A Conceptual Framework for
Analyzing Students’
Knowledge of Programming

Tanya J. McGill & Simone E. Volet

Murdoch University, Australia

Abstract

This article proposes a conceptual framework for analvzing students’ knowledge of programming.
The framework integrates three distinct types of programniing knowledge identified in the
educational computing literature (syntactic, conceptual, and strategic ) with three distinct forms
of knowledge proposed in the cognitive psychology literature (declarative, procedural. and
conditional). Analysis of empirical data from a previous experimental study (Volet, 1991 )
provided support for the usefulness of the model and its educational potential for diagnosing
deficiencies in the programming knowledge of novice programmers during a course of instruction
and for designing appropriate instruction in introductory programming. (Keywords: cognitive
skills, learning processes, mental models. programming. teaching methods.)

One of the recurring issues in the educational computing literature is the con-
ceptual usefulness of distinguishing between different types of programming
knowledge. A number of empirical studies have provided evidence that intro-
ductory courses in computer programming tend to overemphasize students’ ac-
quisition of the syntax of a particular programming language at the expense of
their development of problem-solving strategies and their understanding of com-
puter-programming principles.

The importance of examining the nature, structure, and function of domain-
specific knowledge has also been emphasized in recent cognitive psychology
literature. Different concepts have been proposed to categorize forms of knowl-
edge, but similar claims have been made with regard to the significance of the
higher order problem-solving or metacognitive knowledge and strategies that
allow individuals to apply their knowledge flexibly across situations.

This article reviews the categories of knowledge emerging from each of these
two bodies of literature and attempts to integrate them into a single conceptual
framework. Empirical data are provided to support the usefulness of the model
and its educational potential for diagnosing deficiencies in students’ knowledge
and for designing instruction in introductory programming courses.

EDUCATIONAL COMPUTING LITERATURE

Much of the educational computing research has focused on the cognitive pro-
cesses involved in learning to program and on the types of programming knowl-

This research was supported by a grant from Murdoch University.

276 Spring 1997: Volume 29 Number 3



edge acquired by students during an introductory programming course. It has been
argued that programming involves the acquisition and effective use of the follow-
ing three interrelated types of programming knowledge (Bayman & Mayer, 1988).

* Syntactic: Knowledge of specific facts about a programming language and
rules for its use.

* Conceptual: Understanding of computer programming constructs and
principles.

* Strategic: Programming-specific versions of general problem-solving skills.

Bayman and Mayer’s model builds on the earlier work of Shneiderman (1977),
Shneiderman and Mayer (1979), and Linn (1985).

Shneiderman and Mayer (1979) proposed a syntactic-semantic model of pro-
gramming knowledge to represent the knowledge involved in learning to pro-
gram. In their model, syntactic knowledge is conceptualized as knowledge about
the rules and procedural aspects of a programming language, such as the syn-
tax of specific looping constructs. Semantic knowledge represents an under-
standing of the underlying principles and constructs and is considered to be
independent of the particular programming language.

Linn’s (1985) developmental model describes the cognitive skills and knowl-
edge involved in learning to program in terms of a chain of cognitive accom-
plishments. The chain is derived from research analyzing the behaviour of expert
and novice programmers as well as examination of exemplary textbooks (Linn,
1985). The chain is composed of the following three steps:

1. Acquisition of knowledge about language features.

2. Learning of design skills. This step consists of students’ development of
a repertoire of templates and the procedural skills to combine these tem-
plates to solve programming problems.

3. Development of problem-solving skills that can be applied to a variety
of other formal systems.

Linn and colleagues’ first step in the chain of cognitive accomplishments cor-
responds roughly to the acquisition of syntactic knowledge in Shneiderman and
Mayer’s (1979) model. Their second step was their description of the acquisi-
tion of semantic knowledge. However, Linn and colleagues make a further dis-
tinction between the ability to design solutions to closely related problems
(second step), and the ability to develop solutions to novel and complex prob-
lems (third step). At that last stage of development, individuals are assumed to
have developed a robust and integrated understanding of programming. They
are capable of adopting a self-regulated approach to solving computer-program-
ming problems and of using their problem-solving skills flexibly from one pro-
gramming situation to another, regardless of the programming language used.
These problem-solving skills are seen as becoming more and more general and
even dissociated from the discipline in which they have been developed. Linn
argues that the third step of her chain of cognitive accomplishments can be ap-
plied to nonprogramming problems, for example, Newtonian physics. Accord-

Journal of Research on Computing in Education 277



ing to Husic, Linn, and Sloane (1989). a critical component of this last step is
“the ability to monitor one’s own progress, reflect on alternative approaches for
solving complex problems, and to autonomously seek information™ (p. 571).

