
DEVELOPMENT OF TECHNIQUES TO CLASSIFY 

MARINE BENTHIC HABITATS USING 

HYPERSPECTRAL IMAGERY IN 

OLIGOTROPHIC, TEMPERATE WATERS 

 

Matthew J. Harvey 

 

This thesis is presented for the degree of Doctor of Philosophy 

in the School of Environmental Science, Murdoch University 

 

February 2009 





  

i 

 



  

ii 

 



  

iii 

Declaration 

I declare that this thesis is my own account of my research and contains, as its main 

content, work which has not been previously submitted for a degree at any tertiary 

education institution. 

……………………………………… 

Matthew J. Harvey 



  

iv 

 



  

v 

Abstract 

There is an increasing need for more detailed knowledge about the spatial distribution 

and structure of shallow water benthic habitats for marine conservation and planning.  

This, linked with improvements in hyperspectral image sensors provides an increased 

opportunity to develop new techniques to better utilise these data in marine mapping 

projects.  The oligotrophic, optically-shallow waters surrounding Rottnest Island, 

Western Australia, provide a unique opportunity to develop and apply these new 

mapping techniques.  The three flight lines of HyMap hyperspectral data flown for the 

Rottnest Island Reserve (RIR) in April 2004 were corrected for atmospheric effects, 

sunglint and the influence of the water column using the Modular Inversion and 

Processing System.  A digital bathymetry model was created for the RIR using existing 

soundings data and used to create a range of topographic variables (e.g. slope) and other 

spatially relevant environmental variables (e.g. exposure to waves) that could be used to 

improve the ecological description of the benthic habitats identified in the hyperspectral 

imagery.  A hierarchical habitat classification scheme was developed for Rottnest Island 

based on the dominant habitat components, such as Ecklonia radiata or Posidonia 

sinuosa.  A library of 296 spectral signatures at HyMap spectral resolution (~15 nm) 

was created from >6000 in situ measurements of the dominant habitat components and 

subjected to spectral separation analysis at all levels of the habitat classification scheme.  

A separation analysis technique was developed using a multivariate statistical 

optimisation approach that utilised a genetic algorithm in concert with a range of 

spectral metrics to determine the optimum set of image bands to achieve maximum 

separation at each classification level using the entire spectral library.  These results 
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determined that many of the dominant habitat components could be separated spectrally 

as pure spectra, although there were almost always some overlapping samples from 

most classes at each split in the scheme.  This led to the development of a classification 

algorithm that accounted for these overlaps.  This algorithm was tested using mixture 

analysis, which attempted to identify 10 000 synthetically mixed signatures, with a 

known dominant component, on each run. The algorithm was applied directly to the 

water-corrected bottom reflectance data to classify the benthic habitats.   At the broadest 

scale, bio-substrate regions were separated from bare substrates in the image with an 

overall accuracy of 95% and, at the finest scale, bare substrates, Posidonia, Amphibolis, 

Ecklonia radiata, Sargassum species, algal turf and coral were separated with an 

accuracy of 70%.  The application of these habitat maps to a number of marine planning 

and management scenarios, such as marine conservation and the placement of boat 

moorings at dive sites was demonstrated. 
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1 General introduction 

1.1 Biodiversity conservation in Australia 

The importance of biodiversity conservation was recognised on a global scale in 1992, 

when the United Nations Convention on Biological Diversity was formulated in Rio de 

Janeiro (United Nations 1993).  Australia ratified the Convention in 1994 and, as such, 

is bound by its articles and obligations.  These include the conservation of biodiversity 

through identifying and monitoring important components and understanding processes 

likely to have significant impacts on these components.  The Convention also requires 

that, where possible, and when appropriate, signatory nations establish a system of 

protected areas and establish guidelines for the selection and management of these 

areas. 

To meet its obligations to the Convention on Biological Diversity, Australia released the 

Oceans Policy in 1998 to provide a framework for integrated and ecosystem-based 

planning and management for Australia’s vast marine territories (Commonwealth of 

Australia 1998).  At the core of the policy is the development of regional marine plans 

for Australia’s entire exclusive economic zone.  The primary goals of the regional 

marine plans include ensuring the health of marine ecosystems, protecting marine 

biodiversity, promoting diverse and sustainable marine industries and ensuring the 

establishment of a National Representative System of Marine Protected Areas 

(NRSMPA) that spans both State and Commonwealth waters (Commonwealth of 

Australia 1998).   In support of this policy is the Environmental Protection and 

Biodiversity Conservation Act (EPBC Act), enacted in 1999, which was designed to 

facilitate biodiversity conservation by providing the legislative framework for 
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identifying threatening processes, protection of critical habitats and the implementation 

of management plans for Commonwealth areas.  

Each of the states and territories in Australia has legislation that provides for the 

protection of the marine biodiversity in the state waters, which extend seaward for three 

nautical miles from the low water mark.  In Western Australia, marine conservation is 

enabled through marine protected areas (MPA) under three types of legislation, those 

being the Conservation and Land Management Act (1984), the Fish Resources 

Management Act (1994), and Special Acts of Parliament.  The Conservation and Land 

Management Act (1984) provides for the establishment and management of MPAs 

which are vested in the Marine Parks and Reserves Authority (MPRA), a statutory body 

established in 1997.  There are three types of protected areas vested in the MPRA, 

namely, Marine Nature Reserves, Marine Management Areas and Marine Parks.  

Western Australia has nine Marine Parks, with three in the Perth metropolitan area; 

Marmion Marine Park, Shoalwater Islands Marine Park and the Swan Estuary Marine 

Park.  The Fish Resources Act (1994) includes legislation for the establishment of Fish 

Habitat Protection Areas, e.g.  the Cottesloe Reef Fish Habitat Protection Area.  They 

are designed for the conservation and protection of fish, fish breeding areas and the 

management of fish and activities relating to the appreciation or observation of fish.  

There is currently only one MPA established under a Special Act of Parliament, that 

being the Rottnest Island  reserve which was established under the Rottnest Island 

Authority Act (1987).     

 Historically, marine protected areas (MPA) have often been selected based on the 

protection of a single species, e.g. for the protection of a threatened species, or for the 
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purposes of managing fisheries resources (Stevens 2002).  There has been shift in recent 

times towards ecosystem-based approaches, which take a more holistic view to the 

design and management of MPAs.  These approaches have resulted in the development 

of representative MPA systems, i.e. those that “reasonably reflect the biotic diversity of 

the marine ecosystems from which they derive” (ANZECC 1998).  This approach has 

focused on the selection of MPAs that contain habitats that are both typical of, and 

unique to, a particular area.  Therefore, in order to define representative areas, there is a 

basic need to measure and map the biodiversity of Australia’s vast coastline  (Margules 

et al. 2002, Stevens 2002).  

A regional marine plan was completed for south-eastern Australia in 2004 and the 

process is underway to complete a plan for south-western Australia, with the 

bioregional profile being released in 2007 (Australian Government Department of the 

Environment Water Heritage and the Arts 2007).  However, the most recent Australian 

State of the Environment report found that although progress is being made, as of 2006 

there was still no nationally consistent system for measuring the condition, and 

monitoring the trends in Australia’s coastal ecosystems (Beeton et al. 2006).  This was 

further reinforced in the State of the Environment report for Western Australia, released 

in 2007, which found that for the majority of the West Australian coastline, no baseline 

habitat data exists (Environmental Protection Authority 2007).  

As highlighted in these reports, the collection of baseline data and development of 

methods to be able to monitor coastal ecosystems is of paramount importance.  This was 

further reinforced in the south-east regional marine plan where a key action was to gain 

a better understanding of the region’s marine biodiversity and ecological processes 
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through better mapping of the benthic substrates, as surrogates for marine biodiversity 

(National Oceans Office 2004).    

1.2 Surrogates for biodiversity 

The general biodiversity of an area includes diversity at the genetic, species and 

ecosystem levels (Gray 1997, Vanderklift et al. 1998, Sarkar and Margules 2002).   

Ecosystem diversity can be further broken down into functional, community and habitat 

diversity.  Functional diversity refers to the range of functions performed by organisms 

within a system, and species can be categorised into functional groups such as growth 

forms (e.g. canopy algae or turf algae) or feeding types (e.g. herbivores or omnivores) 

(Gray 2001).  Habitat diversity is a commonly used measure for biodiversity as it is 

spatially more easily defined, with clearer boundaries than entities such as ecosystems, 

and can be assessed at a range of scales, from individual habitats, to the landscape level 

that comprises a mosaic of habitats.  The importance of studying habitats for 

understanding of ecological systems has long being recognised, having been referred to 

as the ‘templates’ for ecology (Southwood 1977).   

As it is impossible to quantify the actual biodiversity everywhere, using surrogates has 

become accepted as a practical solution to measuring or quantifying the biodiversity of 

an area (Faith and Walker 1996, Gray 1997, Ward et al. 1999, Faith et al. 2001, Banks 

and Skilleter 2002, Margules et al. 2002, Sarkar and Margules 2002, Stevens and 

Connolly 2004). These biodiversity surrogates aim to both serve as reliable indicators of 

general biodiversity and need to be readily measurable in the environment. 

There are a range of surrogates that have been used to describe or attempt to define the 

biodiversity of an area, some of the most common being species richness, vegetation 
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class and environmental parameters (Sarkar and Margules 2002, Sarkar et al. 2006).  

When vegetation class and environmental parameters are used together, they can act to 

describe habitats.  The term ‘habitat’ has been used to describe spatial structure and 

distribution of flora and faunal assemblages in the marine environment (O'Hara 2001).   

The term is now commonly used to describe a set of structural and environmental 

conditions, both biotic and abiotic, that affects all species at a particular site (O'Hara 

2001, Kearney 2006, Olenin and Ducrotoy 2006).  For example, Underwood et al. 

(1991) defined six habitat types for subtidal rocky reefs based on their dominant floral 

and faunal species.  Another way the term ‘habitat’ has been applied is to describe the 

structural, biological and environmental components of an ecosystem that can be 

mapped.  For example, Ward et al. (1999) used information gained from interpreting 

aerial photographs to describe different habitats on the basis of the presence or absence 

of ecosystem components (e.g. vegetation type, depth range).  Marine habitat types have 

been linked to variations in the spatial distribution of many species and can act as 

surrogates for species richness and general biodiversity (Faith and Walker 1996).  It is 

important to note here that the use of surrogates should not to be looked at as an 

absolute measure of general biodiversity for an area, but a means of comparing 

biodiversity between areas for marine conservation, planning and reporting applications. 

Biophysical variables, such as depth, ocean primary production and seabed sediment 

properties, were used as surrogates to predict the relative biodiversity at a  broad 

regional scale within the Commonwealth waters of south-western Australia (Harris et 

al. 2008).  At a more local scale, examples of this in the marine environment include 

being able to quantify the differences in the fish and invertebrate communities between 

vegetated and bare sand regions (Orth et al. 1984, Ferrell and Bell 1991, Connolly 
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1994).  In the shallow coastal environments of southern Australia, Jenkins and 

Wheatley (1998) found that areas of bare sand supported different fish populations 

compared to adjoining areas of seagrass and algae.  This also applies to the invertebrate 

communities found in these different habitats (Orth et al. 1984, Edgar and Shaw 1993).  

Nanami (2005) determined that very specific species-habitat relationships existed for 

coral reef fishes at a family level in Amitori Bay, Japan.  These clear relationships 

between habitat types and species distributions provide evidence that habitat types can 

be used as a surrogate for biodiversity with a reasonable level of confidence 

(Vanderklift et al. 1998, Ward et al. 1999, O'Hara 2001).  

1.3 Mapping marine benthic habitats 

Historically, the mapping of marine benthic habitats has been done using traditional 

field methods, which are both costly and labour intensive.  These methods can include 

the use of transects carried out by SCUBA divers (Hochberg and Atkinson 2000), 

remotely operated vehicles (Parry et al. 2003) or towed video (Kendall et al. 2005, 

Stevens and Connolly 2005) (Figure 1-1). All these systems collect data only about the 

particular locations they cover and rely on some form of interpolation, based on some 

assumptions, to fill any gaps between these points, which can result in a 

misrepresentation of the benthic habitat types present (Hochberg and Atkinson 2000).  

An example of this form of habitat modelling is the probabilistic mapping of the spatial 

distribution of different seagrass species in Cockburn Sound, Western Australia 

(Holmes et al. 2007). 
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Figure 1-1: Conceptual diagram that illustrates how airborne and satellite remote sensing fits in 

with traditional ecological and biological research and acoustic surveys. 

More recently, a range of remote sensing techniques, including optical (Armstrong 

1993, Mumby et al. 1997, Dustan et al. 2001, Purkis et al. 2002, Louchard et al. 2003, 

Werdell and Roesler 2003, White et al. 2003, Naseer and Hatcher 2004) and acoustic 

(Sotheran et al. 1997, Kostylev et al. 2001, Brown et al. 2002, Freitas et al. 2003, White 

et al. 2003, Freitas et al. 2005, Jordan et al. 2005, Halley and Bruce 2007), have been 

used to map marine benthic habitats.  Remote sensing is the science of obtaining 

information about an object or an area without any physical contact and can be either 

passive, which uses naturally available energy (e.g. aerial photography), or active, 

which provide their own energy source (e.g. acoustic techniques) (Lillesand et al. 2004).   

These sensors can be mounted on a range of different platforms including satellites, 

light aircraft and boats.  They can collect data at a range of spatial, spectral and 

radiometric resolutions (Table 1-1).  The spatial resolution refers to the size of each 

pixel or data point on the ground and can range from <1 m to >1 km.  The spectral 

resolution refers to the wavelength intervals of the image data and has three broad 

categories, hyperspectral (greater than 20 narrow spectral bands each < 20 nanometres 
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wide), medium (3 – 20 broad spectral bands) and low (panchromatic or RGB analogue 

or digital images) (Table 1-1).   The radiometric resolution refers to the sensitivity of 

the sensor to variations in the reflected light. 

1.3.1 Acoustic remote sensing in the marine environment 

Hydrographic surveys have long used acoustic data for ascertaining bathymetry and, 

more recently these, and other, acoustic techniques have been used successfully to map 

marine benthic, from deep water to shallow coastal waters.  Three main types of 

acoustic sensors are used to map benthic habitats, namely, single beam echo sounders, 

multi-beam echo sounders and sidescan sonar (Table 1-1).   A single beam acoustic 

ground discrimination system (AGDS) was used to map the benthic habitats of a small 

coastal section of Tasmania, Australia (Halley and Bruce 2007).  White et al. (2003) 

used a AGDS to map coral reef classes in the Philippines using a hierarchical benthic 

habitat classification scheme that included mud, sand and a range of mixes of coral and 

algae.   

The morphometric characteristics of some rocky reefs in Marmion Marine Park, 

Western Australia were mapped using multi-beam echo sounder bathymetric data 

(Lucieer 2007).  Sidescan sonar data were used to map sea-bed assemblages in the 

English Channel, United Kingdom,  by determining seven regional biotopes based on 

the acoustic data and relating these to species data collected using benthic grabs (Brown 

et al. 2002).  Another application of sidescan sonar was habitat mapping of the 

Recherche Archipelago, Western Australia, which delineated the habitats into five broad 

categories including sand, seagrass and reefs (high and low profile) (Bickers 2003).  
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Table 1-1: Examples of remote sensing sensors applicable to marine benthic habitat mapping.   

Data type Sensor Area mapped 

km
2
hr

-1
 

Spatial 

resolution 

Spectral 

resolution 

Radiometric 

resolution 

Aerial 

photography 
Pan Stereo > 10 Variable Low NA 

 Colour stereo > 10 Variable Low Variable 

Airborne multi-

spectral 

SpecTerra 

DMSV 

 Daedalus-1268 

 ADAR 

> 10 0.5 – 3 m 

Medium 

350 – 2500 nm 

3 – 20 bands 

8 bit  

(256 levels) 

Airborne 

hyperspectral 
CASI 

 HyMap 

> 10 0.5 – 3 m 

Medium 

400 – 2500 nm 

> 20 bands 

12 bit  

(4096 levels) 

Satellite multi-

spectral 
Ikonos 

 Quickbird 

> 1000 1 – 4 m 

Medium 

400 – 1000 nm 

3 – 4 bands 

8 bit 

(256 levels) 

 Landsat ETM 

 Landsat TM 

 SPOT XS 

 IRS 

> 1000 15 – 30 m 

Medium 

400 – 2500 nm 

10 – 12.5 um 

4 – 7 bands 

8 bit 

(256 levels) 

 SPOT VMI 

 
NOAA AVHRR 

> 1000 1 km 

Medium  

400 – 2500 nm 

10 – 12.5 um 

4 bands 

10 bit 

(1024 levels) 

 

SeaWifs > 1000 1 km 

Medium 

400 – 885 nm 

8 bands 

10 bit 

(1024 levels) 

Satellite 

hyperspectral 
MODIS > 1000 

250, 500, 

1000 m 

High 

400 – 2500 nm 

10 – 12.5 um 

36 bands 

10 bit 

(1024 levels) 

 

Hyperion > 1000 30 m 

High 

400 – 2500 nm 

220 bands 

10 bit 

(1024 levels) 

 

MERIS > 1000 300 m 

High 

400 – 1000 nm 

15 bands 

10 bit 

(1024 levels) 

Airborne laser 

altimeters 
Variable > 10 

2 – 10 

samples m
-2

 
NA NA 

Single beam 

echo sounder 
QTC-View 

 RoxAnn 

 EcoPlus 

1.5 0.1 – 100 m NA NA 

Multi-beam echo 

sounder 
Variable 5 0.1 – 100 m NA NA 

Sidescan sonar 
Variable 3.5 

0.01 – 100 

m 
NA NA 

Video camera Variable 0.2 0.01 – 1 m NA NA 
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Walker et al. (2008) used an approach which combined acoustic data, laser bathymetry 

and aerial photography to map coral reef habitats in Broward County, Florida.  They 

used a classification scheme based on the NOAA scheme (Kendall et al. 2004), which 

did not include submerged vegetation, and were able to achieve an accuracy of 89.6% 

for the separation of unconsolidated sediments and coral reef / hard bottom.  With 

further refinement of the coral reef category to linear reefs and colonised pavement the 

accuracy was only slightly reduced (88.1%).    

The use of acoustics techniques has proved to be a reliable means of classifying benthic 

habitats, although the inability to discriminate between vegetation types is a major 

drawback.  Likewise the vessels that acoustic sensors are mounted on are generally 

restricted to water deeper than 10 m, which means they are unable to map very shallow 

water or the land/water interface. 

1.3.2 Passive optical remote sensing in the marine environment 

Passive optical remote sensing records information about the radiant energy reflected 

from different objects on the earth’s surface.  When radiant energy (light) from the sun 

is incident on an object the light can be absorbed by, transmitted through or reflected by 

the object (Lillesand et al. 2004).  The behaviour of the light reflected by an object is 

determined mostly by the roughness of that object.  Those with a mirror-like surface are 

termed specular reflectors (the angle if incidence equals the angle of reflection), and 

those with rough surfaces act as diffuse reflectors, which means they reflect light 

uniformly in many different directions (Figure 1-2).  In the natural environment, the 

surfaces of most objects are a combination of both, although in passive optical remote 

sensing, interest is predominantly in measuring the diffuse reflectance as it contains 
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information about the ‘colour’ of the object.  It is the variations in the colour of object 

that allow for different objects to be distinguished in remotely-sensed data. 

Angle of incidence Angle of reflection

Specular reflector Diffuse reflector

Angle of incidence Angle of reflection

Specular reflector Diffuse reflector

Angle of incidence Angle of reflection

Specular reflector Diffuse reflector
 

Figure 1-2: Conceptual diagram of the differences in the behaviour of reflected light between 

specular and diffuse reflectors (Adapted from Lillisand et al. 2004). 

In the marine environment, reflected energy recorded by remote optical sensors consists 

of the combination of energy reflected by the atmosphere, the surface of the water, the 

water column itself and that transmitted through the water column and reflected by the 

seafloor (Figure 1-3).   This adds an extra level of complexity when compared to optical 

remote sensing of the terrestrial environment.  

Incident 
energy

Reflected 
energy

Reflected 
energy

Absorbed energy

Transmitted energy

Incident 
energy

Reflected 
energy

Reflected 
energy

Absorbed energy

Transmitted energy

 

Figure 1-3: Conceptual diagram of remote sensing in the marine environment, highlighting the 

interaction of light with the water column. 
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Data from a range of passive optical sensors have been employed to map the spatial 

extent of shallow water marine benthic habitats at many locations around the world.  

Dekker et al. (2005) used a temporal series of Landsat 5TM and Landsat 7ETM satellite 

data to map the distribution of seagrass over time in Wallis Lake, a shallow coastal lake 

in NSW, Australia.  They achieved accuracies up to 76% and were able to identify 11 

vegetated substrate classes, three water types and bare sand.  Mumby et al. (1998b) used 

CASI multi-spectral data to map coral reefs of the Turks and Caicos Islands, British 

West Indies, and were able to identify nine reef habitats, including algae, seagrass and 

coral.  Their accuracy of 81% was significantly better that that achieved using Landsat 

or SPOT satellite imagery.  Landsat data were also used to map the benthic habitats in 

Los Roques Archipelago National Park, Venezuela, and resulted in eight bottom types 

being identified, including sand, dense seagrass and reef communities, with an overall 

accuracy of 74% (Schweizer et al. 2005).  The shallow water benthic habitats of Roatan 

Island, Honduras, were mapped using multi-spectral IKONOS data to identify six 

substrate classes including sand, coral, dense seagrass and a number of mixed classes, 

achieving an overall accuracy of 81%  (Mishra et al. 2005b).  One of the latest 

developments in remote sensing is airborne hyperspectral sensors, such as HyMap, 

which collect image data at higher spectral resolution (Kruse et al. 2000). 

1.3.3 Hyperspectral remote sensing in marine environments 

Hyperspectral sensors collect data at a high spectral resolution and often with a high 

spatial resolution.  They record radiance values, as digital numbers, for every pixel in 

the image over numerous bands.  For example HyMap records radiance data over 126 

spectral bands that are ~15 nanometres (nm) in width.  This provides the theoretical 

ability to map benthic habitat types by remote sensing to a much higher taxonomic 
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resolution than previously possible (Fyfe 2003).  There are, however, several issues that 

need to be addressed before remote sensing, including hyperspectral, data can be used 

successfully in the marine environment.  Firstly, the images have to be corrected for the 

confounding influence of the water column (Mumby et al. 1998a, Green et al. 2000).  

Secondly, the spectral separability of different habitat types, and the species that 

dominate them, needs to be determined and combined with the sensor’s ability to detect 

these differences (Hochberg and Atkinson 2003, Hochberg et al. 2004).    

To date, most habitat mapping using hyperspectral imagery has been restricted to 

shallow coral reef environments and freshwater systems, with reasonably clear water 

(Lesser and Mobley 2007).  There has been limited work conducted in temperate 

waters, due to the generally poorer water clarity of most temperate marine 

environments. There has also been significant investigation into the spectral separability 

of the commonly found benthic substrates on coral reefs (Holden and LeDrew 1998, 

1999, Hochberg and Atkinson 2000, 2003, Hochberg et al. 2003, Kutser et al. 2003, 

Hochberg et al. 2004, Karpouzli et al. 2004) and also in more temperate environments 

(Dekker et al. 2003, Fyfe 2003, Dekker et al. 2005).  Such research is essential to 

understand the limits to which habitats can be identified using any spectral matching or 

unmixing classification algorithms on hyperspectral image data. 

Lesser and Mobley (2007) implemented spectral matching and look-up table techniques 

to correct for the influence of the water column, estimate bathymetry and classify the 

benthic habitats for coral reefs near Lee Stocking Island, Bahamas.  They used  

hyperspectral image data collected using the Ocean Portable Hyperspectral Imager for 

Low-Light Spectroscopy (Ocean PHILLS) sensor.  They were able to map sand, corals 
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and mixed classes of seagrass/turfs/macrophytes and their work provides encouraging 

results for the potential of classifying of benthic habitats using hyperspectral imagery. 

Goodman and Ustin (2007) used AVIRS hyperspectral data in Kaneohe Bay, Hawaii 

and successfully corrected and classified the data to a maximum depth of 3 m using a 

physics-based semi-analytical and spectral unmixing approach to determine the relative 

contributions of sand, coral and algae to each pixel.  Although their results were limited 

to shallow water, this work is indicative of the potential information that can be 

extracted from hyperspectral data when the influence of the water column is corrected 

for.  Of particular relevance to this study is the work of Klonowski et al. (2007) who 

mapped the key benthic cover types of a section of temperate reef in Jurien Bay, 

Western Australia, using HyMap hyperspectral data.  They were able to separate bare 

sediment, brown algae and seagrass using a physics-based, semi-analytical reflectance 

model that allowed for the extraction of bathymetry and the relative contributions of the 

three main benthic cover types.  This work was the first application using hyperspectral 

imagery in temperate Western Australia and provided clear evidence that such data is an 

appropriate tool for broad-scale mapping of shallow water benthic habitats. 

1.3.4 Classifying remotely sensed images 

The classification of  remotely sensed image data is the process of assigning categorical 

classes or a fractional value that represents the contribution from each of a number of 

possible classes (Goodman and Ustin 2007).  There are two main types of classification 

methods for image data, namely, unsupervised and supervised (Lillesand et al. 2004).  

Unsupervised classification algorithms group image pixels into natural groups or 

clusters based on the similarity in their values while supervised classification techniques 
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use predefined values that describe different classes, to assign pixels to a categorical 

class.   

Unsupervised classification techniques have the benefit of not requiring any a priori 

information about the region being mapped to produce a map that separates the pixels 

into discrete classes, which means that the natural groupings based on their spectral 

similarity are determined.  However, these clusters or groups then need to be assigned 

to a class by the operator, which can result in subjective classifications.  Call et al. 

(2003) applied the iterative self-organising data analysis (ISODATA) algorithm to 

classify the benthic substrate of a coral reef in Lee Stocking Island, Bahamans, using 

Landsat TM image data that had been corrected using the model developed by Lyzenga 

(Lyzenga 1978, 1981).  The resulting clusters of pixels were assigned to a class based 

on field observations and achieved an overall accuracy of 74%.  The ISODATA 

algorithm was also used to classify the coral reefs of Roatan Island, Honduras using 

Quickbird data that had been corrected for the influence of the water column (Mishra et 

al. 2006).  The resulting clusters were assigned to benthic classes using the maximum 

likelihood approach and the final overall accuracy was calculated to be 81%.  Joyce et 

al. (2004) also used the ISODATA algorithm as part of a project to integrate Landsat 

ETM+ derived and Reef Check coral reef classifications for the Capricorn Bunker 

Group on the Great Barrier Reef, Queensland. 

Supervised classification techniques rely on the users having some prior knowledge 

about the classes to which pixels in the image data should be assigned and where these 

areas are located.  In the case of benthic habitat mapping this implies knowledge of the 

likely benthic habitats that could occur in the image.  The basic principle for supervised 
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classifications is that the values for each pixel are compared, using a classification 

algorithm, to the values that describe the training classes and the class with the best 

match is assigned to the pixel.  One commonly applied technique is the maximum 

likelihood classification which calculates the mean vector and the covariance matrix for 

the values for each user-defined training class (benthic habitat type).  From this the 

probability that a particular pixel belongs to a particular class is calculated and the class 

with the highest probability is assigned to the pixel.  Purkis and Pasterkamp (2004) used 

this approach when classifying Landsat TM data to map the coral reefs of Marsa 

Shagra, located in the central Egyptian Red Sea, using in situ data to train the algorithm.  

Naseer and Hatcher (2004) also applied a maximum likelihood classification algorithm 

to Landsat ETM+ when creating an inventory of coral reefs in the Maldives, based on 

training data extracted directly from the image using ground validation locations to 

allocate classes to extracted signatures. 

Spectral matching approaches, which match spectral signatures collected in situ to 

image pixel values, are another form of supervised classification (e.g. Lesser and 

Mobley 2007).  These approaches generally use a spectral distance measure, such as 

spectral angle, to determine how similar a pixel’s spectrum is to a reference spectral 

signature from a spectral library and the pixel is classified to the class with the best 

match  (Lillesand et al. 2004).  Another approach is linear spectral mixture analysis (e.g. 

Goodman and Ustin 2007) which is based on the assumption that a pixel’s spectrum is a 

linear mixture of the spectral signatures of the substrate classes present in the pixel 

(Chang et al. 2002, Zhang et al. 2005, Small and Lu 2006).  Both of these approaches 

require a priori knowledge about the habitat components that will be present in the 
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image being classified and a spectral library of these components, which are often 

transferable to different location locally and around the world. 

All the methods mentioned have been applied successfully to a range of remotely 

sensed data to map marine benthic habitats, but never result in a perfect solution.  The 

accuracies of the resulting maps can often be significantly improved with some form of 

contextual editing (Mumby et al. 1998a).  The preferable method of contextual editing 

is one that is systematic and justified by ecological or local knowledge, for example, 

reclassifying pixels from seagrass to macroalgae at highly wave exposed sites where 

seagrass is not known to occur.  There are many documented relationships between 

variables such as depth, benthic complexity and exposure to waves and the distribution 

of habitats in the marine environment (e.g. Garza-Perez et al. 2004) and as such, 

contextual editing can use these relationships to guide the reclassification of pixels.  

Lauer and Aswani (2008) utilised local indigenous knowledge to guide the supervised 

classification of marine benthic habitats of Roviana Lagoon, Solomon Islands. 

1.4 Study rationale and aims 

The overall aim of this project is to develop a toolkit to use hyperspectral image data to 

map the spatial distribution of shallow benthic habitats in a temperate marine 

environment, using a library of spectral signatures for the dominant habitat components.  

The general hypothesis for this project is that  hyperspectral data can be used to create 

habitat maps for shallow temperate marine systems in Western Australia, based on the 

dominant sub-tidal marine benthos, at a scale that is both ecologically relevant and 

applicable to the management of these areas.  
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The project was carried out at Rottnest Island Reserve (RIR) as there was HyMap 

hyperspectral data available for the reserve that had been collected opportunistically in 

April 2006 by the HyVista Corporation.  Added to this, there was a need for more 

comprehensive benthic habitat mapping to build on existing maps in order to assist with 

the management of the marine environments within the reserve.  Furthermore, the 

unusually clear waters, a result of the pole-ward flowing Leeuwin Current provided an 

appropriate environment to develop these techniques.   

The project was undertaken in four main steps.  Firstly, a benthic habitat classification 

scheme was developed that was based on the known ecology of the region and could 

also be applied spatially at the scale at which the hyperspectral image data were 

captured.  A hierarchically structured classification scheme was developed that 

attempted to capture the naturally occurring structure in the spatial arrangement of the 

benthic habitats. Secondly, a digital bathymetry model was developed for the RIR using 

existing echo-sounding data to form the basis for the creation of a range of abiotic 

environmental variables to assist with defining the benthic habitats, based on their 

documented influence on spatial distribution of different habitats.  Thirdly, a library of 

spectral signatures for the dominant components of the benthic habitats defined in the 

classification scheme was created using signatures collected in situ.  These data were 

then subjected to spectral separation analysis that determined the best method of 

separating the benthic habitats based on their spectral signatures and provided the basis 

for the development of a classification algorithm to apply to the image data.  The final 

step was the application of the newly developed classification algorithm, in combination 

with the spectral library, to the hyperspectral image data to identify the habitats present 

in each pixel to create classified benthic habitat maps for Rottnest Island Reserve. 
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These habitat maps will be important to the planning and management of the Rottnest 

Island Reserve as they provide an inventory of both representative and unique habitat 

types.  Such maps also provide a useful tool for the design of ecological sampling 

strategies.  The innovative approaches taken in this study will also be of benefit to 

remote sensing practitioners with an understanding of marine ecology that use 

hyperspectral data to map marine habitats. 
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2 Study site description and habitat classification scheme 

2.1 The nearshore marine environment of south-western Australia 

 The nearshore coastal environments of south-western Australia are located along a 

gently seaward sloping continental shelf which ranges in width from 43 to 93 km.  It is 

influenced by both large scale climatic and oceanographic processes including winds, 

waves, ocean currents and tides (Lemm et al. 1999, Sanderson et al. 2000).  

The region experiences a Mediterranean climate, with hot dry summers (December – 

February) and cool wet winters (June – August), and these weather patterns are 

predominantly driven by  a subtropical belt of high pressure that moves southward over 

the region during the summer and northward during the winter (Gentilli 1972).  The 

region receives the  majority of its rainfall during the winter months as a consequence of 

the cold fronts that approach from the west and travel east across the continent (Hope et 

al. 2006).  The prevailing wind conditions during the summer are typically offshore 

(easterly) in the morning and onshore (south-westerly) during the regularly occurring 

afternoon sea breeze.  Although the sea breeze is infrequent during the winter, onshore 

winds occur associated with the regularly occurring cold fronts (Clarke and Eliot 1983, 

Masselink and Pattiaratchi 2001).  

The southward flowing Leeuwin Current is the dominant oceanographic feature along 

the Western Australian coastline (Pearce 1991, Ridgway and Condie 2004).  During 

winter, the Leeuwin current transports warm, low salinity, low nutrient water southward 

along the Western Australian coast (Cresswell and Peterson 1993, Cresswell 1996).  

This oceanographic feature leads to oligotrophic conditions with generally low 

concentrations of chlorophyll in the water column (Hanson et al. 2005). During 
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summer, the Leeuwin Current weakens and the shelf is influenced by the Capes Current, 

a wind-driven current that flows northward from Cape Leeuwin (Gersbach et al. 1999, 

Pearce and Pattiaratchi 1999).  The mean monthly sea temperatures in coastal waters off 

Perth range from 15° to 23° C with an increase in temperature of up to 3° C in the 

offshore regions, such as Rottnest Island,  affected by the Leeuwin Current (Godfrey et 

al. 1986, Pearce et al. 1999).  

The wave climate of south-western Australia is dominated by persistent ocean swells 

that typically approach from a south to south-westerly direction in summer and a west 

to south-westerly direction in winter and have a mean deep water wave height of 2 – 3m 

(Lemm et al. 1999, Sanderson et al. 2000).  The nearshore regions along much of the 

coast of south-western Australia are protected from the full impact of this offshore wave 

energy by a chain of islands, reefs, banks and sills that run parallel to the shore (Clarke 

and Eliot 1983, Hegge et al. 1996).  These features act to attenuate up to 90 % of the 

offshore  wave energy before it reaches the shoreline (Hegge et al. 1996). 

As a result of this attenuation of the offshore wave energy, the locally generated 

nearshore wave energy can have substantial impact on the nearshore coastal 

environment.  Prevailing winds are significant drivers of both locally generated incident 

wave energy and nearshore currents.  The wave-field set up during a typical sea breeze, 

which blows almost parallel to the coast, can achieve significant wave heights up to 

0.9m and increase nearshore currents from <0.5 ms
-1

 to 1.0 ms
-1

, which has an impact 

on suspended sediment concentrations and longshore sand transport volumes  

(Pattiaratchi et al. 1997). 
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The tidal regime along the south-western coastline of Australia is mixed , but mainly 

diurnal and is described as micro-tidal, with an average range of only 0.7 m (Sanderson 

et al. 2000, Department of Defence 2009).  In many cases fluctuations in the sea-level 

generated by other forces, such a barometric pressure or storm surges, are greater that 

that resulting from tidal forces, and thus play a greater role in shaping the nearshore 

environment than tides (Sanderson et al. 2000).   

The nearshore marine environment of south-western Australia is considered to be a 

region of bio-geographical overlap, between the warm temperate biota of southern 

Australia and the tropical biota of northern-western Australia, a result of the influence 

of the Leeuwin Current which disperses tropical species southwards  (Wells and Walker 

1993).  The interim marine and coastal regionalisation for Australia (IMCRA) defined 

Perth as the southern extent of the central west coast region and the northern extent of 

the Leeuwin-Naturalist region (Commonwealth of Australia 2006).  The nearshore flora 

is dominated  by seagrass and macroalgae assemblages, with both being amongst the 

most speciose in the world (Kirkman 1997, Kendrick et al. 2004, Carruthers et al. 

2007).   Macroalgal assemblages typically occur on nearshore reefs, comprised of either 

granite or limestone, and are found along the entire south-west coat of Australia 

(Wernberg et al. 2003b, Kendrick et al. 2004).  The dominant features of these 

macroalgal assemblages are the canopy forming Ecklonia radiata and Sargassum 

species (Kendrick et al. 2004).  Although there have been 18 species of seagrasses 

recorded in the region, mono-specific or mixed-species meadows of four species, 

Posidonia sinuosa, Posidonia australis, Amphibolis griffithii and Amphibolis antarctica 

are dominant (Department of Environmental Protection 1996).   There are 528 neritic 

species of fish known to occur in the Perth region of the West Australian coast  and of 
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those 78 are endemic to Western Australia (Fox and Beckley 2005).   There are a large 

number of  invertebrate taxa known to occur on reefs in the Perth region, with species of 

Mollusca being some of the most numerically dominant (Murphy et al. 2006).  Species 

of Bryozoa, Cnidaria, Crustacea, Echinodermata, Porifera and Ascidiacea are also 

regularly recorded. 

2.2 Rottnest Island  

2.2.1 Introduction 

This study was carried out in the waters surrounding Rottnest Island (32°00’ S, 115°30’ 

E) which lies approximately 18 km offshore from Fremantle, Western Australia (Figure 

2-1).  Rottnest Island is an iconic location in Western Australia, being a popular 

destination for Western Australians, Australians and international tourists alike, with 

more than 500 000 visitors a year (Rottnest Island Authority 2007).  The island supports 

a range of recreational activities linked to the marine environment which include 

recreational fishing, SCUBA diving, snorkelling, surfing and boating (Rottnest Island 

Authority 2003).  There are a large number of privately owned (864) and rental (35) 

boat moorings located in protected bays around the island.  These moorings provide 

safe anchorage for some of the many private boats that visit the reserve annually.  

Vessels with no access to a fixed mooring anchor in the many bays around the island, 

which can result in damage to the benthos (Hastings et al. 1995, Rottnest Island 

Authority 2003, Milazzo et al. 2004).   

Rottnest Island is managed by the Rottnest Island Authority as an A Class Reserve 

under the Land Administration Act 1997 (RIA). The marine regions of the reserve 

extend approximately 800 m from the shoreline, encompass an area of 3,828 ha and are 
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zoned as general use, recreational, demersal sanctuary or sanctuary zones (Figure 2-1).   

There are no special restrictions in the general use zone, while the recreational zone 

prohibits any net fishing and discharge of waste from boats and the sanctuary zone 

prohibits all extractive activities, placement of moorings and the discharge of waste 

from boats (Rottnest Island Authority 2003).  One of the key aims of the management 

plan is to maintain and protect the natural environment and zoning is one of the 

management tools used to achieve this goal (Rottnest Island Authority 2003). 

