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Abstruct- Microarray technologics enable the 
quantitative simultaneously monitoring of expression levels 
for thousands of genes under various experimental 
conditions. This is new technology has provided a new way of 
learning gene functional classes on a genome-wide. 
Previously, lots of unsupervised clustering methods and 
supervised classification have shown power in assigning 
functional annotations based on gcne co-expression. 
However, due  to the noisy and highly dimensional nature of 
microarray data and the inherent heterogeneity of gene 
functional classes, the whole-genome learning of gene 
functional classes from microarray data has remained a 
great challenge for scientists. Currently, most of the methods 
do not discriminate the different attribution of experimental 
conditions in the learning process, which impaired the ability 
of learning functional classes and prevented these methods 
from discovering the links between the experimental 
conditions and gene functional classes. In this study, we 
perform a selection of experiment conditions during the 
systematically learning of -100 functional classes categorized 
in MIPS's comprehensive yeast genome database. In 
particular, a hybridization of genetic algorithm and k- 
nearest neighbors classifier has been adopted here. Through 
a comparison of the results with other previous methods our 
studies indicate promising improvements in  learning 
performance. Further, by identifying the critical 
experimental conditions, significant links between the 
experiments and the functional classes were uncovered. 

I .  INTRODUCTION 
Microamay technology has attracted increasing interest 

in many academic communities and industries over the 
recent years. This new breakthrough promises a new 
insight into the mechanisms of living systems by 
providing a way to simultaneously measure the activities 
and interaction of thousands of genes. It is supposed genes 
that co-regulate and exhibit similar patterns of expressions 
when exposed to identical experimental conditions are 
likely to be involved in similar biological functional 
classes. By analyzing the large volume of gene expression 
data, it is possible to discover the underlying functional 
groupings of genes that are involved in a particular 
pathway, or respond to a common environmental stimulus. 
Through these analyses, the function of undetermined 
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gene products can then be systematically idcntified 
through guiIt-by-association principle [ t 1. 

Over the recent years, a number of clustering 
algorithms (e.g. K-means [ I  I], SOM [ 12,131, hierarchical 
clustering [ 141, graph theoretic approaches [ 15,161, Fuzzy 
C-means [ 171, etc) and classification algorithms (e.g. 
SVM [ 181, ANN [ 191, etc) have been employed for gene 
functional analysis using microarray data. Through these 
analyses a significant amount of new discoverjes have 
been made and new understandings of thc living systems 
were generated. However, the learning of gcne hnctional 
classes from microarray expression data has remained a 
great challenge to computer scientists. In particular, the 
difficulties mainly lie in the nature of genome expression 
data. Microarray data is inherently noisy and highly 
dimensional. The natural biological fluctuations are likely 
to import measurement variations and bring implications 
to microarray analysis. In addition, the microarray 
experiment involves complex scientific procedures during 
which errors are commonly introduced due to the 
imperfections of instruments, impurity of materials and 
negligence of scientist. Microarray data is also high 
dimension with thousands of genes and hundreds of 
samples (arrays). This makes learning from microarray 
data an arduous task under the effect of curse of 
dimensionality. The biological heterogeneity is another 
factor that deters the successful analysis of the data. The 
gene functional classes exhibit great intra heterogeneity 
due to the difference in derivation organisms and complex 
regulation systems. Genes are categorized into the same 
class based on their similar transcript in different 
biochemistry experiments. However, this is dues not 
warrant their co-transcription when exposed to all the 
given experiments in microarray. 

TO alleviate these problems, feature selection was 
often used to identify the subset of relevant features and 
eliminate irrelevant ones. Generally, feature selection 
tends to fall under two categories, namely. filter methods 
and wrapper methods. The former selects features 
according to criteria that are independent of the learning 
machine. Signal-to-noise [3,4], T-statistics [SI, entropy- 
base [6] and X*-statistics [7] are some of the commonly 
employed criteria used for ranking genes in cancer data. In 
the later, the machine-learning algorithm employcd affects 
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the search of important feature subset directly. 
Evolutionary algorithms are used to search for this subset 
of features due to its well-known ability to produce high 
quality solution at tractable time even on complex 
problems. In [S-IO], Genetic Algorithm (GA) has been 
shown to effectively identify discriminative genes in 
multi-class tumor medical diagnostic tests. 