Bayman and Mayer (1988) developed a similar model to Linn’s, but confined
the domain of their version of the model to solving problems using the chosen
language. Their model forms the basis of the most commonly used representa-
tion of types of programming knowledge—syntactic, conceptual, and strategic.

Syntactic knowledge is defined as knowledge of the language features or
grammar (e.g., facts relating to the use of semicolons in Pascal or knowledge
of the syntax of the “Repeat...Until” construct). This technical knowledge is
necessary to write programs that will compile, but it is not sufficient for design-
ing and developing appropriate programs to solve problems. Syntactic knowl-
edge must be accompanied by a sound understanding of the programming
principles necessary to develop logically correct programs.

The acquisition of conceptual knowledge involves the development of mental
models of the system and the semantics of the actions that are executed by the pro-
gram. Conceptual knowledge represents the understanding of program concepts
and facilitates the combination of language features embedded in a program.
Whereas syntactic knowledge relates to specific knowledge of individual language
constructs, conceptual knowledge entails a full understanding of the semantics of
these constructs and the ways in which they can be combined to solve a problem.
The use of program-design skills requires conceptual knowledge.

Strategic knowledge is the ability to use syntactic and conceptual knowledge
in the most appropriate and effective way to solve novel programming prob-
lems. Strategic knowledge is essential for recognizing that a problem can be
solved and for identifying appropriate techniques for doing so. It is, therefore,
necessary in the problem decomposition and design phases of the programming
process. It is also crucial for testing programs and debugging logic errors.

A number of studies have provided empirical support for the usefulness of
distinguishing among these three categories of knowledge. In a series of experi-
ments with novice and expert programmers, Adelson (1981) demonstrated that
novices used a syntax-based organization to represent programming concepts,
whereas experts used a more abstract organization based on the program’s func-
tion. She suggested that as expertise increases, the categorization of the language
changes from being syntactically based to being semantically based. Her 1984
work provided further support for this claim.

Linn (1985) reported the results of an integrated set of studies that were designed
to assess the levels of programming skill of middle school-level beginning pro-
grammers. The studies examined the types of knowledge hypothesized in her *‘chain
of cognitive accomplishments.” Original instruments were developed to assess the
first two links of the chain; the third stage was assessed as students’ ability to learn
a new programming language. Her results supported the significance of identify-
ing types of knowledge and revealed a wide range of achievement levels for each
type of knowledge among individuals and among schools at the end of an intro-
ductory unit. For example, average scores on the instrument assessing syntactic
knowledge ranged between 20% and 68%. Overall, Linn’s studies emphasized the
fact that in the majority of cases, after a 12-week introductory programming class,

278 Spring 1997: Volume 29 Number 3



students’ achievement was still concentrated at the beginning of the chain, with
little conceptual or strategic knowledge attained.

In an experimental study by Bayman and Mayer (1988), an attempt was made
to examine the relationship between conceptual and strategic knowledge. In that
study, novice programmers learnt BASIC programming from either a standard
manual or one that emphasized conceptual models of the language. It was found
that the teaching of conceptual models enhanced problem-solving performance
(strategic knowledge) and that problem-solving performance was strongly re-
lated to measures of conceptual knowledge.

Overall, the distinctions among types of programming knowledge in the edu-
cational computing literature appear to be conceptually consistent across stud-
ies and to have strong empirical support. Such distinctions also have a promising
educational potential. Empirical research that studies the teaching of program-
ming have pointed to deficiencies in the types of knowledge acquired by stu-
dents in many introductory programming courses. A close examination of the
nature of the knowledge acquired by students who did not reach the desired level
of achievement indicates that they did acquire some syntactic knowledge, but
failed to develop conceptual and strategic knowledge (Linn, 1985; Oliver, 1990).
This outcome is quite consistent with the emphasis that has been typically placed
on the acquisition of syntactic knowledge in introductory classes and many in-
troductory textbooks.