 

Figure 2-1: Map indicating the location of the Rottnest Island study site in south-western Australia 

and key locations at Rottnest Island, with reserve boundaries (grey line) and sanctuary zones 

(shaded) indicated. 
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2.2.2 The nearshore marine environments of Rottnest Island 

Rottnest Island is orientated in a generally east-west direction and is 11 km long and 5 

km across at its widest point.  The island is part of a series of rocky ridges known 

collectively as the Rottnest Shelf, occurring at the eastern boundary of this feature, 

which forms part of the Perth Basin (Brooke et al. 2006).  These ridges are both 

emergent and submarine and extend from Cape Bouvard to Lancelin (Searle and 

Semeniuk 1985) (Figure 2-1).  The majority of the shelf consists of Tamala Limestone 

which comprises coastally derived carbonate sediment (Playford and Leech 1977, 

Brooke 2001).  The waters surrounding the island vary in depth from exposed intertidal 

limestone platforms to subtidal regions >40 m deep.  The intertidal platforms are a 

dominant feature of the coastline at Rottnest Island, making up a greater proportion of 

the coastline than sandy beaches and are typical of the coastline of central Western 

Australia, from Bunbury to Geraldton (Wells and Walker 1993).  The sediments in the 

Perth region are dominated by cool-water and subordinate sub-tropical biogenic 

carbonate (James et al. 1999). 

 The majority of the marine habitats at Rottnest Island are exposed to moderate to high 

wave action during the typical winter storms, which generally approach from a south-

westerly direction (Searle and Semeniuk 1985).  The swell refracts around most of the 

island to impact the majority of the island’s coast, with the exception of the bays located 

at the eastern end of the island (Wells and Walker 1993).  The waters around Rottnest 

Island are typically oligotrophic due to the influence of the Leeuwin Current (Cresswell 

and Peterson 1993, Cresswell 1996).  At times of peak flow, the warm Leeuwin Current 

waters bathe the western portion of the island and have had a significant impact on the 

diversity of flora and fauna found around the island (Morgan and Wells 1991).  It has 
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also been found to influence the dispersal of tropical species as far east as the Great 

Australian Bight (Garrey et al. 1981).  Sea temperatures at Rottnest Island generally 

range from 18 – 23ºC throughout the year (Hodgkin et al. 1959). 

The intertidal platforms at Rottnest Island can vary in width from 1 – 100 m and in 

height from the mean low water mark to almost mean sea level (MSL).  On the 

landward end of the platforms there is often a 1 – 2 m undercut rock face and at the 

seaward edge commonly ends abruptly with either a deep undercut ledge or a sloping 

ramp (Playford and Leech 1977).  The zonation evident in the biota typically associated 

with these platforms tends to vary slightly depending on the width and slope of the 

platform (Hodgkin et al. 1959, Black et al. 1979, Scheibling 1994).  The regions above 

the high water mark are dominated by periwinkles followed by limpets down to the 

MSL and then Patelloida alticoststa down onto the platform itself.  The rock surfaces 

directly above the platform, which are regularly inundated by wave and tidal action, 

often support macroalgae during the winter, the dominant species being Enteromorpha 

sp., Ulva spp., Chaetomorpha linum and Cladophora spp..  The platforms themselves 

have four main zones starting at the landward edge of the platform, the Patelloida zone, 

the Jania zone, the brown algae zone and the Lithothamnion zone.  The Patelloida zone 

includes large areas of the platform grazed bare by P. alticoststa and is typically in 

regions where the water drains at low tide.  The Jania zone can also cover large areas of 

the platforms, predominantly where shallow water remains at low tide and, is dominated 

by the coralline algae, Jania fastigiata which forms a turf-like cover that acts to trap 

sediment on the platform and provides habitat for small crustaceans and polychaetes.  

The brown algae zone is covered by foliose brown algae, predominantly Fucoids such 

as Sargassum spp. and Cystophora unifera, and the red algae Pterocladia capillacea 
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and Hypnea musciformis that provide habitat for larger browsing gastropods.  The 

Lithothamnion zone is covered by encrusting coralline algae, and is often better 

developed on platforms exposed to greater wave action.  Large browsing molluscs, such 

as Haliotis roei, the anemone Isanemonia australis and the barnacle Balanus nigrescens 

are often associated with this region (Hodgkin et al. 1959). 

The marine benthos of temperate south-western Australia comprises a high diversity of 

macroalgae  and this is especially true for Rottnest Island where 222 species of 

Rhodophyta, 54 species of Chlorophyta and 71 species of Phaeophyta have been 

recorded in both the intertidal and subtidal regions (Huisman and Walker 1990, Wells 

and Walker 1993, Phillips et al. 1997).  The subtidal limestone reefs of Rottnest Island 

can be separated into two broad categories based on their vertical relief; high relief (>1 

m) or low relief (<1 m) (Harman et al. 2003, Toohey 2007).  They are typically 

dominated by either canopy forming macroalgal species or lower growing foliose algal 

species, often referred to as algal turf.  The canopy is generally a mix of Ecklonia 

radiata and Sargassum species, although Scytothalia doryocarpa and Cystophora sp. 

are often found forming part of the canopy (Wells and Walker 1993, Sanderson 1997, 

Wernberg et al. 2003b).  At Rottnest Island, E. radiata has been found to occupy up to 

20% of the shallow subtidal regions and occurs in depths to >30 m, while Sargassum 

species occur discontinuously in both the intertidal and the subtidal regions and display 

seasonal growth patterns, with peak abundance during spring and summer (Kendrick 

1993, Wells and Walker 1993).  Eight species of Sargassum have been recorded at 

Rottnest Island and these are almost always found growing as mixed assemblages.  

Sargassum beds occur on sand-inundated, subtidal rock platforms, as a border along 

intertidal reef platforms and in protected bays (Kendrick 1993).   Sargassum is also 
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found growing in mixed stands with E. radiata and Cystophora species at more exposed 

sites (Kendrick 1993).  Low growing foliose algae, filamentous turfing algae and 

coralline algae, both encrusting and articulated, also occur at Rottnest Island and occur 

primarily in the gaps between the E. radiata plants (Wells and Walker 1993, Kendrick 

et al. 1999, Phillips et al. 2006).  The species diversity of canopy algae and the 

associated understorey algae is linked to factors such as topographic complexity and 

exposure to wave action, with greater diversity occurring in more exposed sites 

(Kendrick et al. 2004, England et al. 2006, Toohey 2007).  

The invertebrate fauna of the subtidal rocky reefs in the Perth region includes large 

mobile, sessile, epifaunal and infaunal invertebrate species.  O’Hara and Poore (2000) 

recorded 356 species of echinoderms and decapods in the Perth region and indicted that 

the high species richness was due to the region being an area of overlap between the 

tropical and southern faunas.   There are 86 species of echinoderms recorded at Rottnest 

Island and approximately half of these are associated with subtidal rocky reefs (Marsh 

and Pawson 1993).  In the Perth region the dominant species of herbivorous 

invertebrates include the sea urchins, Heliocidaris erythrogramma, Phyllacanthus 

irregularis and Centrostephanus tenuipinus, and the gastropods Turbo torquatus, 

Australium squamifera and Haliotis scalaris (Vanderklift and Kendrick 2004).  Both P. 

irregularis and C. tenuipinus are most commonly found on the steep, complex rock face 

surfaces around the base of reef structures while T. torquatus and A. squamifera are 

mostly restricted on open flat reef surfaces.  H. erythrogramma, on the other hand, can 

be found across both reef habitat types (Vanderklift and Kendrick 2004).  A total of 189 

species of marine crustaceans are known from Rottnest Island, with 13 of these endemic 

to the island (Jones and Morgan 1993).  Of the molluscs found at Rottnest Island, 16% 
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are endemic to the Perth region, half have southern affinities and the rest are Indo-West 

Pacifc species (Morgan and Wells 1991).  The underhangs of the rocky reefs are 

inhabited mostly by sessile fauna including sponges, hydroids, zoanthids, alcyonarians, 

corals, gorgonians, and ascidians (Hodgkin et al. 1959).    

The subtidal limestone reefs at Rottnest provide an ideal habitat for the commercially 

important rock lobster Panulirus cygnus (Howard 1988, Babcock et al. 2007).  Fish 

species that are often found in the reef undercuts or caves include Shuetta woodwardi, 

Psammaperca waigiensis and Apogon victoriae (Howard 1989).  The reef margins often 

support herbivorous fishes such as Parma occidentalis, Kyphosus sydneyanus and Odax 

cyanomelas (Howard 1989).  Other dermersal species found on these reefs include 

Scorpis georgianus and K. cornelli which are often associated with shallow limestone 

platforms around the island (Berry and Playford 1992).  Several pelagic fish species, 

such as Arripis georgianus, Pomatomus saltatrix, Pseudocaranx dentex and Sphyraena 

novaehollandiae, are also often found around reefs (Hutchins 1979).  A creel survey 

conducted over 12 months at Rottnest Island recorded 33 fish species from 25 families 

being caught by recreational anglers (Smallwood et al. 2006).  

Nine species of seagrass have been recorded at Rottnest Island, the dominant species 

belonging to the genera Posidonia and Amphibolis (Huisman and Walker 1990, Wells 

and Walker 1993).  Posidonia sinuosa, P. australis, Amphibolis antarctica and A. 

griffithii  all form mono-specific meadows  and are considered to be ‘climax’ species 

(Lavery and Vanderklift 2002).  Although meadows are typically mono-specific, all 

nine species can be found in mixed meadows.  Seagrasses at Rottnest Island are 
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restricted to sandy substrates and are generally found in the sheltered bays and areas 

protected by reefs (Wells and Walker 1993). 

The invertebrate and fish assemblages in seagrass habitats at Rottnest Island are more 

species rich than adjacent bare sand habitats (Edgar and Shaw 1993).  Further to this, 

Jernakoff and Nielsen  (1998)  determined that the epifaunal invertebrate assemblages 

were more diverse in Amphibolis griffithii meadows when compared to Posidonia 

sinuosa meadows, a feature attributed to the greater level of structure in A. griffithii 

meadows.  Some of the most common species of epiphytic algae species found on P. 

sinuosa are Ceramium monocanthum, Laurencia filiformis, Entromorpha spp., Giraudia 

spp and Metagoniolithon stelliferum.  Common epiphytic algae on A. griffithii are 

Herposiphonia seccunda, M. stelliferum, Hypnea cervicornis, L. filiformis, Diacranema 

spp. and Haliptylon roseum (Jernakoff and Nielsen 1998).  Amphipods are the most 

common invertebrates associated with both seagrass species, being found in greater 

density in P. sinuosa meadows, while gastropod grazers, epifaunal bivalves and 

polychaetes all occur at lower densities among both seagrass species (Jernakoff and 

Nielsen 1998). 

Species of fish which have been found to be associated with Posidonia meadows at 

Rottnest Island include Spratelloides robusta, Siphonognathus  radiatus, Halichoeres 

brownfeldii and Penicipelta vittiger (Edgar and Shaw 1993).  Seagrass meadows that 

are predominantly P. sinuosa are typically occupied by a greater number of species at 

higher densities than A. griffithii or Posidonia coriacea meadows (Hyndes et al. 2003).  

Species that were found almost predominantly in P. sinuosa meadows included Apogon 

rueppellii, Acanthaluteres spilomelanurus and Cochleoceps viridis, while Odax 
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acroptilus and Pelsartia humeralis occurred predominantly in A. griffithii meadows 

(Hyndes et al. 2003). 

Twenty six species of corals have been recorded at Rottnest Island, with only 

Pocillopora damicornis occurring at a reef scale (Vernon and Marsh 1988, Wells and 

Walker 1993).  The other species occur only as isolated colonies, and not at a scale 

detectable using remotely-sensed data.   Other benthic fauna such as sponges and sea 

fans also exist at Rottnest, but are not detectable using remote sensing techniques as 

they often occur under ledges, in deeper water or occupy too small an area. 

The Southern Metropolitan Coastal Waters Study (Department of Environmental 

Protection 1996) produced a map of the habitats of the Perth coastal waters between 

Mandurah, in the south, to just north of Rottnest Island. Imagery was  obtained in 

February 1993 using a Geoscan multi-spectral scanner mounted in a light aircraft at a 

spatial resolution of approximately 5 m (Ong et al. 1998). Within the RIR the marine 

benthic habitats were classified into five classes; inshore coarse sand, offshore coarse 

sand, intertidal reef platforms, macroalgae (subtidal reefs) and seagrass meadows 

(Figure 2-2).  These classes were all accounted for in the habitat classification scheme 

for the present study and provide a useful guide against which to validate the new 

hyperspectral imagery classifications produced from this study. 

2.3 A benthic habitat classification scheme for south-western 

Australia with a focus on Rottnest Island 

Three common and important features of most ecosystems are their diversity, 

complexity and heterogeneity (Steneck et al. 2002, Wu and David 2002).  To be able to 

quantify and classify ecosystems, some form of order or structure needs to be rendered 
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within this complexity.  Hierarchy theory, postulates that the spatial patterns within 

natural landscapes are a result of non-linear interactions between the biotic and abiotic 

components of the system.  This leads to the assumption that most stable ecosystems are 

hierarchically structured (Cullinan et al. 1997, Wu and David 2002).  Any hierarchical 

structure used to define the patterns and processes within any ecosystem will contain 

subjectively defined cut-offs between levels,  which may result in some errors, but these 

should be outweighed by the information gained about patterns in the ecosystems 

(Cullinan et al. 1997). 

 

Figure 2-2: The benthic habitat map produced as part of the Southern Metropolitan Coastal 

Waters Study (Ong et al. 1998).  Map has been clipped to areas < 15 m depth. 

Hierarchy theory not only provides an appropriate framework to describe spatial 

patterns within ecosystems, but also allows description and examination of these 

patterns within remotely-sensed data (Hay et al. 2001).   Wu (1999) examined the 

integration of hierarchical theory and patch dynamics as a means of both simplifying 

and gaining greater understanding of complex ecological systems and determined that 

the use of remote sensing and GIS techniques was indispensable in this process, 

especially when analysing the spatial dynamics of systems over large geographical 
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areas.  Mumby and Harbourne (1999) also suggested that hierarchical habitat 

classifications were the most appropriate when classifying remotely sensed images. 

A classification scheme was developed to describe the marine benthic habitats of 

Rottnest Island by accounting for the known dominant habitat components (Figure 2-3; 

Table 2-1).  The scheme was organised into four levels in a nested hierarchical manner, 

with each successive level providing greater detail about the habitat.  Level 1 separated 

the habitats into those that consist of bare substrate and those which contain living 

organisms, referred to as bio-substrate.  Level 2 separated bio-substrate into mixed 

algae, seagrass and corals.  These three categories all represent separate benthic habitat 

types found in Rottnest Island Reserve (Wells and Walker 1993, Department of 

Environmental Protection 1996, Rottnest Island Authority 2003).  From a remote 

sensing perspective, this first distinction is highly desirable as in most shallow coastal 

environments regions of bare sand are clearly delineated in remotely sensed data.  The 

reflectance signature of sand is under most circumstances significantly brighter than that 

of vegetated regions.  This makes it relatively simple to separate these regions within 

the remotely sensed data.  

Level 3 split the macroalgae into canopy forming algae and algal turf.  Canopy forming 

algae found at Rottnest Island are all large brown algae (Phaeophyta), which made their 

grouping into the same category an obvious choice for a scheme designed to be applied 

to remotely sensed data as the spectral signatures, based on colour, will be similar.  The 

mix of algal species which makes up the algal turf category can come from any of the 

three major algae groups, namely green (Chlorophyta), brown (Phaeophyta) and red 
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Figure 2-3:  Hierarchical classification scheme developed for the marine benthic habitats of Rottnest Island. 

Table 2-1: Description of the habitats defined by each level within the nested hierarchical classification scheme for Rottnest Island Reserve. 

Habitat class Description Habitat class Description 

Level 1  Level 4(continued)  

Bare substrate Bare regions of sand or limestone, with no significant plant life Ecklonia Canopy algae habitats dominated by Ecklonia radiata  

Bio-substrate Regions that contains living organisms Sargassum Canopy algae habitats dominated by Sargassum species  
Level 2  S. doryocarpa Canopy algae habitats dominated by S. doryocarpa 

Macroalgae Macroalgae dominated habitats Coralline algae  Algal turf habitats dominated coralline algae 

Seagrass Seagrass dominated habitats Chlorophyta Algal turf habitats dominated by foliose green algae 

Coral Coral dominated habitats Phaeophyta Algal turf habitats dominated by foliose brown algae 
Level 3  Rhodophyta Algal turf habitats dominated by foliose red algae 

Canopy algae Macroalgae habitats dominated by canopy forming species Posidonia Seagrass habitats dominated by Posidonia species 

Algal turf Macroalgae assemblages not dominated canopy forming species Amphibolis Seagrass habitats dominated by Amphibolis species 
Level 4  Pocillopora Pocillopora damicornis coral colonies 

Sand Bare regions dominated by sand Other coral Other coral species forming colonies 

Limestone Bare limestone reefs or platforms Intertidal reef Intertidal reefs 
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(Rhodophyta).  The feature that most clearly separated the canopy and algal turf 

categories was the absence of large canopy-forming, brown algae.  

Level 4 made the distinction between bare sand and bare limestone platforms.  The 

‘canopy’ category was split into habitats dominated by either E. radiata, Sargassum 

species or a mixture of these two, S. doryocarpa and Cystophora species.  The algal turf 

category separated those habitats dominated by coralline, foliose green, foliose brown 

and foliose red algae.  At Level 4 the ‘seagrass’ category of the classification scheme 

was split into those habitats dominated by either Posidonia or Amphibolis species.  Of 

the corals, only Pocillopora damicornis occurs at Rottnest Island, at a spatial scale large 

enough to be potentially detected in remotely sensed data and thus only one species and 

a general grouping were listed at Level 4 of the classification scheme.  Intertidal reef 

platforms were separated out as a separate class as they are often obscured by breaking 

waves in remotely sensed imagery in exposed coastlines (e.g. Anderfouet et al. 2004) or 

dominated by Ulva, a seasonal green macroalgae (Underwood and Kennelly 1990). 

2.4 Discussion 

The habitat classification scheme was designed using knowledge about the marine 

benthic ecology of south-western Australia, including specific work carried out at 

Rottnest Island.  Although no high taxonomic resolution map of the marine benthic 

habitats of Rottnest Island exists, the typical habitats that occur there are well known 

(Kendrick 1993, Department of Environmental Protection 1996, Kendrick et al. 1999, 

Kendrick et al. 2004).  In addition, general patterns and associations between the typical 

components of benthic habitats in temperate waters of the Australian coast are well 

described (Underwood and Kennelly 1990, Underwood et al. 1991, Melville and 
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Connell 2001).  Organising this information within the framework of a nested, 

hierarchical classification system allowed the naturally occurring heterogeneity to be 

captured.  

Wells and Walker (1993) indicated that the subtidal benthic habitats of Rottnest Island 

Reserve were typically dominated by either mixed algal assemblages, seagrass 

meadows or bare substrates.  This was incorporated into the present scheme which 

separated the bare substrate and those containing living organisms, i.e. bio-substrate.  

This first split was an intuitive way to separate the benthic habitats for a number of 

reasons that link to both the ecology and remote sensing applications.  By creating a 

split at this basic level, the scheme can easily be adapted to include other biota, such as 

sponges, making the scheme adaptable to other locations or allowing it to be extended 

to deeper waters using other mapping techniques. 

Ecologically, bare and bio-substrates provide different habitats and support different 

communities (Orth et al. 1984, Ferrell and Bell 1991, Connolly 1994).  The invertebrate 

and fish assemblages in seagrass habitats at Rottnest Island are more species rich and 

showed greater productivity than adjacent bare sand habitats (Edgar and Shaw 1995).  

Orth et al. (1984) cite numerous examples from around the world of significant 

differences in the fish assemblages associated with seagrass meadows and adjacent bare 

sand regions.  For example, in a study from a southern Australian embayment, Jenkins 

and Wheatley (1998) found significant differences in the species richness of fish 

assemblages between vegetated regions and bare sand, citing that the main reason for 

this difference as the presence of structure in vegetated regions.  This study further 

determined that the species richness of fish assemblages decreased from seagrass 
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habitats to algal habitats and finally to bare sand.  Even with some closely related 

species of fish, such as whiting (Sillaginidae), the different species often preferentially 

utilise different habitats.  Hyndes et al. (1996) found some whiting species, such as 

Sillaginodes punctata, mostly to occur in more protected nearshore habitats, while 

Sillago bassensis preferentially occupied more exposed sites.   

The split at the second level of the scheme, where the bio-habitat regions were separated  

into mixed algae assemblages, seagrass and corals, was based on clear evidence of each 

of these being separate habitat types and, each supporting different communities (Edgar 

and Shaw 1993).  This was essentially the basis of the classes at Level 2 of the scheme, 

with the addition of corals.  Although corals are not a dominant feature in Rottnest 

Island Reserve, they do occur and were therefore included.  In addition to this, having a 

category for corals at this level within the scheme allows it to be adaptable to other 

locations along the tropical coastline of Western Australia (e.g. Ningaloo Reef).  

Seagrass habitats typically occur on sandy substrates in protected regions and are 

known to be important nursery areas for both fish and crustaceans and also support a 

diverse community of both fish and invertebrates (Edgar and Shaw 1995, Jernakoff and 

Nielsen 1998).  Algal habitats can occur from protected to very exposed sites and 

support a diverse range of fish and invertebrates.  In Western Australia, these rocky 

reefs dominated by algae provide habitats for commercially important species such as 

Panulirus cygnus (Howard 1988, Babcock et al. 2007).  In terms of classifying the 

remotely sensed data, this class allocation was appropriate as seagrass habitats have 

significantly different spectral signatures to that of algae and also typically occur in less 
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topographically complex regions.  Both habitat classes also occur at scales that are 

detectable in the remotely sensed imagery. 

Madsen et al. (2001) split submerged macrophytes into two major categories, those that 

form canopies and those that are meadow formers and this was the basis for the Level 3 

of the scheme which separated the mixed algae into canopy and algal turf.  The canopy 

algae refer to those large brown algae, such as E. radiata, which form dense, true 

canopies with the bulk of their biomass above the substrate (Madsen et al. 2001, 

Wernberg et al. 2003a).  These canopy algae can have significant effects on the 

structuring of their habitat due to their influence on variables such as available light and 

physical exposure (Kennelly 1989, Kendrick et al. 1999, Wernberg et al. 2003b, 

Toohey et al. 2004).  Algal turf is diverse and widespread on temperate shallow reefs 

and shows a range of morphologies, often being shaped by the levels of physical and 

grazing pressure they are exposed to (Hay 1981).  A functional group approach 

proposed by Steneck and Dethier (1994) was tested by Phillips et al. (1997) on a 

number of high-relief limestone reefs in Western Australia and, although it was able to 

detect some trends in the community structure, a species-based assessment was 

determined to be more appropriate.  The key feature of this functional group approach 

applicable to the current work was the clear separation of the canopy forming algae 

from all another groups. The need to further study algal communities at species level, 

highlighted by Phillips et al. (1997), was also captured by the scheme with further 

splitting of the categories beyond Level 3. 

The classification categories at Level 4 of the scheme separated classes into species or 

genera for the macrophytes or substrate types.  The division of bare substrate into either 
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bare sand or bare limestone covered the typical substrates found in Rottnest Island 

Reserve.  These two substrates provide different habitats and, as such, will support 

different communities.  Bare limestone is most likely to occur in exposed intertidal 

platforms around Rottnest Island where the constant wave action and grazing by fish 

and invertebrates plays a role in controlling the growth of algae (Berry and Playford 

1992).  In the less exposed subtidal regions, most limestone is colonised by some form 

of turfing or encrusting coralline algae (Prince 1995).  Edgar and Shaw (1995) found 

that bare sand substrates supported a community of both fish and invertebrates, that was 

less diverse than vegetated habitats.  However, both the limestone and bare sand are 

carbonate based which would make them difficult to separate based on spectral data.   

Canopy algae habitats were further divided into those regions dominated by Ecklonia 

radiata, Sargassum species and regions of mixed algae.  These categories fit in with 

those used by Phillips et al. (2006) to describe the canopy algae, in a study  on reef algal 

community structure along the south-western coast of Australia.  This level of 

classification was as close as possible to a species level assessment when using 

remotely sensed data and was designed to take advantage of canopy-understorey algae 

relationships or assembly rules to further resolve these habitat descriptions (Irving et al. 

2004).   

Irving  and Connell (2006) proposed an assembly rule for predicting understorey algae 

communities based on both the presence and composition of canopies.  They proposed 

three main categories, namely, E. radiata canopies, E. radiata-Fucales canopies and the 

gaps between, each with associated understorey communities.  Similarly Kendrick et al. 

(1999) showed that the density of the E. radiata canopy, in combination with wave 
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exposure, influenced the understorey algae assemblages present in Marmion Lagoon, 

Western Australia.  E. radiata exerts this influence on the understorey algal 

communities by affecting the light and physical exposure the understorey algae 

community is exposed to (Kennelly 1987, 1989, Kendrick et al. 1999, Toohey et al. 

2004, Wernberg et al. 2005).  The relationship between the density of the E. radiata 

canopy and the abundance of encrusting coralline algae has been found to be one of co-

existence (Melville and Connell 2001).  Under dense canopies encrusting algae thrived, 

but when the canopy was removed, coralline algal abundance was reduced and the 

abundance of turfing filamentous algae increased (Melville and Connell 2001, Fowler-

Walker and Connell 2002, Connell 2003).  In contrast, Goldberg (2007) determined that 

the structure of the understorey algal community in fucalean dominated algal beds was 

not controlled by the presence of the canopy, but by other environmental effects such as 

propagule supply and recruitment success.  E. radiata was found to have a negative 

influence on the species richness of the associated algal assemblages in south-western 

Australia, with Sargassum dominated canopies and gaps in the canopy having a greater 

species richness (Kendrick et al. 2004).  These results point to the need to be able to 

separate these habitats using the remotely sensed data in order to be able to define 

ecologically relevant regions based on benthic habitats.  

Although four further sub-classes of turf algal habitats were defined,  turfing algae at 

Rottnest Island is typically made up of combinations from all three divisions 

(Chlorophyta, Rhodophyta and Phaeophyta), rather than occurring in large homogenous 

patches such as E. radiata (Wells and Walker 1993).  These algal assemblages, which 

often form in the gaps between canopy forming algae are highly diverse and the species 

present vary greatly over small spatial scales (Underwood and Chapman 1998, Coleman 



  

46 

2002).   Turfing algae is often positively impacted, in terms of growth and survival,  by 

sedimentation, which often occurs in more exposed locations, and can act to exclude 

many canopy and encrusting coralline species (Hay 1981, Kennelly 1989, Coleman 

2002). 

Seagrass habitats were divided into meadows dominated by either Posidonia or 

Amphibolis species.  Two species from each of these genera are commonly found in 

Rottnest Island Reserve, Posidonia sinuosa, P. australis, Amphibolis griffithii and A. 

antarctica (Wells and Walker 1993).  Posidonia species have long strap-like leaves and 

Amphibolis species have a lignified, erect, central stem which supports short leaves 

arranged in terminal clusters (Jernakoff and Nielsen 1998, Lavery and Vanderklift 

2002).  Both of these seagrass genera support a variety of epiphytic algae, both small, 

filamentous and large, erect species, with Amphibolis species providing more suitable 

habitat for epiphytic growth (Jernakoff and Nielsen 1998, Lavery and Vanderklift 

2002).  In the case of Amphibolis species, the bulk of the epiphytic growth occurs on the 

stems, which are longer lived than the leaves (Borowitzka et al. 1990, Jernakoff and 

Nielsen 1998).  In Perth coastal waters, the majority of the large erect epiphytic algae 

found on P. sinuosa and A. griffithii are Rhodophyta (Jernakoff and Nielsen 1998).  

Jernakoff and Nielsen (1998) determined that P. sinuosa and A. griffithii supported 

different communities of both fish and invertebrates.  It has been suggested that the 

most probable reason for this was the difference in the structure of the two genera of 

seagrass, which means they provide different habitats for organisms to inhabit (Orth et 

al. 1984, Jernakoff and Nielsen 1998, Hyndes et al. 2003).  The community of 

associated epiphytic algae and invertebrates is also known to vary significantly between 

seagrass species (Borowitzka et al. 1990, Trautman and Borowitzka 1999, Lavery and 
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Vanderklift 2002).  Further to this, Jernakoff and Nielsen  (1998)  determined that the 

epifaunal invertebrate assemblages were more diverse in Amphibolis griffithii meadows 

than Posidonia sinuosa meadows, a feature again attributed to the greater level of 

structure in A. griffithii meadows. 

The final class at Level 4 of the scheme was Pocillopora coral, this being the only hard 

coral present at a reef scale in Rottnest Island Reserve (Wells and Walker 1993).  

Hutchins (1999) indicated that small colonies of Pocillopora damicornis occurred all 

around the island with larger colonies only occurring at Parker Point and Little Salmon 

Bay.  The P. damicornis colonies exist at the southern limit for reef-building coral in 

Western Australia and therefore provide a unique and important habitat type in Rottnest 

Island Reserve (Vernon and Marsh 1988). 

The hierarchical classification scheme described for Rottnest Island provides an 

adaptable, structured framework for classifying marine benthic habitats using a remote 

sensing approach. The scheme defines each class by the dominant habitat component 

present, which makes it more suitable when attempting to classify mixed image pixels 

as their signature will be dominated by the signature of this component. 



  

48 

 



  

49 

3 A digital bathymetry model for Rottnest Island Reserve 

3.1 Introduction 

Marine benthic habitats are not only described by their biotic variables, such as 

dominant vegetation, but also by a range of abiotic or environmental factors.  For 

example, depth is directly linked to the availability of light on the seafloor and this 

influences the composition of the benthic communities  that may occur there (Abal and 

Dennison 1996, Schwarz et al. 2000, Johansson and Snoeijs 2002, Toohey et al. 2004, 

Gattuso et al. 2006, Toohey 2007, Toohey et al. 2007).  Other factors include exposure 

due to wind and waves, habitat complexity and distance from shore (Underwood et al. 

1991, Ruuskanen et al. 1999, O'Hara 2001, Ekebom et al. 2003, Goldberg and Kendrick 

2004, Taniguchi and Tokeshi 2004).  The link between topographic complexity and the 

distribution of many marine organisms has also been investigated (McClanahan 1994, 

Jenkins and Wheatley 1998, Gaylord 2000, Garcia-Charton and Perez-Ruzafa 2001, 

Garpe and Ohman 2003, Johnson et al. 2003, Taniguchi and Tokeshi 2004, Zurita 2004, 

Frost et al. 2005, Gratwicke and Speight 2005).  These factors can be collectively 

summarised using an ecological niche approach which assumes that species occur in a 

non-random arrangement in the natural environment, which is to some degree, 

controlled by abiotic variables (Hirzel et al. 2002).   

Hutchinson (1957) first introduced the concept that an ecological niche could be 

quantified in multidimensional space and represented both the fundamental and realised 

niches.  The fundamental niche, often the computed result of habitat suitability models, 

is the space in the environment where a species could occur and the realised niche is the 

space where it actually does occur (Figure 3-1).  Modelling the ecological niche has 

been carried out using a variety of methods, all with the same core principle of using 
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spatially derived environmental variables to determine the regions with the greatest 

probability of that species occurring (Lehmann 1998, Hirzel et al. 2002, Wiley et al. 

2003). 
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Figure 3-1: Conceptual diagram using environmental variables, such as bathymetry, benthic 

complexity and exposure, to define an ecological niche for a particular habitat.  The example 

illustrates how the fundamental niche of two species may be the same, but the realised niche only 

partially overlaps. 

The two dominant bio-substrate components, seagrass and macroalgae, that typically 

occur around Rottnest Island are ideal for models based on environmental variables.  

Seagrass habitats typically occur on sandy substrates in protected regions.  In contrast, 

macroalgae habitats can occur from protected to very exposed sites and also support a 

diverse range of fish and invertebrates.  This information can be used to complement 

classification of hyperspectral images to increase the accuracy of the final habitat maps. 

Measures of benthic complexity require detailed knowledge of the bathymetry at the 

finest scale possible, whilst maintaining a reasonable level of accuracy. Bathymetry is 

also a basic requirement for many oceanographic applications, such as wave modelling 

and determining wave exposure (Moghimi et al. 2005).  The standard methods for 

obtaining depth data are through depth soundings and hydrographic acoustic surveys.   
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The data points were traditionally plotted onto maps and contour lines drawn at regular 

intervals (Li et al. 2005).  In more recent times, with the development of geographic 

information systems (GIS) and the advent of faster computers to run them, there has 

been an increased use of high resolution bathymetry data in a range of marine research.  

There are numerous advantages to expressing bathymetry as a spatially continuous data 

set, rather than the traditional points (soundings) or lines (contours). In GIS, such 

continuous data sets are referred to by a number of names, one of the most common 

being a digital bathymetric model (DBM).  A DBM is most simply defined as a 

continuous surface that represents the bathymetry of the surface relative to a datum at 

every point of the image (Li et al. 2005). 

DBM surfaces are generally interpolated into continuous surfaces from point data, such 

as soundings, using a range of algorithms.  Interpolation algorithms can be broadly 

classified into two categories, exact and inexact interpolators (Burrough and McDonnell 

1998).  Exact algorithms preserve the data values in the original data set in the newly 

created DBM, while inexact algorithms use statistical methods to generate new values 

that best fit the data, which are not always equal to the original data (Li et al. 2005).  In 

most situations when bathymetric soundings are being interpolated it is best practice to 

use exact interpolation algorithms as this will allow the continuous surface to be as 

accurate as possible (Burrough and McDonnell 1998).  There are numerous exact 

interpolation algorithms that can be applied to point data, such as triangulated irregular 

networks (TIN), inverse weighted distance (IWD) interpolation, natural neighbour, 

various radial bias functions and kriging.  Each of these interpolation algorithms has 

different properties and will result in interpolations of various accuracies depending on 

the spatial structure of the data (Kravchenko 2003).   
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Having detailed information for the bathymetry of a region, in the form of a continuous 

surface such as a DBM, provides the opportunity to examine the distributions of benthic 

habitats with respect to depth over the entire study area at a scale that matches the 

remotely-sensed imagery.  Spatial data of this kind also provide the opportunity for 

deriving first order derivatives of the DBM, such as slope and aspect, and higher order 

derivatives such as different textural descriptors (Burrough and McDonnell 1998).  

These derivatives can also be used as inputs to the habitat classification scheme as the 

distributions of different coastal habitats types, often defined by the presence of 

dominant macroalgae or seagrasses, can be related to exposure and benthic complexity 

or texture (Goldberg and Kendrick 2004, Shears et al. 2004).  The combination of 

classification inputs from remotely-sensed data, and those derived from the bathymetry, 

can enable a more accurate and comprehensive marine benthic habitat classification. 

The aim of this chapter was to develop a digital bathymetric model for Rottnest Island 

using existing irregularly spaced bathymetry data and use it as a basis to calculate a 

range of abiotic variables that could be used to improve the ecological description of the 

benthic habitats of Rottnest Island. 

3.2 Methods 

The development of a DBM for Rottnest Island Reserve required a number of sequential 

steps, namely data acquisition and preparation, data validation, algorithm cross-

validation and digital bathymetric model interpolation. 
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3.2.1 Datasets 

Bathymetric soundings data were obtained in digital format, as text files containing 

longitude, latitude and depth values, from the Western Australian Department for 

Planning and Infrastructure (DPI).    These data were collected between 1980 and 2004 

using a single beam echo sounder and had horizontal and vertical accuracies of 1.0 and 

0.1 m, respectively.  These data covered the majority of the Rottnest Island Reserve and 

covered depths between 5 and 40 m.   The vertical datum used in these data sets was 

Low Water Mark (LWM) Rottnest, while the horizontal datum varied between them 

(Table 3-1).    There were some gaps in the data in the nearshore region adjacent to the  

Table 3-1: Depth soundings data from DPI used to create the digital bathymetry model for Rottnest 

Island Reserve. 

Data set name Date Description 
Horizontal 

datum 

Vertical 

datum 

No. of 

points 
Format 

RO80 1980 Chart survey 66 147 780 

RO82GEDE
 

1982 Geordie Bay 66 4 752 

RO82PAKR
 

1982 Parker Point 66 6 707 

RO82RCKY
 

1982 Rocky Bay 66 7 049 

RO82SPHT
 

1982 Spot heights 66 2 121 

RO83
 

1983 
Stark, Marjorie 

& Rocky Bays 
66 9 898 

RO87RK
 

1987 
Rock 

investigation 
66 5 886 

RO88CABY
 

1988 Catherine Bay 84 2 842 

RO981204
 Dec. 

1998 

Ferry berth & 

sand bar 
84 5 456 

Coastpoints_50 m
 

2004 
HyMap 

coastline 
UTM(2) 

LWM 

Rottnest 

(0.715m 

below 

AHD 

1971) 

1 151 

Digital 

(xyz 

format) 

Rottnest Sheet 1
 Feb 

1980 
West End UTM AHD 1971 186 

Hardcopy 

charts 
Horizontal datum: 

66 – refers to AMG66 based on AGD84 

84 – refers to AMG84 based on AGD84 

UTM –  refers to UTM based on AGD66 

UTM(2) – refers to UTM based on WGS84 

Vertical datum: 

LWM Rottnest refers to Low water mark Rottnest (0.715m below AHD1971) 

AHD 1971 refers to Australian height datum 1971 

coastline where hydrographic vessels were unable to operate.  In regions that had been 

surveyed a number of times over a period of years the most recent data were used.  Each 



  

54 

of the data files was reprojected to Universal Transverse Mercator (UTM) projection 

(Zone 50 South) based on the world geodetic system 1984 (WGS84) datum (UTM-50S) 

(Figure 3-2). 

 

Figure 3-2: Bathymetric soundings data available in digital (grey dots) and hardcopy (black dots) 

format for Rottnest Island Reserve, sourced from the Western Australian Department for Planning 

and Infrastructure.  Note that hardcopy soundings were only used close to the coast at the west end 

of Rottnest Island. 

A number of hardcopy maps with sounding data for some of the shallow coastal areas 

around Rottnest Island for which no digital data were available, were also obtained from 

the DPI.  Bathymetric sounding data from one of these analogue maps were digitised by 

hand to create digital data sets.  This original map was projected using UTM projection 

based on the Australian geodetic datum 1966 (AGD66) and used the Australian height 

datum 1971 (AHD71) vertical datum (Table 3-1). 
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The hardcopy maps were first photographed, using a 3.2 megapixel digital camera, in 

sections using a support frame to reduce any distortions due to camera movement 

between map sections.  The images were imported into the Environment for Visualising 

Images (ENVI 4.2) (RSI 2005) software and registered using ground control points 

(GCP) and then reprojected to the UTM-50S projection.  The depth sounding points 

were then digitised, the values corrected to LWM Rottnest and exported as an ArcView 

shapefile (Figure 3-2). 