In this study, our focus is to systematically classify 
-100 gene functional classes categorized in MIPS’s 
CYGD [ 2 ]  (Comprchcnsive Yeast Genomc Database) on a 
genome-wide scale. By conducting feature selection on 
the experimental conditions, we aim to identify and select 
the most significant subset of conditions given a particular 
functional class of genes, so that the classification 
becomes less affected by the noisy experiments. At the 
same time, the Iearning performance of the classifier may 
be improved. In addition, the identification of relevant 
conditions further reveals the underlying links among the 
specific sets of genes and pathway. In this study, a genetic 
algorithdk-nearest neighbors wrappcr method is adopted 
to perform the feature selection. 

, 

11. SYSTEM AND METHODOLOGIES 

A .  Dataset and Dura Preprocessing 
In the present study, we use the genomic expression 

data of wild-type S. cerevisine selected by Gasch et a1 [ 171, 
which is achieved under the experiments described in [20- 
231. The 6153 genes and 93 experiments are represented 
by a gene expression matrix of dimension 6153x93. The 
magnitude of the element value indicates the expression 
level of the gene in the corresponding experimental 
condition. The missing value (i, j )  in the data set was 
estimated with a weighted average of values in experiment 
j of k other genes that have a value present in experiment i 
and expression most similar t o j  in all experiment other 
than i [24]. 

Among the 6153 genes, only 3700 were chosen for this 
study based on the availability of accurate functional 
annotations in the MIPS’s CYGD reference database [2]. 
This database contains several hundred functional classes, 
whose definitions come from biochemical and genetic 
studies of gene function. Because it is arranged in a 
hierarchical scheme, we normalize the reference 
functional annotations by using functional class labels up 
to level 2, There -100 functional classes containing more 
than three genes are used in the training process. The 
database is available at 
http ://mitx esf.de/Droi/vcast’catalorrucslfuncat. 

B. Methodology 
In this multi-class classification problem, we applied a 

one-versus-all strategy. For each functional class, the data 
set is split into two parts: genes belonging to the given 
function (positive instances) and genes not in this function 
(negative instances). A binary G A / K “  classifier is built 
for each class. The G A / K ”  classifier consists of two 

...... i Condition 2 is included in the classifier 

Fig 1. A representation of chromosome as a binary bit string 
Condition 1 is not included in the classifier 

main components: (1) a GA-based experimental condition 
selector and (2) a KNN genc classifier. 

It is not practical to use “brute force” to select a subset 
of experiments’conditions from a total of 93 to jointly 
discriminate between the different classes of genes. Here 
GA is used as it has been shown to. be effective and 
efficiency in searching for the global optimal of complex 
high-dimensional problcms [27]. There are three major 
design decisions to consider when implement a GA to 
solve a particular problcm. In the GA, a representation for 
candidate solutions must be chosen and encoded as a 
chromosome. Here, a chromosome is denoted as a 93 
binary bit string, which coincides with thc 93 
experimental conditions considered. Hence a ‘ 1 ’ at 
location bit 2 implies the inclusion of condition 2 in the 
classification process, and vice versa (Fig. 1). 

A GA population size of 20 chromosomes is initialized 
randomly. Linear ranking selection is used for selection, 
with two-point crossover and mutation operators at 
probabilities 0.9 and 0.05, respectively, and a stopping 
criterion of 50 gcnerations. The objective fitness function 
considered in this study is based on the F-measure I281 
given in (1): 

(b2 +l)PR 
F(c)  = 

bZP+R 

BEGIN 

For each non-trivial gene functional class 

Split the positive and negative samples 

Begin GA 

Initialize: genente an initial GA population 

While (generation < 50) 

Evaluate: for each chromosome, run 5 times 3- 
fold cross-validation of K” (k=3) with 
conditions included in the chromosome. Retum 
the average F-measure (1) as fitness. 