De Corte, Verschaffel, and Schrooten (1992) and Linn and Clancy (1992) ar-
gue that most introductory programming classes do not put enough emphasis
on fostering students’ understanding of the concepts being used. As a conse-
quence, the development of conceptual and strategic knowledge is almost en-
tirely left to unguided discovery. Students end up with a “fragile” knowledge
of programming, which is described by Schwartz, Perkins, Estey, Kruidenier,
and Simmonds (1989) as garbled or inert knowledge. This refers to either knowl-
edge that is used inappropriately or knowledge that is not spontaneously ac-
cessed in the context of need. Studies in which the teaching focus is adjusted
towards conceptual and strategic knowledge have demonstrated increased lev-
els of student understanding and achievement (cf., Bayman & Mayer, 1988; Linn
& Dalbey, 1985; Oliver & Malone, 1993; Volet, 1991). This is particularly the
case for low-ability students who may be less able to develop their own con-
ceptual models and, hence, benefit greatly from explicit instruction in this area
(Bayman & Mayer; Snow & Lohman, 1984; Volet & Lund, 1994).

COGNITIVE PSYCHOLOGY LITERATURE

The distinction among different forms of knowledge is common in the cog-
nitive psychology literature. The distinction between declarative knowledge, or
“know that,” and procedural knowledge, or “know how,” is of major importance
in many analyses of knowledge structure (Anderson, 1976, 1987; Gagné, 1985).
More recently, some cognitive theorists (Paris, Lipson, & Wixson, 1983;
Winograd & Chou Hare, 1988) have proposed conditional knowledge, or the
“know when, where, and why” it is appropriate to apply a piece of knowledge,
as a separate category of knowledge.

Journal of Research on Computing in Education 279



Declarative knowledge is commonly defined as knowledge about something,
specifically about some facts, concepts, or principles. It can also refer to a con-
ceptual awareness of the functions and purposes of that knowledge. It is gener-
ally assumed that an individual’s declarative knowledge base is organized into
meaningful knowledge structures called “schemata” (Rumelhart, 1980) or
“propositional networks’ (Anderson, 1983). These metaphors for describing the
structure and function of declarative knowledge are particularly useful for ex-
plaining how people make sense of new information and how they acquire new
knowledge. According to Rumelhart and Norman (1978), knowledge initially
develops through “accretion,” which refers to the process of encoding new in-
formation in terms of existing schemata. Then, in a second step, knowledge
develops either through “tuning,” which refers to the refinement of an existing
schema, or through “restructuring,” which involves the creation of a new
schema. Applied to the domain of computer programming. declarative knowl-
edge refers to an individual’s knowledge about the syntax of a particular lan-
guage, for example, the knowledge that a semicolon is needed at the end of a
statement in Pascal (reference to a fact), or to an individual’s knowledge about
programming principles, for example the ability to explain what a fragment of
pseudocode does (reference to concepts, rules, or principles). Declarative knowl-
edge of programming can be taught through verbal or written explanations, or
extracted from demonstrations and coded programs. Declarative knowledge is
typically expressed through language. Declarative knowledge that is available
is not necessarily useable. According to Flavell and Wellman (1977), cases of
“production deficiencies,” situations in which individuals appear to possess some
knowledge that they are unable to use, are common. Karmiloff-Smith (1986)
found that children who have been taught a rule to perform a mathematical op-
eration may be unable to apply that rule, even though they have encoded and
stored it in a declarative form and are able to recite it perfectly when required.