3.2.2 Data assembly and tide correction 

The complete set of depth soundings were combined to create a single point shapefile of 

the entire data set.  All data points were corrected to account for the height of the tide 

during the period when the hyperspectral data were collected on April 26, 2004.  The 

average height of the tide over the whole hour during which the survey was flown was 

calculated from tidal data, recorded at five minute intervals in Fremantle Harbour, 

supplied by the DPI.  Using the relationship between LWM Rottnest, the tidal and the 

AHD datums, the data were corrected using the following equation (Figure 3-3): 

( ) ( ) ( )045.0−+= TDD LWMRCORR  

where D(CORR) refers to the depth data corrected for the tidal level at time of image 

capture, D(LWMR) the depth of each pixel relative to the LWM Rottnest and T the tidal 

height at the time of image capture. 



  

56 

(0.045 m)

(0.715 m)

(x m)

(0.76 m)

Tidal level

Australian Height Datum 1971

Low Water Mark Rottnest

Tide data chart datum

(0.045 m)

(0.715 m)

(x m)

(0.76 m)

Tidal level

Australian Height Datum 1971

Low Water Mark Rottnest

Tide data chart datum
 

Figure 3-3: Relationship between various vertical datums and the tidal height data supplied by the 

West Australian Department for Planning and Infrastructure. 

To ensure that the land/water interface was accurately depicted in the DBM with 

reference to tidal height at the time of image capture,  the infrared bands of the geo-

located HyMap image mosaic (see Chapter 5 for complete details) were classified using 

the unsupervised ISODATA routine in the ENVI software package to create a 

land/water mask (ITT Visual Information Solutions 2007).  This is possible as the 

majority of infrared radiation is absorbed by water and reflected by land (Kirk 1994b).  

The ISODATA classification procedure is an iterative process that initially randomly 

allocates pixels to a given number of classes and then clusters the remaining pixels 

using minimum distance techniques.  Then, during each iteration, the class means are 

recalculated and pixels reclassified with respect to the new means. This process 

continues until the number of pixels in each class changes by a number less than the 

predetermined threshold or the maximum number of iterations is reached (RSI 2004).  

Specifying the ISODATA routine to output only two classes resulted in a Boolean 

image in which land pixels were distinguished from water pixels.  The result of the 

ISODATA routine was refined by hand-digitising and removing any pixels representing 

boats and masking inland lakes.  The final classification image was converted to a 

polygon shapefile and then to a point shapefile with 50 m spacing using the “Poly to 

Points” extension for ArcView 3.2 (Huber 2002).  Each point in the data, i.e. the 

coastline, was assigned a depth of 0 m.   
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3.2.3 Data validation 

A number of steps were taken to isolate any errors, that may have been present in the 

original data or introduced during the data preparation, that would affect the accuracy of 

the final DBM.  Each of these steps was carried out using ArcView 3.2 (ESRI 1999). 

The complete data set was imported into ArcView and a polygon layer of uniformly 

sized hexagonal polygons was created (Jenness 2005b), resulting in 2 571 hexagons, 

each covering 0.1 km
2
.  Hexagon-shaped sampling units were chosen for this validation 

process as previous studies have established that they provide a statistically sound basis 

for spatial sampling purposes (Bassett and Edwards Jr. 2003).  The minimum ( minH ) 

and maximum ( maxH ) of the depth sounding points contained within each hexagon 

sampling unit were extracted to calculate the range ( Hr ) for each sampling unit.  A 

value (A) was then calculated for each sampling unit using the following formula:  

( ) )(( )σHrHrHHA ×+−−= 3minmax  

where ( Hr ) refers to the mean sampling unit range values and ( σHr ) refers to the 

standard deviation of the sampling unit range values.  A value for A > 0 indicted that the 

range of values within that sampling unit was greater than the maximum range defined 

by the mean plus three standard deviations.  This test was based on the assumption that 

the data were normally distributed and thus 99% of observations will fall within three 

standard deviations of the mean (Hayek and Buzas 1997).  Depth sounding points 

contained within those sampling units with a value for A > 0 were further analysed to 

determine which point(s) may be erroneous. 
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The depth sounding data points that belonged to any sampling unit that was identified 

by the previous step ass potentially including erroneous points were tested individually, 

by calculating the probability of each point belonging to the data set, using a normal 

probability density function.  The probability density function (PDF) for each point was 

calculated using the following formula (Jenness 2003): 
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where H and σH refer to the mean and standard deviation of all sample points within 

each sampling unit, respectively and iH  refers to the individual data point being tested.  

All data points with a probability < 0.01 where checked manually in the context of the 

surrounding bathymetry and against navigational charts and any erroneous points were 

removed. 

3.2.4 Interpolation algorithm cross-validation 

Cross-validation was carried out for the complete data set using eight different exact 

interpolation algorithms to determine the most appropriate to use for the final DBM 

(Table 3-2) (Goovaerts 2000).    

The inverse weighted distance (IWD
x
) algorithm is a weighted average interpolator, 

where the weighting of surrounding points declines with distance based on the value of 

“x” (Franke 1982, Naoum and Tsanis 2004).  Kriging is a geostatistical interpolator that 

attempts to express trends in the data based on surrounding points (Burrough and 

McDonnell 1998) and relies on the assumption that there is spatial autocorrelation in the 
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Table 3-2: The DBM interpolation algorithms tested using the cross-validation procedure in the 

Surfer 8 software package. ‘x’ indictes the power (2, 3 or 4) for the inverse weighted distance 

algorithm. 

Interpolation algorithm Acronym References 

Inverse weighted distance (Power 2, 3 or 4) IWD
x
 Franke (1982) 

Kriging (standard) Kriging Cressie (1991) 

Radial bias function (multiquadratic) RBF(MQ) Hardy (1990) 

Radial bias functions (natural cubic spline) RBF(NCS) Franke (1982) 

Triangulated irregular networks TIN Guibas and Stolfi (1985) 

Natural neighbour NN Sibson (1981) 

data.  Kriging has proved to be a reliable and accurate method for interpolating 

irregularly spaced data (Burrough and McDonnell 1998, Bekkby et al. 2002).  The third 

group of algorithms were radial bias functions, of which two variations were tested.  

Radial bias functions combine a diverse group of algorithms which all act as exact 

interpolators unless a smoothing factor is introduced (Amidor 2002). Triangulated 

irregular networks (TIN) create Delaunay triangles by joining  all data points in such a 

way that no data points are contained within a triangle (Amidor 2002, Li et al. 2005).  

The DBM surface was generated from these triangular planar surfaces.  Natural 

neighbour (NN) interpolation, which is a local interpolator, involves the generation of 

Thiessen polygons, which are essentially the dual of Delaunay triangles (Amidor 2002). 

The cross-validation procedure was carried out by removing a single data point from the 

data set and then, using the interpolation algorithm being tested, estimating the 

interpolated value for that point using surrounding data.  This procedure was carried out 

five times for each algorithm being tested due to computer and software limitations, 

each time using a randomly selected subset of 15 000 points.  The outputs from this 

process were the actual value, the estimated value and the residual.  For each run, the 
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root mean square (RMS) error was calculated using the following formula (Desmet 

1997): 
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where zact and zest are the actual depth of the sample point and the depth estimated by 

the interpolation algorithm, respectively.  The mean RMS error was then calculated 

across the five runs. 

The total of 75 000 points, from the five runs, tested for each algorithm were pooled and 

analysed to determine the spread of the residual around zero, by calculating the mean 

absolute error (MAE) and the standard deviation of the MAE ( σMAE ) for the total data 

set.  The MAE and the σMAE  were calculated using the following formulae (Li 1988, 

Desmet 1997): 
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For each of the eight algorithms, the data from first cross-validation run (15 000 points) 

were analysed using linear regression.  The actual depth values were regressed against 

the estimated values and the R
2
 and y-intercepts calculated.  In an ideal situation, the R

2
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value would equal one and the y-intercept would be zero.  Using this information the 

algorithms were ranked by first using the R
2
 value and then the y-intercept. 

The residuals for all 75 000 cross-validation points were grouped as either being an 

exact estimate (residual = zero), an over-estimate (residual = +ve value) or an under-

estimate (residual = -ve value).  These results were calculated as a percentage of the 

total points tested and ranked using the percentage of points being an exact estimate and 

secondly, by the absolute difference between the percentages of over-estimated points 

and under estimated-points.   

Digital bathymetric models were interpolated using the eight algorithms and the time 

taken to interpolate was recorded.  These DBMs were interpolated using Surfer 8 

software at 3.5m pixel resolution to match the resolution of the HyMap data.  All the 

DBMs were ranked based on each of the cross-validation tests, namely, RMS, MAE, 

regression and estimate error, and the algorithm with the highest rank was used for the 

final DBM for Rottnest Island. 

3.2.5 Digital bathymetric model interpolation and validation 

The DBM chosen as the final surface to represent the bathymetry of Rottnest Island 

Reserve was validated using a series of depth data collected at Rottnest Island using a 

Garmin GPSMap 185 echo sounder, fitted with a differential GPS beacon, connected to 

a laptop computer.  The data were logged in real-time in ArcView 3.2 using the DNR 

Garmin Extension, with information on the depth, location and estimated positional 

error of each point.  The data were first corrected to the LWM Rottnest vertical height 

datum using tidal data, recorded at five minute intervals in Fremantle Harbour, supplied 

by the Western Australian Department for Planning and Infrastructure.  The correction 
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was carried out using the mean tide height at hourly intervals, calculated for the time 

period when data were collected. The RMS, MAE and MAEσ errors were calculated 

using all data collected and for data at depth ranges in 5 m intervals from 0m to 30 m.  

The tide correction and error calculation analysis were carried out using a DBM Error 

Analysis Extension for ArcView 3.2 developed for this study. 

3.2.6 Topographic variables  

Four topographic variables (depth, regular slope, directional slope and aspect)  and four 

benthic complexity descriptors (mean direction of aspect, circular variance of aspect, 

circular standard deviation of aspect and up/down slope), were calculated at a spatial 

resolution to match that of the HyMap hyperspectral data (3.5 m x 3.5 m pixels).  The 

Rottnest Island Reserve was divided into four quadrants for summary and analysis of 

the abiotic variables (Figure 3-4).  

 

Figure 3-4: The four quadrants used to summarise the abiotic variables for the Rottnest Island 

Reserve. 
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The depth values were extracted directly from the DBM for Rottnest Island Reserve and 

were used as the input layer to calculate both the slope and aspect values.  Regular slope 

and aspect values were calculated using the method described by Zevenbergen and 

Thorne (1987) using the following equations: 

( ) ( )
COLUMN

ROW

COLUMNROW

Slope

Slope
AspectSlopeSlopeSlope =+=   and 
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where zi refers to the height values of each pixel and d refers to the grid interval (i.e. 

3.5m for this study) (Figure 3-5).  The Zevenbergen and Thorne method was used to 

calculate slope values as previous studies have indicated that it calculates results with 

greater accuracy than other methods (Zhilin et al. 2005).  The DBMAT extension for 

ArcView 3.2 was used to calculate the slope and aspect values (Behrens 2005). 
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Figure 3-5:  A conceptual 3x3 window from a grid data set used to describe how topographical 

variables were calculated from the data. 

The regular slope and aspect were summarised using the “Grid tools” extension for 

ArcView 3.2 (Jenness 2006).  Prior to analysis, the aspect data were reclassified to set 



  

64 

all regions with a slope < 5° to be flat.  Due to the circular nature of aspect data, the 

descriptive statistics were calculated using modified formulas for mean direction (θ ), 

circular standard deviation (v) and circular variance (V) based on a 3x3 kernel (Zar 

1999, Jenness 2006):   
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where θ  refers to the aspect direction in degrees, i the sample number and n the number 

of samples.  The circular standard deviation is analogous to the standard deviation on a 

linear scale, and ranges from zero to infinity (Zar 1999).  The circular variance is a 

dimensionless measure to define dispersion of the data and ranges from zero to one, 

where one represents maximum dispersion (Zar 1999). 

The slope values were calculated in degrees for each pixel in all eight cardinal 

directions using the “Directional slope” extension for ArcView 3.2 (Jenness 2005a) 

(Figure 3-6).  Directional slope values can range from -90° to 90°, indicating either a 

down-slope or an up-slope (Figure 3-6).  All directional slope data sets where 
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reclassified to indicate whether they represented an up-slope or down-slope for each 

direction. 
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Figure 3-6: Conceptual diagram of the method used to calculate (A) the directional slope, for the 

target pixel (shaded), based on the digital bathymetric model for Rottnest Island Reserve and (B) 

the definition of up-slope and down-slope in relation to directional slope of a target pixel. 

3.2.7 Abiotic variables affecting benthic habitats 

Six additional abiotic variables were calculated at a spatial resolution to match that of 

the HyMap hyperspectral data (3.5 m x 3.5 m pixels).  These variables were grouped 

into three categories; topographic relief classification, benthic complexity variables and 

location based variables.  The benthic complexity variables were texture based and most 

used a kernel filter approach to determine local variability in topographic variables.  The 

location based variable was the relative exposure index (REI) based on the effective 

fetch.  

A topographic relief classification data layer, indicating the presence/absence of high or 

low relief reefs, was calculated using a circular kernel filter with a radius of five pixels 

(17.5m) which calculated the range of depth values within the kernel window (Figure 

3-7).   The data were reclassified using the definitions used by Toohey (2007), which 
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designated low relief reefs in Western Australia as having a vertical displacement of <1 

m and high relief reefs as having a vertical displacement  >1 m. 
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Figure 3-7: A conceptual 3x3 window from a grid data set used to describe how topographical 

variables were calculated from the data and a conceptual circular kernel filter with a radius (r) of 3 

pixels. 

Three of the benthic complexity variables were calculated using a five pixel (17.5 m) 

radius kernel filter to determine the local variability in the topographic variables (Figure 

3-8).  The Grid Tools extension for ArcView 3.2 was used to implement the radian 

kernel filter (Jenness 2006).  The variability was quantified for each pixel in the digital 

bathymetric (DBM) as the natural log of the standard deviation of the depth and regular 

slope and the circular variance (V) of aspect values in the local region, defined by the 

five pixel radius of the filter (Figure 3-7).  The absolute change in slope was calculated 

for all eight cardinal directions using the following equation (Li et al. 2005): 
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where |∆ Slopei| refers to the absolute change in slope in the ith direction, Slopei is the 

slope of pixel i, Slope0 is the slope of the target pixel and d is the grid interval (Figure 
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3-7).   The mean change in slope was calculated for each pixel using all eight associated 

values.  All benthic complexity layers were normalised by their maximum value to give 

each pixel a value between zero and one, where one refers to maximum complexity. 
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(Low standard deviation)
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(High standard deviation)

Low Complexity 

(Low standard deviation)  

Figure 3-8:  Conceptual diagram demonstrating the use of the standard deviation of the depth and 

slope vales associated with the target pixel (shaded).  Note that for simplicity only four of the 

surrounding eight pixels are displayed here. 

The wave exposure of coastal sites due to wind generated waves can be quantified using 

calculation of the effective fetch for each site (Burrows et al. 2008).  Effective fetch is 

an index to quantify the exposure of a site based on the open water distance, as this will 

limit the length of water over which the wind can act to produce waves (Fonseca and 

Bell 1998, Lundqvist et al. 2006).  Wind data for Rottnest Island, obtained from the 

Bureau of Meteorology at five minute intervals, were analysed for seven years (2000 – 

2007) to calculate the mean direction (θ ) and associated circular variance (V) for each 

month, and the monthly mean of the maximum wind speeds recorded for each time 

period.  The percentage of time the wind blew in each of the eight cardinal directions 

and associated mean of the maximum wind speed for each month were also calculated. 

Effective fetch takes the shape of the fetch into account by utilising the open water 

distance at six 7.5º intervals each side of the primary fetch direction (Figure 3-9).  These 

distances are weighted by the cosine of the deviation angle from the primary fetch 
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direction.  The effective fetch was calculated for each pixel in each of the eight cardinal 

directions using the following formula (Ruuskanen et al. 1999): 
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where di refers to the distance from the nearest land along each radiating line and Өi 

refers to the deviation angle for each radiating line.  They were calculated at a 30 m 

pixel resolution, due to practical limitations of the software, and then interpolated using 

an inverse weighted distance algorithm to 3.5 m pixels to match the HyMap data. 
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Figure 3-9: Conceptual diagram of the calculation of effective fetch for each pixel in the data, only 

showing the fetch lines out to 22.5°.  Note that the effective fetch is actually calculated using six 

fetch lines out to 45°. Target pixels lie offshore from Rottnest Island. 
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The effective fetch data were used in conjunction with the wind analysis to calculate a 

relative exposure index (REI), using the method described by Keddy (1982).  The REI 

was calculated using: 

∑
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where i was the wind direction for the eight cardinal directions, Vi was the mean wind 

speed for each month from the ith direction, Pi was the percentage of time for the month 

the wind blew occurred from the ith direction and Fi refers to the effective fetch for the 

ith direction.  The REI was calculated for each month and normalised against the 

maximum REI calculated across all 12 months.  The REI results for all months were 

summed and normalised using the maximum possible value of 12 to give a yearly 

exposure index that ranged form zero to one. 

3.3 Results 

3.3.1 Data validation 

The complete data set was validated using 2 571 hexagon sampling units that each 

covered 0.1 km
2
 (Figure 3-10).  Of these sampling units 32 were found to contain data 

points that were possibly erroneous, based on the first stage of the analysis which 

examined the gross relationships of all points within each sampling unit.  These 

hexagon sampling units each contained between 18 and 382 individual depth sounding 

points making a total of 4 835 points to be tested further.   A total of 84 data points were 

further analysed manually using aerial photographs and existing charts which resulted in 

only 20 data points being removed from the data set. 
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Figure 3-10: Hexagon sampling units used to validate the depth soundings data.  Those highlighted 

are sampling units that were found to require further analysis to locate erroneous data. 

The mean density of the depth sounding points in the Rottnest Island Reserve was 22 

points per hectare.   The density of the points was greatest in the north-west quadrant at 

39 points per hectare and least in the south-west quadrant (9 points per hectare).  The 

north-east and south-east quadrants had point densities of 22 and 16 points per hectare, 

respectively. 

3.3.2 Interpolation algorithm cross-validation 

The eight different interpolation algorithms were cross validated and the RMS error 

calculated for each using the complete data set (Table 3-3).  The results indicated that 

the kriging algorithm using the linear variogram had the lowest RMS error of 4.86 x10
-3

 

m.  The algorithm with the greatest RMS error was the radial bias function, using a 

natural cubic spline, which had an error of 8.63 x 10
-3

 m.  Due to this large RMS error 

value, no further analysis was carried out using the RBF(NCS) algorithm.  When all 75 

000 validation points were aggregated and the MAE calculated, the radial bias function 

algorithm, using a multiquadic function, has the lowest error of 0.364 m.  However, the 

kriging algorithm had the lowest variation within the estimated values with a standard 
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deviation of 0.470 m.  With the exception of the RBF(NCS) algorithm, all were found 

to have RMS errors that fell within a 0.001 m range.   

Table 3-3: Cross validation results for the Rottnest Island Reserve bathymetric data.  Note that the 

sum of the number of points with estimates greater than actual and number of points less than 

actual does not always equal zero as the residual for some was equal to zero.  (Est. refers to an 

estimated values, act. refers to actual values and Y
Inter 

refers to the y-intercept for the linear 

regression analysis. 

Mean Absolute Error (MAE) 
Interpolation 

algorithm 

RMS error 

(SD) 

(n = 5) 
All est. Est.>act. Est.<act. 

MAEσ 
Time 

(hours) 
R

2
 Y

Inter 

IWD
2
 

5.72x10
-3

 
(1.43x10-4) 

0.448 
(n=75 000) 

0.437 
(n=40 491) 

0.461 
(n=34 503) 

0.539 18.429 0.9955 0.130 

IWD
3
 

5.32x10
-3

 
(8.74x10-5) 

0.398 
(n=75 000) 

0.394 
(n=40 479) 

0.403 
(n=34 512) 

0.515 19.880 0.9961 0.050 

IWD
4
 

5.21x10
-3

 
(5.82x10-5) 

0.378 
(n=75 000) 

0.377 
(n=40 231) 

0.380 
(n=34 760) 

0.514 18.288 0.9962 0.074 

Kriging 
4.86x10

-3
 

(5.49x10-5) 
0.366 

(n=75 000) 
0.365 

(n=38 016) 
0.367 

(n=36 964) 
0.470 18.570 0.9968 0.051 

RBF(MQ) 
4.94x10

-3
 

(1.45x10-4) 
0.364 

(n=75 000) 
0.367 

(n=38 123) 
0.362 

(n=36 858) 
0.482 28.980 0.9965 0.056 

RBF(NCS) 
8.63x10

-3
 

(2.08x10-3) 
0.488 

(n=75 000) 
0.489 

(n=37 383) 
0.486 

(n=37 617) 
0.965 - 0.9921 0.061 

TIN 
5.24x10

-3
 

(8.31x10-5) 
0.378 

(n=74 981) 
0.455 

(n=31 415) 
0.472 

(n=29 760) 
0.518 0.003 0.9966 0.058 

NN 
5.15x10

-3 

(1.73x10-5) 
0.376 

(n=74 974) 
0.378 

(n=37 953) 
0.400 

(n=34 528) 
0.507 1.098 0.9967 0.045 

The results of the linear regression of the actual depth values against the estimated depth 

values calculated during the first cross-validation run for each algorithm indicated that 

the kriging algorithm performed the best (Table 3-3).  As with the previous RMS error 

and MAE analysis, the RBF(NCS) demonstrated the worst performance.  Each of the 

algorithms was ranked using the R
2
 value first, then the y-intercept.  A higher ranking 

was given to those algorithms with an R
2
 value closer to one and a y-intercept closer to 

zero. 

The time taken to interpolate a DBM from the complete data set varied significantly 

between algorithms.  The two fastest interpolation times were found to be the TIN 

algorithm, taking only 0.003 hours, and the NN algorithm which took 1.098 hours 
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(Table 3-3).  The slowest was the RBF(MQ) which took 28.980 hours to generate a 

DBM. 

The depth values estimated by each algorithm were analysed with respect to how they 

varied to the actual measured value.  With the exception of the RBF(NCS), all 

algorithms showed some bias towards over-estimating values (Figure 3-11).  However, 

the three IWD
x
 algorithms, independent of their power function, showed the greatest 

bias towards over estimating values.  The TIN algorithm had the greatest number of 

values estimated correctly (18.67%), followed by the NN algorithm (3.33%). 

 

Figure 3-11: Summary of how estimated depth values for each algorithm related to the actual 

measured depth values for the 75 000 test points randomly selected from the complete Rottnest 

Island Reserve data set. 

When all four analyses of the cross-validation data were combined to provide an overall 

ranking for the performance of each different interpolation algorithm, the kriging 

performed best overall, followed by the NN and the RBF(MQ) (Table 3-4). 
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Table 3-4: The final ranking of the eight interpolation algorithms based on the four analyses 

carried out using the cross-validation data for Rottnest Island Reserve. 

Ranks 
Interpolation 

algorithm RMS error MAE Regression 
Estimate 

error 
Overall 

Kriging 1 2 1 3 1 

NN 3 3 2 2 2 

RBF(MQ) 2 1 4 4 3 

TIN 5 5 3 1 4 

IWD
4
 4 4 5 5 5 

IWD
3
 6 6 6 6 6 

IWD
2
 7 7 7 7 7 

RBF(NCS) 8 8 8 8 8 

3.3.3 Digital bathymetric model interpolation and validation 

Seven DBMs were interpolated using all the algorithms which were cross-validated, 

with the exception of the RBF(NCS).  The DBM interpolated using the kriging 

algorithm was taken to be the final surface to be used in further analysis within this 

project, as this algorithm obtained the highest ranking during the cross-validation 

process (Figure3-12; Figure 3-13). 

A total of 503 depth soundings were collected for DBM validation over two days.  

These data were corrected to the LWM Rottnest datum and corrected for tide at time of 

capture.  The RMS error for the entire RIR was calculated to be 0.871 m and the MAE 

was 0.656 m with a standard deviation of 0.811 (Table 3-5).  These errors were 

significantly greater than those found as part of the cross-validation process.  The errors 

calculated using the depth ranges showed a trend of increasing error as the depth 

increased.  The shallowest water (0 – 5 m) had the smallest MAE error (0.440 m), 

which increased to 1.371 m in the deeper water (10 – 15 m) (Table 3-5).  This increase 

in error is most probably related to the lack of validation data points collected for this 
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depth range.  Overall, despite there being some errors in the final DBM, it was deemed 

to be suitable for further analysis for the purposed of benthic habitat mapping. 

Table 3-5: Summary of the validation statistics for the digital bathymetric model for Rottnest 

Island Reserve. 

DBM 

Region 

% of Area 

of RIR 

(hectares) 

No. of 

validation 

points 

% of  

validation 

points 

RMS MAE MAEσ 

0 – 5 m 30.6 % 259 51.5 % 0.569 0.440 0.359 

5 – 10 m 25.7 % 221 43.9 % 1.043 0.827 0.633 

10 -15 m 23.6 % 25 5.0 % 1.573 1.371 1.195 

3.3.4 Topographic variables 

The depth of the water column within the study area ranged from 0 m at the shore to -31 

m (Table 3-6).  The mean depth of the Rottnest Island Reserve (RIR) was -9.48 m, with 

most pixels (91.09%) shallower than -18 m.   

The south-west quadrant of the reserve had both the greatest maximum (-30.93 m) and 

mean (-13.68 m) depths (Table 3-6).  The north-west quadrant had the shallowest mean  

Table 3-6: Summary statistics for the topographic variables of depth, slope and aspect for the whole 

Rottnest Island Reserve (RIR) and each individual quadrant. 

Depth (m) Slope (degrees) Aspect (degrees) 
DBM 

Region 
Min Max Mean (SD) Min Max Mean (SD) Mean 

Circular 

SD 

Circular 

variance  

RIR 0 -30.93 -9.48 (6.68) 0 49.09 2.10 (2.20) 167.09 122.83 0.90 

NW 0 -27.08 -8.36 (5.91) 0 49.09 2.83 (2.70) 330.79 104.42 0.81 

NE 0 -22.60 -8.71 (5.28) 0 40.72 1.44 (1.67) 9.20 88.64 0.70 

SE 0 -27.55 -8.40 (5.75) 0 45.34 1.99 (2.13) 164.56 76.30 0.59 

SW 0 -30.93 -13.68 (8.90) 0 37.66 2.54 (2.07) 168.46 71.45 0.54 
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Figure3-12: Digital bathymetric model of the seafloor surrounding Rottnest Island interpolated using the kriging algorithm from DPI sounding data (1980 – 

1998). 
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Figure 3-13: Digital bathymetric model of the seafloor of Rottnest Island Reserve interpolated using the kriging algorithm from DPI sounding data (1980 – 

1998).
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depth (-8.36 m) and the south-west quadrant had the greatest variability in depth with a 

standard deviation of -8.90 m.  The majority of pixels in all quadrants occurred at 

depths shallower than -15 m (Figure 3-14).  The south-west quadrant showed an 

unusual distribution with a relatively even distribution across all depths to -15 m (Figure 

3-14).  

The regular slope values for the RIR ranged from 0° to 49.09°, with a mean value of 

2.10°.  The majority of the pixels (91.5%) within the data set had slope values < 5° 

(Figure 3-15).  The quadrants with the greatest slope values were the north-west 

(49.09°) and the south-east (45.34°) (Table 3-6).   The north-east quadrant had both the 

lowest mean and standard deviation of the slope (1.44° & 1.67°), indicating it had the 

flattest and least variable topography.  The north-west quadrant had the greatest 

variability in topography with a standard deviation value of 2.70°. 
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Figure 3-14: Histograms of the depth distribution of pixels within the Rottnest Island Reserve 

analysed by quadrant. Pixels with values less than zero meters water depth indicate exposed reefs 

and intertidal platforms. 
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The mean aspect of the seafloor of the RIR was towards the south (167°), with the 

majority of the sloped surfaces of the seafloor facing either towards the north or south 

most likely due to the east-west orientation of the island (Figure 3-16).  The north-west 

quadrant of the RIR had a mean aspect of 331° and the majority of the sloped surfaces 

faced in a north-westerly direction (Figure 3-17).  The north-east quadrant had a mean 

aspect of 9°, with the majority of sloped surfaces facing towards the north.  The 

majority of sloped surfaces in both the south-east and south-west quadrants faced 

towards the south, with mean aspects of 164° and 168°, respectively (Figure 3-17).  

The up-slope and down-slope analysis identified that the majority of slopes in both a 

south and south-westerly direction were down-slopes on the southern side of the island, 

making them exposed to the prevailing south-westerly swells (Figure 3-18).  In contrast 

 

Figure 3-15: The areas within the Rottnest Island Reserve that had slopes >5°. 
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Figure 3-16: The aspect of the seafloor around Rottnest Island where the slope was >5°.  

to this, slopes in these directions on the northern side of the island were mostly up-

slopes.  However, the slopes in north and north-westerly directions, on the northern side 

of the island, were predominantly down-slopes, thus making them exposed to the 

prevailing swell as it is diffracted around the island, to approach from an approximately 

north-westerly direction.  There were very few up or down-slopes identified in the 

north-east quadrant. 
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Figure 3-17: Distribution of the aspect values for all pixels with a slope >5°, analysed for each 

quadrant of the Rottnest Island Reserve.  The darker the segment, the more pixels in the quadrant 

with that aspect. 
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3.3.5 Abiotic variables affecting the benthic habitats 

3.3.5.1 Reef type 

The delineation of the substrate into high (>1 m relief) and low (<1 m relief) relief reefs 

using the DBM identified 196 hectares of high relief reef and 140 hectares of low relief 

reef in the Rottnest Island Reserve (Figure 3-19).  The north-west had the highest 

proportion of reefs, the majority being high relief (Figure 3-20).  There was a notable 

lack of high relief reefs in the north-east quadrant, compared to the other three 

quadrants. 

3.3.5.2 Benthic complexity 

The benthic complexity based on the local variability of the depth showed an array of 

complex structures around most of the island with the exception of the north-east region 

which had a markedly less complex environment (Figure 3-21).  The RIR had 

complexity values that ranged from 0.33 to 1.0 and a mean complexity of 0.74.  The 

benthic complexity layer based on local variability of the regular slope had a mean 

complexity of 0.73 and highlighted more clearly than the depth, the lack of complexity  

in the north-east of the reserve (Figure 3-21).  The benthic complexity calculated using 

the circular variance of the aspect values within the analysis window had a mean 

benthic complexity of 0.16 and only clearly highlighted the structures to the north-west 

of the island (Figure 3-21).  The complexity layer representing mean change in slope 

indicated a mean complexity for the RIR of 0.62 and again indicated the lack of 

complexity in the north-east quadrant (Figure 3-21). 
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Figure 3-18: Maps indicating the regions of Rottnest Island Reserve that have either an up-slope or 

down-slope in each cardinal direction.  Column charts indicate the distribution within each of the 

four analysis quadrants of Rottnest Island Reserve with red bars representing down-slopes and 

green bars representing up-slopes. 
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Figure 3-19: Map indicating the areas of Rottnest Island Reserve that have high or low relief reef. 

High relief is defined as having vertical relief >1 m and slope < 5 degrees. 
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Figure 3-20: The percentage of the area of each quadrant within Rottnest Island Reserve that was 

identified as low or high relief reef or flat.  
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3.3.5.3 Exposure 

The percentage of time the wind blew from each direction went through a seasonal 

cycle. Winds blowing from the south dominate from October to March, with the winds 

becoming much more variable during the intervening months (Figure 3-22).  The 

monthly mean of the maximum wind speeds was the greatest in December (11.64 ms
-1

) 

and the lowest was in April (9.25 ms
-1

) (Table 3-7).  However, the highest monthly 

mean wind speed was seen in July for north-west winds (14.43 ms
-1

).  On average the 

strongest winds occur from the northwest (12.33 ms
-1

) and the lightest from the 

northeast (8.55 ms
-1

).  

The REI values calculated on a monthly basis indicted a seasonal trend that showed the 

southern side of the island being exposed during the summer months (December – 

February), a lessening of exposure through autumn, then a shift to greater exposure on 

the north-western side of the island during winter followed by the south-western side 

being exposed during spring (Figure 3-23). The yearly relative exposure index (REI) 

calculated for the RIR showed that the maximum exposure was experienced on the 

south-western facing coast of the island (Figure 3-24).  The southern side of the RIR 

was more exposed than the northern side, while the most protected regions were found 

in sheltered bays on the north side of the island. 
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Figure 3-21:  The benthic complexity layers for Rottnest Island Reserve based on the natural logarithm of the standard deviation of the bathymetry (A) and 

the slope (B), the circular variance of the aspect (C) and the mean change in slope in all cardinal directions for each pixel (D).  All values were calculated 

using a five pixel radius (17.5 m) circular kernel filter and were normalised so values ranges from zero to one for minimum to maximum complexity. 
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Figure 3-22: Percentage of time wind blew in each cardinal direction (N, NE, E, SE, S, SW, 

W, NW) over the years 2000-2006. Note calm conditions are too infrequent to represent on 

graph 

Table 3-7: The summary of the mean maximum wind speed (ms
-1

) for each month in each 

of the eight cardinal directions for Rottnest Island Reserve for the years 2000 – 2007. 

Month North 
North-

east 
East 

South-

east 
South 

South-

west 
West 

North-

west 
Mean 

January 8.75 9.42 10.69 10.67 12.35 11.22 8.38 8.35 11.38 

February 8.01 8.64 10.67 10.63 11.87 10.63 7.46 7.67 10.98 

March 8.43 9.13 9.92 10.54 11.67 9.94 8.45 7.95 10.64 

April 9.33 8.74 9.29 8.76 9.60 9.20 9.74 9.09 9.25 

May 11.19 8.83 7.14 8.31 9.38 11.70 10.68 13.51 9.72 

June 12.30 8.79 6.80 8.52 10.46 12.40 13.08 13.32 10.74 

July 11.51 8.62 7.33 8.48 10.91 13.40 13.44 14.43 11.37 

August 10.29 6.88 6.10 8.78 10.96 13.42 12.62 13.21 10.72 

September 10.12 7.30 6.36 7.31 9.35 11.19 11.47 11.20 9.89 

October 10.32 8.45 9.54 9.69 11.31 10.58 10.90 10.59 10.60 

November 11.13 9.24 10.33 10.52 12.10 11.54 11.08 10.70 11.35 

December 10.45 9.28 11.05 10.99 12.58 11.08 8.90 9.13 11.64 

Mean 10.87 8.55 8.91 9.65 11.44 11.42 11.65 12.33 10.69 
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Figure 3-23: The relative exposure index (REI) for areas within Rottnest Island Reserve, to waves generated by prevailing winds.  REI values calculated based on 

the mean maximum wind speeds and percentage of time winds blew in each of eight cardinal directions calculated for each month over 2000 – 2007.  The REI 

values range from zero to one for minimum to maximum exposure. 
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Figure 3-24: The relative exposure index (REI) for areas within Rottnest Island Reserve, to waves 

generated by prevailing winds.  REI values calculated based on the mean of the maximum wind 

speeds and percentage of time winds blew in each of eight cardinal directions calculated for 2000 – 

2006.  The REI values range from zero to one for minimum to maximum exposure.  

3.4 Discussion 

The bathymetric data used to create the Rottnest Island DBM consisted of nine digital 

data sets, data from one hardcopy map sheet supplied by the Western Australian 

Department for Planning and Infrastructure and the coastline data set extracted directly 

from the HyMap image.  These data covered the majority of the Rottnest Island 

Reserve, but left significant areas in the shallow regions immediately adjacent to the 

shoreline such as the very shallow reefs in Thomson Bay, with no data.  This created the 

possibility for significant error in the depth estimates generated by the interpolation 

algorithm.  All of the bathymetric sounding data were corrected to account for the tidal 

height at the time the HyMap image was flown, thus allowing for as accurate as 

possible correction for the influence of the water column on the image on a pixel by 

pixel basis. 
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By rigorously validating the data set prior to DBM interpolation, to remove any 

erroneous data, and cross-validating the interpolation method used, the most accurate 

DBM for the Rottnest Island Reserve was created.  It is often the case in the marine 

environment that bathymetric data does not exist in a single data set, collected at the 

same time, using a standardised method.  This means that it is often necessary to utilise 

any data available to generate the best DBM surface possible.  This chapter 

demonstrates a method of utilising all the available data for a region to create a DBM. 

The cross-validation results indicated that the RMS errors for all interpolation 

algorithms were < 0.01 m.  This compares favourably with results of Desmet (1997) in a 

study on errors in DEM interpolation.  The results of the MAE for the different 

algorithms ranged from 0.36 – 0.48 m which is significantly greater than the range of 

RMS errors.  This was not the case with the data tested by Desmet (1997), who found 

the RMS error and MAE to be within the same ranges.  However, the data tested by 

Desmet (1997) was very flat undulating terrestrial farm land and not a highly complex 

environment such as the subtidal areas of Rottnest Island Reserve.  These results may 

also be due to the assumptions made when using RMS errors, those being that the errors 

are random, have a mean of zero and are normally distributed around the actual value 

(Li 1988, Desmet 1997).   

By using the combination of RMS error and MAE with standard deviation as proposed 

by Li (1988), and incorporating a regression and estimate error analysis,  it was possible 

to determine that the kriging algorithm provided the most reliable and accurate 

interpolation of the bathymetric surface for the Rottnest Island Reserve.  This concurs 

with Bekkby et al. (2002) who, for various reasons, including it being an exact 
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interpolator and providing a grid of estimate variance, concluded that kriging  was the 

most appropriate algorithm to develop a DBM for a coastal region in Norway.   There 

has been no definitive method published for assessing a scattered point data set to 

determine which spatial interpolation algorithm is most appropriate to create a DBM.  

This was the reason for developing a means for ranking the different algorithms that 

used a number of different accuracy assessment indices in combination.  Each of the 

different indices addressed the accuracy of the data estimates from a slightly different 

perspective, with each contributing to the overall accuracy of the final product. 

