakes I made, just moved on.
However this form of assessment forces you to get
code not only "correct" but clean also.

Students were also specifically asked about whether
the need to get code and directory structures correct before
moving on was an issue. A wide range of responses was
provided, but for the majority of students this did not seem
to be a big issue.

However students did recognise the danger of not
having fixed submission dates:

The negative side that I see to this unit is that often,
especially for me, it gets neglected for other units. I
prioritize my time for each unit and with the open
submission I often push work back for the unit in place
of other units work/assignments were they do have a
deadline. So being able to set weekly or fortnightly
goals either individually or set by the course outline to
submit something would greatly help in the unit.
Unfortunately you then lose the open submission
status. So in conclusion students attempting this will
need to be able to maintain their own learning.

6. CONCLUSION
This research evaluated an attempt to introduce agile
programming into a core second year programming course.
It considered the impact on student drop out and pass rate,
and explored student perceptions of the use of agile
methods in their major project. The changed type of

assessment appeared to be associated with improvements in
both drop out and pass rate, and student perceptions of the
innovation were largely positive. The major problem

identified was the difficulty returning marked work within
the shorter timeframe.

REFERENCES
[1] Hazzan, O. and Dubinsky, Y. 2007. Why software engineering programs should teach agile software development. SIGSOFT

Software Engineering Notes, 32 (2). 1-3.
[2] IEEE/ACM. 2004. Software Engineering 2004: Curriculum guidelines for undergraduate degree programs in software engineering.

Available from http://sites.computer.org/ccse/SE2004Volume.pdf
[3] Kessler, R. and Dykman, N. 2007. Integrating traditional and agile processes in the classroom. Proceedings of the 38th SIGCSE

Technical Symposium on Computer Science Education, 312-316.
[4] Layman, L., Cornwell, T. and Williams, L. 2006. Personality types, learning styles, and an agile approach to software engineering

education. SIGCSE Bulletin, 38 (1). 428-432.
[5] Loftus, C. and Ratcliffe, M. 2005. Extreme programming promotes extreme learning? Proceedings of the 10th Annual SIGCSE

Conference on Innovation and Technology in Computer Science Education, 311-315.
[6] Melnik, G. and Maurer, F. 2005. A cross-program investigation of students' perceptions of agile methods. Proceedings of the 27th

International Conference on Software Engineering, 481-488.
[7] Reifer, D.J. 2002. How good are agile methods? IEEE Software, 19 (4). 16-18.
[8] Schneider, J-G. and Johnston, L. 2005. eXtreme Programming: helpful or harmful in educating undergraduates? Journal of Systems

and Software, 74 (2). 121-132.
[9] Sherrell, L.B. and Robertson, J.J. 2006. Pair programming and agile software development: experiences in a college setting. Journal of

Computing in Small Colleges, 22 (2). 145-153.

http://sites.computer.org/ccse/SE2004Volume.pdf

	Cover page author's version
	incremental submission of programming code