Procedural knowledge refers to the active use of the declarative knowledge
base when solving problems. It is commonly defined as knowledge of how to
do something. Procedural knowledge is not expressed through language; it is
demonstrated in action. According to Anderson (1987), knowledge acquisition
starts at the declarative stage, in which knowledge of facts and principles is ac-
quired in a propositional form and must be consciously activated to be used.
Gradually, after seeing, practicing, and reflecting upon examples, declarative
knowledge is converted into procedures (or procedural knowledge) by way of
a “proceduralization” process. With additional practice and experience, proce-
dural knowledge becomes automatic and its use becomes less mentally demand-
ing. Although Anderson claimed that his model applies to all complex learning,
it is usually presented as a model of skill learning (Shuell, 1990). Not all cog-
nitive theorists agree with Anderson’s assertion that the proceduralization pro-
cess is the second developmental step towards greater competence (the first
representing the encoding of knowledge in a declarative form). Chi and Bassok
(1989) argue that for successful proceduralization to take place, an individual
must fully understand all the relevant declarative principles that govern the deri-
vation of a solution. This does not appear to be the case for all learning. There

280 Spring 1997: Volume 29 Number 3



is evidence that many skills and procedural knowledge (e.g., algebraic or arith-
metic computations) are algorithmic in nature. They can be learnt as a set of
procedures simply by observation and imitation, and they can be performed
correctly with only a syntactic understanding of the problem. Piaget (1978) ar-
gued and demonstrated that young children are able to perform complex cog-
nitive activities that they are able to explain in terms of the underlying principle
only at a later stage of development. In schools, a lot of emphasis is put on the
development of propositional or algorithmic forms of knowledge, and, often,
not enough is placed on the development of the declarative principles neces-
sary to guide problem solving and derive an appropriate set of procedures in a
meaningful way. It should be noted however, that although it is useful to dis-
tinguish declarative knowledge from procedural knowledge, the two forms of
knowledge are seldom found in isolation from each other.

Applied to the domain of computer programming, procedural knowledge re-
fers to people’s ability to use their programming knowledge (syntactic, concep-
tual, or both) to write pieces of code or complete programs. Procedural
knowledge can range from coding simple statements to complex solution pro-
cesses. Anderson’s studies of LISP learning identified about 500 production
rules necessary to encode the skill of programming in LISP (Anderson, Conrad,
& Corbett, 1989). Anderson’s ACT theory discusses a process called knowledge
compilation, which involves converting the initial interpretive use of declara-
tive knowledge to a procedural production—rule form. Thus, according to Ander-
son, students must encode declarative representations of what particular LISP
functions do and use them to guide their programming. The relevant informa-
tion must be initially encoded in declarative knowledge structures and then trans-
formed into procedural form through continued practice.

Most theoretical models of the nature of knowledge, such as Anderson (1982)
or Gagné (1985), identify only two types of knowledge: declarative and pro-
cedural. In such models, procedural knowledge is implicitly assumed to include
the know-how as well as the conditions of applicability of the production; that
is, the knowledge of when and where it is appropriate to apply that knowledge.
However, since the late 1970s, it has been claimed that “success at complex
and challenging tasks requires more than just a great deal of declarative and
procedural knowledge™ (Goetz, Alexander, & Ash, 1992). Prominent cognitive
and developmental psychologists, like Flavell (1979) and Brown (1980) argued
that an individual’s knowledge and control of one’s cognition should be rec-
ognized as a separate category of knowledge. Paris et al. (1983) introduced the
term conditional knowledge to indicate that the essence of metacognitive
knowledge relates to the conditions of applicability of what has been learnt.
According to Winograd and Chou Hare (1988) conditional knowledge is com-
municated “when the teacher explains to students why a strategy is important,
when and where to use the strategy, and how to evaluate its effectiveness” (p.
134). Their review of the nature of teacher explanation in a number of experi-
mental studies revealed that when conditional knowledge was fostered, signifi-
cant gains could be seen in the use of the strategy that had been taught.

Journal of Research on Computing in Education 281



A CONCEPTUAL FRAMEWORK OF THE VARIOUS
COMPONENTS OF PROGRAMMING KNOWLEDGE

Comparing the educational computing and the cognitive psychology bodies
of literature on categories of knowledge reveals some interesting similarities and
differences. The major similarity appears in the conceptualization of the high-
est category of knowledge, which is labeled strategic knowledge in the educa-
tional computing literature, and conditional knowledge in the cognitive
psychology literature. Regardless of the discipline, it is expected at that expert
level of knowing that the individual has developed a rich body of abstract, or-
ganized, and principled knowledge and effective cognitive skills for recogniz-
ing meaningful patterns, accessing relevant conceptual knowledge, and
generating appropriate problem solutions. It is agreed that at the highest level,
knowledge is flexible, transferable, and applicable across situations and tasks.