Further validation of the final DBM product using new depth data collected in the field 

provides the user with a measure of accuracy of the actual bathymetry found at the 

study site.  Unlike the cross-validation process, this approach uses data that is collected 

independently of the data set used to create the DBM.  This is especially important 

when creating a DBM from data that has been collected over a long time period, at 

different densities and using various methods, such as was the case with the Rottnest 

data.  However, the use of independent data for bathymetric DBM validation does 

require careful consideration to ensure that both the effect of tides and the inherent 

inaccuracy of GPS systems and depth sounders are taken into account.  The spatial 

resolution of the DBM needs also to be considered as a depth sounding collected in the 

field records the value for a point, while a grid cell represents the average depth over a 

region.  This study attempted to account for these factors in a relatively simple and 

uncomplicated manner that can be easily applied.   

The availability of an accurate DBM to represent the bathymetry of a study region is 

often an essential component of many marine studies, including benthic habitat 
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mapping, modelling faunal distributions and oceanographic modelling.   Here a method 

to develop an accurate DBM using the available sounding data  has been described and 

is able to provide users with some guidance regarding the overall accuracy and the 

spatial distribution of any errors in the final DBM. 

The analysis of the bathymetric features of slope and aspect in Rottnest Island Reserve 

has highlighted the low level of complexity in the north-east quadrant and the high 

frequency of sloped surfaces in the north-west quadrant.   This variation in the sloped 

surfaces has most probably developed over time as a result of the exposure of the island 

to ocean swells which predominantly approach from the south-west.  The north-eastern 

side of the island is the most protected and, as a result, has the greatest areas of shallow 

flat sandy substrate, much of it populated with seagrass meadows (Wells and Walker 

1993).  In contrast, the majority of the benthic habitats in those regions highlighted by 

the sloped surfaces are most likely to be rocky reefs dominated by macroalgae.  

The abiotic variables generated for this study have previously been found to influence 

the distribution of various subtidal macrophytes.  Water depth has long been accepted as 

being an important factor that influences the distribution of subtidal macrophytes, with 

many having optimal depth ranges leading to zonation of assemblages (Womersley and 

Edmonds 1952).  Water depth can influence the levels of exposure, light and 

sedimentation a habitat is exposed to (Goldberg and Kendrick 2004, Kendrick et al. 

2004).  Goldberg and Kendrick (2004) found that the macroalgae assemblages differed 

with depth in the Recherche Archipelago, Western Australia.  This finding is consistent 

with those of O’Hara (2001) in Victoria, Australia and Schiel (1988) in New Zealand.  

The slope of the substrate is one of the most important features of subtidal temperate 
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systems with regard to influencing the distributions of organisms (Connell 2007).  

Those rocky substrates surfaces that are horizontal or gently sloping are typically 

dominated by algae and, as the slope gets steeper, sessile invertebrates become more 

dominant. 

Benthic, substrate or habitat complexity has been linked to the composition and species 

richness of algal assemblages associated with E. radiata in south-western Australia 

(Toohey 2007, Toohey et al. 2007).  This makes it an ideal abiotic variable to use for 

applications such as habitat suitability modelling.  Added to this, habitat complexity has 

been linked to the distribution, abundance and species richness of fish assemblages in 

both tropical and temperate reef systems where regions of higher benthic complexity 

will typically have greater biodiversity (McClanahan 1994, McCormick 1994, Angel 

and Ojeda 2001, Garcia-Charton and Perez-Ruzafa 2001, Friedlander et al. 2003, 

Gratwicke and Speight 2005).  The exposure of habitats to wave action also has a 

significant effect on the occurrence and maintenance of viable populations of many 

subtidal macrophytes.  Kendrick et al. (1999), Wernberg et al. (2003b) and Goldberg 

and Kendrick (2004) all found that wave exposure influenced the distribution and 

diversity of macroalgae assemblages in southwestern Australia.  Although it should be 

noted that REI, the measure of exposure used in this study, is limited to exposure caused 

by wind-generated waves and not swell.  This can be problematic in regions like 

Strickland and Salmon Bays on Rottnest’s south coast where the REI predicted a lower 

exposure during winter than summer. However they are both known to experience high 

levels of exposure due to the south-westerly swells during winter storms.  Friedlander et 

al. (2003) identified that wave exposure, in combination with habitat complexity, 
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played a significant role in determining the fish assemblage structure in the Hawaiian 

archipelago. 

By using abiotic variables linked to habitats at different levels of the habitat 

classification scheme, improved benthic classifications using hyperspectral image data 

can be obtained.  This is a similar approach to that taken by Garza-Perez et al. (2004), 

who linked a habitat modelling approach with remotely sensed data to map coral reefs 

in the Mexican Caribbean.  They used a generalised additive model (GAM) to utilise 

geomorphic features as part of their classification (Lehmann et al. 2002). Lehman 

(1998) used a GAM to model macrophyte distribution in Lake Geneva, Switzerland, 

with environmental variables including bathymetry, effective fetch and substrate type as 

inputs for the model.  Fonseca et al. (2002) modelled the presence/absence of seagrass 

in Beaufort, North Carolina, using a combination of environmental variables similar to 

those generated in this study. 

In the context of the marine benthic habitat mapping study at Rottnest Island, the DBM 

provided information for a number of aspects of the project.  These included validation 

of the correction for the influence of the water column on the image reflectance data 

carried out using the MIP software, modelling the wave climate of Rottnest Island and 

providing the base layer for analysis of other topographical features of the seafloor, such 

as slope and aspect.  The outputs of all these applications were used as inputs into the 

final hierarchical classification scheme developed for classifying temperate habitat 

types using hyperspectral data.   

The independence of this classification method can be further enhanced by using the 

final DBM product to test the accuracy of a number of algorithms used to extract water 
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depth directly from hyperspectral data without any external inputs, such as MIP which 

was used in this project.  This will aid in the development of a toolkit for the mapping 

of shallow marine benthic habitats based solely on hyperspectral imagery and an 

associated spectral reflectance library, without the need for extensive field campaigns. 

This could increase the cost effectiveness and applicability of this data type in marine 

planning scenarios. 

Overall, the approach taken in this study has provided a comprehensive means of 

linking the benthic habitats of Rottnest Island Reserve described by the nested 

hierarchical classification scheme with environmental abiotic variables as part of 

hyperspectral imagery classification.  This integration provides the means to both 

validate, and further separate, habitats identified in the hyperspectral data based on their 

optical properties.  The use of the abiotic variables to predict habitat suitability and 

provide the basis for decision rules allows for the optical hyperspectral data to be 

pushed further with regard to mapping benthic habitats at a higher resolution than is 

possible with spectral library based techniques. 
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4 Development of a spectral library for the dominant habitat 

components of Rottnest Island Reserve 

4.1 Introduction 

The difficulty of measuring and mapping information on the distribution of marine 

biodiversity at spatial scales relevant to marine planning has resulted in the use of 

biodiversity surrogates (Vanderklift et al. 1998, Ward et al. 1999).  In terms of shallow 

coastal systems, benthic habitat types have been found to be a reasonably reliable 

surrogate for marine biodiversity (Ward et al. 1999).   Moreover, readily available and 

relatively robust methods for interpretation of remotely sensed data have become a cost 

effective way to classify marine benthic habitat at the scales required for marine 

planning (Mumby et al. 1999). 

In the past, most interpretation of  remotely sensed data was carried out using image-

based classification techniques, in combination with ground validation and/or expert 

knowledge of an area, to allocate each pixel to a particular habitat class (Sotheran et al. 

1997, Ong et al. 1998, Purkis et al. 2002, Kutser et al. 2003).  While these methods 

often provided suitable results for marine planning, their use was generally limited to 

either specific sensors or data sets (Kutser et al. 2003).  As such, it was impossible to 

apply a standardised image processing protocol to multiple data sets collected at 

different resolutions and times. 

These problems have been overcome by developing physics-based approaches, which 

enable images from a variety of sources to be processed using standardised protocols 

(Kutser et al. 2003, Heege and Fischer 2004).  They use a series of physics-based 

optimisation algorithms to correct remotely sensed data collected over water by 

removing the influence of the overlying water column, and sun-glint.  They also allow 
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for the classification of image data using techniques that have been developed for 

spectroscopy, which require spectral signature data on potential benthic habitat 

components (Kutser et al. 2003).  Spectral signature data are often collected in situ 

using field spectrometers and collated to form spectral libraries.  Spectral libraries have 

been applied in a number of research fields (e.g., geology, terrestrial vegetation, fresh 

water systems and marine benthic habitats) and used to identify target cover classes 

within hyperspectral image pixels (Drake et al. 1999, Holden and LeDrew 2000, Okin 

et al. 2001, Shepherd and Walsh 2002, Kutser et al. 2003).   

The spectral characteristics of benthic habitat components can be split into two broad 

categories, the bare substrate where reflectance signature is influenced by the chemical 

composition of the substrate (Palacios-Orueta and Ustin 1998) and bio-substrate which 

consists of living organisms such as plants.  The spectral reflectance characteristics of 

bio-substrate habitat components result from a combination of the surface properties of 

the leaves or fronds, the internal structure of the plant, and the presence and 

concentrations of various pigments, the most influential, in the visible region (400 – 700 

nm), being chlorophyll (Richardson et al. 2002, Thorhaug et al. 2007).  Chlorophyll 

absorbs light in both the blue and red regions of the visible spectrum, with the 

absorbance maxima being in the red region, just before the ‘red edge’ (Sims and Gamon 

2002).   

Although considerable research has been undertaken on the spectral characteristics of 

various marine habitat components, few studies have used the collected spectra to 

classify benthic habitats for these environments from image data.  Several studies have 

focused on analysing the spectral characteristics of coral reefs, as the clear, shallow 
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waters where they are found provide ideal conditions for optical remote sensing (Holden 

and LeDrew 1998, Hochberg and Atkinson 2000, Hochberg et al. 2003).  Such analyses 

enable different corals and algae to be separated based on their spectral characteristics.  

This is a prerequisite for  image classification, as it allows for the identification of those 

habitat components that can be theoretically distinguished in an image acquired under 

ideal conditions (Karpouzli et al. 2004). 

At the scale of the pixels in most hyperspectral remotely-sensed data (1 – 5 m), marine 

benthic environments are often made up of a complex mixture of habitat components.  

This inherent variability provides some unique challenges to remote sensing 

practitioners when attempting to classify each pixel into a habitat component or mix of 

components. Thus, it is necessary to conduct some form of separability analysis on the 

in situ spectral signatures available in the spectral library.  These analyses determine the 

dissimilarity between spectra and thus identify benthic habitats that theoretically can be 

identified in an image. 

Methods such as principal components analysis (PCA) and cluster analysis have been 

used as a measure of similarity between spectral signatures (Holden and LeDrew 1998, 

Fyfe 2003).   Both of these statistical methods are based on some form of Euclidean 

distance, which has a number of features that make it less desirable to use in 

hyperspectral data analysis (Clarke and Warwick 2001, McCune and Grace 2002).  The 

first of these is that it is not invariant to scalar multiplication and thus will have 

difficulty distinguishing habitat components when spectral signatures were obtained at 

different levels of illumination (Keshava 2004, Robila 2005).  Moreover, the values 

obtained using the Euclidean distance do not occur within a set interval, making it 
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difficult to integrate the algorithm into any automated or semi-automated classification 

system which uses thresholds of the distance measure to separate classes (Robila 2005).  

Finally, Euclidean distance is monotonic in nature, which means that as the number of 

spectral bands used in a separation analysis increases, the Euclidean distance will also 

increase (Keshava 2004).  Thus, when attempting to maximise the separation between 

substrate classes, and simultaneously trying to reduce the dimensionality of the data, the 

best result will be to use all the spectral bands available.  Other distance measures such 

as the spectral angle, which do not share these features, may be a more appropriate 

method of distinguishing between spectra and result in better solutions (Keshava 2004). 

The aim of this study was firstly to use and extend existing techniques for the collection 

and analysis of in situ spectral reflectance data.  A comprehensive library of the spectral 

signatures of the spectrally dominant habitat components was collected to match the 

nested hierarchical classification scheme developed for Rottnest Island (Chapter 3).  

This library was subjected to spectral separability analysis to ascertain the best method 

to classify the hyperspectral image data to identify the different habitats using the 

spectral library.  This required testing of a number of non-Euclidean spectral distance 

measures to determine the best methods and band combinations to separate the different 

habitat components present at Rottnest Island using spectral signatures at HyMap (~15 

nm) resolution.  A classification algorithm was developed that could use the results 

from the spectral separability analysis, in combination with the spectral library, to 

classify hyperspectral image data by identifying the dominant habitat component in a 

mixed pixel.  This classification algorithm was further tested against synthetic spectral 

signatures, designed to mimic the spectral signatures expected from the image data, to 

assess its ability to accurately classify mixed pixels. 
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4.2 Methods 

4.2.1 Collection of in situ spectra 

The spectral signatures for 13 different habitat components were collected from various 

substrates in Rottnest Island Reserve, and nearby Marmion and Shoalwater Marine 

Parks (Figure 2-1).  The additional sampling areas were chosen to provide a 

representative sample of spectral signatures for Perth coastal waters.   

The collection of reflectance spectra was carried out using a single channel Ocean 

Optics USB2000 spectrometer, attached to a laptop computer.  The spectrometer was 

fitted with a 30 m long, 500 µm diameter fibre-optic cable equipped with a 100 mm 

long stainless steel probe and used the same settings for all data collection (Table 4-1).  

 Table 4-1: Typical settings used when collecting spectral signatures underwater with an Ocean 

Optics USB2000 spectrometer. 

Variable Setting 

Integration Time 70 msec 

Spectra Averaged 1 

Boxcar Smoothing 10 

Correct for electrical dark current ON 

Fibre-optic length 30 m 

Fibre-optic diameter 500 µm 

Fibre-optic field of view 22° 

Distance of probe from target ~10 cm 

Area of habitat component sampled ~40 cm
2 

The spectral data were recorded as a text file, when triggered by the diver using a 

control cable attached to the fibre optic (Figure 4-1).  Spectral data, as individual 

spectra, were recorded as both the upwelling radiance (Eu) from the target habitat 

component and the downwelling irradiance (Ed), from a calibrated white Teflon 

reflectance panel, i.e. spectral pairs.   The Eu and Ed spectra were measured using digital 
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numbers (DN) that ranged between 0 and 4000.  A Teflon panel (115 x 200 mm) was 

used as it reflects almost 100 percent of light in the visible portion of the spectrum 

(Dekker et al. 2003).  Ten pairs of spectra were collected for each target.  A dark current 

measurement was taken before and after each dive by recording 10 replicate spectra 

with all light blocked from the spectrometer.  The dark current refers to the digital 

numbers recorded by the spectrometer when no light is present. 

 

Figure 4-1:  The underwater spectrometer setup for collecting spectral reflectance signatures of 

habitat components in shallow water.   Note the remote trigger held in the diver’s left hand and the 

Teflon reflectance panel in the foreground.  Note that this image was not taken at Rottnest Island. 

4.2.2 Data Processing 

The in situ spectral data of the dominant habitat components were used to calculate a 

range of spectral statistics based on reflectance data (Table 4-2).  The spectral statistics 

were based on the absolute spectral reflectance (ASR) for each habitat component and 
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included the mean, median, standard deviation, minimum, maximum and first and 

second derivatives (Table 4-2).  A spectral library was developed to provide a 

framework for the assessment of the spectral separability of the various habitat 

components at each level of the hierarchical classification scheme (see Chapter 2). 

Table 4-2: Summary of the spectral statistics calculated from the absolute spectral reflectance 

spectra recorded in Perth coastal waters.  Statistics were calculated using the full resolution spectra 

and then re-sampled to HyMap resolution.  ASR refers to absolute spectral reflectance and DN 

refers to the digital number. 

Statistic Definition 

ASRmean The mean DN at each wavelength for 10 ASR spectra per target 

ASRmedian The median DN at each wavelength for 10 ASR spectra per target 

ASRsd The standard deviation of the DN at each wavelength for 10 ASR spectra 

ASR+2sd (ASRmean) + (2*(ASRsd))  

ASR-2sd (ASRmean) - (2*(ASRsd)) 

ASRmin The minimum DN at each wavelength for 10 ASR spectra 

ASRmax The maximum DN at each wavelength for 10 ASR spectra 

ASR1st(x) The 1
st
  derivative spectra of the ASRmean using an “x” point window 

ASR2nd(x) The 2
nd

 derivative spectra of the ASRmean using an “x” point window 

4.2.2.1 Calculation of spectral statistics 

The Teflon panel, used to measure downwelling irradiance was calibrated against a 

Spectralon diffuse reflectance standard, which is known to reflect 99% of light in the 

400 – 1500 nm range.  A series of reflected radiance spectral signatures were recorded 

in full sunlight and cloudless conditions over both the Teflon and the Spectralon whilst 

the probe was held at constant angle and distance from the panels on a mounting frame.  

The reflectance of the Teflon (RTeflon) was then calculated with the Spectralon as the 

reference, using the following equation: 
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λ

λ

spectralon

teflon
R teflon =  

where spectralonλ and teflonλ refer to the radiance digital number at each recorded 

wavelength for  the Spectralon and Teflon diffuse reflectance targets.  This reflectance 

value was then used to correct all in situ measurements during the calculation of the 

target reflectance values.  Although the calibration was carried out using dry panels, it 

was assumed that the differences in reflectance of wet panels would negligible. 

The Ed and Eu spectra were filtered to remove spectra that differed significantly from 

the other replicates.  This process was required as conditions under which in situ spectra 

were collected, i.e. sudden wave surges, often resulted in a spectrum being collected 

from an incorrect target.  In order for this filtering process to be carried out in a manner 

that was both systematic, and based on the shape of the spectra rather than changes in 

illumination, a method was devised based on the spectral angle metric.   

The spectral number (SN) is defined as the spectral angle (SA) between a test spectrum 

and a flat line spectrum, which has the same value across all wavelengths.  The SN was 

calculated using the following equation (Robila 2005): 
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where A refers to the spectrum being tested (Eu or Ed), B refers to the flat line reference 

spectrum and i refers to wavelength.  The SN was calculated for wavelengths of 450 to 

700 nm.  For each spectrum being tested, the mean and standard deviation of the SN 
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were calculated and any spectra with a SN outside the range of the mean ± 1.5 standard 

deviations were excluded from further analysis. 

Each individual pair of spectra (Eu, Ed) was then converted to absolute spectral 

reflectance (ASR) values using the following formula (adapted from Murphy et al. 

2005): 
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where Dark (dn) refers to the dark current spectrum and TCAL refers to the calibration 

spectrum used to correct the reflectance of the Teflon panel to 100% reflectance. 

The spectral reflectance signatures were processed at a resolution of 1 nm and re-

sampled to match the spectral response of the 2004 HyMap sensor, which had a spectral 

resolution of ~15 nm.  This was carried out by assuming that the spectral response could 

be modelled as a Gaussian function and using the full width at half maximum (FWHM) 

values of the sensor (Table 4-3).  The FWHM values were used to define the spectral 

width of the imaging spectrometer in terms of the actual wavelengths at which it would 

record data around the defined central wavelength.  The data were re-sampled by 

convoluting the data using a calculated Gaussian response function (Lucey et al. 2001): 

10
)()( λλ LibraryHyMap SGS =

 

 where SHyMap was the HyMap resolution library signature, SLibrary was the full resolution 

signature and G was the matrix used to covert between the two.  G was defined as: 
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where λ0 was the wavelength of the HyMap band, λ1 was the wavelength of the library 

band and �λ is the FWHM of the HyMap band at wavlength λ0. 

Table 4-3: The full width half maximum (FWHM) values of the first 17 bands of the 2004 HyMap 

sensor. 

Band No. Central wavelength (nm) FWHM 

1 454.7 13.6 

2 469.3 16.5 

3 485.2 15.6 

4 500.1 15.6 

5 515.0 15.4 

6 530.7 16.4 

7 546.3 15.9 

8 561.4 15.2 

9 576.3 15.3 

10 591.5 15.5 

11 607.0 16.1 

12 622.5 15.3 

13 637.6 15.4 

14 652.6 15.1 

15 667.6 15.3 

16 682.8 15.5 

17 698.2 15.9 

The ASR spectra were cropped to retain only those values for wavelengths of 400 - 750 

nm because this is the visible part of the spectrum that can be used in mapping subtidal 

habitats due to strong absorption by water in the infrared region (i.e. >750 nm).  The 

mean (ASRmean), median (ASRmedian), standard deviation (ASRsd), minimum (ASRmin) 

and maximum (ASRmax) were calculated for each target typically using 10 ASR spectra 

(Figure 4-2).  By calculating the mean and median of the spectral data pairs remaining 

after filtering, it is assumed that any natural variability in the data was captured and any 
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spikes or dips due to isolated fluctuations in the underwater light field were smoothed 

out (Becker et al. 2005).  For each ASRmean and ASRmedian spectrum the first and second 

derivatives were calculated using a third order Savitzky-Golay least squares 

approximation, with a 15 point window (Savitzky and Golay 1964). 
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Figure 4-2: The analysis steps to generate the spectral statistics used to develop the spectral library.  

The spectral number filter removes any spectra with a significantly different spectral shape to 

others in each sample.  ASR refers to absolute spectral reflectance. Note that the spectral signatures 

were re-sampled to HyMap resolution after ASR was calculated.  

4.2.2.2 Creation of the spectral library using spectral statistics 

A spectral library was created which contained the spectral signatures for the dominant 

habitat components and the associated spectral statistics (Table 4-2).  The habitat 

components were combined at a number of levels as defined by the nested hierarchical 

classification scheme developed for Rottnest Island (see Chapter 2).   

Each spectral signature was available at 1 nm and at the HyMap 2004 sensor resolutions 

of ~15 nm.  Providing the spectral data for the habitat components at these different 

levels allowed for greater flexibility and accuracy for possible future applications.  At 

each level within the classification scheme the spectral summary data available included 

the number of spectral samples at that level, the mean, median, standard deviation, 
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variance and 1
st
 and 2

nd
 derivatives of the spectral signatures for all samples from that 

level.   

4.2.3 Spectral separability analysis of library 

4.2.3.1 Spectral distance metrics  

A number of different spectral distance metrics have been used successfully in 

hyperspectral analysis as a method of matching reference spectra to those of an 

unknown target (Du et al. 2003, Keshava 2004, Robila 2005).  Those used in this study 

were the spectral angle (SA), the spectral correlation angle (SCA), the spectral gradient 

angle (SGA), the spectral information divergence (SID) and two measures that combined 

SID and SA, the SID multiplied by either the sine (SID(SIN)) or tangent  (SID(TAN)) of 

the SA (Du et al. 2003, Du et al. 2004, Robila and Gershman 2005).   

The spectral angle is one of the most commonly implemented metrics in hyperspectral 

remote sensing and discriminates between spectra by calculating the angle between two 

spectra using the following formula (Robila 2005): 
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where a and b  refer to individual spectra from the library being tested.  The spectral 

angle is invariant to scalar multiplication and, as such, calculates the distance between 

spectra based solely on their shape (Robila 2005) (Figure 4-3).  This feature makes it 

particularly appropriate to an application in the marine environment where the highly 

variable underwater light field can create changes in illumination that will result in 
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changes in the reflectance values, although the spectral shape of the signature has not 

changed. 

A

BSA

A

BSA

 

Figure 4-3: Conceptual diagram demonstration of the invariance to scalar multiplication of the 

spectral angle distance metric (SA).  The SA between spectrum A and B will not change with the 

length of the vectors. 

The spectral correlation angle (SCA), which is based on the spectral correlation 

coefficient (SCC), is ≥0, and is invariant to scalar multiplication (Robila 2005).  The 

SCA between two vectors, a and b, is defined as (de Carvalho and Meneses 2000, 

Robila 2005): 
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and where a  and b are the expected values for the two vectors. 

The spectral gradient angle (SGA) is based on the SA and is also invariant to 

illumination conditions, but unlike the SA, takes into consideration the changes in slope 
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within the spectral vector (Robila and Gershman 2005).  The SGA is defined as (Robila 

and Gershman 2005): 

( )
ba SGSGSAbaSGA ,),( =

, 

where the spectral gradient (SG) of an n-dimension spectrum is defined as 

( )12312 ,....,,)( −−−−= nn aaaaaaaSG
. 

The spectral information divergence is a discrimination measure that evaluates the 

similarity between two spectra based on discrepancies between the probability 

distributions derived from each individual spectral signature, calculated using the 

spectral information measure (SIM)  (Chang 2000).  The SIM is a stochastic measure 

which considers  the band to band variability within a spectrum based on the uncertainty 

resulting from randomness (Du et al. 2004).   In basic terms, the SIM is a measure of   

spectral variability of an individual spectral signature based on the inter-band 

correlation.  For a given spectral signature, ( )T

Lssss ,......,, 21= , where each 

component js  represents the reflectance value at band data jB which is collected at 

specific wavelengths jω .  Given that { }L

jj 1=
ω is a set of L wavelengths, each of which 

corresponds to a spectral band in the data (e.g., HyMap image bands), s can be modelled 

as a random variable by defining its probability space ( )ΡΣΩ ,, , where 

{ }Lωωω ,......,, 21=Ω  is the sample space, Σ  is the power set  of Ω  (i.e. the set of all 

subsets of Ω ) and P is the probability measure, defined as { }( ) jj pP =ω , where 
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Thus, the probability vector of s is defined as T

Lpppp ),...,,( 21=  and represents the 

probability mass function of P and the desired probability distribution of the spectral 

vector r.    Using information theory this enables the definition of the self-information 

(I) provided by a particular band, such as j, to be 

jj prI log)( −= . 

The entropy of the spectral vector s, represents the uncertainty resulting from the 

spectral vector s and is calculated using the formula: 
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Now let  T

Lpppp ),...,,( 21=  and T
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density mass functions of two spectral signatures ( )T

Lssss ,......,, 21= and 

( )T

Lssss ',......,','' 21= .  From this the discrepancy in the self-information of spectral 

band jB in s relative to the self-information for band jB in 's  can be defined as 
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where )'||( ssD  is the relative entropy of 's relative to s and is also know as the 

Kullback-Leiberler information measure or cross entropy.  Thus, the relative entropy of 

s relative to 's  can be defined as 
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The SID calculated by combining the two relative entropies defined as (Du et al. 2004) 

)||'()'||()',( ssDssDssSID += . 

A number of metrics which combine the SID and the SA have been found to result in 

greater accuracy in matching spectra, than either measure used individually (Du et al. 

2004).  Taking either the sine or tangent of the SA and multiplying it by the SID results 

in the projection of one signature being calculated orthogonal to the other, rather than 

along the same plane, thus increasing the spectral discrimination between different 

signatures, while increasing the similarity between similar signatures (Du et al. 2004).  

SID(TAN) and SID(SIN) are defined as 
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4.2.3.2 Genetic algorithms 

The genetic algorithm is an optimisation algorithm, based on evolutionary theory, that is 

able to efficiently solve problems for which there may be many solutions (Holland 

1992).   The initial step of the genetic algorithm analysis is to generate a random 

population as an array which consists of a predefined number of individuals (e.g. 

spectral signatures) and variables (e.g. wavelengths).  The individuals used by the 
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genetic algorithm are a subset of the original wavelengths for each signature being used 

in the analysis (Jarvis and Goodacre 2005). The aim of the genetic algorithm is to 

optimise, by maximising or minimising, a fitness function that defines the relative 

fitness of each solution obtained to others obtained previously.  The fitness function 

used depends on the aim of the optimisation being carried out. 

The typical steps taken by a genetic algorithm to find an optimal solution for a 

multivariate problem, based on a fitness function, are analogous to the evolutionary 

process proposed by Darwin (Jarvis and Goodacre 2005). 

Extract a proportion of the fittest individuals for the current population

Recombine selected offspring (crossover)

Mutate the mated population

Assess the newly created population for fitness using a predefined fitness 

function

Reinsert a proportion of the offspring into the population, replacing the 

worst parents

Repeat process until a stopping criterion, based on the fitness function(s), 

is reached

Extract a proportion of the fittest individuals for the current population

Recombine selected offspring (crossover)

Mutate the mated population

Assess the newly created population for fitness using a predefined fitness 

function

Reinsert a proportion of the offspring into the population, replacing the 

worst parents

Repeat process until a stopping criterion, based on the fitness function(s), 

is reached
 

Figure 4-4: The steps taken by the genetic algorithm to find the optimal solution to a problem. 

4.2.3.3 The ‘R’ statistic and the ANOSIM test 

The ‘R’ statistic is implemented in the Primer software (Clarke and Warwick 2001) as 

part of the analysis of similarity (ANOSIM), a statistical permutation test used to 

calculate the significance of separations observed between a-priori classes based on 

ecological data.  The ‘R’ statistic is calculated based on the rank similarities within a 
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similarity matrix, rather than actual distances, between all samples in the data set 

(Clarke and Warwick 2001).  It is calculated using the following formula: 

( )
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where Br  refers to the mean of all rank similarities between classes, Wr  refers to the 

mean rank similarities within classes, M = n(n-1)/2 and n is the total number of samples 

in the data set.  The values of ‘R’ can range from -1 to 1, however they will normally 

range between 0 to 1.  ‘R’ will only equal one if all replicates within classes are more 

similar to each other than any replicates from other classes.  ‘R’ will equal zero if the 

differences between classes and within classes are the same.  

The ANOSIM first calculates the ‘R’ statistic based on the rank similarity matrix and 

then runs a permutation test to calculate the significance of the ‘R’ statistic calculated 

between all a priori classes defined for the data set, referred to as the global ‘R’.  The 

permutation test randomly reallocates the labels to all the samples and recalculates the 

global ‘R’ for each permutation.  This is carried out a large number of times (T), as 

carrying it out for all possible permutations of a large data set would be computationally 

excessive.  The significance of the global ‘R’ can then be calculated using the following 

formula (Clarke and Warwick 2001): 

( ) ( )1/1 ++= Ttp  

where p refers to the significance value and t the number of the global ‘R’ values 

calculated during the permutation test that are larger that the actual global ‘R’ value. 
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4.2.3.4 Selection of best image bands to separate classes 

The spectral separation analysis was carried out using a test developed to combine the 

different spectral metrics, a genetic algorithm, the ‘R’ statistic and the ANOSIM test to 

determine which image bands in combination with a particular spectral metric provided 

the best separation between classes of the hierarchical habitat classification scheme at 

each level. 

The test was carried out using the following steps for each group of classes tested: 

1. The range and the minimum number of image bands to be used in the analysis 

were defined.  The range was either bands 1 – 17  or bands 1 – 9 in the HyMap 

image and the minimum number of image bands was set at 2, as many of the 

spectral metrics require at least two values to be able to be calculated; 

2. The fitness function that determined the stop point of the GA was defined.  In 

this case it was attempting to maximise the ‘R’ statistic; 

3. The genetic algorithm was started with the multivariate array which represented 

the total population, consisting of individuals (rows, i.e. habitat components) 

and the variable that defined these individuals (columns, i.e. reflectance values 

at HyMap wavelengths); 

4. The initial population was evaluated against the fitness function (the ‘R’ 

statistic); 

5. A sub-set of individuals from the initial population was selected (individual 

habitat components, described by varying variables (reflectance values at 

HyMap wavelengths)); 
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6. The new subset of individuals from the population were recombined (genetic 

crossover) to create offspring (more individuals); 

7. The new individuals were mutated.  This step was included to avoid the genetic 

algorithm finding local minima of the fitness function, by not always selecting 

only the fittest individuals for a population, but taking a semi-random selection 

that was weighted towards the fitter individuals; 

8. Reinserted best individuals, replacing the worst individuals from the previous 

population; 

9. Ended the genetic algorithm when the fitness function had been maximised; 

10.  Determined the statistical significance, p-value,  of the optimal result using the 

ANOSIM permutation test.    

The two different band ranges (1-17 and 1-9) were used due to the nature of the image 

data, which often did not always have a consistent number of image bands with useable 

data across an entire image.  The results from the top five band / spectral metric 

combinations were visualised using a non-metric multidimensional scaling plot (nMDS) 

based on the rank order similarity matrices generated using the optimal image bands in 

combination with a particular spectral metric. 

The tests were carried out at each level of the hierarchical classification scheme 

(Chapter 2) using library reflectance spectra at the HyMap sensor resolution (~15 nm).  

The separability analysis was carried out using the median ASR signatures.  The genetic 

algorithm optimisation was run five times with each iteration starting with a random 
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population of 150 individuals, and being followed over 100 generations.  Each 

ANOSIM test was run using 10 000 permutations.  

4.2.4 Development of the classification algorithm  

A classification algorithm was developed to identify the dominant habitat component of 

a pixel’s spectrum, based on the spectral signatures in the library.  The algorithm needed 

to take into account the variability within the spectral signatures of individual habitat 

components (e.g. Ecklonia radiata) and the effect of the predominately mixed 

signatures found in image pixels resulting from heterogeneity in nature. 

For each target spectrum (i.e. image pixel) the dominant habitat component was 

identified by calculating the relative spectral discriminatory probability (RSDPB) 

between its spectral signature (t), and all the relevant spectral reference signatures 

( },...,,{ 21 nsssS = ) from the spectral library using the spectral metric (d) defined by 

the optimal solution for each split in the habitat classification scheme, using the 

following formula (Du et al. 2004): 

∑
=

=
n

j

iii

d

S stdstdstRSDPB
1

),(),(),(  

The mean RSDPB was calculated for each habitat component group and the pixel was 

allocated to the group with the minimum mean RSDPB.   

4.2.5 Testing the classification algorithm using mixture analysis 

The accuracy of the classification algorithm was tested by creating randomly mixed 

synthetic spectral signatures based on the linear mixture model (Chang et al. 2002) of 

up to six habitat components and attempting to identify the dominant habitat 
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component.  The synthetic signatures were created to test the classification at each level 

of the habitat classification scheme (see Chapter 2).  For each test, 10 000 synthetic 

signatures were randomly created and identified using the algorithm.  The signature had 

to have one dominant habitat  component (> 50% contribution) from one of the habitat 

classes being identified, and have contributions from other habitat components from any 

other classes in the library that were likely to occur in the same pixel.  For example 

when testing at Level 2 (seagrass/macroalgae/coral) the dominant component might be 

E. radiata, with a contribution of 60%,  and the other contributing components, 

Sargassum (10%), Posidonia sinuosa (15%), Chlorophyta (10%) and Rhodophyta (5%).   

For each of the 10 000 synthetic signatures the classification algorithm assigned an 

appropriate habitat class to each signature for the level being tested and the results were 

summarised into an error matrix and the overall, producer’s and user’s accuracies were 

calculated (Figure 4-5).  The accuracies were calculated as (Congalton and Green 

1999): 
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The overall accuracy is the percentage of ground validation points correctly classified in 

the mapped image and does not take chance agreement into account.  The producer’s 

accuracy, calculated using column values of the error matrix, indicates the probability of 

a reference pixel being classified correctly and is more specifically an error of omission 

(Congalton 1991).  The user’s accuracy, or an error of commission, is calculated using 

the row values of an error matrix and indicates the probability of a classified pixel 

actually representing that class in the field (Story and Congalton 1986). 
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Figure 4-5: Mathematical representation of an error matrix adapted from Congalton and Green 

(1999). 

The kappa and tau coefficients were also calculated for each error matrix.  The kappa 

coefficient ( K̂ ) was calculated using the following formula 
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and the tau coefficient (T) was calculated using the following formula (Ma and 

Redmond 1995): 

r

ro

P

PP
T

−

−
=

1
 

where 

∑
=
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iir xn
N
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1

2

1
 

and Po refers to the overall accuracy, N refers to the number of samples, M the number 

of habitat classes, ni the number of samples mapped as habitat class i and xi the number 

of correctly classified samples for habitat class i.  The kappa coefficient is a measure of 

the agreement between the overall accuracy of the error matrix and the chance 

agreement that may occur in that same error matrix (Congalton and Green 1999).  The 

kappa values generally range between 0 and 1, where >0.8 represents strong agreement, 

0.4 – 0.8 a moderate agreement and <0.4 a poor agreement (Congalton 2001).  The tau 

coefficient is an adjustment of the overall accuracy by the number of classes and the a 

priori probabilities used for the classification (Ma and Redmond 1995). 

4.3 Results 

4.3.1 Calibration of the Teflon reflectance panel 

The reflectance values of the Teflon panel (RTeflon) calculated using 10 replicate spectral 

data pairs ranged from 89.45% at 450 nm to 82.66% at 700 nm (Figure 4-6). 

4.3.2 The spectral library 

The spectral signatures of 13 different habitat components at Level 4 of the habitat 

classification scheme developed in Chapter 3 were documented in the library and 
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constituted 24 individual species or genera (Table 4-4; Figure 4-7).  The spectral 

characteristics of two classes of bare substrate were sampled in the field, namely, sand 

(n = 76) and limestone (n = 8) (Table 4-4).   Eleven major habitat components were 

sampled for the bio-substrate class, with a total of 224 samples (Table 4-4).  These 

habitat components all occur in different combinations to form the various classes used 

to define habitats at Rottnest Island Reserve. 
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Figure 4-6: The reflectance of the Teflon calibration panel calculated from the Spectralon 

reflectance standard. 

Table 4-4:  Summary of the 296 spectral reflectance signatures contained in the spectral library 

created for Rottnest Island Reserve. (Numbers in brackets indicated the number of samples). 

Coral (12)

Halophila (8)

Pocillopora (12)

Posidonia (28)

Brown foliose (18)

Seagrass (64)

Amphibolis (28)

Green foliose (38)

Coralline (18)

Red foliose (10)

Algal turf (84)

Scytothalia doryocarpa (8)

Sargassum spp. (30)

Ecklonia radiata (26)

Canopy algae (64)

Mixed algae (148)

Bio-substrate (212)

Limestone (8)

Sand (76)

Bare substrate (84)

Level 4Level 3Level 2Level 1

Coral (12)

Halophila (8)

Pocillopora (12)

Posidonia (28)

Brown foliose (18)

Seagrass (64)

Amphibolis (28)

Green foliose (38)

Coralline (18)

Red foliose (10)

Algal turf (84)

Scytothalia doryocarpa (8)

Sargassum spp. (30)

Ecklonia radiata (26)

Canopy algae (64)

Mixed algae (148)

Bio-substrate (212)

Limestone (8)

Sand (76)

Bare substrate (84)

Level 4Level 3Level 2Level 1
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Figure 4-7: Some of the dominant habitat components contained in the spectral library for the 

benthic substrates of Rottnest Island Reserve, including Amphibolis (A), Posidonia (B), mixed 

seagrass (C), Sargassum (D), Ecklonia radiata (E), algal turf (F), Pocillopora damicornis (G) and 

bare substrate (H). 
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4.3.2.1 Bare substrate 

The mean reflectance of sand increased gradually with increasing wavelength (Figure 

4-8).  The standard deviation of the mean reflectance at each HyMap band reflected the 

consistent variation between samples across all wavelengths.  The mean reflectance for 

limestone showed a very similar signature to that of sand, but with a lower reflectance at 

all wavelengths (Figure 4-8).    
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Figure 4-8: The mean reflectance signature for sand (A), limestone (B), the comparison of the two 

(C) and their second derivatives (D), based on the median signature for each individual sample. The 

shaded areas represent ±1 standard deviation from the mean. Symbols represent the central 

positions of the HyMap image bands.  
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The second derivative for sand and limestone highlighted some differences that may 

provide a diagnostic tool to separate these classes based on their spectral characteristics, 

although most of  these features occurred at wavelengths >600 nm. 