CA Operators: apply roulette wheel selection, 
two-point crossover (rc=0.9) and mutation 
(rm=0.05) to generate new population. 

End While 

End CA 

End For 

END 

Fig 2: The framework of the G N K “  method. 
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where P and R denote the prccision and recall of KNN 
classifier respectively. A three-fold stratified cross- 
validation is used to explore the precision and recall. I t  is 
worth noting that due to thc random nature on the partition 
of the data set, any two different runs of cross-validation 
often results in different outcomes, hence, we repeat the 
three-fold cross-validation five times and the average 
precision and recall is used. Parameter b adjusts the 
weighting for precision and recall. In this study, precision 
and recall are weighted equally, i.e. b is sct to one in ( I ) .  
The summary of the GNKNN functional classification 
process is outlined in Fig 2. 

111. EMPIRICAL RESULTS AND DISCUSSION 
The results obtained from our empirical studics on 

GAlKNN functional classification of whole-genome data 
are presented in Table I .  The top 25 functional classes of 
highest averagc F-Measure are listed in the dcscending 
order. The referenccs of functional annotations in the 
second lcvel of CYGD functional categorization are 
tabulated in the first column. The second column 
indicates the number of genes found in each hnctional 
class. The entries in the third and fourth columns are the 
means and standard variances for precision and recall over 
five runs using three-fold stratified cross-validation 
scheme. The fifth column shows the F-Measure derived 
based on (1). The numbers of experimental conditions 

selected are listed in the Iast column. On the average, 36 
conditions were selected among the top 25 classes. 

These results indicate that most of the functional 
cIasses were learned at a precision above 0.5, however the 
recalls were relatively low in comparison, with only 5 
functional classes having a value greater than 0.4. The 
effective performance for each class is evaluated based on 
F-Measure, which balances both precision and recall. 
From a biological perspective, the obtained results match 
well with earlier studies [I91 where the ‘organelle-specific 
protein’ function (e.g. organization of cytoplasm, 
mitochondrial organization, nuclear organization, 
organization of chromosome structure, etc) was exposed 
to be more IeamabIe, and the “ribosomal proteins” 
function being the most learnablc class among all others. 

A.  Comparison with other methods 
Ovcr the recent ycars, many machine-learning 

methods have been considered for fimctional classification. 
Among them, Support Vector Machine (SVM) and 
Artificial Neural Network (ANN) were regarded as better 
learners of gene functional classes [18,19]. In the present 
empirical study, we consider four state of the art learning 
methods for gene functional classification limited to the 
top 25 functions. These include SVM with radial basis 
kernel, back-propagation multi-layer pcrceptron network, 
K-nearest neighbour (K”) and GA+KNN. The model 

TABLE I. THE TOP 25 FUNCTIONAL CLASSES WITH HIGHEST AVERAGE F-MEASURE LEARNED BY GA/K” METHOD. 

Functional Class Size Precision Recall F-Measure Features 

glycolysis and gluconeogenesis 3.5 1.0oi0.00 0.40k0.04 0.57f0.04 37 
ribosomal proteins 202 0.8%kO,Oi 0.78f0.00 0.84?r0.01 41 

tRNA-synthetases 37 0.83k0.03 0.41+0.03 0.55kO.05 41 
respiration 74 0.72f0.03 0.42i0.01 0.53+0.00 40 
organization of cytoplasm 554 0.6810.01 0.40k0.00 . 0.50+0.01 31 

33 mitochondrial organization 337 0.65i0.01 0.39!~0.01 
tricarboxylic-acid pathway 23 0.75f0.09 0.26k0.05 0.39+0.07 37 
amino-acid transporters 25 0.86H.08 0.24t0.00 0.38f0.01 31 
amino-acid metabolism 203 0.75k0.02 0.2510.01 0.38fo.01 31 
organization of endoplasmatic reticulum I54 O.SOi0.02 0.3W0.01 0.38?0.01 36 
fermentation 34 0.89f0.06 0.24k0.00 0.37fo.01 42 