The major difference between the two bodies of knowledge lies in the
conceptualization of the two lower level categories of knowledge. In the edu-
cational computing literature, the distinction is generally made between two
forms of content (programming) knowledge, which are viewed as complemen-
tary but at the same time hierarchically related. It is assumed that syntactic
knowledge is related to conceptual knowledge of programming, but that the
former is of a lower level because it is more concrete than abstract and because
conceptual knowledge of computer programming can subsume various types
of syntactic knowledge. In contrast, in the cognitive psychology literature, the
distinction between categories of knowledge is unrelated to the subject-matter
content but refers to the nature, structure, and function of knowledge. Declara-
tive knowledge and procedural knowledge are complementary and closely in-
terrelated, but more in a developmental than in a hierarchical fashion.

Integrating these two sets of concepts into a single conceptual framework
appears useful for a full understanding of the nature of computer-programming
knowledge. Mandinach and Linn (1986) refer to the use of procedural skills
necessary to combine language features (syntactic knowledge) and templates
(conceptual knowledge) in a program. They define procedural skills as plan-
ning and testing skills. Anderson (1989) and Shih and Alessi (1993-1994) have
applied cognitive psychology concepts to the educational computing domain,
however they have not systematically explored the relationships among the cog-
nitive psychology concepts—declarative and procedural knowledge—and the
more common educational computing concepts—syntactic, conceptual, and
strategic knowledge.

Palumbo (1990) and Reed and Palumbo (1992) addressed the issue of the
potential relationship between programming language instruction and problem
solving. They argued that the first two components of Linn’s (1985) chain of
cognitive accomplishments (namely, the acquisition of knowledge about lan-
guage features and the development of design skills) “roughly parallel the dis-
tinction between declarative knowledge and procedural knowledge and the
distinction between syntactic knowledge and semantic knowledge” (Palumbo,
p. 79). Palumbo views declarative and syntactic knowledge bases as equivalent

282 Spring 1997: Volume 29 Number 3



terms (first component in Linn’s model), and considers the development of de-
sign skills (second component in Linn’s model) as equivalent to the develop-
ment of procedural knowledge and semantic knowledge of the components in
the declarative or syntactic knowledge base.

Oliver (1993) also makes reference to parallels between the categorizations of
knowledge used in the educational computing and cognitive psychology literature
and incorporates the distinctions in domain-specific knowledge into an elaborate
understanding of the nature of conceptual knowledge. He proposes that concep-
tual knowledge incorporates the types of knowledge identified in the cognitive
psychology literature. To further Oliver’s distinction, a similar distinction could
be applied to syntactic knowledge. A full model recognizes that each type of knowl-
edge can subsume the other. For example, declarative knowledge includes both
syntactic and conceptual knowledge. The same applies to procedural knowledge.
Reciprocally, syntactic knowledge can be represented in a declarative and in a pro-
cedural form, as can conceptual knowledge. For example, the second link in Linn’s
(1985) chain of cognitive accomplishments, design skills, contains both knowl-
edge of templates, which can be considered declarative knowledge, and the pro-
cedural skills that enable the use of templates. Soloway (1985) discusses the
existence of both procedural and nonprocedural plans (templates) and expresses
reservations about the value of nonprocedural plans, thereby acknowledging that
conceptual knowledge may have both declarative and procedural components.

A two-dimensional model of the various components of programming knowl-
edge distinguishes among four interrelated but conceptually distinct forms of
programming knowledge. The four categories of knowledge are declarative-syn-
tactic, declarative-conceptual, procedural-syntactic, and procedural-conceptual.
It is assumed that together these knowledge categories form the basis of pro-
gramming knowledge. The ability to know why, how, where, and when this
knowledge can be used appropriately leads to a conceptually distinct higher form
of knowledge called strategic or conditional. Strategic/conditional knowledge
refers to the ability to integrate and orchestrate the use of all other forms of
knowledge. This higher level of knowledge development is achieved when an
individual is able to use procedural knowledge (syntactic and conceptual) flex-
ibly and appropriately across novel situations and tasks in a way that is syntac-
tically correct and that reflects a sound understanding of the semantics of the
actions executed by the program (declarative-conceptual). Table 1 presents the
conceptual framework of the various components of programming knowledge,
with some examples within each category.