4.3.2.2 Bio-substrate 

4.3.2.2.1 Canopy algae 

The major components of the canopy algae class were Ecklonia radiata, Sargassum 

spp. and Scytothalia doryocarpa.  The mean reflectance of E. radiata showed low 

reflectance values that rose towards a small peaks at both ~590 and ~650 nm and then 

decreased until the reflectance minimum at ~670 nm whereafter reflectance values 

increased rapidly (Figure 4-9).  These features are characteristic on some algae species.  

This reflectance minimum between 670 – 680 nm was a characteristic of all the 

signatures in the bio-substrate class, known as the ‘red edge’ (Sims and Gamon 2002).  

The variability in reflectance was greatest around the ~590 nm peak and the ~670 nm 

inflection and beyond.   

The mean reflectance for Sargassum spp. showed the same general trends as E. radiata 

with a peak at ~590 nm and an inflection at ~670 nm (Figure 4-9).  However, 

Sargassum spp. showed less variation in reflectance across all wavelengths < 670 nm.  

S. doryocarpa showed the same trends as the other components in the macroalgae class, 

although it exhibited a lower reflectance at the inflection point.  The second derivatives 

of all three components showed a significant difference between Sargassum and both E. 

radiata and S. doryocarpa.  
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Figure 4-9: The mean reflectance signatures for E. radiata (A), Sargassum spp. (B), S. doryocarpa 

(C), the comparison between the three (D) and their second derivatives (E), based on the median 

signature for each individual sample. The shaded areas represent ±1 standard deviation from the 

mean. Symbols represent the central positions of the HyMap image bands.  



 

124 

4.3.2.2.2 Algal turf 

The major components of the algal turf class were red foliose, coralline, green foliose 

and brown foliose algae.  The mean reflectance signatures for red foliose and coralline  

algae showed relatively constant reflectance until ~ 590 nm, remaining higher until 

~650 nm dropping thereafter until the reflectance minimum at ~670nm (Figure 4-10).   

The variation in reflectance was greater across all wavelengths for the red foliose algae, 

with coralline algae the showing maximum variation at ~600 nm.  The reflectance 

signature for green foliose algae showed an almost linear increase in reflectance up to 

~590 nm and then decreased until the inflection point at ~670 nm.  The brown foliose 

algae showed similar spectral shape to both the red foliose and coralline algae, although 

reflectance values were greater at all wavelengths and the ‘red edge’ inflection occurs at 

a lower wavelength.  The signatures of both the red foliose and coralline algae appeared 

to be very similar, in comparison to the brown foliose algae 

4.3.2.2.3 Seagrass 

The seagrass class had three major components, Posidonia, Amphibolis and Halophila 

species.  The reflectance signatures for both Posidonia sinuosa and P. australis showed 

very similar patterns, with a peak in reflectance at ~590 nm and the typical inflection 

point at ~670 nm (Figure 4-11).  The main difference between the two species was the 

greater variability in reflectance values found for P. australis in comparison to P. 

sinuosa.  

The second major components of the seagrass class were Amphibolis species, which 

have a spectral reflectance signature with a similar shape to Posidonia, but with much 
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Figure 4-10: The mean reflectance signatures for coralline (A), foliose red (B), foliose green (C), 

foliose brown (D) algae, the comparison between all four groups (E) and their second derivatives 

(F), based on the median signature for each individual sample. The shaded areas represent ±1 

standard deviation from the mean. Symbols represent the central positions of the HyMap image 

bands. 
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greater variability at all wavelengths (Figure 4-11).  The reflectance peaked at ~590 nm, 

with that also being the point of greatest variability in reflectance values within the 

class.  A. griffithii exhibited a greater variability in reflectance values compared to A. 

antarctica at all wavelengths < 500 nm. 

The spectral reflectance signature for Halophila ovalis showed a similar shape to the 

signatures for both the Posidonia and Amphibolis genera (Figure 4-11).  The most 

obvious difference between them was the significantly higher reflectance values.  All 

four species of seagrass from the genera Posidonia and Amphibolis had very similar 

spectral reflectance signatures, with the only discriminating factor being the higher 

reflectance values of A. griffithii.  This difference appeared to be more pronounced 

when the second derivatives were calculated, with different peaks occurring at ~ 550, 

570 and 610 nm. 

4.3.2.2.4 Coral 

The coral class had only one component at Rottnest Island, Pocillopora damicornis, 

which exhibited the same characteristic feature of all chlorophyll containing organisms, 

the ‘red edge’ at ~660 nm (Figure 4-12).   There was a peak in reflectance at ~620 nm 

and low reflectance at all wavelengths below 550 nm. 

4.3.3 Spectral separability analysis 

4.3.3.1 Level 1 – Bare substrate/Bio-substrate 

The spectral separation between the signatures from the bare substrate class and those 

from the bio-substrate class was found to be good, with a maximum significant ‘R’ 

value of 0.935 being achieved using the spectral correlation angle (SCA), calculated  
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Figure 4-11: The mean reflectance signatures for P. sinuosa (A), P. australis (B), A. griffithii (C), A. 

antarctica (D), H. ovalis (E), the comparison between Posidonia and Amphibolis species (F), the 

comparison of all species (G) and their second derivatives (H), based on the median signature for 

each individual sample. The shaded areas represent ±1 standard deviation from the mean. Symbols 

represent the central positions of the HyMap image bands.  
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Figure 4-12: The mean reflectance signature for Pocillopora damicornis (A) and its second 

derivative (B), based on the median signature for each individual sample. The shaded areas 

represent ±1 standard deviation from the mean. Symbols represent the central positions of the 

HyMap image bands.  

from HyMap bands 4, 15 and 17 (500.1 nm, 667.6 nm and 698.2 nm, respectively) 

(Table 4-5).  When the input to the optimisation analysis was restricted to the first nine 

HyMap bands an ‘R’ value of 0.806 was achieved using the SCA metric calculated using 

bands 1, 2, 3 and 9 (454.7 nm, 469.3 nm, 485.2 nm and 576.3 nm, respectively).   

Table 4-5: Results of the spectral separation analysis carried out using a genetic algorithm to 

determine the optimum band combination to separate between bare substrate and bio-substrate 

dominated habitats for each spectral metric.  Each test was carried out five times using 74 spectral 

signatures from the library. Best results in bold. 

Spectral 

metric 

Bands 

tested 

Optimal 

bands 
‘R’ statistic        p-value Occurrences 

1 - 17 4, 17 0.683745  <0.001 4 / 5 
SA 

1 – 9 4, 9 0.465046  <0.001 5 / 5 

1 - 17 4, 15, 17 0.935240 <0.001 5 / 5 
SCA  

1 – 9 1, 2, 3, 9 0.805661 <0.001 5 / 5 

1 - 17 1, 3 0.654422 <0.001 3 / 5 
SGA  

1 – 9 1, 3 0.654422 <0.001 5 / 5 

1 - 17 4, 17 0.497661 <0.001 1 / 5 
SID 

1 – 9 4, 5 0.376518 <0.001 5 / 5 

1 - 17 16, 17 0.651613 <0.001 2 / 5 
SID(TAN) 

1 – 9 4, 9 0.385004 <0.001 5 / 5 

1 - 17 4, 10, 11 0.528787 <0.001 2 / 2 
SID(SIN ) 

1 – 9 4, 9 0.383069 <0.001 5 / 5 
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The nMDS plots of the complete data set, with no spectral separation optimisation, and 

the top two optimisation results clearly demonstrated the effect of the optimisation with 

tighter within class sample groupings and improved ‘R’ values (i.e. closer to the ideal 

value of one) (Figure 4-13).   
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Figure 4-13:  Results of the spectral separation analysis carried out using a genetic algorithm to 

determine the optimum band combination to separate between bare substrate (□) and bio-substrate 

(∆) dominated habitats. nMDS plots were constructed for the optimal spectral metric, spectral 

correlation angle (SCA), using bands 1 – 17 (A) and the two best band/metric combinations, the 

SCA (B) and the spectral angle (SA) (C).  nMDS plots were constructed for the optimal spectral 

metric, spectral correlation angle (SCA), using bands 1 – 9 (D) and the two best band/metric 

combinations, the SCA (E) and the spectral gradient angle (SGA) (F). All analyses were carried out 

using 101 spectral signatures from the library. 
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The bio-habitat samples that overlapped with the bare substrate samples were mostly 

Halophila ovalis signatures, which always included a significant sand component due to 

the typical growth habit of this seagrass species (Figure 4-7).  It should also be noted 

that the nMDS plot for the spectral gradient angle data, based on the first nine bands, 

had a high stress value, indicating that the two-dimensional representation of the data 

was poor and that the separation indicated by the ‘R’ value of 0.654, exists in 

multidimensional space. 

4.3.3.2 Level 2 – Macroalgae/Seagrass/ Coral 

The greatest overall separation was achieved, at Level 2, between macroalgae, seagrass 

and coral using spectral correlation angle and HyMap  image bands 4, 6, and 9 (500.1 

nm, 530.7 nm and 576.3 nm, respectively), with an ‘R’ value of 0.844 (Table 4-6).  The 

nMDS plots showed a clear delineation of coral and only a slight overlap of macroalgae 

and seagrass samples in the optimised solutions, with a significant improvement in 

separation compared to the raw data (Figure 4-14).  Closer examination of these 

overlapping samples revealed that most of them were green foliose algae (Chlorophyta) 

and unidentified turf algae.  There was no significant effect from restricting the analysis 

to the first nine image bands, as the optimal bands generally occurred within this 

restricted range.  The spectral gradient angle was found to provide the lowest level of 

separation with an optimal ‘R’ value of only 0.152 (Table 4-6).  All of the optimal 

solutions, with the exception of the SGA, were obtained in all five optimisation runs, 

indicating that the genetic algorithm was converging on a global, rather than a local,  

maximum. 
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Table 4-6: Results of the spectral separation analysis carried out using a genetic algorithm to 

determine the optimum band combination to separate between macroalgae, seagrass and coral 

dominated habitats for each spectral metric.  Each test was carried out five times using 74 spectral 

signatures for the library. Best results in bold.  

Spectral 

metric 

Bands 

tested 

Optimal 

bands 
‘R’ statistic        p-value Occurrences 

1 - 17 4, 6, 10, 11 0.684107  <0.001 5 / 5 
SA 

1 – 9 7, 9 0.647195  <0.001 5 / 5 

1 - 17 4, 6, 9 0.844120 <0.001 5 / 5 
SCA  

1 – 9 4, 6, 9 0.844120 <0.001 5 / 5 

1 - 17 1, 2 0.152039 0.001 4 / 5 
SGA  

1 – 9 1, 2 0.152039 <0.001 5 / 5 

1 - 17 4, 6, 10, 11 0.603431 <0.001 5 / 5 
SID 

1 – 9 7, 9 0.620409 <0.001 5 / 5 

1 - 17 4, 6, 10, 11 0.634592 <0.001 5 / 5 
SID(TAN) 

1 – 9 7, 9 0.629725 <0.001 5 / 5 

1 - 17 4, 6, 10, 11 0.633844 <0.001 5 / 5 
SID(SIN ) 

1 – 9 7, 9 0.629528 <0.001 5 / 5 

4.3.3.3 Level 3 – Canopy/Algal turf 

The spectral angle (SA) provided the greatest degree of separation between canopy and 

turf algae, at Level 3 of the classification scheme, with an ‘R’ value of 0.792 using 

HyMap bands 6, 7 and 8 (530.7 nm, 546.3 nm and 561.4 nm, respectively) (Table 4-7). 

These bands were determined to be the best band combination in 7 out of 12 separation 

analysis results and achieved an ‘R’ value of 0.786 using SID(TAN) when analysis was 

carried out using bands 1 – 17 (Figure 4-14).  With the exception of the SGA metric, all 

the metrics resulted in ‘R’ values greater than 0.71 at a significance <0.001.  It should 

be noted that for the optimisation analyses carried out using HyMap bands 1 – 17, none 

of the optimal results were achieved in all five replicate analyses, and in the case of the 

SCA, the optimal result was never achieved, as demonstrated by the improved result 

achieved by the analysis carried out on the first nine bands (Table 4-7).  A significant 

improvement was achieved using the optimisation analysis, illustrated by the tighter 
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grouping of the sample points and improved ‘R’ value between the analysis of all 

HyMap bands and the optimal solution, 0.532 and 0.792, respectively (Figure 4-15).   
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Figure 4-14: Results of the spectral separation analysis carried out using a genetic algorithm to 

determine the optimum band combination to separate between macroalgae (♦), seagrass (○) and 

coral (◊) dominated habitats. nMDS plots were constructed for the optimal spectral metric, spectral 

correlation angle (SCA), using bands 1 – 17 (A) and the two best band/metric combinations, the 

SCA (B) and the spectral angle (SA) (C).  nMDS plots were constructed for the optimal spectral 

metric, spectral correlation angle (SCA), using bands 1 – 9 (D) and the two best band/metric 

combinations, the SCA (E) and the spectral angle (SA) (F). All analyses were carried out using 74 

spectral signatures for the library.  
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Table 4-7: Results of the spectral separation analysis carried out using a genetic algorithm to 

determine the optimum band combination to separate between canopy and turf algae dominated 

habitats for each spectral metric.  Each test was carried out five times using 74 spectral signatures 

for the library.  Best results in bold. 

Spectral 

metric 

Bands 

tested 

Optimal 

bands 
‘R’ statistic        p-value 

Occurrences 

1 - 17 6, 8 0.785458  <0.001 2 / 5 
SA 

1 – 9 6, 7, 8 0.792431  <0.001 5 / 5 

1 - 17 1, 6, 8 0.712286 <0.001 2 / 5 
SCA  

1 – 9 4,5,9 0.733485 <0.001 3 / 5 

1 - 17 6, 14 0.138973 <0.001 4 / 5 
SGA  

1 – 9 1, 2 0.074004 <0.05 5 / 5 

1 - 17 6, 7, 8 0.782868 <0.001 1 / 5 
SID 

1 – 9 6, 7, 8 0.782868 <0.001 5 / 5 

1 - 17 6, 7, 8 0.786376 <0.001 2 / 5 
SID(TAN) 

1 – 9 6, 7, 8 0.786376 <0.001 5 / 5 

1 - 17 6, 7, 8 0.786343 <0.001 2 / 5 
SID(SIN ) 

1 – 9 6, 7, 8 0.786343 <0.001 5 / 5 

4.3.3.4 Level 4 – Posidonia/Amphibolis 

No spectral metric was able to achieve an ‘R’ value greater than 0.5 between Posidonia 

and Amphibolis species of seagrass.   The SID achieved the greatest separation with an 

‘R’ value of 0.475 , when analysed using HyMap bands 1 – 17 and determined that the 

best band combination was 13 and 15 (637.6 nm and 667.6 nm, respectively) (Table 

4-8).  However the SA, SID(TAN) and SID(SIN) metrics also achieved comparable 

results using the same band combination.  All results for the analysis carried out using 

only the first nine HyMap bands were <0.2 and all but one, that for SCA using bands 1 

and 6, were statistically insignificant (Table 4-8).   Although the results indicated that 

separation of these habitat components would be difficult based solely on their spectral 

signatures, there was still an improvement on the separation resulting from the 

optimisation analysis (Figure 4-16). 
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Table 4-8: Results of the spectral separation analysis carried out using a genetic algorithm to 

determine the optimum band combination to separate between Posidonia and Amphibolis 

dominated habitats for each spectral metric.  Each test was carried out five times using 24 spectral 

signatures for the library.  Best results in bold. 

Spectral 

metric 

Bands 

tested 

Optimal 

bands 
‘R’ statistic        p-value Occurrences 

1 - 17 13, 15 0.472842  <0.001 5 / 5 
SA 

1 – 9 1, 2 0.111520  <0.05 4 / 5 

1 - 17 1, 13, 15 0.444030 <0.001 5 / 5 
SCA  

1 – 9 1, 6 0.194910 <0.05 5 / 5 

1 - 17 6, 9, 17 0.065987 0.059 1/ 5 
SGA  

1 – 9 7, 8, 9 0.053263 0.110 5 / 5 

1 - 17 13, 15 0.474525 <0.001 5 / 5 
SID 

1 – 9 1, 2 0.111625 0.030 5 / 5 

1 - 17 13, 15 0.473684 <0.001 5 / 5 
SID(TAN) 

1 – 9 1, 2 0.111836 0.031 5 / 5 

1 - 17 13, 15 0.473684 <0.001 5 / 5 
SID(SIN ) 

1 – 9 1, 2 0.111836 0.029 5 / 5 

4.3.3.5 Level 4 – Ecklonia/Sargassum/Scytothalia doryocarpa 

The separability of the three main canopy algae, Ecklonia radiata, Sargassum and 

Scytothalia doryocarpa, was greater than was achieved for seagrass (Table 4-9).  The 

greatest separation was achieved using the SCA metric with bands 3 and 5 (530.7 nm 

and 546.3 nm, respectively; R = 0.611), and all other metrics, with the exception of the 

SGA, had ‘R’ values around 0.48. As has been observed previously, the best result was 

achieved using the restricted band set as an input, which may indicate that the genetic 

algorithm was becoming stuck on local maxima and not achieving the global maximum 

when using the complete band set.  The improvement in the separation achieved using 

the optimisation algorithm was clearly demonstrated by the tighter groupings of samples 

within each group observed in the nMDS plots of the optimised results, compared to the 

plot of original data, which only achieved an ‘R’ value of 0.048 (Figure 4-17). 
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Table 4-9: Results of the spectral separation analysis carried out using a genetic algorithm to 

determine the optimum band combination to separate between Ecklonia, Sargassum and S. 

doryocarpa dominated habitats for each spectral metric.  Each test was carried out five times using 

23 spectral signatures for the library.  Best results in bold.  

Spectral 

metric 

Bands 

tested 

Optimal 

bands 
‘R’ statistic        p-value Occurrences 

1 - 17 6, 7 0.484790  <0.001 1 / 5 
SA 

1 – 9 6, 7 0.484790  <0.001 4 / 5 

1 - 17 9, 10, 11 0.408331 <0.001 2 / 5 
SCA  

1 – 9 3, 5 0.611263 <0.001 5 / 5 

1 - 17 6, 7, 8, 9, 15 0.137024 <0.05 3/ 5 
SGA  

1 – 9 6, 7 0.123596 0.079 5 / 5 

1 - 17 5, 6, 8 0.445053 <0.001 4 / 5 
SID 

1 – 9 6, 7 0.488627 <0.001 5 / 5 

1 - 17 6, 7 0.487942 <0.001 1 / 5 
SID(TAN) 

1 – 9 6, 7 0.487942 <0.001 5 / 5 

1 - 17 6, 7 0.487942 <0.001 1 / 5 

SID(SIN ) 1 – 9 

 
6, 7 0.487942 <0.001 5 / 5 

4.3.3.6 Level 4 – Algal turf  

Some level of separation was achieved between the four main habitat components that 

made up the algal turf class, namely coralline, foliose green, foliose brown and foliose 

red algae.  The greatest separation was achieved using the SCA, followed by the SA, 

with ‘R’ values of 0.870 and 0.672, respectively (Table 4-10).  In both cases the nMDS 

plots indicate that the only samples that were difficult to separate were foliose red and 

coralline algae (Figure 4-18).   

4.3.4 Testing the classification algorithm using mixture analysis 

The accuracy of the classification algorithm was tested for levels 2, 3 and 4 in just the 

bio-substrate class in the classification algorithm.  The overall accuracy of the algorithm 

at Level 2, between seagrass, coral and macroalgae habitats, was 87% and the kappa 

and tau coefficients were 0.87 and 0.82, respectively (Table 4-11).  Both seagrass and 
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coral had user’s accuracies of almost 100%.  Macroalgae had a lower user’s accuracy of 

74%, with there being some confusion with both coral and seagrass habitats. 

Table 4-10: Results of the spectral separation analysis carried out using a genetic algorithm to 

determine the optimum band combination to separate between coralline, foliose green, foliose 

brown and foliose red algae dominated habitats for each spectral metric.  Each test was carried out 

five times using 14 spectral signatures for the library.  Best results in bold.  

Spectral 

metric 

Bands 

tested 

Optimal 

bands 
‘R’ statistic        p-value Occurrences 

1 - 17 8, 9, 10 0.671831  <0.001 1 / 5 
SA 

1 – 9 5, 7 0.607042 <0.05 5 / 5 

1 - 17 3, 7, 9 0.870423 <0.001 4 / 5 
SCA  

1 – 9 3, 7, 9 0.870423 <0.001 5 / 5 

1 - 17 1, 6 0.304225 <0.05 3 / 5 
SGA  

1 – 9 1, 6 0.304225 <0.05 5 / 5 

1 - 17 8, 10 0.629577 <0.05 1 / 5 
SID 

1 – 9 5, 7 0.600000 <0.05 5 / 5 

1 - 17 8, 9, 10 0.653521 <0.001 2 / 5 
SID(TAN) 

1 – 9 5, 7 0.601408 <0.05 5 / 5 

1 - 17 8, 9, 10 0.652113 <0.001 2 / 5 
SID(SIN ) 

1 – 9 5, 6, 7 0.601408 <0.001 3 / 5 

Table 4-11: Error matrix for the classification on seagrass, coral and macroalgae mixed signatures. 

 Reference class   

Mapped class Seagrass Coral Macroalgae 
User’s 

accuracy 

Seagrass 2 897 0 71 98 % 

Coral 0 2 532 15 99 % 

Macroalgae 479 699 3 307 74 % 

Producer’s accuracy 86 % 78 % 97 %  

At Level 3 of the classification scheme the only split is that of the macroalgae habitat 

class into either the canopy or algal turf class.  The overall accuracy of this split was 

81% and the tau coefficient was 0.67.  The highest producer’s accuracy was 92% for 

algal turf, while the user’s accuracy was greater for canopy algae (90%) (Table 4-12). 
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Figure 4-15: Results of the spectral separation analysis carried out using a genetic algorithm to 

determine the optimum band combination to separate between canopy (○) and turf (*) algae 

dominated habitats. nMDS plots were constructed for the optimal spectral metric, spectral 

information divergence – tangent spectral angle (SID x TAN(SA)), using bands 1 – 17 (A) and the 

two best band/metric combinations, the SID x TAN(SA) (B) and the SID x SIN(SA) (C).  nMDS 

plots were constructed for the optimal spectral metric, spectral angle (SA), using bands 1 – 9 (D) 

and the two best band/metric combinations, the SA (E) and SID x TAN(SA) (F). All analyses were 

carried out using 74 spectral signatures for the library. 
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Figure 4-16:  Results of the spectral separation analysis carried out using a genetic algorithm to 

determine the optimum band combination to separate between Posidonia (x) and Amphibolis (●) 

seagrass dominated habitats. nMDS plots were constructed for the optimal spectral metric, spectral 

information divergence (SID), using bands 1 – 17 (A) and the two best band/metric combinations, 

the SID (B) and the SID x TAN(SA) (C).  nMDS plots were constructed for the optimal spectral 

metric, spectral correlation angle (SCA), using bands 1 – 9 (D) and the two best band/metric 

combinations, the SCA (E) and SA (F). All analyses were carried out using 24 spectral signatures 

for the library. 
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Figure 4-17:  Results of the spectral separation analysis carried out using a genetic algorithm to 

determine the optimum band combination to separate between Ecklonia radiata (+) and Sargassum 

spp. (∆) and S. doryocarpa (□) dominated habitats. nMDS plots were constructed for the optimal 

spectral metric, spectral information divergence – tangent spectral angle  (SID x TAN(SA)), using 

bands 1 – 17 (A) and the two best band/metric combinations, the SID x TAN(SA) (B) and the SA 

(C).  nMDS plots were constructed for the optimal spectral metric, spectral correlation angle (SCA), 

using bands 1 – 9 (D) and the two best band/metric combinations, the SCA (E) and SID(SIN)(SA) 

(F). All analyses were carried out using 23 spectral signatures for the library. 
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Figure 4-18:  Results of the spectral separation analysis carried out using a genetic algorithm to 

determine the optimum band combination to separate between coralline (○), foliose green (+), 

foliose brown (*) and foliose red (●) algae dominated habitats. nMDS plots were constructed for the 

optimal spectral metric, spectral correlation angle (SCA), using bands 1 – 17 (A) and the two best 

band/metric combinations, the SCA (B) and the SA (C).  nMDS plots were constructed for the 

optimal spectral metric, SCA, using bands 1 – 9 (D) and the two best band/metric combinations, the 

SCA (E) and SA (F). All analyses were carried out using 14 spectral signatures for the library. 
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There appeared to be a significant level of confusion with 31 % of canopy algae 

signatures being misclassified as algae turf. 

Table 4-12: Error matrix for the classification on canopy algae and algal turf mixed signatures 

 Reference class 

Mapped class Canopy algae Algal turf User’s accuracy  

Canopy algae 3 427 395 90 % 

Algal turf 1 555 4 623 75 % 

Producer’s accuracy 69 % 92 %  

The overall accuracy of the algorithm in being able to determine if a seagrass signature 

was dominated by either Posidonia or Amphibolis species was 68%, with a tau 

coefficient of 0.5, indicating that overall chance agreement contributed almost 20% of 

the overall accuracy.  The producer’s accuracy was greater for Posidonia (82%) than 

Amphibolis (54%) (Table 4-13).  This indicates that if a signature was identified as 

being dominated by Posidonia then there was high probability that it was correct.  

However, if it was identified at being dominated by Amphibolis, then there was an 

almost equal probability that it was actually Posidonia. 

Table 4-13: Error matrix for the classification on Posidonia and Amphibolis mixed signatures. 

 Reference class 

Mapped class Posidonia Amphibolis User’s accuracy  

Posidonia 4 025 2 319 63 % 

Amphibolis 894 2 762 76 % 

Producer’s accuracy 82 % 54 %  

The overall accuracy of canopy algae signatures being classified as either E. radiata, 

Sargassum or S. doryocarpa was 59%.  The highest producer’s accuracy was for 

Sargassum (91%) and the highest user’s accuracy was S. doryocarpa (82%) (Table 

4-14).  The tau coefficient was 0.46 which indicates that at this level the classification 
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has an almost equal chance of misclassifying a pixel as it does of determining the 

correct classification.    

Table 4-14: Error matrix for the classification on E. radiata, Sargassum spp. and Scytothalia 

doryocarpa mixed signatures. 

 Reference class   

Mapped class E. radiata Sargassum S. doryocarpa User’s accuracy 

E. radiata 1 030 265 1 042 44 % 

Sargassum 1 905 3 086 521 56 % 

S. doryocarpa 352 32 1 767 82 % 

Producer’s 

accuracy 
31 % 91 %  53 % 

 

The division of the algal turf class into its components, coralline algae, red, green and 

brown foliose algae, had the lowest overall accuracy (32%) and a tau coefficient of 

0.19.  However if the two classes, coralline and red foliose were combined (both 

belonging to Rhodophyta) then the overall accuracy was 63%, an almost two-fold 

increase.  The producer’s accuracy for coralline algae was the greatest (73%), while the 

brown foliose algae had the lowest at 7% (Table 4-15).  The results indicated that 

identifying these components was not feasible using the spectral data in the visible 

region. 

Table 4-15: Error matrix for the classification on algal turf mixed signatures 

 Reference Class    

Mapped class Coralline Red Green Brown User’s accuracy 

Coralline 1 850 519 106 989 53 % 

Red 84 407 1 532 867 14 % 

Green 563 1 566 732 446 22 % 

Brown 28 37 99 175 52 % 

Producer’s accuracy 73 % 16 % 30 % 7 %  
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Based on the results of the spectral separation analysis and the testing of the 

classification algorithm using synthetic signatures, a subset of the complete habitat 

classification scheme described in Chapter 2 was used to classify the hyperspectral 

images (Figure 4-19).   The limestone class was not included due to the very low 

number of spectral signatures in the library.  This also applied to Scythothalia 

doryopcarpa together with the observation that this species very rarely dominated pixel 

sized areas at Rottnest Island.  The four subclasses of the algal turf habitat type were not 

used due to the low accuracies achieved in testing the classification algorithm at that 

level.  Halophila seagrass was not used as it very rarely occurs at a spatial scale that 

will be detected in an image pixel; it often occurs on the margins of seagrass meadows 

of other genera and has a spectral signature highly influenced by bare substrate. 
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Figure 4-19:  Summary of the levels within the original habitat classification scheme which were 

used to classify the hyperspectral imagery in the following chapter.  The habitats types highlighted 

in grey were used as part of the classification process and the remainder were grouped under the 

next level up in the hierarchy. 
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4.4 Discussion 

4.4.1 Spectral library 

The development of a spectral library of the dominant marine benthic macroalgae, 

seagrass, coral and bare substrate types formed the basis for using remotely-sensed 

hyperspectral data to classify marine benthic habitats at Rottnest Island.  The 

development of the library required the underwater collection of spectral reflectance 

data for the dominant benthic plant and coral species and bare substrate types, i.e. 

habitat components, and the processing of that data to create a spectral library.  The 

spectral library was used to determine the spectral separability of the various habitat 

components and also to identify which algorithms and classification techniques were 

best suited to obtaining the optimal classification results based solely on the spectral 

data (Hochberg and Atkinson 2000).  The results presented here allowed the library to 

be used as the core input for hyperspectral image processing to facilitate identification 

of benthic habitat components based on whichever was dominant within each pixel in 

the image. 

The collection of the in situ data for the spectral library for the dominant components of 

the benthic substrates of Rottnest Island Reserve was carried out using similar 

techniques to those of Hochberg and Atkinson (2003).  This method was chosen as it 

provided a cost-effective and reliable method for the collection of reflectance data.  

However, it does have a number of shortcomings that needed to be accounted for when 

processing the data and could be avoided using a more sophisticated, and expensive, 

spectrometer setup.  These shortcomings include the changes in the downwelling light 

field between the capture of the upwelling radiance from the target and the capture of 

the downwelling irradiance from the Teflon reflectance panel.  Although every attempt 



 

145 

was made to minimise the time delay between the capture of these two readings, there 

was always the inherent variation in the underwater light field, which could often 

change faster than the measurement pairs could be captured.  One possible solution to 

this problem is to use a dual channel spectrometer which would capture the upwelling 

and downwelling measurements at the same time, thus completely removing any effect 

of the temporal variation in the underwater light field.  This study has made an effort to 

remove any effects of the variable light field by using the average downwelling 

irradiance across the ten replicates taken for each sample.  This approach was taken as 

visual inspection of the data indicated that the effect of the variable underwater light 

field was significantly greater on measurements taken over the highly reflective Teflon 

panel and than those taken over most benthic substrates. 

The spectral signatures collected in this study appear to have features comparable to 

spectral signature data collected elsewhere, even those which used different collection 

methods, such as Fyfe (2003), who measured the spectral reflectance out of the water.   

The reflectance signature for bare sand collected for this study did exhibit less spectral 

shape than  signatures collected at the Great Barrier Reef and Hawaii (Hochberg et al. 

2003, Kutser et al. 2003).  The reflectance signatures for sand in this study have much 

less defined spectral features, maximum at ~650 nm and minimum at ~670 – 680 nm, 

than those recorded in the other studies.  The signatures did match carbonate sand 

signatures collected by Louchard et al. (2002), in the Bahamas, and also other 

sediments that had some level of pigments, including chlorophyll, in the sediment.  This 

may explain the slight absorption feature at ~650 nm, and an increase in reflectance into 

the near-infrared. 
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The signatures for both the seagrass and macroalgae collected in this study compare 

favourably with those collected elsewhere (Fyfe 2003, Hochberg et al. 2003, Kutser et 

al. 2003).  The signatures for all the bio-substrate habitat components all exhibited the 

characteristic feature of all chlorophyll containing organisms, the ‘red edge’ which has 

been documented in seagrass and marine algae reflectance signature recorded elsewhere 

in the world (Hochberg et al. 2003, Kutser et al. 2003, Thorhaug et al. 2007).  The ‘red 

edge’ is a feature of the reflectance signature of all chlorophyll containing organisms 

and is where the reflectance of light in the red region exhibits strong absorbance 

followed by a rapid increase in the reflectance of light in the near-infrared, with the 

reflectance minimum often occurring around 680 nm.  It is caused by the red part of the 

spectrum (~680 nm) being strongly absorbed by the chlorophyll in leaf and the near-

infrared wavelength being mostly reflected as a result of scattering within the leaf itself 

(Slaton et al. 2001, Sims and Gamon 2002, Thorhaug et al. 2007).  The position of the 

‘red edge’ has been found to correlate with the chlorophyll content of the leaves, and in 

the case of seagrass, has been found to shift in relation to senescence and in response to 

changes in salinity of the water column (Thorhaug et al. 2006, 2007).  The differences 

observed between the seagrass and macroalgae signatures were most likely due to the 

variations in chlorophyll content and other accessory pigments, in combination with the 

structural characteristics of their leaf (frond) morphology and structure (Thorhaug et al. 

2007).  As noted by these authors, more work needs to be conducted to fully understand 

the effects on the spectral reflectance of the varying combination of pigments, 

morphological and structural characteristics of marine plants. 

As noted by Kutser et al. (2003), many of the obvious spectral features in the these 

plant spectral signatures were found at wavelengths >550 nm, which can present 
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problems when using this information in image classification as the light at these longer 

wavelengths (i.e. the red portion of the spectrum) is absorbed strongly by water, 

resulting in limited, and often unreliable, image data at these wavelengths.  The 

combination of these obvious differences in spectral signatures often occurring at the 

red end of the visible spectrum and the commonly limited image data available is a 

primary reason for conducting spectral separability analysis to make the best use of the 

available data in order to classify image data. 

4.4.2 Spectral separability analysis 

The nature of hyperspectral data results in large numbers of continuous bands leading to 

significant data redundancy due to high levels of correlation between bands (Landgrebe 

2003).  This means that techniques that reduce the dimensionality of the data are often 

carried out as part of data analysis for classification (Robila 2005).   Many of these 

techniques focus on reducing the number of bands prior to classification, a process 

which can often increase the accuracy of the classifications, and reduce the likelihood of 

false positives resulting from the algorithms over-fitting the data.  This means 

determining which wavelengths or image bands best discriminate between the spectral 

signatures of different classes, while at the same time maximising the spectral similarity 

within classes.  By minimising the number of bands processed not only is classification 

accuracy increased but processing time can be reduced for these very large data sets.   

Hochberg and Atkinson (2000) collected in situ spectral reflectance signatures of  three 

corals, five algal species, and three sand types on coral reefs in Kaneohe Bay, Oahu, 

Hawaii, to determine their spectral  separability.  They used the fourth derivatives, in 

combination with linear discriminant function analysis to separate three main classes, 
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coral, algae and sand, in their hyperspectral data.  This information was used to 

demonstrate that it was possible to map the spatial extent of these benthic covers, with a 

reasonable level of accuracy, based on in-situ spectral information.   In a similar study, 

Hochberg and Atkinson (2003) analysed the separability of coral, algae and bare sand 

using linear discriminant function analysis and achieved classification accuracies of up 

to 98% when identifying in situ reflectance signatures, using a linear discriminant 

function algorithm trained on a subset of the in situ data. 

Karpouzli et al. (2004) conducted a study in the western Caribbean, using in situ 

spectral signatures of coral, algae, seagrass and sediments, and determined that they 

could be separated with the greatest accuracy using hyperspectral data, which allowed 

for derivatives to be calculated because of the large number of data points.  Minghelli-

Roman et al. (2002) used a different approach to discriminate between the reflectance 

spectra of a 14 different coral genera in the Red Sea.  They used the absolute 

reflectance, the slope and wavelength ratios in combination with the Tukey-Kramer test 

to determine the separability of the different genera.  They indicated that these 

overcame the problems of varying light levels by focussing on the shape of the spectra 

rather than the intensity.  However, neither Karpouzli (2004) or Minghelli-Roman 

(2002) applied their results directly to the classification  of image data.  

Studies were carried out by Holden and LeDrew (1998, 2000) to determine the spectral 

separability of in situ spectra collected from coral reefs in Fiji and Indonesia.  Both 

studies used principal component and derivative analyses as the means for determining 

how separable the different benthic components were.  The Fijian study also used a 

cluster analysis to group the spectra using no a priori information about the grouping of 
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the data.  This approach provided information about how the spectra grouped based 

solely on their spectral characteristics.  The Fijian study determined that healthy and 

bleached corals had distinct spectral signatures and the Indonesian study indicated that 

healthy corals, bleached corals, macroalgae, rubble and sand could be differentiated 

with reasonable accuracies, based on their spectral signatures.  Neither study 

demonstrated a means of applying their results to image classification. 

Fyfe (2003) studied the spectral separability of a number of common seagrass species 

found in estuaries along the south-eastern coast Australia using a multivariate approach 

with the Bray-Curtis coefficient as a measure of similarity between spectral signatures 

of the various seagrass species.  The similarity matrices generated were analysed using a 

combination of non-metric multidimensional scaling, ANOSIM and SIMPER within the 

Primer software, to determine their separability along with the statistical significance of 

those bands (wavelengths) in the spectral data which made the greatest contributions to 

these separations.  This approach shares many similarities with that taken in this study, 

but rather than use similarity measures that have been specifically developed for 

spectral analysis, such as the spectral angle, Fyfe used the Bray-Curtis coefficient, 

which is generally applied to ecological assemblage data (Clarke et al. 2006).   

Although all the approaches to spectral separability analysis discussed above have 

resulted in gaining a greater understanding of the spectral separability of the habitat 

components being studied, many have failed to provide a direct means to apply their 

results to image data.  The analysis carried out in this study attempted to take many 

aspects of work previously undertaken and integrate them with more appropriate 

spectral metrics, as measures of similarity between spectral signatures.  They then 
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provide a framework for classifying hyperspectral images based on spectral signatures 

of the dominant habitat components contained in a spectral library. 

The results of this study demonstrate that the spectral signatures of the habitat 

components that typically dominate the marine benthic habitats of Rottnest Island can 

be differentiated based on their spectral signatures.  Use of an optimisation approach, 

based on a genetic algorithm, enabled the simultaneous determination of both the best 

spectral metric and image band combination to identify pixels dominated by the 

particular habitat component at a pre-defined classification level.  Added to this, the 

approach taken was hierarchical, allowing the analysis to follow the structure of the 

habitat classification scheme and take advantage of this known ecological structural 

within marine benthic habitats.   