0.4&&0.0l 

nuclear organization 758 0.4W.01 0.34k0.01 0.37+0.01 44 
nitrogen and sulphur metabolism 73 0.6310.04 0.26f0.01 0.37kO.02 34 
rRNA transcription 104 0.48f0.03 0.28f0.03 0.35+0.03 27 
proteolysis 152 0.6Ok0.03 0,23*0.01 0.33+0.01 32 
translation 62 0.54&0.05 0.24t0.01 0.33jk0.02 30 
organization of chromosome structure 41 0.98i0.00 0.20+_00 0.33Hl.00 44 
transport ATPases 38 0.48f0.03 0.24k0.01 0.32H.01 34 
mRNA transcription 559 0.35M.00 0.28+0.01 38 
intncellular transport vesicles 42 0.53k0.04 0.21*0.02 0.31k0.02 41 

peroxisomal organization 39 0.64i0.04 O.18?OO.OI 0.28~0.01 32 
40 C-compound and carbohydrate metabolism 413 0.47fO.OI 0.19tO.00 

mitochondrial transport 72 0.69rt0.04 0.15+0.01 0.2sio.o I 42 
nucleotide metabolism 142 0.7Oi0.03 0.15&0.01 0.24k0.02 34 

40 phosphate metabolism 32 I .0&0.00 0.13M.02 

0.31*0.01 

0.27f0.00 

0.22k0.02 
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Fig 3: Companson of (a) precision (b) recall (c) F-Measure between 
K“, ANN, SVM and GAKNN on the top 25 funct~onal classes. 

parameters of the machine-learning methods were 
configured according to [18,19] or the defaults. On each 
class, we conducted 5 runs of threc-fold cross-validation 
using each method and the average of precision, recall and 
F-measure are plotted in Fig. 3. Because most of the 
standard deviations are small relative to the mean, they are 
omitted for the sake of brevity. 

From Fig. 3(a), it may be observed that G A l K ”  
exhibits better result than other methods in most of the 
functional classes, SVM displays great inconsistency with 
the best classification performance in several classes 
whereas zero precision on the others. Moreover, SVM 
seems to favor a higher precision in those classes at the 
cost of a lower recall. ANN exhibits a consistent level of 
precisions on all the classes. Noticeably, the non- 
parametric method, KNN performs better than other 
sophisticated methods, this is mainly due to the noise and 
the imbalance in the number of positive and negative 
examples. The relatively large proportion of negative 
training examples easily outweighs the small number of 
positive examples in each class. Further, the erroneous 
examples in the training set often mislead learning in 
SVM and ANN. As a result, SVM and ANN are not 
correctly trained to separate the classes. In contrast, KNN 

is a lazy learner that predicts target sample based on the 
local information, which make it much less susceptible to 
be affectcd by the noisy data and erroneous training 
examples. 

The average recalls for the various machine learning 
techniques are plotted in Fig. 3(b). These methods are 
generally competitive except for SVM, which fails to 
learn many of the classes (i.e. 0 recall rates or at best 5 
0.4). Such performances are generally caused by the 
natural heterogcneity in functional classes. Because 
different complexes are elicited under different conditions, 
the genes are unlikely to be expressed in a coordinated 
fashion under different conditions. Accordingly, genes in 
the same functional class are not necessary to express 
coherent pattern (shown in Fig. 4) that is assumed by 
machine learning. 

The effective performances of the methods are also 
summarized in Fig. 3(c) using F-measure. Based on F- 
measure, KNN and ANN display competitive performance. 
SVM is overwhelmed by other methods ascribing to its 
incapability of learning many classes. While, GMKNN 
displays competitive to the other methods in terms of 
recaIl, it emerges as superior in F-measure due to thc 
evidently good precision. This indicates that GA/KNN is 
capable of efficiently filtering out the false positive 
samples without significant change in true positive. 