Declarative-Syntactic Knowledge

This category represents knowledge of syntactic facts related to one particu-
lar programming language. This form of knowledge is the one typically intro-
duced at the beginning of introductory computer programming courses and then
taught throughout as students are continually introduced to new syntactic con-
structs. It can be presented in lectures and learnt from books. No conceptual
understanding of computer programming knowledge is assumed, nor is the abil-
ity to use that form of knowledge in a program.

Journal of Research on Computing in Education 283



Table 1

A Conceptual Framework of the
Various Components of Programming Knowledge

Syntactic Knowledge

Declarative Knowledge

Procedural Knowledge

Knowledge of syntactic
facts related to a particu-
lar language, such as:

* Knowing that a
semicolon is needed to
end each statement in
Pascal.

* The ability to explain
the syntactic differ-

Ability to apply rules

of syntax when

programming, such as:

* Ability to write a
syntactically correct
REPEAT statement in
Pascal.

 The ability to open a
text file and read

semantics of the

actions that take place

as a program executes,
such as:

* The ability to explain
what a fragment of
pseudocode does.

* Knowing the way in
which the result of a
function activation is
returned in a particular
language.

ences between a from it using BASIC.
procedure and a
function in BASIC
Conceptual Understanding of and Ability to design
Knowledge ability to explain the solutions to

programming problems,

such as:

e The ability to design
a procedure to
compute the mean of
some data.

* The ability to
modify a program
that prints a 1-D
array to print a 2-D
array.

Strategic/Conditional Knowledge

The ability to design, code, and test a program to solve a novel problem.

Declarative-Conceptual Knowledge

This category of knowledge includes the understanding of and ability to ex-
plain the semantics of the actions that take place as a program is executed. This
form of knowledge differs from both forms of procedural knowledge in that its
availability does not ensure that students can apply it. Students may possess a

284 Spring 1997: Volume 29 Number 3



conceptual understanding of how a particular program works without having
the ability to write the program themselves because the necessary knowledge
may not be spontaneously accessed when needed (Schwartz et al., 1989). De-
clarative-conceptual knowledge can be taught in lectures and tutorials or ex-
tracted from observing programs and executing them.

Procedural-Syntactic Knowledge

This category of knowledge refers to the ability to apply rules of syntax when
programming, that is to be able to produce syntactically correct statements in
a programming language. This form of knowledge is emphasized throughout
introductory computer programming courses by way of the practical laboratory
component, during which students undertake programming exercises. Posses-
sion of this form of knowledge does not, however, guarantee understanding of
the semantics of the syntactically correct statements (i.e., does not ensure con-
ceptual knowledge). Research studies show that procedural-syntactic and de-
clarative-syntactic knowledge are emphasized in many introductory
programming courses, and, thus, students become familiar with the syntax of
a programming language. However, the same students may be unable to com-
prehend the concepts being used. Linn and Dalbey (1985) suggest that some
procedures can be used correctly with only a syntactic understanding of the
problem, for example when using simple (surface-level) analogy with similar
types of problems.

Procedural-Conceptual Knowledge.

This category of knowledge refers to the ability to use semantic knowledge
of programming to write programs. This type of knowledge is frequently not
taught explicitly; instead students are expected to acquire it as a result of the
declarative knowledge presented in lectures and tutorials and their experiences
undertaking hands-on programming exercises. However, in studies in which the
teaching of conceptual models is emphasized, increased levels of student
achievement are frequently reported (e.g., Bayman & Mayer, 1988; Oliver &
Malone, 1993; Schwartz et al., 1989; Volet, 1991).

Strategic/Conditional Knowledge

This category refers to the ability to use syntactic and conceptual knowledge
effectively to design, code, and test a program that solves a novel problem. The
individual is also able to explain the semantics of the actions executed by the
program; hence, he or she possesses both declarative and procedural knowledge.
Again, this type of knowledge is often not explicitly taught in introductory pro-
gramming classes; it is assumed that students will acquire it independently (De
Corte et al., 1992; Linn & Clancy, 1992). Studies that have emphasized the
teaching of conceptual and strategic knowledge have demonstrated increased
levels of student understanding and achievement (e.g., Bayman & Mayer, 1988;
Linn & Dalbey, 1985; Volet, 1991).