This study has found that, although the spectral angle and the spectral correlation angle 

metrics performed best overall, there is justification for using all the metrics tested in 

the analysis of the spectral data for benthic habitat mapping in appropriate situations.   

The spectral gradient angle was the worst performer, only providing reasonable 

separation for one analysis, a result which agrees with the findings of  Robilla and 

Gersham (2005).  Although Du et al. (2004) determined that the two metrics that 

combined the spectral angle and the spectral information divergence provided increased 

performance over either metric on its own, this was not so for the Rottnest data set, 

where the performances of all four metrics were often similar. 

Although the inclusion of both first and second order derivatives in spectral separation 

analysis has been shown to improve the separability of different classes based on their 

spectra (Karpouzli et al. 2004), they were not included in the analysis carried out for 
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this study.  The reason for this was that there was no means available to use derivatives 

when classifying the image, often due to the limited image bands that contained reliable 

data.  In future work, the inclusion of the derivatives in the classification process, for 

pixels in the image with sufficient data, could provide increased accuracy in the 

classification results and the ability to classify habitats to a higher level in the 

classification scheme. 

The multivariate approach used in this study while, in essence, similar to the analyses 

carried out by Fyfe (2003), took a slightly different approach to answer the same 

question, namely, which is the best method to separate benthic habitats based on their 

spectral signatures. By taking a multivariate approach that was able to use all relevant 

spectral signatures from the library in each analysis, the natural spectral variability 

within each habitat component was accounted for.  This, in combination with testing six 

spectral metrics to measure the discrepancy between pairs of spectra, allowed for the 

greatest level of flexibility in classifying data.  This is an important feature when 

applying this approach to image data which does not always have reliable reflectance 

data for all image bands, largely as a result of varying depth and sea conditions. 

The classification algorithm developed, in response to the results of the spectral 

separability analysis, provided the ability to utilise the entire spectral library to classify 

the hyperspectral imagery in a hierarchical manner, as defined by the habitat 

classification scheme.  The accuracy of the classification algorithm when identifying the 

dominant habitat component in a mixed signature indicated that it provided a reliable 

tool for identifying the benthic habitats at Rottnest Island.   The results of the accuracy 

assessment also provided the user with guidance when interpreting image classification 
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results generated by the algorithm.  For example, the results indicated that there was 

often confusion when a macroalgae dominated signature was further classified as algal 

turf, with a significant proportion of those actually being canopy algae, whereas when 

classified as canopy algae, only a small proportion were  actually algal turf.  This means 

that in the image classification results there was likely to be an over estimation of the 

algal turf habitats and potential users of the habitat maps can be made aware of the 

possible confusion.  

The overall result of the creation of the spectral library and the subsequent spectral 

separation analysis is a robust classification algorithm that can be used directly, in 

conjunction with the spectral library, to identify marine benthic habitats in hyperspectral 

imagery.  
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5 HyMap image classification for the benthic habitats of 

Rottnest Island 

5.1 Introduction 

In the past, the mapping of marine benthic habitats has been done using traditional field 

methods, which are both costly and labour intensive.  These methods can include the 

use of transects carried out by SCUBA divers, remotely operated vehicles (Parry et al. 

2003) or towed video (Kendall et al. 2005).  There has also been an increasing interest 

and research into the use of remotely sensed data to map marine benthic habitats.  One 

of the more recent developments is the availability of airborne hyperspectral data which 

can theoretically allow for benthic  habitats to be mapped to a higher taxonomic level 

than previously possible (Fyfe 2003).   One of the key requirements to be able to utilise 

the full potential of these data is to be able to correct the image for the confounding 

influence of the overlying water column, and thereby reveal the true spectral reflectance 

characteristics of the benthic habitats represented by each pixel (Mumby et al. 1998a, 

Green et al. 2000, Lesser and Mobley 2007). 

Reflectance data collected from the marine environment include light that has interacted 

with the atmosphere, the water, both on its passage from the surface to the seafloor, and 

again on the return journey to the sensor (See Figure 1-3).  These interactions result in 

variable changes to the radiance recorded for each pixel depending on factors including 

the depth (i.e. the thickness of the layer of water), the quality of the water, the sea-state 

and the bottom type that is reflecting the light back to the surface (Holden and LeDrew 

2002).  

Light which strikes the surface of the water column can be reflected by the surface, 

attenuated by or transmitted through the water column and, in the case of shallow 
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waters, reflected by the seafloor (Kirk 1994b, Holden and LeDrew 2002).   The surface 

of the ocean often acts as specular reflector and results in what is often referred to as 

sunglint (Goodman et al. 2008).  The attenuation of light by the water column is 

dependent on absorption and scattering.  The degree to which light is attenuated is 

directly linked to the main constituents of the water column, these being pure water, 

salt, suspended matter, yellow substance (or Gelbstoff) and chlorophyll (Jerlov 1976, 

Haltrin 1999).   

The attenuating effect of pure water on light is through absorption and can be 

considered invariant between different water bodies (Pope and Fry 1997).  The salt 

content of oceanic water has a negligible influence on the attenuation of light (Jerlov 

1976), but the concentration of suspended matter has a significant influence, most 

significantly through the process of scattering (Babin et al. 2003).  The process of light 

being scattered by suspended particles is not wavelength selective, and it affects light 

across the entire spectrum resulting in significant influence on the structure of the 

underwater light field (Jerlov 1976).  Added to this, the concentration of yellow 

substance, also referred to as Gelbstoff or Gilvin, has a significant influence on the level 

of light absorption, with the level of absorption increasing with decreasing wavelength 

(Jerlov 1976, Kirk 1976, Bricaud et al. 1981).  Yellow substance refers to the 

combination of dissolved and colloidal organic compounds present everywhere in the 

ocean, with higher concentrations occurring in regions of higher productivity.  The 

chlorophyll concentration is an indicator of the amount of phytoplankton present in the 

water column and can affect both the scattering and absorption of light (Haltrin 1999). 
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The absorption and scattering of light due to the factors mentioned above are considered 

inherent optical properties of water and are described by the absorption and angular 

scattering coefficients (Haltrin 1999).  In many cases it is not possible to determine 

these individually and the relationship can be simplified through the use of an apparent 

optical property of water, the diffuse attenuation coefficient (Kd) (Mishra et al. 2005a).  

The Kd is dependent on both the composition of the water and the structure of the 

ambient light field, although the former has a greater effect than the structure of the 

light field (Kirk 1994b, Mishra et al. 2005a).  The Kd can be derived both from remotely 

sensed imagery and in situ measurements, making it an useful measure to validate 

remotely sensed products (Kirk 1994a, Mishra et al. 2005a). 

These variable interactions of light have been investigated since the 1970s, to 

understand their effects, and also to correct imagery to minimise or remove these 

effects, with the ultimate aim of getting images that represent the true spectral 

characteristics of the seafloor cover (Goodman and Ustin 2007).  There have been a 

number of methods developed to correct for these variable effects on the reflectance 

signatures of the seafloor.  One on the earliest and most basic methods was developed 

by Lyzenga (1978, 1981) and uses the concept of band ratios to create a depth invariant 

bottom index.  The advantage of this approach is that for multi-spectral data (limited 

number of image bands) it can be easily implemented using many standard image 

processing software packages.     

Mumby et al. (1998a) used the Lyzenga method to correct CASI multi-spectral data, 

flown over the Turks and Caicos Islands, and achieved classification accuracies up to 

81% for nine coral reef habitats.  Benfield et al. (2007) used the Lyzenga method on 
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both Landsat ETM+ and Quickbird data from Pacific Panama, prior to successful 

habitat classification of a coral reef environment.  Tassan (1996) demonstrated that, 

although the Lyzenga method  had been validated in environments with clear water of 

uniform water quality, it could also be modified to achieve results in more turbid waters 

with non-uniform water quality.  However, for application to hyperspectral data the 

implementation becomes much more cumbersome, with the number of possible band 

ratios increasing with each additional image band.  A major disadvantage of this 

approach, which is especially relevant to hyperspectral data, is that the image data after 

the correction has been applied cannot be used in conjunction with a spectral library to 

identify the various bottom types. 

The development of high resolution hyperspectral sensors, such as HyMap, with 

numerous image bands in the visible spectral range, has led to research on developing 

methods to utilise these improved data to more accurately correct for the effects of the 

water column on the reflectance at the benthic surface.  These techniques were primarily 

aimed at closing the radiative transfer loop, which describes the effect of water on 

radiant energy passing through it, and allow for the inversion of the remotely sensed 

data to obtain, not only a corrected bottom reflectance signature, but also the water 

depth and the concentration of the major water constituents responsible for variation in 

light attenuation.  This approach provides a solution for generating results aimed at 

habitat mapping, as it generates information on the depth, which is often essential in 

defining accurate and ecologically relevant habitat classes, and the bottom reflectance 

corrected for the influence of the overlying water column. 
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Lee et al. (1998, 1999) developed a semi-analytical approach to deriving the depth and 

water properties by inverting the radiative transfer equation using an optimisation 

approach.  This approach was applied by Goodman and Ustin (2007) to AVIRIS 

hyperspectral data in Kaneohe Bay, Hawaii and they successfully corrected and 

classified the data to a maximum depth of 3 m.  They were able to extract depth values 

up to 20 m, but results indicated the un-mixing of the relative contributions of different 

bottom types (coral, sand and algae) were not reliable enough without further model 

calibration to classify the data from >3 m depth.  The marine benthic habitats of Jurien 

Bay, Western Australia, were mapped using HyMap hyperspectral data that was 

corrected to the influence of the water using an approach based on the Lee et al. (1998, 

1999) method, and successfully identified three main cover types, bare substrate, brown 

algae and seagrass (Klonowski et al. 2007).  

The Modular Inversion and Processing system (MIP) has been developed to provide 

complete data correction (atmospheric, sun-glitter and water corrections), and results in 

data on the depth and bottom reflectance for each pixel (Heege et al. 2004).  This 

system has been designed as a physics based process chain which links a series of 

modules together to recover the information directly from the data.  MIP has been tested 

extensively over a number of different water body types, including inland lakes, coral 

reefs and temperate marine environments. MIP was used to successfully map the water 

constituents, bathymetry and benthic coverage in Lake Constance (Heege and Fischer 

2004) and is being applied to hyperspectral data at Ningaloo Reef in tropical Western 

Australia (Kobryn et al. unpublished data). 
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Although it has been long accepted that even basic water correction, such as the 

Lyzenga method, can increase the final habitat classification accuracy, in order to use a 

classification approach based on a spectral library, the more  complex approaches that 

can provide corrected bottom reflectance signatures are needed (Mumby et al. 1998a, 

Goodman and Ustin 2007).  MIP is one of the few methods available that has achieved 

this aim.  Most previous work using hyperspectral data to classify marine benthic 

habitats has been restricted to shallow coral reef environments and freshwater systems, 

with reasonably clear water. There has been very little work conducted in temperate 

waters, due to the often poor water clarity of most temperate marine environments. This 

study will be one of the first application of hyperspectral data collected over optically-

deep temperate marine waters (due to the oligotrophic Leeuwin Current). 

The aim of this study is to generate habitat maps of the Rottnest Island Reserve (<15 m 

deep) that represent the dominant components at each level of the habitat classification 

scheme using a spectral library to classify the HyMap hyperspectral image data.  

5.2 Methods 

5.2.1 HyMap data collection and water correction 

Three flight lines of HyMap hyperspectral data were collected on the 26
th

 April 2004 by 

the HyVista Corporation (Figure 5-1) using a twin engine light aircraft, fitted with a 

HyMap sensor and flying at an altitude of 1600 m to record data at a ground resolution 

of 3.5 m.  The data were collected at 125 spectral bands ranging from 450 – 2480 nm, 

with an average spectral sampling interval of 15 nm. HyVista applied a geometric 

correction to enable the data to be geo-located within a GIS framework.  
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The atmospheric, sun-glint and water correction of the hyperspectral HyMap data was 

carried out by EOMAP, a remote sensing company based in Germany which provides 

standardised mapping products from remote sensing data, using the Modular Inversion 

and Processing System (MIP).  MIP uses a physics based process, with no external 

inputs, to extract from the data information on the water constituents, bathymetry, 

 

Figure 5-1: Three flight lines of uncorrected HyMap reflectance data for Rottnest Island, Western 

Australia, collected on 26
th

 April 2004. 

bottom cover type and bottom reflectance.  The architecture of the program combines a 

set of general and transferable computational methods in a chain, which connects the 

bio-physical parameters of the water column with the measured sensor radiances.  MIP 

converts the subsurface reflectance to bottom reflectance using equations of Albert and 

Mobley  (2003).  The depth is determined iteratively in combination with un-mixing of 

the bottom reflectance, with the final depth, bottom reflectance and coverage being 

retrieved when the residual error is at a minimum (Heege and Fischer 2004).  The 

Rottnest hyperspectral data were corrected using generic bottom cover types for bare 

sediment, light and dark submerged aquatic vegetation.  The signatures used as inputs 

were extracted directly from the image.  The outputs of the MIP processing were the 
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bottom reflectance values corrected for the water column, percent cover of bare 

sediment per pixel and submerged aquatic vegetation (light and dark), and other 

summary layers (Table 5-1). 

Table 5-1: The main data outputs from the MIP processing of the HyMap image data. (* indicates 

the data were used in the classification of the Rottnest Island image for benthic habitat mapping) 

MIP output  Description 

Bottom reflectance* 

A multi-band raster image with reflectance data that 

have been corrected for the influence of the water 

column  

Depth The depth calculated for each pixel 

Bare sediment cover* The percent cover of bare sediment for each pixel 

Light vegetation cover The percent cover of light vegetation for each pixel 

Dark vegetation cover The percent cover of dark vegetation for each pixel 

First band* 

The band number index of the first useable bottom 

reflectance image band resulting from the correction 

process for each pixel 

Last band* 

The band number index of the last useable bottom 

reflectance image band resulting from the correction 

process for each pixel 

5.2.2 Image classification for benthic habitat maps 

The bottom reflectance values, bare sediment cover, the first band and last band data 

were used as inputs into the image classification process.  The first and last bands were 

used to guide the classification algorithm to the most appropriate image band / spectral 

metric to use for each pixel.  Each flight-line was processed individually, prior to being 

geo-located, mosaiced and assessed for classification accuracy. The image classification 

was carried out hierarchically using the results of the spectral separability analysis 
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(Chapter 4) in conjunction with the abiotic variables to guide the classification 

algorithm and follow the hierarchical classification scheme. All image classification 

processing was carried out using a plug-in
1
 developed for the BEAM-VISAT software 

which is an open-source extensible framework for remote sensing image analysis 

(Brockmann Consult 2008).  The plug-in linked the spectral library (Chapter 4) to 

BEAM to enable the implementation of the classification algorithm, as described 

previously, by extracting the spectral signature for each pixel and identifying the 

dominant habitat component present.  The images were geo-located using geometric 

lookup tables provided by HyVista Corporation and mosaiced using the ENVI 4.2 

software package (RSI 2005). 

The data were first classified to Level 1 of the classification scheme to identify pixels 

dominated by bare substrate or bio-substrate, by using a threshold on the bare sediment 

cover data for each pixel using MIP output (Figure 5-2).  A histogram of the bare 

sediment cover data was created for regions <15 m depth using the digital bathymetry 

model for Rottnest Island Reserve (Chapter 3).  The data were classified using major 

breaks in the histogram as thresholds, and the accuracy of each classification was 

assessed using ground validation data to determine the best result.  The classification 

was used to mask out those pixels classified as bare substrate from further analysis.  

                                                 

1
 Plug-in was developed by D. Harvey to implement the algorithms developed as part of this thesis within 

the BEAM-VISAT framework. 
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The pixel-by-pixel spectral algorithm approach described in Chapter 4 was used to 

hierarchically determine the classification, defined as the dominant habitat component, 

of each pixel classified as bio-substrate for levels 2, 3 and 4 of the habitat classification 

scheme.  Each pixel was assigned a habitat class at each level of the classification 

scheme using the classification algorithm in combination with the complete spectral 

library.   

The classification at Level 2 was first classified using the spectral library and then the 

results were subjected to a second stage classification using decision rules based on 

abiotic variables to identify the intertidal reefs and re-assign misclassified pixels from 

all other classes (seagrass, macroalgae and coral)  (Figure 5-2).  Classifications for both 

Level 3 and 4 where based solely on the spectral classification algorithm. 

The decision rules for Level 2 were based on the digital bathymetry model (DBM) and 

the annual relative exposure index (REI) for the Rottnest Island Reserve (Chapter 3).  

Decision rules were applied separately to each of the four quadrants of the reserve using 

different rules for each sector.  Intertidal reefs were defined as regions where the depth 

in the DBM was above mean sea level (MSL) for all level two classes, except coral.  

Coral was excluded as the Pocillopora damicornis coral that occurs at Parker Point is 

found in very shallow water and may occur above MSL in the digital bathymetry model.  

The threshold for the REI was determined by examining the range of REI values where 

seagrass occurred in the validation data (see Section 5.2.3 for details) within each 

quadrant, where validation data existed.  

The classification process generated class maps for each level and also maps that 

represent the probability that a pixel belongs to each class, which is often a more 
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realistic view as at a pixel scale benthic habitats are rarely homogenous. As this process 

was hierarchical, the reference signatures used to refine the classification at each 

successive level were restricted to only those signatures that occured below the 

previously identified class in the habitat classification scheme.   

5.2.3 Validation of image classification 

5.2.3.1 Bathyscope validation data 

Validation of the classified images was conducted from a boat, using a bathyscope, to 

record the benthic habitat type at numerous locations within the bounds of the study 

area.  Data were collected at as many locations as possible around Rottnest Island, given 

the prevailing conditions and navigational hazards such as exposed reefs.   A Garmin 

GPSMap 185 Sounder, fitted with a differential GPS receiver, and a laptop computer 

were used to monitor the boat’s location and log ground validation data.  The boat’s 

position was monitored via a real time link between the GPS and ArcView 3.2 using the 

DNR Garmin extension (Minnesota Department of Natural Resources 2007) and 

enabled validation points to be recorded with the greatest accuracy possible.  For each 

validation point latitude, longitude, benthic habitat type, time, depth and estimated 

positional accuracy were stored in an ESRI shapefile format. 

Ground validation data were analysed using a method that incorporated the inherent 

positional uncertainty in both the hyperspectral imagery and the ground validation data.  

For each validation data point, a polygon, with a radius defined by its estimated 

positional error (EPE), was used to extract information about the classification of the 

pixels surrounding the point to assign a mapped class to the each point.   If a pixel with  
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Figure 5-2:  Decision tree used to classify the HyMap image data to Level 2 of the classification scheme. RSDPB = relative spectral discriminatory probability, REI 

= relative exposure index and MSL = mean sea level. 
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the correct classification was located within the polygon the validation point was 

identified as a correct classification (i.e. reference class = mapped class), and if not,  

then the most commonly occurring pixel classification within the polygon was allocated 

to the mapped class for inclusion in the error matrix (Figure 5-3). 

(D)(A)

EPE
VALIDATION POINT

(C)(B)

Class A Class B Class C

(D)(A)

EPE
VALIDATION POINT

(C)(B) (D)(D)(A)

EPE
VALIDATION POINT

(A)

EPE
VALIDATION POINT

(C)(C)(B)(B)

Class A Class B Class CClass AClass A Class BClass B Class CClass C

 

Figure 5-3:  Conceptual diagram of a validation point in relation to its estimated positional error 

(EPE) and the pixels of the classified image being assessed, with the dashed circle indicating the 

region of pixels being processed (A).  For a validation point which is defined as Class A in the 

validation data, (B) and (C) are examples of a correctly classified region and (D) represents a 

region validated as Class A, but incorrectly classified as Class B.  

These data were summarised into an error matrix and the overall, producer’s and user’s 

accuracies were calculated.  The kappa and tau coefficients were also calculated for 

each error matrix (See Chapter 4 for details).  The processing for the accuracy 

assessment was carried out using custom software developed around the StarSpan pixel 

extraction tool to extract data from raster images (Rueda et al. 2005).  The software uses 

polygon shapefiles, which represent the estimated positional error for each validation 

point, and the raster grids of the classified images to generate error matrices and 

calculate the accuracy measures described above. 

5.2.3.2 High resolution validation data 

Additional high spatial and thematic resolution validation data were collected as part of 

another study using a digital underwater drop camera system (Wildsmith et al. 2008).  

As these data were collected as part of a larger project there were insufficient data 
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collected within the RIR for quantitative accuracy assessment of these habitat 

classifications, however, they can be used to explore localised trends in the classified 

data to better understand how the classification algorithm performs.  An example was 

presented for two transects carried out in Geordie Bay.   

The system consisted of a digital video camera suspended in the water column via an 

electric winch to control the height above the substrate, an integrated depth sounder, to 

determine the field of view for the images captured, and a DGPS to obtain geo-location 

data.  The system was controlled by a computer onboard the boat that enabled the 

operator to capture images as the boat travelled along a transect.   The system collected 

quantitative data about the composition of the benthic substrates in a systematic fashion 

that mirrored the scale of an image pixel (i.e. 2.5 – 5 m).   

The percentage contribution of each benthic substrate type was determined using a point 

intercept method using points overlaid on each image as a spacing of 0.2 m.  The 

substrate under each point was identified and the percentage contribution for each type 

was calculated for each image (for a full description of the image capture and analysis 

system see Wildsmith et al. (2008)).   

5.3 Results 

5.3.1 Data collection pre-processing 

The three flight lines of HyMap data processed using the MIP System are given in 

Figure 5-4.  In areas where the water is deepest, the correction is not as effective 

(highlighted as bright red pixels in the top of flight line two).
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Figure 5-4: Three flight lines of HyMap hyperspectral data for Rottnest Island collected on the 26
th

 April 2004, showing the raw reflectance and the MIP 

corrected reflectance for each flight line.
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5.3.2 Image classification for benthic habitat maps and validation 

A total of 727 ground validation points were collected around the Rottnest Island using 

the bathyscope method (Figure 5-5).  These data were collected in depths ranging of 0.4 

– 14.1 m, the maximum depth generally limited by the water clarity at the time of 

collection.  Validation data were collected for most habitat components likely to be 

found at Rottnest Island (Figure 5-6).  The spread of samples across most habitat 

categories was even with the exception of seagrass, which was biased towards 

Posidonia, due to its dominance at Rottnest Island.  There is a declining number of total 

validation points from Level 1 to Level 4 (i.e. n = 727 at Level 1 down to 639 at Level 

4) as assigning classes to some validation points become unfeasible beyond a certain 

level. 

Level 1 classification was carried out for all the HyMap data in regions < 15 m depth.  

The bare sediment data were assessed to determine what percentage of bare sediment 

per pixel actually represented bare substrate in the field.  The ideal threshold for 

percentage of bare sediment per pixel value was determined to be 40% with an accuracy 

of 95.0%.  Using this threshold resulted in 966 hectares (33.8%) being classified as bare 

substrate and 1 888 hectares (66.2%) as bio-substrate (Figure 5-7). 

The largest areas of bare substrate were found in the north-eastern quadrant of the 

reserve (53%) (Figure 5-8).  The north- and south-western quadrants were dominated by 

bio-substrate, making up 80% and 88%, respectively.  All quadrants, except the north-

east, had a greater proportion of bio-substrate compared to bare substrate.  Using the 

727 ground validation points, the overall accuracy of the classification at Level 1 was 

calculated to be 95.0% and the kappa coefficient was 0.88 (Table 5-2).  The tau 
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coefficient was calculated to be 0.88, which means that 88% more pixels were classified 

correctly than would be expected by chance (Green et al. 2000).   

 

Figure 5-5: Spatial distribution of the 727 ground validation data points collected in Rottnest Island 

Reserve using the bathyscope method with colour coding representing their Level 2 classification 

and the high resolution data in red.  The extent of the classified HyMap data is shown as the study 

area. 
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Figure 5-6: Representation of validation points within the habitat classification scheme classes at all 

levels of the classification scheme. 



 

170 

 

 

Figure 5-7: Level 1 benthic habitat map for Rottnest Island using the three HyMap flight lines and regions <15 m water depth. 
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Figure 5-8: The breakdown of the benthic habitats for each quadrant of Rottnest Island at Level 1 

of the habitat classification scheme. 

Table 5-2: Error matrix for the accuracy assessment of the Level 1 benthic habitat classification at 

Rottnest Island. 

 Reference class 

Mapped class Bare substrate Bio-substrate User’s accuracy  

Bare substrate 183  26 87.6 % 

Bio-substrate 10 508 98.1 % 

Producer’s accuracy 94.8 % 95.1 %  

The classification to Level 2 was carried out using 224 signatures from the spectral 

library, in three categories, macroalgae, seagrass and coral, and the spectral angle 

spectral metric.  Initially, based on the optical classification, 40% of the bio-substrate 

was identified as being dominated by seagrass, 59% as dominated by macroalgae and 

the remaining 1% as dominated by coral.  A second stage classification at Level 2 was 

carried out separately for each quadrant using the digital bathymetry model (DBM) and 

the relative exposure index values (see Chapter 3) (Table 5-3; Figure 5-9).   These steps 

includes masking intertidal reef areas as those above mean sea level, seagrass areas 

redefined as macroalgae if their REI > 0.3 and redefining coral regions as macroalgae if 
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they were in water > 1m deep. After the second stage classification, 40% of the bio-

substrate was identified as being dominated by seagrass, 59% as dominated by 

macroalgae and the remaining 1% as dominated by coral.   

Table 5-3: Summary of the decision rules used for each quadrant in the second stage classification. 

Decision rule Data used NW NE SE SW 

All substrates      

Height above mean sea level DBM � � � � 

Seagrass      

Relative exposure Index < REIa REIannual � � � � 

  REIa=0.3  REIa=0.7 REIa=0.3 

Coral      

Depth > 1m DBM � � � � 

 

Figure 5-9: The post classification steps used to clean up the habitat classification at Level 2 for the 

north-west quadrant if the Rottnest Island Reserve. 



 

173 

After the second stage classification, 48 hectares of the bio-substrate were classified as 

intertidal reef, with the south-west quadrant having the largest area (19 ha) (Figure 

5-10).   The north-west quadrant had the largest proportion of macroalgae (69%) and 

only a small proportion of seagrass (9%) (Figure 5-11).  The largest areas of seagrass 

occurred in the north-east quadrant, with 185 hectares and both western quadrants had 

very little seagrass coverage.  A few small regions of coral were also identified, 

particularly at Parker Point where corals are known to occur.  The probability maps, 

generated as part of the optical classification, that this classification was based on can 

be found in Appendix 2.  

Using 682 validation points the overall accuracy was calculated as 93.3 %, and the 

greatest user’s accuracy was for seagrass at 99.5 % (Table 5-4).  The kappa coefficient 

was calculated at 0.90 and the tau coefficient indicated that 91% more pixels were 

classified correctly that would be by chance alone. 

Table 5-4:  Error matrix for the accuracy assessment of the Level 2 benthic habitat classification at 

Rottnest Island. 

 Reference class   

Mapped class Bare substrate Seagrass Macroalgae User’s accuracy 

Bare substrate 183 18 13 85.5 % 

Seagrass 1 184 0 99.5 % 

Macroalgae 9 5 269 95.1 % 

Producer’s accuracy 94.8 % 88.9 % 95.4 %  

Although there were some inconsistencies apparent in the flight-line corrections, with a 

switch from pixels being classified as seagrass in flight-line two to macroalgae in flight 

line three in the south- east quadrant of the island, the second stage classification was 

able to correct for much of this (Figure 5-10).   



 

174 

 

Figure 5-10: Level 2 benthic habitat map for Rottnest Island using three HyMap flight lines and limited to regions < 15m water depth 
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Figure 5-11:  The breakdown of the benthic habitats for each quadrant of Rottnest Island, in water 

<15 m depth, at Level 2 of the habitat classification scheme. 

Level 3 of the classification further separated macroalgae habitats into those dominated 

by canopy forming macroalgae and algal turf. A total of 148 signatures, using image 

bands 1 – 9 and the spectral angle spectral metric, were used to carry out the 

classification and resulted in 13.7 % (190 ha) of the macroalgae habitat being identified 

as canopy algae and  86.3% (1192 ha) identified as algal turf (Figure 5-12).  Algal turf 

habitats were common in all four quadrants, with the greatest proportion in the south-

west quadrant (76%) (Figure 5-13).  The largest area of algal turf was found in the 

south-east quadrant (387 ha) and the largest area of canopy in the north-west quadrant. 

Using 643 validation points the overall classification accuracy was calculated at 84.0 %, 

with a kappa coefficient of 0.78.  The tau coefficient indicated that 80 % more pixels 

were classified correctly than would be expected by chance.  The greatest producer’s 

accuracy, excluding bare substrate, was found for the algal turf class (93.5 %) and the 

highest user’s accuracy was for canopy algae (100%) (Table 5-5). 
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Figure 5-12: Level 3 benthic habitat map for Rottnest Island using three HyMap flight lines and limited to regions < 15m water depth.  
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At Level 4 of the classification scheme seagrass was identified as being dominated by 

either Posidonia or Amphibolis and canopy algae were identified as being dominated by 

either Ecklonia or Sargassum (Figure 5-14).  Scytothalia. doryocarpa was not included 

as the separability analysis indicated it was very difficult to separate from either 

Ecklonia or Sargassum, and did not occur in large homogenous areas at Rottnest (M. 

Harvey, personal observation). 
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Figure 5-13:  The breakdown of the benthic habitats for each quadrant of Rottnest Island at Level 

3 of the habitat classification scheme. 

Table 5-5:  Error matrix for the accuracy assessment of the Level 3 benthic habitat classification at 

Rottnest Island. 

 Reference Class    

Mapped class 
Bare 

substrate 
Seagrass 

Canopy 

algae 
Algal turf 

User’s 

accuracy 

Bare substrate 181 21 21 7 78.7 % 

Seagrass 2 185 6 0 95.9 % 

Canopy algae 0 0 74 0 100.0 % 

Turf algae 9 5 32 100 68.5 % 

Producer’s accuracy 94.3 % 87.7 % 55.6 % 93.5 %  
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The classification algorithm determined that 15% of the seagrass identified at Level 2 

was dominated by Posidonia and 34% was dominated by Amphibolis.  The remainder of 

the seagrass was unable to be identified further due to a lack of spectral data in the 

image (i.e. too few image bands with useable data after water correction).  In the three 

quadrants that seagrass was found to occur, a greater proportion of the pixels were 

identified as Posidonia than Amphibolis (Figure 5-15).  Ecklonia was found to be the 

dominant in 33% (63 ha) of pixels classified as canopy algae and Sargassum in the 

remaining 127 hectares.  The split of canopy algae into the two classes resulted in the 

classes being relatively evenly mixed spatially.  In all four quadrants Sargassum was 

found to cover greater areas than Ecklonia, with the greatest proportion in the north-

west quadrant (11%) (Figure 5-15). 

The overall accuracy for Level 4 was calculated at 70.0%, with a kappa coefficient of 

0.61.  The tau coefficient indicated that 63% more pixels were classified correctly than 

would be expected by chance.  The highest producer’s accuracy was for Amphibolis 

(88.1%) and highest user’s accuracy was for Ecklonia (100.0%) (Table 5-6).  Both 

Ecklonia and Sargassum had low producer’s accuracies (19.2% and 20%, respectively), 

being most commonly confused with the algal turf class. 

Table 5-6: Error matrix for the accuracy assessment of the Level 4 benthic habitat classification at 

Rottnest Island. 

 Reference Class 

Mapped 

class 
Bare  Posidonia Amphibolis Ecklonia Sargassum Algal turf 

User’s 

accuracy 

Bare  181 28 5 18 15 3 72.0 % 

Posidonia 1 108 0 0 0 0 99.1 % 

Amphibolis 1 5 37 2 4 0 75.5 % 

Ecklonia 0 0 0 15 0 0 100.0% 

Sargassum 0 0 0 1 11 0 91.8 % 

Turf algae 9 23 0 42 25 73 42.4 % 

Producer’s 

accuracy 
94.3 % 65.9 % 88.1 % 19.2 % 20.0 % 96.1 %  
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Figure 5-14: Level 4 benthic habitat map for Rottnest Island using three HyMap flight lines and limited to regions < 15m water depth. 
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Figure 5-15:  The breakdown of the benthic habitats for each quadrant of Rottnest Island at Level 

4 of the habitat classification scheme. 

A total of 154 high resolution samples were collected over two transects in Geordie Bay 

using the underwater drop camera system.  These high resolution validation data 

showed the trend in the percentage contribution of the dominant habitats components 

and how the classification algorithm responded to these changes (Figure 5-16).  For 

example, although bare substrate was present in many of the validation points, there 

were only a few pixels with sufficient coverage to be classified as bare substrate.  Other 

examples are at Level 2, where seagrass was present, but only where it attains 100% 

was it classified as seagrass in the image.  These data also highlighted some of the 

confusion between seagrass and macroalgae, particularly algal turf, in some pixels, most 

likely due to high epiphyte loads on the seagrass leaves. 
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Figure 5-16:  Examples of the percent coverage from the high resolution drop camera validation 

data for two transects (154 samples) collected in Geordie Bay.   Bare substrate (A) and bio-

substrate (B) overlayed on the Level 1 classification, seagrass (C) and macroalgae (D) overlayed on 

the Level 2 classification and canopy algae (E) and algal turf (F) overlayed on the Level 3 

classification.  The percent coverage ranges from zero to 100% 

5.4 Discussion 

This study is one of the first to map the spatial distribution of temperate marine benthic 

habitats using hyperspectral imagery in combination with an extensive spectral 

signature library of the dominant habitat components found in the region.  The habitats 

were defined based on the presence of some habitat components to a genus level, such 
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as Posidonia and Amphibolis, which yielded accuracies exceeding 60%.  Although the 

accuracy of the maps decreased as habitat components were identified to a higher level 

in the habitat classification scheme (i.e. from a general seagrass class to the genus 

Posidonia) the maps provided clear information about the spatial distribution and patch 

structure of the dominant marine benthic habitats.  The results clearly show the 

differences in the benthic habitats around the island, from the bare substrate and 

seagrass dominated habitats on the north-east side of the island, to the more complex 

macroalgae dominated habitats at the more exposed western end.  These patterns reflect 

the abiotic environmental variables, such as slope, benthic complexity and exposure, 

determined for Rottnest Island (Chapter 3), which made the use of the second stage 

classification possible. 

A key requirement of this approach is the use of an appropriate water correction 

algorithm to correct the bottom reflectance signatures for the influence of the 

atmosphere and the overlying water column.  The use of the Modular Inversion and 

Processing system (MIP) to carry out the water correction process has previously been 

shown to allow for accurate identification of the underlying substrates (Heege et al. 

2004) and proved to be an appropriate and efficient means of processing the HyMap 

data prior to the classification of the benthic substrates at Rottnest Island.  MIP requires 

minimal external inputs for the correction process and provides, as outputs, both an 

accurate spatial representation of the distribution of bare substrates and realistic bottom 

reflectance signatures.  In addition, MIP also takes a realistic approach to determining if 

a corrected image band (i.e. data at a specific wavelength) contains useable data as a 

result of the correction process and outputs this information on a pixel by pixel basis, 

allowing for the classification algorithm to be trained to use only the available image 
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data.  This has the benefit of allowing the classification algorithm to utilise the 

maximum available data for each pixel, and thus achieve the most accurate result 

possible.  

Some issues were identified with the MIP corrections and benthic habitat classification 

at the boundaries of the individual flight lines, and in separating some habitat 

components within the image data.  One of the most probable reasons for this relates to 

the generic signatures used as part of the MIP correction to remove the water column 

effects.  Very general signatures, extracted from the image, were used to correct the 

HyMap data to test the robustness of the MIP algorithm in situations where very little in 

situ data existed.  It is anticipated that with fine tuning of the MIP algorithms, using 

spectral signatures from the library, a more consistent and accurate result could be 

achieved as it should provide a clearer distinction between the key benthic habitats, 

particularly seagrass, canopy and turf algae.  Testing of the classification algorithm 

using synthetic signatures indicated that in many cases it was likely that canopy algae 

would be misclassified as turf, a result reflected in the habitat maps.  This can be 

attributed to both the error of classification, but also the way in which canopy and algal 

turf co-exist in the natural environment with algal turf generally found under canopy 

algae species.  There was also an obvious misclassification of seagrass on very exposed 

sites on the west end of the island, which are more likely to be intertidal reefs or 

macroalgae dominated habitats which are often covered in green algae such as Ulva or. 

Enteromorpha species. These regions were corrected using a combination of contextual 

editing and a decision rule approach to separate out the intertidal platforms based on the 

depth.  Although the actual sounding data used to create the digital bathymetry model 

(Chapter 3) were extremely sparse around most of the intertidal platforms, they still 
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provided sufficient detail to delineate the presence of the platforms in some regions.  It 

should be noted here that these inadequacies in the bathymetry could potentially be 

overcome using MIP derived bathymetry.  The relative exposure values generated in 

Chapter 3 were also used to assist with the correction of pixels misclassified as seagrass 

in the three most exposed quadrants of the island.  This approach was a form of 

contextual editing as there were insufficient validation data in all quadrants to develop a 

statistical model of the most appropriate threshold values of the REI.  There is also the 

potential to incorporate swell modelling into the exposure index and assess it on a 

seasonal or monthly basis to facilitate the development of a better model for the wave 

exposure experienced at each pixel in the data. 

The benefit of the hierarchical approach taken in this study is the ability to utilise the 

most appropriate classification techniques to classify pixels into classes at each level of 

the classification scheme.  This meant that specialised techniques could be developed to 

identify pixels at each level, based primarily on the results of spectral separation 

analysis of pure endmember spectra collected in situ.  For example, the separation of 

pixels dominated by bio-substrate and those dominated by bare substrate was best 

achieved using the outputs generated by MIP as part of the water correction process.  

Masking these pixels from further analysis meant that the classification algorithm could 

focus on the remaining bio-substrate dominated pixels by only using signatures likely to 

be dominant in each pixel (e.g. seagrass) and, exclude those with a low probability of 

dominating the spectral signature of a pixel (e.g. sand).  The hierarchical structure of the 

classification process had the added benefit of mimicking the natural patterns that exist 

in the benthic habitats at Rottnest Island, rather that assigning pixels to completely 

subjective classes that often occurs when using other classification methods, such as 
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unsupervised clustering techniques based solely on pixel similarity (Duda and Canty 

2002). 