B. Reproducibility and Heterogeneity 
To assess the reproducibility of the selected conditions, 

we independently perform the GMKNN algorithm 50 
times on functional class “glycolysis and 
gluconeogenesis”. The conditions were selected with 
frequency > 0.5 and diagrammed in the top section of Fig. 
4. Genes belonging to class “glycolysis and 
gluconeogenesis” are hierarchically clustered and shown 
in the Eisen plot [ 141, bottom section of Fig. 4, where they 
are clustered into subclass A and B. 

In the top section of Fig. 4, 15 conditions are selected 
with frequency > 0.7. Among them, condition 4, 55, 64, 
49 and 88 were most frequently selected. We can find that 
these conditions show most coherent expression in the 
subclass A. Hence, subclass A is best characterized with 
highly induction in response to phosphate limitation 
(condition 4) [21] and diamine treatment (condition 55), 
while strong repression in response to other environmental 
changes including amino acid starvation (condition 64), 
nitrogen starvation (condition 69) and stationary phase 
(condition SS) [23]. These relationships between the 
experimental conditions and functional classes are 
essential for revealing the underlying mechanism of 
biological process. For example, the induction of class 
“glycolysis and gluconeogenesis” in the condition 4 may 
implicate the importance of phosphate in Glycolysis / 
Gluconeogenesis metabolism. 

The repeated selection of identical conditions indicates 
the ability of GA/KNN to cream off the discriminative 
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Fig 4: Top section: conditions selected with frequency >0.5 in the 50 
runs of GAiKNN on class “glycolysis and gluconeogenesis”. The x-axis 

presents the 93 experimental conditions and y-axis represents the 
selected frequency. Bottom section: Eisen plot of expression profile of 

class “glycolysis and gluconeogenesis”, where genes (rows) are 
organized based on their similarities. Color red represents a gene is 

induced in the corresponding experiment and green represent repression 
of the gene. The cotor saturation represents the magnitude of ihc 

expression ratio. Black indicates no detcctable difference in expression 
levels. In this combioognm, two sections are aligned with experimental 

conditions. For each condition, its selected frequency and express profile 
i s  diagram in the same column, 

features as well as filter out the noisy and redundant ones. 
In the bottom section of Fig. 4, conditions 80-93 show 
similar expression profiles, which compose the who le 
progression of stationary phase, but only the best one, 

. condition 88 was selected all the times. As such, 
condition 55 and 69 were selected much more frequently 
than other diamide treatments (conditions 49-56) and 
nitrogen starvation (conditions 69-78). 

This expression profile in Fig. 4 also shows the 
evidential heterogeneity in this class. All the genes were 
grouped into 2 subclasses with subclass A containing the 
learnable genes discovered in this study. Most genes in 
subclass A are repressed during all the experiments. They 
are found to be involved in the Glycolysis / 
Gluconeogenesis pathway in KEGG’s PATHWAY 
database [29]. However, genes in subclass B were highly 
induced in most of the experiments. The discovery of 
common transcription factor biding sites (MSN2/4) within 
800 bp upstream of their open reading frames [I71 
indicates their co-regulation corresponding to 
“environmental stress responsc” [23]. Unfortunately, 
Msn2Msn4p also regulated other classes (e.g. respiration, 
tricarboxylic-acid) at the same time. Therefore, genes in 
subclass B arc much more likely to be assigned to other 

classes which make it difficult to be learned by classifier 
even when feature selection is attempted. One of the 
solutions for this heterogeneity problem is nonctheless to 
collect more experimental data. 

1V. CONCLUSIONS 
In this paper, we have conducted a study on using 

hybrid genetic algorithmik-nearest neighbors classifier for 
genome-wide yeast gene expression data. In particular, we 
employ the GA to identify the critical experimental 
conditions and evaluate the goodness of candidate 
solutions using the. k-nearest neighbors classifier. The 
hybrid method is shown to be capable of improving the 
performance of hnctional class annotation when 
compared to existing state of art machine lcaming 
methods. Further, our studies also cxpose the 
relationships between the expcriment conditions and 
specific functional classes. These revelations will enhance 
new developments in pathway and regulatory system 
analysis. 
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