Journal of Research on Computing in Education 285



EMPIRICAL SUPPORT FOR THE TWOQO-DIMENSIONAL
CONCEPTUAL FRAMEWORK

Empirical support for the conceptual and educational usefulness of distin-
guishing among five categories of programming knowledge was sought by re-
analyzing data from a previous experimental study (Volet, 1991). In that study,
Volet investigated the impact of an instructional package that emphasizes
metacognitive instruction on the achievement and satisfaction of students en-
rolled in an introductory Turbo BASIC programming course.

The results of that study indicated that the instructional method had signifi-
cant short-term and long-term effects on students’ learning outcomes as reflected
in their pass rates and overall course marks. However, although revealing the
efficacy of the instructional method, the use of examination marks did not pro-
vide explicit information on the types of knowledge induced through this form
of instruction. Because significant differences were observed between experi-
mental and control students’ scores on the examination question requiring them
to design and write a program to solve a novel problem, it was implicitly as-
sumed that the method had fostered students’ development of procedural-con-
ceptual and strategic/conditional knowledge; this effect, however, was not
empirically examined. Identifying the types of programming knowledge that dif-
ferentiated experimental and control students in that study was expected to pro-
vide empirical support for the conceptual and educational usefulness of
distinguishing among the proposed five categories of programming knowledge.

VOLET (1991) STUDY
Method

The experimental group (n = 28) consisted of two intact tutorial classes (out
of nine) and a control group of 28 matched students attending other tutorial
classes. The two experimental classes were taught by the same tutor. Each con-
trol student represented the best possible match for an experimental student at
the beginning of the course. Pairing was initially based on students’ background
in computing, and program of study (i.e., the discipline in which students were
majoring). Gender, interest in computing, and initial study goals for the course
were used as the second set of criteria for obtaining the best overall match be-
cause these factors have all been found to be significant in previous research
on the achievement of first-year computing students.

The intervention was conducted weekly during tutorial time throughout a
13-week course. The instructional package consisted of an interactive teaching
approach involving modeling, coaching, and collaborative learning and empha-
sized student use of a planning strategy for algorithm development and program-
ming. The planning strategy was introduced in the first tutorial and used in all
subsequent tutorials. Students were asked to use the strategy on all their pro-
gramming exercises and were given feedback on their algorithm development
and their completed programs. Demonstrations were initially performed by the

286 Spring 1997: Volume 29 Number 3



tutor, who acted as the expert, with the students gradually taking over and ac-
tively engaging in the teaching and learning process. The approach required a
large amount of tutor—group verbal interaction. Collaboration among students
was explicitly encouraged during tutorials and outside classes.

Students in all other tutorial groups were tutored in a traditional way, that is,
they were required to work on set exercises while tutors acted as consultants,
giving occasional group explanations. Control students (like experimental stu-
dents) were introduced to algorithm development in the lectures, but algorithm
development was not formally required in the weekly exercises or assignments,
and no modeling or coaching techniques were used in tutorials to facilitate stu-
dent acquisition of these skills.

Students’ estimations of time spent on various activities during tutorials and
students’ ratings of the usefulness of tutorial activities provided evidence of
major differences between the instructional method used in the intervention and
normal practice in tutorials for this course. More time was spent overall within
the experimental group on activities involving the tutor interacting with the
whole group (on average 40 min, or 66.9% of the whole tutorial time, compared
to 12 min, or 19.9% for control students). Consequently, less time was left for
the more traditional activities (independent work on the weekly exercises and
getting personal help from the tutor for programming problems). Students in
the experimental group also rated the usefulness of tutor—group activities more
highly than did students in the control group (Volet, 1991).

HYPOTHESES FOR THE PRESENT STUDY

Based on the nature of the experimental instructional method (with its
emphasis on achieving a sound understanding of programming principles
and the development of problem-solving skills) and on reports from other
relevant experimental work on student learning in introductory program-
ming courses three hypotheses were generated for the present investigation.
It was expected that:

1. Experimental students in Volet’s (1991) study would have achieved
higher levels of procedural-conceptual knowledge than students in the
contro] condition.