The accuracy of 93% for the benthic habitat map at Level 2 (the differentiation between 

bare substrate, seagrass and macroalgae dominated habitats) compares favourably with 

those obtained in a study by Mumby and Edwards (2002) who achieved overall 

accuracies of 68% using the IKONOS satellite data collected at 4 m pixel resolution and 

89% using CASI airborne multi-spectral data collected at a 1 m pixel resolution.  These 

accuracies were for their coarse habitat maps that differentiated between coral, seagrass, 

macroalgae and sand, which relates to Level 2 in this study.  Due to its limited 

distribution at Rottnest Island, coral was not included in the validation data.  The 

producer’s and user’s accuracies for bare substrate of 94.82% and 88.83% respectively, 

compared favourably with those of Bertels et al. (2008) who achieved 93% and 81%, 

respectively, when classifying CASI hyperspectral data for a coral reef atoll in 

Indonesia.  The accuracy result in this study indicated that the maps provide a good 

representation of the spatial distribution of the benthic habitats at Rottnest Island and 

also potential for improved results if the MIP corrections were further fine-tuned using 

in situ data. 

The accuracy of the benthic habitat classifications were assessed in this study using a 

method that attempted to take into account the inherent spatial inaccuracy of the geo-

location of both the image and the validation data collected in the field.  This method is 

able to account for the spatial uncertainty when assessing the classification at the broad 

classes (i.e. Levels 1 and 2) in the classification scheme where the pixels tended to 

occur in patches.  However, when attempting to assess the classification results at finer 
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class (e.g. Level 4), where the benthic habitat may vary from pixel to pixel, it becomes 

increasingly difficult to be certain that the point being assessed, is being matched to the 

correct location in the image.  Every attempt was made to minimise the impact of this 

problem by taking into account the positional error of the validation data on a point by 

point basis, which enabled advantage to be taken of those data with greater accuracy 

and thus minimise the chances of errors in the accuracy assessment process.  The high 

resolution validation data collected using the drop camera system could be used to 

overcome many of these issues if it were collected in such a way as to cover 

representative areas around Rottnest Island.  Another issue that became apparent during 

the assessment of the classification results was the need, whenever possible, to collect 

validation data that spans as much of the image as possible, and in particular to ensure 

validation data are collected for each flight line.  This is especially relevant in cases, 

such as this study, where new classification algorithms are being developed, as 

validation data is the only way to test the accuracy of the results with real image data.  

In comparison to the existing habitat map for Rottnest Island produced as part of the 

Perth Coastal Waters Study (PCWS) (Ong et al. 1998) the new habitat maps at the 

various levels provide a marked increase in the resolution, both spatially and 

taxonomically, of the visual representation of the benthic habitats.  Just using the Level 

2 habitat map generated in this project, it is clear that although the broad-scale patterns 

in the habitat distribution are similar, there is significantly more detail recorded about 

the spatial structure of the habitats, (see Figure 2-2 and Figure 5-10).  Although due to 

geo-location issues, direct comparison in not possible, the PCWS map had 26% bare 

substrate compared to 32% in the new habitat maps.  In the PCWS map, seagrass and 

macroalgae covered 19% and 43%, respectively compared to 15% and 51% in   the new 
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maps.  The biggest difference was in intertidal reef which was 12% in the PCWS map 

and only 2% of the area in the current maps, most likely due to the decision rule used to 

define intertidal areas in the current map as being above the mean sea level as defined 

by the bathymetry.  In contrast, the PCWS map defined intertidal area as areas close to 

mean sea level.  Many of the other differences can be explained by the better spatial 

representation of the benthic habitats in the current habitat maps could also represent 

some real change in the distribution of the habitats. 

This study is one the first to map the spatial distribution of marine benthic habitats using 

hyperspectral imagery in combination with an extensive spectral signature library of the 

dominant habitat components found in the region.  This is a significant step towards 

being able to map marine benthic habits over large areas at a finer scale in terms of the 

habitats components which are able to be identified in the imagery.   However, there is 

still considerable scope for continuing research into the integration of the hyperspectral 

image capture, processing, classification and accuracy assessment for the mapping of 

marine benthic habitats.   Added to this there is need for research to be carried out into 

the interpretation and presentation of habitat maps in terms of their intended audiences.  

For example, an ecologist attempting to model the distribution of a particular species 

will require different spatial information than a manager or planner of a marine reserve.   
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6 Examples of management applications of the benthic 

habitat maps for Rottnest Island 

6.1 Introduction 

Marine benthic habitat maps are often produced using remote sensing techniques and 

use a pre-defined set of thematic classes to describe the spatial distribution of different 

habitat types.  The usefulness of these maps to different marine conservation, planning 

and reporting applications depends on a range of factors including the spatial resolution, 

the thematic classes used and the overall accuracy of the map (Kirkman 1996).   If these 

factors are taken into account, and the methods used to integrate these data with the 

different scenarios are appropriate, then habitat maps can provide answers to many 

planning and conservation questions at a range of scales (Cendrero 1989).  The remote 

sensing approach to benthic habitat mapping is also one of the most cost-effective 

methods available when large geographic areas need to be covered or regular temporal 

data need to be collected (Mumby et al. 1999). 

Marine benthic habitat maps have long been recognised as useful for marine 

conservation planning, especially with the increasing interest, and use of, systematic 

conservation planning (Margules and Pressey 2000, Meir et al. 2004, Stevens and 

Connolly 2004).    A key factor in many marine conservation planning applications is to 

achieve representativeness with respect to the biodiversity present in the region being 

protected (Margules and Pressey 2000).  As biodiversity can be difficult to quantify 

spatially in the marine environment, surrogates for biodiversity are often used and 

benthic habitats have been shown to be good surrogates for overall marine biodiversity 

(Ward et al. 1999, Rodrigues and Brooks 2007).  To this end, accurate and up to date, 

benthic habitat maps can play a key role in the selection and location of marine 
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protected areas.  An example of this is the re-zoning of the Great Barrier Reef in 2004, 

which was achieved using a systematic approach based on outputs of MARXAN, and 

resulted in a network of no-take areas that made up 33% of the overall area of the 

marine park (Fernandes et al. 2005). 

The strong links between benthic habitats and associated assemblages of fish and 

invertebrates that have been established in both temperate and tropical waters provide a 

sound basis for the modelling of potential distribution of species based on their habitat 

preferences (Jenkins and Wheatley 1998, Friedlander 2001, O'Hara 2001, Curley et al. 

2002, Harman et al. 2003).  An example of this is the spatial modelling of the habitat 

suitability for a number of commercially important fish species in Port Phillip Bay, 

Victoria (Morris and Ball 2006).  They used catch data from commercial fisheries and 

environmental variables including substrate type and depth to determine habitat 

suitability.  Such modelling can be invaluable to fisheries managers when attempting to 

implement spatially oriented management actions, such as closures or when 

implementing marine protected areas designed to protect particular marine species.  

Mellin et al. (2007) determined that a strong relationship existed between the species 

richness and abundance of juvenile fishes on a reef in New Caledonia and 

environmental variables including depth, percentage cover of biotic and abiotic 

substrate, habitat heterogeneity and rugosity, mapped using remote sensing techniques.  

Beger and Possingham (2008) modelled the broad scale distribution of coral reef fishes 

at Kimbe Bay, Papa New Guinea using environmental data and concluded that such 

approaches may be able to assist with the design of marine reserves.  Other studies have 

found relationships between habitats and fish assemblages in the southern Mexican 

Caribbean (Nunez-Lara and Arias-Gonzalez 1998) and Davies Reef, Australia (Arias-
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Gonzalez et al. 2006).  At a broader scale, Grober-Dunsmore et al. (2007, 2008) 

determined that landscape-scale metrics of habitat structure, such as habitat patch 

connectivity for coral reefs, could be used for surrogates for species diversity and 

abundance of coral reef fishes.  These relationships can also provide invaluable data to 

other marine planning and management applications such as construction of ports or 

planning for remediation of potential pollution events. 

Remotely-sensed habitat maps, and associated data, can often play a key role in the 

planning for marine infrastructure and operations, such as ports and harbours, in order 

to minimise potential marine impacts during construction and operation of the facility 

(Kirkman 1996).  There are many issues associated with marine transport and 

infrastructure including, planning for and monitoring of dredging activities, pollution 

events and management of boat mooring activities, including their placement and 

maintenance.  High resolution benthic habitat maps derived from hyperspectral imagery 

can provide data to assist with the planning for many of these activities and setting up 

suitable monitoring programs to asses their long-term impacts. 

Pollution or contamination in the marine environment can take four main forms, namely 

physical (e.g. debris, suspended sediments), chemical (e.g. toxic compounds such as 

tributyltin and oil spills), biological (e.g. pathogens) and thermal (e.g. cooling water) 

(Clarke 1993).   These contaminations can have significant effects on the overall health 

of the marine ecosystems.  The role of remote sensing in the management of marine 

pollution can be summarised as detection, tracking and damage assessment following a 

pollution event (Clarke 1993).  Habitat maps play a role in determining baseline 

conditions for the environment and monitoring the effects of pollution events.  The 
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monitoring of the spatial extent and characteristics of sediment plumes from dredging 

can be routinely carried out using remote sensing techniques and related back to 

baseline habitat maps to assess the potential impacts.  The effects of chemical pollutants 

such as oil spills, can be assessed in a similar manner once the extent of the spill is 

known, through remote sensing analysis of an existing spill or predictive spatial 

modelling of potential oil spills.  The same is true for biological pollutants, such as 

sewage outfalls, or thermal pollution, such as hot water from power station cooling 

towers or desalinisation plants. 

In any coastal port or marina that has a boat refuelling facility, such as the Rottnest 

Island fuel jetty in Thomson Bay, there is always the inherent risk of a hydrocarbon 

spill, typically in the form of either petrol or diesel. Although the majority of oil from 

most spills is either washed up on beaches or evaporates, there is a proportion that can 

affect the subtidal benthic habitats under certain environmental conditions (Lee and 

Page 1997).  Oil can have long lasting effects on the environment, an example being the 

Exxon Valdez spill in 1989, where hydrocarbons remain present in intertidal beaches 

and continue to have a negative impact on the wildlife many years after the incident 

(Peterson et al. 2003).   Given this, it would be useful to have information about the 

spatial extent that a potential oil spill may occupy under particular weather conditions 

and from this determine which benthic habitats may possibly be affected (Jordi et al. 

2006).  This information could assist marine planners and managers with the placement 

of refuelling facilities at the planning stage, especially in fragile marine environments, 

and for implementation of oil spill response plans. 
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The often negative impacts of anchoring and moorings on the marine environment has 

long been accepted.  This issue is of particular concern at Rottnest Island where a study 

by Hastings et al. (1995) found that there was significant loss of seagrass due to 

mooring damage.  Rottnest Island Authority has indicated its intent to investigate the 

feasibility of providing fixed moorings for commercial charter operators (Rottnest 

Island Authority 2003), which would require the placement of these moorings in an 

environmentally friendly manner.  This would greatly benefit from some broad scale 

analysis of mooring placement using benthic habitats maps, such as those generated as 

part of this study. 

Another major application for benthic habitat maps, from those that cover large 

geographic areas at a coarse resolution to those, such as this study, that cover a smaller 

geographic area at a much finer scale, is environmental reporting.  The most recent State 

of the Environment report for Western Australia, released in 2007, found that, for the 

majority of the Western Australian coastline, no baseline on benthic habitats exists.  

Following from this was the recommendation  to ‘Establish a baseline of condition of 

the marine environment and develop a consistent monitoring network in the priority 

areas’ (Environmental Protection Authority 2007).  Remotely-sensed habitat maps 

provide ideal baseline data sets for shallow marine environments and allow for the 

development of monitoring strategies for future state of the environment reporting. 

Four separate planning and management applications which utilise benthic habitat maps 

are demonstrated in this chapter.  The first, a conservation planning example, acertains 

the changes in the extent of benthic habitats protected when the new expanded 

sanctuary zones were implemented in Rottnest Island Reserve in July 2007.  The second 
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models the potential home range of Panulirus cygnus occupying reefs within Kingston 

Reef sanctuary zone at Rottnest Island.  The density of lobsters on the reefs inside and 

outside Kingston Sanctuary zone was also modelled.  The third runs a basic oil spill 

model, using NOAA’s GNOME oil spill modelling environment (Beegle-Krause 2001), 

to track a small spill in Geordie Bay at Rottnest Island and assess which habitats may be 

affected.  The final application aims to determine suitable sites for boat moorings at 

popular recreational dive sites within Rottnest Island Reserve, by spatially modelling 

site suitability for the environmentally sound placement of permanent moorings. 

6.2 Methods 

The series of case studies developed to demonstrate possible application of benthic 

habitat maps to conservation, planning and management within the RIR were limited to 

the spatial extent of the reserve, and within that, the extent of the benthic habitat maps 

based on the three flight lines of HyMap hyperspectral data (Figure 6-1).  

 

Figure 6-1: The study area for all the management application examples for Rottnest Island 

Reserve. 
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6.2.1 Ascertaining the extent of shallow benthic habitats protected by new 

sanctuary zones implemented in July 2007 

The area of different benthic habitats protected within sanctuary zones in the Rottnest 

Island Reserve was determined for the sanctuary zones in place prior to 1
st
 July 2007 

and those implemented thereafter (Figure 6-2).  The spatial extent of the benthic habitats 

was determined using Level 2 of the habitat classification scheme.  The sanctuary zones 

at Kingston Reef and Parker Point were analysed in more detail as they were expanded 

as part of the new zoning plan. It should be noted that calculations of area made for 

these analyses were based on raster pixels at a resolution of 3.5m x 3.5m or in 

increments of 12.25m
2
 and resulting estimates are often less accurate than those 

calculated using vector polygon data. 

6.2.2 Modelling the potential home range and population size of the 

Western Rock Lobster, Panulirus cygnus, on reefs in the Rottnest 

Island Reserve 

The potential home range for the Western Rock Lobster (Panulirus cygnus) occupying 

the three study reefs in the Kingston Reef sanctuary zone was determined by spatially 

modelling the nocturnal foraging distances of the lobsters  as determined by Jernakoff et 

al. (1987).  Using results of a study by Babcock et al. (2007) on the effects of the 

Kingston Reef sanctuary zone  on the lobster population occupying reefs in and outside 

the sanctuary zones, the potential lobster population was also modelled for the same 

three reefs, and for a reef outside the sanctuary zone.  The study was carried out on the 

north-eastern side of Rottnest Island, using three reefs located inside, and one reef 

outside, the Kingston Reef sanctuary zone (Figure 6-3).  These reefs where chose due to 

their relatively simple structure and central location within the sanctuary zone. 
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Figure 6-2: The sanctuary zones in Rottnest Island Reserve pre 2007 (a) and 2007 (b). 

The study reefs were defined using the benthic complexity variable based on depth 

values (See Chapter 3).  A threshold was applied to the benthic complexity data, which 

ranged from zero, for low complexity, to one, for maximum complexity, and which 

defined all pixels with values ≥ 0.8 as reefs. 
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Figure 6-3: The study site for the Western Rock Lobster home range and population density 

models at Rottnest Island, with the Kingston Reef sanctuary zone pre and post July 2007. 

The probability of lobsters foraging over certain distances from their home reef was 

determined by Jernakoff et al. (1987) who fitted their data of the total distance travelled 

by foraging lobsters to a Weibull distribution.  For this study the assumption was made 

that for a lobster travelling a total distance, dtotal, during a foraging  trip, the maximum 

distance able to be travelled away from their home reef would be 2totald .  Based on 

this assumption a Weibull probability density function was generated using the 

maximum foraging distance divided by two as the upper limit of the distribution.  The 

probability density function was defined as (modified from Jernakoff et al. 1987): 
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( )aa dqdqadp 2exp2)( 1 −= −  

where d refers to the distance travelled by a lobster from its home reef, a = 2.36 and q = 

exp(-13.93) (Figure 6-4).   This function was applied spatially to the three study reefs 

within the Kingston Reef sanctuary zone to a maximum distance of 400 m (half the 

maximum distance recorded by Jernakoff et al. (1987)).  The distribution of habitat 

types within the home range of the lobsters was determined and the potential impacts of 

the changes made in July 2007 to the Kingston Reef sanctuary zone on the lobster 

population were assessed. 
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Figure 6-4: The probability distribution of maximum distances travelled by lobsters from their 

home reef (A) and the density of lobsters occupying a reef as a function  of the distance from the 

centre of the Kingston Reef sanctuary zone (B). 

The relationship between the densities of lobsters found on reefs as a function of the 

distance from the centre of the sanctuary zone was determined by Babcock et al. (2007).  

They determined that close to the centre of the sanctuary, the mean density was 22 

lobsters per 250m
2
, which declined to ~ 2 lobsters per 250m

2
 at sites outside the reserve.  

From this, distances were estimated to allow for the fitting of a function to describe this 

relationship (Figure 6-4).  The function derived to describe the lobster density (Ldensity) 

as a function of the distance from the centre of the sanctuary zone was: 
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( )dLdensity 0008.0exp328.21 −= . 

The function was applied spatially using the distances measured from the centre of the 

Kingston Reef sanctuary zone and then converted to the number of lobster per pixel (i.e. 

12.25m
2
).  The potential lobster populations of the reefs inside and outside the sanctuary 

were also calculated. 

6.2.3 Modelling the shallow benthic habitats and beach environments 

potentially impacted from a floating pollutant spill  

A basic GNOME  oil spill model (Beegle-Krause 2001) was used to estimate the 

movement of an oil spill of 120 litres of non-weathering oil in Geordie Bay, Rottnest 

Island (31.99ºS, 115.55ºE).  The model was run using a location file generated for 

Rottnest Island based solely on a coastline file where no data were included about the 

surface currents or tidal patterns.  Wind data from 1 January 2006, recorded at five 

minute intervals at the Rottnest Island weather station, were used.  The model was run 

for 30 min, tracking the movement of 1000 splots, which are points that represent the 

spilled oil in the environment, under two scenarios, namely, the forecast scenario, which 

included no uncertainty in the calculations, and the uncertainty scenario, which included 

an uncertainty factor in the model calculations.  The benthic habitats potentially affected 

by the spill were assessed using both forecast scenario and uncertainty scenario results 

by constructing convex hull polygons for each splot point set and calculating the area of 

habitats potentially affected at Level 2 of the classification scheme.  The length of 

affected shoreline was also predicted by assessing the distance over which the oil splots 

were beached under both the forecast and uncertainty model scenarios.  
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6.2.4 Modelling potential locations for boat moorings at popular dive sites 

within Rottnest Island Reserve 

The mooring suitability model was based on five popular dive sites within the RIR 

which were converted to a point shapefile and reprojected to UTM Zone 50 South 

(WGS84) (Table 6-1).  The model used four variables to define the optimal suitability 

of a location for a boat mooring, namely, the distance for the mooring from the dive site 

was 40 – 50 m, the mooring had to be located > 50 m from the shore on bare substrate at 

least 5 m from the edge of the bare patch and in water > 5 m depth.  A function was 

developed to assign a suitability rating to each pixel in the study area. The ratings 

ranged from zero for unsuitable, to one for maximum suitability, for each of the four 

variables (Figure 6-5).   

Table 6-1: Dive sites within Rottnest Island Reserve used for the dive site mooring suitability 

model.  Coordinates are based on the WGS84 datum. 

Dive site Longitude Latitude 

Crystal Palace 115.5437 º E 32.0267 º S 

Porpoise Caves 115.5434 º E 32.0271 º S 

Swirl Reef 115.4671 º E 32.0008 º S 

Lady Elizabeth Wreck 115.5479 º E 32.0191 º S 

Macedon & Denton Wrecks 115.5555 º E 31.9878 º S 

The final suitability for each pixel ( ySuitabilitDV ) was calculated using the following 

formula, which ranges from zero for an unsuitable site to one for maximum suitability: 

( ) 4DepthBareShoreSiteySuitabilit DVDVDVDVDV +++=  

The suitability of a pixel based on its distance from the dive site was defined as: 

( ) ( )( ) ( )( )( )( )( )[ ] dDTanhABScDbDaDV SiteSiteSiteSite 150/502
2

−−××−×+×=  
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where DVSite is the suitability of a pixel based on the distance from the dive site, DSite is 

the distance from the dive site in metres represented spatially as a raster grid layer,  a = 

-0.000107214, b = 0.031433275, c = 0.303636476 and d = 1.083591773.  This function 

reached its maximum value of one at ~41 m and approached zero again at ~100 m 

(Figure 6-5).   A spatial grid layer was created where each pixel measured the distance 

from the dive site to a maximum distance of 800 m. 

The suitability of a pixel with respect to its distance from shore was defined by the 

function: 

( )( )( )( ) cceaDV
bD

Shore
Shore +×−=

−
1  

where DVShore refers to the suitability of the pixel,  DShore refers to the distance from 

shore in metres represented as a raster grid layer, a = 2.590708, b = 15.19684 and c = 

2.57.  The function ranged from zero to one (Figure 6-5).  

The suitability of a pixel with respect to its position within a bare substrate patch was 

defined by the following function: 

2+−= aSVBare  

where SVBare refers to the suitability of a pixel, and a refers to the mean value of a 5 x 5 

pixel kernel filter for each pixel calculated based on the Level 1 benthic habitat map 

(the values will range 1 – 2).  This function ranged from zero for minimum suitability of 

a pixel to one for maximum suitability (Figure 6-5).  

The suitability of each pixel with respect to water depth (DVDepth) was defined by the 

following function: 
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( )( )( ) 215.38.0tanh +−×= DepthDepth DDV  

where DDepth refers to the water depth for each pixel, obtained from the digital 

bathymetry model.  The final values were then re-coded into two discrete classes, those 

being suitable sites (0.75 < ySuitabilitDV  < 0.85) and optimal sites (0.85 < ySuitabilitDV  < 

1.00). 
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Figure 6-5: The functions used to define the suitability of each pixel for placing a boat mooring for 

a dive site. These functions define the suitability with respect to the distance from the dive site (A),  

the suitability with respect to the distance for the shore (B), the suitability with respect to its 

position within a bare patch (C) and its suitability based on the water depth (D). 

6.3 Results 

6.3.1 Ascertaining the extent of shallow benthic habitats protected by new 

sanctuary zones implemented in July 2007 

The implementation of the new and extended sanctuary zones at Rottnest Island on 1
 

July 2007 resulted in the total area of benthic habitat protected within sanctuary zones 

increasing from 118 hectares to 610 hectares.  Prior to the zone expansion in July 2007 

the greatest proportion of the benthic habitats protected within the sanctuary zones was 
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bare substrate, making up 63% (75 ha) of the protected regions (Figure 6-6).  However, 

after the zone expansion bio-substrate became the dominant habitat type protected, 

making up 60.3% (368 ha) of the total sanctuary area. 

Although there was an increase in the area of all habitats protected at Level 2 of the 

classification scheme, the greatest increase was for macroalgae habitats which increased 

by 229 hectares and went from contributing 26% to overall sanctuary area, to 50% 

(Figure 6-6).  The bare substrate habitat class which made up the majority of the 

habitats protected prior to July 2007 (63%) decreased to 25% after the implementation 

of the new sanctuary zones in July 2007. 

The Kingston Reef sanctuary zone was increased in size during the implementation of 

the new sanctuary zones in July 2007 and increased in area by ~40 hectares (Figure 

6-2).  The area of seagrass habitat protected increased by 6 hectares and macroalgae by 

5 hectares.  The Parker Point sanctuary zone increased in size by ~85 hectares, with 

macroalgae being the habitat class with the greatest increase in area (43 ha), going from 

contributing 23% of the sanctuary zone to 56% (Figure 6-6).  Although a coral colony 

of Pocillopora is known to exist within the Parker Point sanctuary zone, it was not 

identified in the hyperspectral data most likely due to the occurrence of macroalgae on 

and around many of the colonies, particularly at the time of year the HyMap imagery 

was flown (April, at the end of summer).  This highlights the importance of such 

information (i.e. seasonal algal growth) that may need to be taken into account when 

collecting remotely sensed imagery for benthic habitat mapping projects. 
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Figure 6-6: The area of different habitat types protected within all sanctuary zones within the 

Rottnest Island Reserve (A,B), Kingston Reef (C,D) and Parker Point (E,F) sanctuary zones prior 

to July 2007 and after the new zone implementation in July 2007. Values above bars are the 

percentage of the total area represented by each chart.  Unidentified habitats are those areas that 

fall outside the HyMap imagery. 



 

205 

6.3.2 Modelling the potential home range and population size of the 

Western Rock Lobster, Panulirus cygnus, on reefs in the Rottnest 

Island Reserve 

The distance from the three study reefs within Kingston Reef sanctuary zone was 

calculated for each pixel to a maximum distance of 400 m (Figure 6-7).  The probability 

of lobsters foraging to each pixel was calculated and the zone of highest probability was 

then separated (Figure 6-7).   

 

Figure 6-7: The distance from the reefs within Kingston Reef sanctuary zone (A), the probability of 

lobsters travelling to a location as a function of the distance from the reef (B) and the zone of 

highest probability were lobsters could travel to (C). 

The habitat type with the greatest area within the Kingston Reef sanctuary zone located 

within the lobster home range  in pre 2007 and post 2007 was bare substrate with 66.7 

and 76.1 hectares, respectively (Figure 6-8).    With the change to the boundaries of the 

Kingston Reef sanctuary zone in July 2007, there was very little change to the total area 

of seagrass and macroalgae within the home range of the lobsters occupying the study 

reefs (Figure 6-8). 
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The area of habitats within the region of maximum probability was not affected by the 

change to the boundaries of the sanctuary zone (Figure 6-7).  In both pre 2007  and post 

2007 the majority was again bare substrate (24.9 ha) and there were 4.5 and 1.9 hectares 

of macroalgae and seagrass, respectively (Figure 6-8). 
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Figure 6-8: The area of the habitats defined at Level 2 for the home range inside and outside of the 

pre 2007 sanctuary zone (A, B), the post  2007 sanctuary zone (C, D) and the maximum probability 

range for both years (E, F) of the Western Rock Lobsters occupying the study reefs in the Kingston 

Reef sanctuary zone. 
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The distance from the centre of the Kingston Reef sanctuary zone was calculated for 

each pixel out to 3 500 m (Figure 6-9).  The density of lobsters per pixel was calculated 

for each of the reefs inside and outside of the Kingston Reef sanctuary zone (Figure 

6-10; Figure 6-11).  The mean lobster density within the sanctuary zone was 0.79 

lobsters per pixel and outside was 0.1 lobsters per pixel.  There were two distinct 

groupings in the data for the sanctuary zone, one from the two smaller reefs closer to the 

centre of the sanctuary zone and the second from the reef closer to the sanctuary zone 

boundary (Figure 6-11).  Using the lobster density data, the total potential population 

for the Kingston Reefs was estimated to be 4 348 lobsters and for the outside reef was 

846 lobsters. 

 

Figure 6-9: The distances from the centre of Kinston Reef sanctuary zone used to calculate lobster 

densities. 
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Figure 6-10: The estimated density of lobsters per pixel (12.25m
2
) for the two study reefs in 

Rottnest Island Reserve.  
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Figure 6-11: Distribution of the estimated density of lobsters per pixel for reefs inside (A) and 

outside  (B) the Kingston Reef Sanctuary Zone. 
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6.3.3 Modelling the shallow benthic habitats and beach environments 

potentially impacted from a floating pollutant spill  

The GNOME oil spill model indicated that, under the wind conditions specified in the 

model, and without any influence of surface current and tides, a total of 11.2 hectares 

and 20.7 hectares of benthic habitat could potentially be affected under the forecast and 

uncertainty model scenarios, respectively (Figure 6-12).   Under the forecast scenario, 

1.1 km of the shoreline could potentially be affected by beached oil, while under the 

uncertainty scenario a total of 2.6 km of shoreline could be affected (Figure 6-12). 

 

Figure 6-12: The results of the GNOME oil spill model after 30 minutes indicating the location of 

the oil splots (A), the potential area of benthic habitats affected under the forecast scenario (B), the 

potential benthic habitats affected under the uncertainty scenario (C) and the potentially affected 

shoreline under both scenarios (D).  Red indicates the forecast scenario and yellow the uncertainty 

scenario.  



 

210 

The area of bio-substrate habitat potentially affected by the oil spill was significantly 

greater than bare substrate under both scenarios.   Under the uncertainty scenario up to 

17.7 hectares of bio-substrate could potentially be affected by the oil, with 8.7 hectares 

being seagrass habitat, 7.5 hectares macroalgae and the remaining 1.5 hectares being 

intertidal reefs (Figure 6-13).  Under both scenarios, there was a large area of intertidal 

reefs affected, which is important to note as they are highly susceptible to oil spills  

(Lee and Page 1997). 
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Figure 6-13: Potential area of benthic habitats affected by the Geordie Bay oil spill under both the 

forecast (A) and the uncertainty (B) scenarios.  Values above bars represent the percentage of the 

total affected area under each scenario. 

6.3.4 Modelling potential locations for boat moorings at popular dive sites 

within Rottnest Island Reserve 

Suitable locations for the placement of environmentally sound boat moorings were able 

to be determined at all five dive sites (Figure 6-14; Table 6-2).  No optimal locations 

were found at Swirl Reef, mostly due to the depth of the waters surrounding the dive 
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site restricting the model extent.  A more in depth analysis of the results for the 

Macedon and Denton Wrecks site found that 3 062 m
2
 provided optimal locations, with 

a further 4 875 m
2
 providing suitable locations (Figure 6-14).  Due to the close 

proximity of the Crystal Palace and Porpoise Caves dive sites, their results were 

combined and 4 177 m
2
 were classed as optimal and 7 558 m

2
 classed as suitable for the 

location of a mooring (Table 6-2). 

Table 6-2: The area of optimal and suitable locations for the placement of boat moorings at dive 

sites within Rottnest Island Reserve. 

Dive site Optimal (m
2
) Suitable (m

2
) Total (m

2
) 

Crystal Palace 

Porpoise Caves 
4177 7558 11 735 

Swirl Reef 0 159 159 

Lady Elizabeth Wreck 1617 2695 4312 

Macedon & Denton Wrecks 3062 4875 7937 

6.4 Discussion 

All the example applications presented in this chapter have demonstrated the usefulness 

of the benthic habitat maps, and associated environmental variables, produced as part of 

this study, to a range of marine conservation, planning and reporting applications.   The 

applications presented here are by no means an exhaustive list, but merely illustrate 

what is possible given suitable input data  

The changes to the sanctuary zones within Rottnest Island Reserve, implemented in July 

2007, resulted in a significant improvement in the amount of benthic habitats protected.  

There was almost a six-fold increase in the total area protected with the expansion of 

two existing sanctuary zones, Kingston Reef and Parker Point, and the creation of three  
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Figure 6-14: Results of suitability modelling for the location of boat moorings for five dive sites 

within Rottnest Island Reserve (A) and details for the Macedon and Denton Wrecks (B) and 

Crystal Palace and Porpoise Caves (C) dive sites.  The site suitability scale refers to how suitable a 

pixel is for the placement of a permanent boat mooring based on a set of four predictor variables. 

new sanctuary zones, Green Island, West End and Armstrong Bay (Rottnest Island 

Authority 2007).  There were also changes in the proportion of habitat types protected 

by the sanctuary zones, with a shift from bare substrate being dominant pre 2007 to 

macroalgae habitats being dominant after 2007.  These data could also be used as layers 

in systematic conservation planning approaches, such as MARXAN or C-Plan, used to 
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determine the boundaries of protected areas that meet ecological and  social 

requirements of the planners (Leslie et al. 2003, Sarkar et al. 2006).   For example, 

information about the spatial distribution of benthic habitats were needed as inputs for 

the marine reserve networks designed using MARXAN for the Great Barrier Reef and 

the Californian coastline (Fernandes et al. 2005, Klein et al. 2008). 

The information contained in the benthic habitat maps, in combination with other 

environmental data, such as depth, benthic complexity or exposure, can be used to 

develop models to describe the habitat suitability for a range of fish and invertebrate 

species, their possible foraging behaviour and population structure (Morris and Ball 

2006).  As lobsters are known to rarely forage in a straight line (Jernakoff et al. 1987), 

the assumption made in the home range model, that the distance travelled by a lobster 

during a night foraging trip was in a straight line away from its den, is likely to result in 

an over estimate of the home range of the lobsters within the model.  Nevertheless, the 

model indicated that the majority of the Western Rock Lobsters (Panulirus cygnus) that 

occupied the study reefs within Kingston Reef sanctuary zone would generally forage 

within the boundaries of the sanctuary zone and thus reduce the likelihood that they 

would be caught in lobster pots placed near sanctuary boundaries.  Even with 

enticement of baited traps, Jernakoff and Phillips (1988) determined that the greatest 

straight line distance travelled by a lobster from its den to a trap was 120 m.  This would 

then lead to the conclusion that the size of the Kingston Reef sanctuary is appropriate 

for the protection of the Western Rock Lobster, a finding supported by the work of 

Babcock et al. (2007) who determined that the density of lobsters above the legal size 

(76 mm)  within the sanctuary was 50 times higher than that outside.  More recent work 

by MacArther et al. (2008) found that 90% of lobster foraging activity occurred within 
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60m of the nearest high-relief reef, which further backs the conclusion that most 

lobsters within the Kingston reef sanctuary zone would be protected from fishing effort.  

Although this model required large assumptions about the data used to create it, the 

general patterns in the population structure described by Babcock et al. (2007) could be 

clearly visualised and the theoretical population size could be calculated based on the 

available habitat.  Given a more comprehensive data set, a significantly more accurate 

model could be developed to model the potential changes in the population structure in 

the newly created sanctuary zones, by linking habitat suitability models with the 

population models.  This could potentially provide a comprehensive data set on the 

spatial distribution of habitats and their associated fauna, which could feed back into a 

range of marine conservation or planning applications, such as determining the potential 

impacts of a pollution event, such as an oil spill, on their population.   

The very basic oil spill model that was developed for Rottnest Island was used to 

demonstrate the potential impact on shallow benthic and shoreline habitats of a small 

pollution event.  It needs to be re-iterated that the GNOME model used was only an 

example and had insufficient data inputs to generate reliable or even realistic results. 

Nevertheless, the outputs of a properly developed and calibrated model would be very 

similar and as such, the information gained would be obtained in an equivalent format.  

The results indicated that there would be a large area potentially affected, especially 

along the shoreline where the effects of an oil spill can be extremely detrimental to the 

environment and long lasting (Peterson et al. 2003).  The Australian Marine Safety 

Authority has developed an oil spill response plan using the OILMAP oil spill model 

that provides comprehensive outputs that could be utilised to plan for potential spill at 
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Rottnest Island.  This sort of analysis is well suited to examining other pollution such as 

the outputs from sewage outfalls or desalination plants, both issues at Rottnest Island. 

The model used to determine the most environmentally sound locations for the 

placement of permanent boat moorings at popular dive sites within Rottnest Island 

Reserve is especially relevant to the Rottnest Island Authority, as their management 

plan indicates a decision to investigate the placement of moorings at some sites.  The 

model, based on the criteria used to define the model, indicated the regions most 

suitable for moorings and could be used to guide more intense field surveys prior to the 

actual placement of the moorings.  The suitability model could be significantly 

improved by integrating other data sources such as exposure models, to determine the 

sea conditions the mooring would be exposed to, and information from dive charter 

operators on their frequency of usage at particular sites.  The habitat maps for Rottnest 

Island can also provide a baseline to facilitate the monitoring of impacts resulting from 

the mooring installation or usage of the area by divers (Garrabou et al. 1998, Rouphael 

and Inglis 2002). 

As demonstrated by the example applications developed in this chapter, remotely 

sensed shallow water benthic habitat maps can provide an extremely useful data set for 

a range of marine conservation and planning scenarios.  The habitat maps generated in 

this study provide a comprehensive 2004 baseline for future state of the environment 

reporting for Rottnest Island Reserve and the techniques developed to generate these 

maps can be applied to create maps in shallow coastal waters along much of the 

Western Australian coastline.   This would contribute towards building a comprehensive 
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baseline data set for the shallow coastal environments of Western Australia as a basis 

for regional marine planning and future monitoring activities. 
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7 Conclusions 

A systematic benthic habitat classification for a region is invaluable for generating 

useful habitat maps for many applications (Mumby and Harbourne 1999).  This is 

especially relevant at the regional planning level by enabling the integration of all 

available data sets to assist in the development of habitat maps for entire regions.  

Added to this, using a habitat classification scheme that is ecologically meaningful is 

essential to the resulting maps being useful for applications such as guiding field 

sampling programs for biodiversity studies, marine park planning, pollution impact 

assessment, modelling the distributions of associated fauna and any other applications 

that link ecology to the habitat classes (Mumby and Harbourne 1999, Shears et al. 

2004).  

This project aimed to develop a systematic hierarchical classification scheme for the 

shallow water benthic habitats of Rottnest Island that was ecologically relevant and able 

to be mapped using hyperspectral remote sensing techniques.  Secondly, a spectral 

library of in situ spectral signatures for the habitat components defined in the 

classification scheme was created, and spectral separability analysis was used to 

determine which benthic habitats could be realistically separated at each level using the 

HyMap image data.  The hierarchical nature of the classification scheme has a number 

of benefits, the first being the ability to guide the classification of pixels to a higher 

level by limiting the analysis to the habitat components that are likely to occur, given 

the identification of the habitat class at a lower level (e.g. restricting the analysis of 

macroalgae pixels to being either canopy or algal turf).  Secondly, the scheme is 

applicable to habitat classifications carried out using other forms of remotely-sensed 

data, such as acoustics, that can only differentiate between classes at a lower level (e.g. 
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bare substrate, bio-substrate), making it possible to integrate the resulting maps 

seamlessly to allow for mapping from deep subtidal environments through to the 

shoreline.  This can then provide broad scale habitat maps relevant to regional marine 

planning and finer scale maps for areas of high conservation value to assist with marine 

park planning.  The key to this approach is to integrate the ecological knowledge about 

the benthic habitats and the components that constitute them (biotic and abiotic), to 

determine the most appropriate habitat classification scheme to use when mapping the 

shallow water benthic habitats of a region.   

Obtaining a comprehensive spectral library of the components that contribute to the 

benthic habitats found at Rottnest Island was an essential step in the process of 

classifying the image data.  Its creation was guided by the hierarchical habitat 

classification scheme so that the set of spectral signatures could realistically represent 

the HyMap image data obtained at a pixel scale.  This can also be a limitation of 

classification techniques based on a spectral library.  The spectral library needs to be 

comprehensive and have signatures from all possible habitats that might occur in an 

image pixel to avoid incorrect pixel classification. 

The novel method for spectral separability and hyperspectral image classification 

developed as part of this study has proved to be effective for mapping shallow water 

benthic habitats in the clear, temperate waters of Rottnest Island.  The separation 

analysis highlighted the importance of working hierarchically and also of having 

sufficient spectral data in the library to test classification techniques using modelled 

spectral signatures that replicate what would occur in an image pixel.  Having this 

quality of data can give the user the ability to test the performance of a classification 
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algorithm to identify different benthic habitats in a controlled environment and 

determine which approach is best for each particular split in the classification scheme.  

This approach was applied successfully in this project and resulted in different inputs 

and spectral distance metrics being found to be optimal for identifying pixels at each 

split in the hierarchical habitat classification scheme.  Although the spectral separability 

analysis was carried out at HyMap spectral resolution, the same process could be 

applied to data at the spectral resolution of any available sensor, such as Quickbird or 

Landsat.  However, it should be noted that one would expect the analysis to be less 

effective due to limitations in the spatial or spectral resolution of other sensors. 

Applying the classification algorithm to the hyperspectral image data resulted in the 

identification of some dominant habitat components to species level (e.g., Ecklonia 

radiata) and others to genus (e.g. Posidonia) which is an improvement to the existing 

habitat maps created as part of the Perth coastal waters study (Ong et al. 1998).  

However, the general patterns in the spatial arrangement of benthic habitats were 

comparable at lower levels in the classification scheme.   

It is important to note that the success of the classification algorithm is reliant on 

hyperspectral image data being subjected to a rigorous and systematic correction for the 

influence the atmosphere, the air/water interface and the overlying water column.  This 

study used data corrected using the Modular Inversion Processing System (MIP) which 

provided the bottom reflectance data that could be utilised by the classification 

algorithm (Heege et al. 2004, Heege and Fischer 2004).  The MIP approach to water 

correction was a perfect partner for the classification algorithm developed as it has a 

number of ancillary data outputs that indicate the quality and availability of the 
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corrected bottom reflectance data on a pixel by pixel basis for the image.  This allows 

the image classification algorithm to utilise the most appropriate combination of image 

bands and spectral metrics when classifying each pixel.  This approach provided the 

information required to obtain the most accurate maps from the image classification, but 

also provided guidance on how to best interpret these maps.   

The strength of the classification approach taken in this project was the hierarchical 

manner in which it was implemented.  This meant that issues with misclassification 

identified at Level 2 could be corrected, using contextual editing based on 

environmental variables developed around the digital bathymetry model, before 

classification was carried out to Levels 3 and 4.  This resulted in a more accurate result 

that better represented the spatial distribution of the benthic habitats of Rottnest Island.  

Added to this, the results of the classification algorithm testing, using mixture analysis, 

were used to aid the interpretation of the final habitat maps.  For example, testing the 

classification algorithm at Level 3, to separate macroalgae into the canopy algae or algal 

turf classes, indicated that canopy will often be misidentified as algal turf, which means 

that in the final map there may be some areas identified as turf that are actually canopy 

algae.  These misclassifications are a result of a number of factors including the 

heterogeneous nature of macroalgae habitats at Rottnest Island and the limited ability of 

the algorithm to separate the classes, even when using pure in situ spectral signatures.   

Another essential tool in providing the highest quality habitat maps is a rigorous and 

appropriate accuracy assessment.  The accuracy assessment taken in this study was 

appropriate for the classification at the lower levels in the habitat classification scheme, 

when habitat classes tend to clump (occur in groups of homogenous groups of pixels), 
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but at the higher levels, when real changes in the benthic habitats class occur between 

individual pixels, it was less appropriate.  The reason for this was the spatial inaccuracy 

in the data collection method and meant that these fine scale changes in the benthic 

habitats were not captured in the validation data or able to be assessed in relation to the 

image data.  Added to this were the broad thematic classes applied to the bathyscope 

validation data where only the dominant habitat component was recorded, rather than 

percentage contribution of each component.  This made it impossible to assess the fine 

scale trends observed in the field in the classified image.  The finer scale accuracy 

assessment based on benthic habitat photographs (drop camera) provided a good 

alternative method which had a high level of spatial and thematic accuracy by virtue of 

the quantitative nature of the data collected.  As was demonstrated, this approach allows 

for the trends observed in the field to be assessed in direct relation to the classified 

image as data was recorded about the percentage composition of each validation point 

for a similar area as recorded by a pixel.  This sort of assessment is essential when 

attempting to classify benthic habitats to a level where real changes in the classification 

will occur at a pixel level. 

The application of benthic habitat maps to marine planning, management and reporting 

applications has been well recognised.  The development of techniques that increase our 

ability to classify remotely sensed data to a much finer scale will increase the number of 

applications that they can be used for.  However this increase in thematic resolution has 

to be considered carefully to ensure that the results are still applicable at broader, 

regional scales.  This is where it is of key importance to use a systematic habitat 

classification scheme that can be applied at all the required spatial and thematic scales. 
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This project took an integrated approach to utilise hyperspectral image data, in 

conjunction with ecological knowledge and information on the abiotic environment, to 

map shallow water benthic habitats in a temperate environment.  This approach is 

necessary to provide results that are appropriate for a range of users, from ecologists to 

marine managers and planners. 
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Appendix 1: Spectral separation analysis results 

Bare substrate/Bio-substrate 

Table 0-1: Results of genetic algorithm optimisation for the best bands and spectral metric to 

separate the spectral signatures at Level 1 of the classification scheme (bare substrate/bio-

substrate).  The optimal result for each spectral metric is highlighted. 

Spectral metric Bands tested Optimal bands ‘R’ statistic         p-value 

SA –                Optimal 1 - 17 4, 17 0.683745  <0.001 

1 1 – 17 4, 17 0.683745  <0.001 

2 1 – 17 4, 10, 11 0.632195  <0.001 

3 1 – 17 4, 17 0.683745  <0.001 

4 1 – 17 4, 17 0.683745  <0.001 

5 1 – 17 4, 17 0.683745  <0.001 

SCA –             Optimal 1 - 17 4, 15, 17 0.935240 <0.001 

1 1 – 17 4, 15, 17 0.935240 <0.001 

2 1 – 17 4, 15, 17 0.935240 <0.001 

3 1 – 17 4, 15, 17 0.935240 <0.001 

4 1 – 17 4, 15, 17 0.935240 <0.001 

5 1 – 17 4, 15, 17 0.935240 <0.001 

SGA –             Optimal 1 - 17 1, 3 0.654422 <0.001 

1 1 – 17 1, 3 0.654422 <0.001 

2 1 – 17 1, 15 0.637712 <0.001 

3 1 – 17 1, 3 0.654422 <0.001 

4 1 – 17 1, 3 0.654422 <0.001 

5 1 – 17 1, 5, 6 0.623895 <0.001 

SID –               Optimal 1 - 17 4, 17 0.497661 <0.001 

1 1 – 17 4, 10, 11 0.478181 <0.001 

2 1 – 17 4, 10, 11 0.478181 <0.001 

3 1 – 17 4, 17 0.497661 <0.001 

4 1 – 17 4, 10, 11 0.478181 <0.001 

5 1 – 17 4, 10, 11 0.478181 <0.001 

SID(TAN) –    Optimal 1 - 17 16, 17 0.651613 <0.001 

1 1 – 17 16, 17 0.651613 <0.001 

2 1 – 17 4, 10, 11 0.530407 <0.001 

3 1 – 17 16, 17 0.651613 <0.001 

4 1 – 17 4, 10, 11 0.530407 <0.001 

5 1 – 17 4, 10, 11 0.530407 <0.001 

SID(SIN) –      Optimal  1 - 17 4, 10, 11 0.528787 <0.001 

1 1 – 17 4, 10, 11 0.528787 <0.001 

2 1 – 17 4, 10, 11 0.528787 <0.001 

3 1 – 17 4, 10, 11 0.528787 <0.001 

4 1 – 17 4, 10, 11 0.528787 <0.001 

5 1 – 17 4, 10, 11 0.528787 <0.001 
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Table 0-2: Results of genetic algorithm optimisation for the best bands and spectral metric to 

separate the spectral signatures at Level 1 of the classification scheme (bare substrate vs bio-

substrate).  The optimal result for each spectral metric is highlighted. 

Spectral metric Bands tested Optimal bands ‘R’ statistic         p-value 

SA –                Optimal 1 - 9 4, 9 0.465046  <0.001 

1 1 - 9 4, 9 0.465046  <0.001 

2 1 - 9 4, 9 0.465046  <0.001 

3 1 - 9 4, 9 0.465046  <0.001 

4 1 - 9 4, 9 0.465046  <0.001 

5 1 - 9 4, 9 0.465046  <0.001 

SCA –             Optimal 1 - 9 1, 2, 3, 9 0.805661 <0.001 

1 1 - 9 1, 2, 3, 9 0.805661 <0.001 

2 1 - 9 1, 2, 3, 9 0.805661 <0.001 

3 1 - 9 1, 2, 3, 9 0.805661 <0.001 

4 1 - 9 1, 2, 3, 9 0.805661 <0.001 

5 1 - 9 1, 2, 3, 9 0.805661 <0.001 

SGA –             Optimal 1 - 9 1, 3 0.654422 <0.001 

1 1 - 9 1, 3 0.654422 <0.001 

2 1 - 9 1, 3 0.654422 <0.001 

3 1 - 9 1, 3 0.654422 <0.001 

4 1 - 9 1, 3 0.654422 <0.001 

5 1 - 9 1, 3 0.654422 <0.001 

SID –               Optimal 1 - 9 4, 5 0.376518 <0.001 

1 1 - 9 4, 5 0.376518 <0.001 

2 1 - 9 4, 5 0.376518 <0.001 

3 1 - 9 4, 5 0.376518 <0.001 

4 1 - 9 4, 5 0.376518 <0.001 

5 1 - 9 4, 5 0.376518 <0.001 

SID(TAN) –    Optimal 1 - 9 4, 9 0.385004 <0.001 

1 1 - 9 4, 9 0.385004 <0.001 

2 1 - 9 4, 9 0.385004 <0.001 

3 1 - 9 4, 9 0.385004 <0.001 

4 1 - 9 4, 9 0.385004 <0.001 

5 1 - 9 4, 9 0.385004 <0.001 

SID(SIN) –      Optimal  1 - 9 4, 9 0.383069 <0.001 

1 1 - 9 4, 9 0.383069 <0.001 

2 1 - 9 4, 9 0.383069 <0.001 

3 1 - 9 4, 9 0.383069 <0.001 

4 1 - 9 4, 9 0.383069 <0.001 

5 1 - 9 4, 9 0.383069 <0.001 
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Macroalgae/Seagrass/Coral 

Table 0-3: Results of the spectral separation analysis carried out using a genetic algorithm to 

determine the optimum band combination to separate between macroalgae, seagrass and coral 

dominated habitats for each spectral metric.  Each test was carried out five times using 74 spectral 

signatures for the library and using HyMap bands 1 – 17.  The optimal result for each spectral 

metric is highlighted. 

Spectral metric Bands tested Optimal bands ‘R’ statistic         p-value 

SA –                Optimal 1 - 17 4, 6, 10, 11 0.684107  <0.001 

1 1 – 17 4, 6, 10, 11 0.684107  <0.001 

2 1 – 17 4, 6, 10, 11 0.684107  <0.001 

3 1 – 17 4, 6, 10, 11 0.684107  <0.001 

4 1 – 17 4, 6, 10, 11 0.684107  <0.001 

5 1 – 17 4, 6, 10, 11 0.684107  <0.001 

SCA –             Optimal 1 – 17 4, 6, 9 0.844120 <0.001 

1 1 – 17 4, 6, 9 0.844120 <0.001 

2 1 – 17 4, 6, 9 0.844120 <0.001 

3 1 – 17 4, 6, 9 0.844120 <0.001 

4 1 – 17 4, 6, 9 0.844120 <0.001 

5 1 – 17 4, 6, 9 0.844120 <0.001 

SGA –             Optimal 1 – 17 1, 2 0.152039 0.001 

1 1 – 17 1, 2 0.152039 0.001 

2 1 – 17 1, 2 0.152039 0.001 

3 1 – 17 15, 16 0.062563 0.100 

4 1 – 17 1, 2 0.152039 0.001 

5 1 – 17 1, 2 0.152039 0.001 

SID –               Optimal 1 – 17 4, 6, 10, 11 0.603431 <0.001 

1 1 – 17 4, 6, 10, 11 0.603431 <0.001 

2 1 – 17 4, 6, 10, 11 0.603431 <0.001 

3 1 – 17 4, 6, 10, 11 0.603431 <0.001 

4 1 – 17 4, 6, 10, 11 0.603431 <0.001 

5 1 – 17 4, 6, 10, 11 0.603431 <0.001 

SID(TAN) –    Optimal 1 – 17 4, 6, 10, 11 0.634592 <0.001 

1 1 – 17 4, 6, 10, 11 0.634592 <0.001 

2 1 – 17 4, 6, 10, 11 0.634592 <0.001 

3 1 – 17 4, 6, 10, 11 0.634592 <0.001 

4 1 – 17 4, 6, 10, 11 0.634592 <0.001 

5 1 – 17 4, 6, 10, 11 0.634592 <0.001 

SID(SIN) –      Optimal  1 – 17 4, 6, 10, 11 0.633844 <0.001 

1 1 – 17 4, 6, 10, 11 0.633844 <0.001 

2 1 – 17 4, 6, 10, 11 0.633844 <0.001 

3 1 – 17 4, 6, 10, 11 0.633844 <0.001 

4 1 – 17 4, 6, 10, 11 0.633844 <0.001 

5 1 – 17 4, 6, 10, 11 0.633844 <0.001 



 

254 

Table 0-4: Results of genetic algorithm optimisation for the best bands and spectral metric to 

separate the spectral signatures at Level 2 of the classification scheme  

Spectral metric Bands tested Optimal bands ‘R’ statistic         p-value 

SA –                Optimal 1 – 9  7, 9 0.647195  <0.001 

1 1 – 9 7, 9 0.647195  <0.001 

2 1 – 9 7, 9 0.647195  <0.001 

3 1 – 9 7, 9 0.647195  <0.001 

4 1 – 9 7, 9 0.647195  <0.001 

5 1 – 9 7, 9 0.647195  <0.001 

SCA –             Optimal 1 – 9  4, 6, 9 0.844120 <0.001 

1 1 – 9 4, 6, 9 0.844120 <0.001 

2 1 – 9 4, 6, 9 0.844120 <0.001 

3 1 – 9 4, 6, 9 0.844120 <0.001 

4 1 – 9 4, 6, 9 0.844120 <0.001 

5 1 – 9  4, 6, 9 0.844120 <0.001 

SGA –             Optimal 1 – 9 1, 2 0.152039 <0.001 

1 1 – 9 1, 2 0.152039 <0.001 

2 1 – 9 1, 2 0.152039 <0.001 

3 1 – 9 1, 2 0.152039 0.001 

4 1 – 9 1, 2 0.152039 <0.001 

5 1 – 9  1, 2 0.152039 <0.001 

SID –               Optimal 1 – 9  7, 9 0.620409 <0.001 

1 1 – 9 7, 9 0.620409 <0.001 

2 1 – 9 7, 9 0.620409 <0.001 

3 1 – 9 7, 9 0.620409 <0.001 

4 1 – 9 7, 9 0.620409 <0.001 

5 1 – 9 7, 9 0.620409 <0.001 

SID(TAN) –    Optimal 1 – 9  7, 9 0.629725 <0.001 

1 1 – 9 7, 9 0.629725 <0.001 

2 1 – 9 7, 9 0.629725 <0.001 

3 1 – 9 7, 9 0.629725 <0.001 

4 1 – 9 7, 9 0.629725 <0.001 

5 1 – 9 7, 9 0.629725 <0.001 

SID(SIN) –      Optimal  1 – 9  7, 9 0.629528 <0.001 

1 1 – 9 7, 9 0.629528 <0.001 

2 1 – 9 7, 9 0.629528 <0.001 

3 1 – 9 7, 9 0.629528 <0.001 

4 1 – 9 7, 9 0.629528 <0.001 

5 1 – 9 7, 9 0.629528 <0.001 
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Canopy/Algal turf 

Table 0-5: Results of the spectral separation analysis carried out using a genetic algorithm to 

determine the optimum band combination to separate between canopy and turf algae dominated 

habitats for each spectral metric.  Each test was carried out five times using 42 spectral signatures 

for the library and using HyMap bands 1 – 17.  The optimal result for each spectral metric is 

highlighted. 

Spectral metric Bands tested Optimal bands ‘R’ statistic         p-value 

SA –                Optimal 1 - 17 6, 8 0.785458  <0.001 

1 1 – 17 6, 8 0.785458  <0.001 

2 1 – 17 5 , 6, 8, 9 0.756628  <0.001 

3 1 – 17 5 , 9 0.753422  <0.001 

4 1 – 17 5 , 6, 8, 9 0.756628  <0.001 

5 1 – 17 6, 8 0.785458  <0.001 

SCA –             Optimal 1 – 17 1, 6, 8 0.712286 <0.001 

1 1 – 17 1, 5, 6, 8, 9, 15 0.633274 <0.001 

2 1 – 17 1, 5, 6, 8, 9, 15 0.633274 <0.001 

3 1 – 17 1, 5, 6, 8, 9, 15 0.633274 <0.001 

4 1 – 17 1, 6, 8 0.712286 <0.001 

5 1 – 17 1, 6, 8 0.712286 <0.001 

SGA –             Optimal 1 – 17 6, 14 0.138973 <0.001 

1 1 – 17 6, 14 0.138973 <0.001 

2 1 – 17 1, 4, 5, 6, 14 0.130316 <0.001 

3 1 – 17 6, 14 0.138973 <0.001 

4 1 – 17 6, 14 0.138973 <0.001 

5 1 – 17 6, 14 0.138973 <0.001 

SID –               Optimal 1 – 17 6, 7, 8 0.782868 <0.001 

1 1 – 17 5, 6, 8, 9 0.744517 <0.001 

2 1 – 17 5, 6, 8, 9 0.744517 <0.001 

3 1 – 17 6, 8 0.773563 <0.001 

4 1 – 17 5, 6, 8, 9 0.744517 <0.001 

5 1 – 17 6, 7, 8 0.782868 <0.001 

SID(TAN) –    Optimal 1 – 17 6, 7, 8 0.786376 <0.001 

1 1 – 17 5, 6, 8, 9 0.751705 <0.001 

2 1 – 17 5, 6, 8, 9 0.751705 <0.001 

3 1 – 17 5, 6, 8, 9 0.751705 <0.001 

4 1 – 17 6, 7, 8 0.786376 <0.001 

5 1 – 17 6, 7, 8 0.786376 <0.001 

SID(SIN) –      Optimal  1 – 17 6, 7, 8 0.786343 <0.001 

1 1 – 17 6, 7, 8 0.786343 <0.001 

2 1 – 17 5, 6, 8, 9 0.751965 <0.001 

3 1 – 17 6, 7, 8 0.786343 <0.001 

4 1 – 17 5, 6, 8, 9 0.751965 <0.001 

5 1 – 17 5, 6, 8, 9 0.751965 <0.001 
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Table 0-6: Results of the spectral separation analysis carried out using a genetic algorithm to 

determine the optimum band combination to separate between canopy and turf algae dominated 

habitats for each spectral metric.  Each test was carried out five times using 42 spectral signatures 

for the library and using HyMap bands 1 – 9.  The optimal result for each spectral metric is 

highlighted. 

Spectral metric Bands tested Optimal bands ‘R’ statistic         p-value 

SA –                Optimal 1 – 9 6, 7, 8 0.792431  <0.001 

1 1 – 9 6, 7, 8 0.792431  <0.001 

2 1 – 9 6, 7, 8 0.792431  <0.001 

3 1 – 9 6, 7, 8 0.792431  <0.001 

4 1 – 9 6, 7, 8 0.792431  <0.001 

5 1 – 9 6, 7, 8 0.792431  <0.001 

SCA –             Optimal 1 – 9 4,5,9 0.733485 <0.001 

1 1 – 9 4,5,9 0.733485 <0.001 

2 1 – 9 4,5,9 0.733485 <0.001 

3 1 – 9 4,5,9 0.733485 <0.001 

4 1 – 9 4, 7, 8 0.714110 <0.001 

5 1 – 9 4, 7, 8 0.714110 <0.001 

SGA –             Optimal 1 – 9 1, 2 0.074004 <0.05 

1 1 – 9 1, 2 0.074004 <0.05 

2 1 – 9 1, 2 0.074004 <0.05 

3 1 – 9 1, 2 0.074004 <0.05 

4 1 – 9 1, 2 0.074004 <0.05 

5 1 – 9 1, 2 0.074004 <0.05 

SID –               Optimal 1 – 9 6, 7, 8 0.782868 <0.001 

1 1 – 9 6, 7, 8 0.782868 <0.001 

2 1 – 9 6, 7, 8 0.782868 <0.001 

3 1 – 9 6, 7, 8 0.782868 <0.001 

4 1 – 9 6, 7, 8 0.782868 <0.001 

5 1 – 9 6, 7, 8 0.782868 <0.001 

SID(TAN) –    Optimal 1 – 9 6, 7, 8 0.786376 <0.001 

1 1 – 9 6, 7, 8 0.786376 <0.001 

2 1 – 9 6, 7, 8 0.786376 <0.001 

3 1 – 9 6, 7, 8 0.786376 <0.001 

4 1 – 9 6, 7, 8 0.786376 <0.001 

5 1 – 9 6, 7, 8 0.786376 <0.001 

SID(SIN) –      Optimal  1 – 9 6, 7, 8 0.786343 <0.001 

1 1 – 9 6, 7, 8 0.786343 <0.001 

2 1 – 9 6, 7, 8 0.786343 <0.001 

3 1 – 9 6, 7, 8 0.786343 <0.001 

4 1 – 9 6, 7, 8 0.786343 <0.001 

5 1 – 9 6, 7, 8 0.786343 <0.001 
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Posidonia/Amphibolis 

Table 0-7: Results of the spectral separation analysis carried out using a genetic algorithm to 

determine the optimum band combination to separate between Posidonia and Amphibolis 

dominated habitats for each spectral metric.  Each test was carried out five times using 24 spectral 

signatures for the library and using HyMap bands 1 – 17.  The optimal result for each spectral 

metric is highlighted. 

Spectral metric Bands tested Optimal bands ‘R’ statistic         p-value 

SA –                Optimal 1 - 17 13, 15 0.472842  <0.001 

1 1 – 17 13, 15 0.472842  <0.001 

2 1 – 17 13, 15 0.472842  <0.001 

3 1 – 17 13, 15 0.472842  <0.001 

4 1 – 17 13, 15 0.472842  <0.001 

5 1 – 17 13, 15 0.472842  <0.001 

SCA –             Optimal 1 – 17 1, 13, 15 0.444030 <0.001 

1 1 – 17 1, 13, 15 0.444030 <0.001 

2 1 – 17 1, 13, 15 0.444030 <0.001 

3 1 – 17 1, 13, 15 0.444030 <0.001 

4 1 – 17 1, 13, 15 0.444030 <0.001 

5 1 – 17 1, 13, 15 0.444030 <0.001 

SGA –             Optimal 1 – 17 6, 9, 17 0.065987 0.059 

1 1 – 17 6, 7, 8, 14, 17 0.060939 0.101 

2 1 – 17 6, 7, 8, 14, 17 0.060939 0.101 

3 1 – 17 6, 7, 8, 14, 17 0.060939 0.102 

4 1 – 17 7, 14 0.064514 0.006 

5 1 – 17 6, 9, 17 0.065987 0.059 

SID –               Optimal 1 – 17 13, 15 0.474525 <0.001 

1 1 – 17 13, 15 0.474525 <0.001 

2 1 – 17 13, 15 0.474525 <0.001 

3 1 – 17 13, 15 0.474525 <0.001 

4 1 – 17 13, 15 0.474525 <0.001 

5 1 – 17 13, 15 0.474525 <0.001 

SID(TAN) –    Optimal 1 – 17 13, 15 0.473684 <0.001 

1 1 – 17 13, 15 0.473684 <0.001 

2 1 – 17 13, 15 0.473684 <0.001 

3 1 – 17 13, 15 0.473684 <0.001 

4 1 – 17 13, 15 0.473684 <0.001 

5 1 – 17 13, 15 0.473684 <0.001 

SID(SIN) –      Optimal  1 – 17 13, 15 0.473684 <0.001 

1 1 – 17 13, 15 0.473684 <0.001 

2 1 – 17 13, 15 0.473684 <0.001 

3 1 – 17 13, 15 0.473684 <0.001 

4 1 – 17 13, 15 0.473684 <0.001 

5 1 – 17 13, 15 0.473684 <0.001 
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Table 0-8: Results of the spectral separation analysis carried out using a genetic algorithm to 

determine the optimum band combination to separate between Posidonia and Amphibolis 

dominated habitats for each spectral metric.  Each test was carried out five times using 24 spectral 

signatures for the library and using HyMap bands 1 – 9.  The optimal result for each spectral 

metric is highlighted. 

Spectral metric Bands tested Optimal bands ‘R’ statistic         p-value 

SA –                Optimal 1 – 9 1, 2 0.111520  <0.05 

1 1 – 9 1, 2, 3, 4 0.026973  0.229 

2 1 – 9 1, 2 0.111520 0.033 

3 1 – 9 1, 2 0.111520  0.035 

4 1 – 9 1, 2 0.111520  0.031 

5 1 – 9 1, 2 0.111520 0.032 

SCA –             Optimal 1 – 9 1, 6 0.194910 0.001 

1 1 – 9 1, 6 0.194910 0.001 

2 1 – 9 1, 6 0.194910 0.002 

3 1 – 9 1, 6 0.194910 0.003 

4 1 – 9 1, 6 0.194910 0.002 

5 1 – 9 1, 6 0.194910 0.002 

SGA –             Optimal 1 – 9 7, 8, 9 0.053263 0.110 

1 1 – 9 7, 8, 9 0.053263 0.116 

2 1 – 9 7, 8, 9 0.053263 0.111 

3 1 – 9 7, 8, 9 0.053263 0.113 

4 1 – 9 7, 8, 9 0.053263 0.115 

5 1 – 9 7, 8, 9 0.053263 0.110 

SID –               Optimal 1 – 9 1, 2 0.111625 0.030 

1 1 – 9 1, 2 0.111625 0.034 

2 1 – 9 1, 2 0.111625 0.032 

3 1 – 9 1, 2 0.111625 0.031 

4 1 – 9 1, 2 0.111625 0.031 

5 1 – 9 1, 2 0.111625 0.030 

SID(TAN) –    Optimal 1 – 9 1, 2 0.111836 0.031 

1 1 – 9 1, 2 0.111836 0.031 

2 1 – 9 1, 2 0.111836 0.035 

3 1 – 9 1, 2 0.111836 0.039 

4 1 – 9 1, 2 0.111836 0.035 

5 1 – 9 1, 2 0.111836 0.033 

SID(SIN) –      Optimal  1 – 9 1, 2 0.111836 0.029 

1 1 – 9 1, 2 0.111836 0.032 

2 1 – 9 1, 2 0.111836 0.029 

3 1 – 9 1, 2 0.111836 0.033 

4 1 – 9 1, 2 0.111836 0.033 

5 1 – 9 1, 2 0.111836 0.033 
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Ecklonia/Sargassum/Scytothalia doryocarpa 

Table 0-9: Results of the spectral separation analysis carried out using a genetic algorithm to 

determine the optimum band combination to separate between Ecklonia, Sargassum and S. 

doryocarpa dominated habitats for each spectral metric.  Each test was carried out five times using 

23 spectral signatures for the library and using HyMap bands 1 – 17.  The optimal result for each 

spectral metric is highlighted. 

Spectral metric Bands tested Optimal bands ‘R’ statistic         p-value 

SA –                Optimal 1 - 17 6, 7 0.484790  <0.001 

1 1 – 17 6, 7 0.484790  <0.001 

2 1 – 17 4, 9, 11, 12 0.379830  <0.001 

3 1 – 17 5, 9, 11, 12 0.383119  <0.001 

4 1 – 17 4, 5, 9, 10, 13, 14 0.372979  <0.001 

5 1 – 17 5, 6, 7 0.441902  <0.001 

SCA –             Optimal 1 – 17 9, 10, 11 0.408331 <0.001 

1 1 – 17 9, 11 0.384763 <0.05 

2 1 – 17 9, 10, 11 0.408331 <0.001 

3 1 – 17 7, 8, 11 0.351603 <0.05 

4 1 – 17 9, 11 0.384763 <0.05 

5 1 – 17 9, 10, 11 0.408331 <0.001 

SGA –             Optimal 1 – 17 6, 7, 8, 9, 15 0.137024 <0.05 

1 1 – 17 6, 7, 8, 9, 15 0.137024 <0.05 

2 1 – 17 10, 12, 17 0.136476 <0.05 

3 1 – 17 6, 7, 8, 9, 15 0.137024 <0.05 

4 1 – 17 6, 7, 8, 9, 15 0.137024 <0.05 

5 1 – 17 6, 9, 10, 11, 17 0.125240 <0.05 

SID –               Optimal 1 – 17 5, 6, 8 0.445053 <0.001 

1 1 – 17 5, 6, 8 0.445053 <0.001 

2 1 – 17 6, 7 0.488627 <0.001 

3 1 – 17 5, 6, 8 0.445053 <0.001 

4 1 – 17 5, 6, 8 0.445053 <0.001 

5 1 – 17 5, 6, 8 0.445053 <0.001 

SID(TAN) –    Optimal 1 – 17 6, 7 0.487942 <0.001 

1 1 – 17 6, 7 0.487942 <0.001 

2 1 – 17 5, 6, 8 0.433817 <0.001 

3 1 – 17 5, 6, 7 0.443546 <0.001 

4 1 – 17 5, 6, 8 0.433817 <0.001 

5 1 – 17 5, 6, 7 0.443546 <0.001 

SID(SIN) –      Optimal  1 – 17 6, 7 0.487942 <0.001 

1 1 – 17 5, 6, 7 0.443546 <0.001 

2 1 – 17 6, 7 0.487942 <0.001 

3 1 – 17 5, 6, 8 0.433817 <0.001 

4 1 – 17 4, 5, 8, 9, 13 0.383393 <0.001 

5 1 – 17 4, 5, 6 ,8 0.415182 <0.001 
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Table 0-10: Results of the spectral separation analysis carried out using a genetic algorithm to 

determine the optimum band combination to separate between Ecklonia, Sargassum and S. 

doryocarpa dominated habitats for each spectral metric.  Each test was carried out five times using 

23 spectral signatures for the library and using HyMap bands 1 – 9.  The optimal result for each 

spectral metric is highlighted. 

Spectral metric Bands tested Optimal bands ‘R’ statistic         p-value 

SA –                Optimal 1 – 9 6, 7 0.484790  <0.001 

1 1 – 9 6, 7 0.484790  <0.001 

2 1 – 9 6, 7 0.484790  <0.001 

3 1 – 9 6, 7 0.484790  <0.001 

4 1 – 9 6, 7 0.484790  <0.001 

5 1 – 9 6, 7 0.484790  <0.001 

SCA –             Optimal 1 – 9 3, 5 0.611263 <0.001 

1 1 – 9 3, 5 0.611263  <0.001 

2 1 – 9 3, 5 0.611263  <0.001 

3 1 – 9 7, 9 0.585092  <0.001 

4 1 – 9 3, 5 0.611263  <0.001 

5 1 – 9 3, 5 0.611263  <0.001 

SGA –             Optimal 1 – 9 6, 7 0.123596 0.079 

1 1 – 9 6, 7 0.123596 0.080 

2 1 – 9 6, 7 0.123596 0.079 

3 1 – 9 6, 7 0.123596 0.078 

4 1 – 9 6, 7 0.123596 0.078 

5 1 – 9 6, 7 0.123596 0.081 

SID –               Optimal 1 – 9 6, 7 0.488627 <0.001 

1 1 – 9 6, 7 0.488627 <0.001 

2 1 – 9 6, 7 0.488627 <0.001 

3 1 – 9 6, 7 0.488627 <0.001 

4 1 – 9 6, 7 0.488627 <0.001 

5 1 – 9 6, 7 0.488627 <0.001 

SID(TAN) –    Optimal 1 – 9 6, 7 0.487942 <0.001 

1 1 – 9 6, 7 0.487942 <0.001 

2 1 – 9 6, 7 0.487942 <0.001 

3 1 – 9 6, 7 0.487942 <0.001 

4 1 – 9 6, 7 0.487942 <0.001 

5 1 – 9 6, 7 0.487942 <0.001 

SID(SIN) –      Optimal  1 – 9 6, 7 0.487942 <0.001 

1 1 – 9 6, 7 0.487942 <0.001 

2 1 – 9 6, 7 0.487942 <0.001 

3 1 – 9 6, 7 0.487942 <0.001 

4 1 – 9 6, 7 0.487942 <0.001 

5 1 – 9 6, 7 0.487942 <0.001 
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Algal turf 

Table 0-11: Results of the spectral separation analysis carried out using a genetic algorithm to 

determine the optimum band combination to separate between Ecklonia, Sargassum and S. 

doryocarpa dominated habitats for each spectral metric.  Each test was carried out five times using 

14 spectral signatures for the library and using HyMap bands 1 – 17.  The optimal result for each 

spectral metric is highlighted. 

Spectral metric Bands tested Optimal bands ‘R’ statistic         p-value 

SA –                Optimal 1 - 17 8, 9, 10 0.671831  <0.001 

1 1 – 17 5, 6, 7, 13, 14, 16 0.607042 <0.05 

2 1 – 17 5, 8, 10 0.670423  <0.001 

3 1 – 17 8, 9, 10 0.671831  <0.001 

4 1 – 17 5, 7, 8, 9, 10, 11 0.656338  <0.001 

5 1 – 17 7, 8, 11, 13, 14, 16 0.602817 <0.05 

SCA –             Optimal 1 – 17 3, 7, 9 0.870423 <0.001 

1 1 – 17 3, 7, 9 0.870423 <0.001 

2 1 – 17 3, 7, 9 0.870423 <0.001 

3 1 – 17 3, 7, 9 0.870423 <0.001 

4 1 – 17 3, 7, 9 0.870423 <0.001 

5 1 – 17 1, 3, 5, 7, 9 0.867606 <0.001 

SGA –             Optimal 1 – 17 1, 6 0.304225 <0.05 

1 1 – 17 1, 9, 15 0.292958 <0.05 

2 1 – 17 1, 6 0.304225 <0.05 

3 1 – 17 1, 6 0.304225 <0.05 

4 1 – 17 1, 6 0.304225 <0.05 

5 1 – 17 2, 9, 15 0.301408 <0.05 

SID –               Optimal 1 – 17 8, 10 0.629577 <0.05 

1 1 – 17 5, 8, 10, 11 0.628169 <0.001 

2 1 – 17 7, 14, 15, 16, 17 0.590141 <0.05 

3 1 – 17 8, 10 0.629577 <0.05 

4 1 – 17 7, 14, 15, 16, 17 0.590141 <0.05 

5 1 – 17 5,6, 7, 8, 10, 11, 14, 16 0.570423 <0.05 

SID(TAN) –    Optimal 1 – 17 8, 9, 10 0.653521 <0.001 

1 1 – 17 5, 8, 10 0.645070 <0.05 

2 1 – 17 8, 9, 10 0.653521 <0.001 

3 1 – 17 6, 7, 14, 16 0.581690 <0.05 

4 1 – 17 8, 9, 10 0.653521 <0.001 

5 1 – 17 7, 14, 17 0.601408 <0.05 

SID(SIN) –      Optimal  1 – 17 8, 9, 10 0.652113 <0.001 

1 1 – 17 8, 9, 10 0.652113 <0.001 

2 1 – 17 5, 7, 8, 9, 10, 11 0.632394 <0.05 

3 1 – 17 8, 10 0.640845 <0.001 

4 1 – 17 8, 9, 10 0.652113 <0.001 

5 1 – 17 5, 8, 10 0.645070 <0.001 



 

262 

Table 0-12: Results of the spectral separation analysis carried out using a genetic algorithm to 

determine the optimum band combination to separate between Ecklonia, Sargassum and S. 

doryocarpa dominated habitats for each spectral metric.  Each test was carried out five times using 

23 spectral signatures for the library and using HyMap bands 1 – 9.  The optimal result for each 

spectral metric is highlighted. 

Spectral metric Bands tested Optimal bands ‘R’ statistic         p-value 

SA –                Optimal 1 – 9 5, 7 0.607042 <0.05 

1 1 – 9 5, 7 0.607042 <0.05 

2 1 – 9 5, 7 0.607042 <0.05 

3 1 – 9 5, 7 0.607042 <0.05 

4 1 – 9 5, 7 0.607042 <0.05 

5 1 – 9 5, 7 0.607042 <0.05 

SCA –             Optimal 1 – 9 3, 7, 9 0.870423 <0.001 

1 1 – 9 3, 7, 9 0.870423 <0.001 

2 1 – 9 3, 7, 9 0.870423 <0.001 

3 1 – 9 3, 7, 9 0.870423 <0.001 

4 1 – 9 3, 7, 9 0.870423 <0.001 

5 1 – 9 3, 7, 9 0.870423 <0.001 

SGA –             Optimal 1 – 9 1, 6 0.304225 <0.05 

1 1 – 9 1, 6 0.304225 <0.05 

2 1 – 9 1, 6 0.304225 <0.05 

3 1 – 9 1, 6 0.304225 <0.05 

4 1 – 9 1, 6 0.304225 <0.05 

5 1 – 9 1, 6 0.304225 <0.05 

SID –               Optimal 1 – 9 5, 7 0.600000 <0.05 

1 1 – 9 5, 7 0.600000 <0.05 

2 1 – 9 5, 7 0.600000 <0.05 

3 1 – 9 5, 7 0.600000 <0.05 

4 1 – 9 5, 7 0.600000 <0.05 

5 1 – 9 5, 7 0.600000 <0.05 

SID(TAN) –    Optimal 1 – 9 5, 7 0.601408 <0.05 

1 1 – 9 5, 7 0.601408 <0.05 

2 1 – 9 5, 7 0.601408 <0.05 

3 1 – 9 5, 7 0.601408 <0.05 

4 1 – 9 5, 7 0.601408 <0.05 

5 1 – 9 5, 7 0.601408 <0.05 

SID(SIN) –      Optimal  1 – 9 5, 6, 7 0.601408 <0.001 

1 1 – 9 5, 7 0.601408 <0.05 

2 1 – 9 5, 7 0.601408 <0.05 

3 1 – 9 5, 6, 7 0.601408 <0.001 

4 1 – 9 5, 6, 7 0.601408 <0.05 

5 1 – 9 5, 6, 7 0.601408 <0.05 
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Appendix 2: Benthic habitat classification probability maps 

 

Figure 0-1: Probability maps for the separation of the bio-substrate class into macroalgae (A), 

seagrass (B) or coral (C). 
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Figure 0-2: Probability maps for the separation of the macroalgae class into canopy algae (A) or 

algal turf (B). 
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Figure 0-3: Probability maps for the separation of the seagrass class into Posidonia (A) or 

Amphibolis (B). 
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Figure 0-4: Probability maps for the separation of the canopy algae class into Ecklonia radiata (A) 

or Sargassum (B). 

 