2. Experimental students would have achieved higher levels of strategic/
conditional knowledge than students in the control condition,

3. There would have been no difference between experimental and control
students’ levels of declarative-syntactic, declarative-conceptual, and pro-
cedural-syntactic knowledge.

Students’ levels of declarative-syntactic and declarative-conceptual knowledge
were not expected to be significantly affected by the intervention because it was
thought that declarative knowledge is typically the type of knowledge that stu-
dents can acquire from reading their textbooks and studying their lecture notes
or coded programs. Control students in that study had the same opportunities

Journal of Research on Computing in Education 287



as experimental students to develop these forms of knowledge by attending the
lectures and studying outside class.

Procedural-syntactic knowledge was also not expected to be affected by the
intervention, because the experimental instructional approach was not directly
aimed at the improvement of syntactic knowledge. Instead, the instructional
approach focused on application of conceptual knowledge.

When examining group scores on the different categories of knowledge,
it should be remembered that experimental and control students’ perfor-
mance could be compared only within each category of knowledge, not
across types of knowledge. The reason is that the level of difficulty of the
examination questions had not been standardized across categories. There-
fore, no hypotheses could be generated with respect to the relative levels
of the five types of knowledge.

ANALYSIS OF EXPERIMENTAL AND CONTROL STUDENTS’
PROGRAMMING KNOWLEDGE

Each final examination question was considered by the authors and two aca-
demics involved in teaching introductory programming to determine the types
of knowledge required to answer that question according to the proposed con-
ceptual framework. There was mostly initial agreement on categorization and
following discussion full agreement was reached for all questions. Some ques-
tions could be categorized as requiring only one single type of knowledge,
whereas others were partitioned into several relevant categories.

For example, the following questions were identified as reflecting one cat-
egory of knowledge:

* How does a program activate a procedure and a function? (declara-
tive-syntactic)

* Why do we use functions in the development of a program? (declara-
tive-conceptual)

Questions such as the following required both procedural-syntactic and pro-
cedural-conceptual knowledge: “Write the code for a procedure or function to
return the larger of 2 numbers.”

The final question in the examination required that a complete program be
written to help with the maintenance of a university’s student record system.
Strategic/conditional knowledge was required to design the solution, procedural-
conceptual knowledge to design the program logic, and procedural-syntactic
knowledge to create a syntactically correct BASIC program.

A scoring system was created to assess the students’ levels of knowledge for
each of the five proposed types of programming knowledge. The scoring scheme
maintained the relative question weightings of the original marking scheme used
when the course was conducted, but the marks for each question were allocated
to the relevant category and partitioned across categories when necessary. For

288 Spring 1997: Volume 29 Number 3



example, in the example question given previously, in which code was written
to return the larger of two numbers, half the marks were allocated based on the
syntactic correctness of the code written (procedural-syntactic) and half on the
conceptual correctness of the code (procedural-conceptual). Table 2 shows all
the examination questions with their categorizations and the percentage weight-
ing for questions that related to more than one category.

All examination papers were then re-marked by two independent judges blind
to the experimental conditions and to the nature of the original study. The cor-
relation coefficient between the two markers’ scores on the individual catego-
ries was r = 0.96.

Table 2
Types of Knowledge Required to Answer the Examination Questions

Questions

Types of Knowledge

Why in the development of a

program do we use:

1. Program variables with
meaningful names.

Declarative-conceptual (100%)

2. Program line indentation. Declarative-conceptual (100%)

3. Procedures. Declarative-conceptual (100%)

4. Uppercase sometimes and Declarative-conceptual (100%)
lowercase other times.

5. Commenting. Declarative-conceptual (100%)

6. Block structured selection. Declarative-conceptual (100%)

7. Functions. Declarative-conceptual (100%)

8. Neither GOTO nor GOSUB Declarative-conceptual (100%)
statements.

9. A limited variety of iteration Declarative-conceptual (100%)
controls.

What is the difference between a
procedure and a function?

Declarative-syntactic (50%),
declarative-conceptual (50%)

Explain the meaning of formal and
actual parameters

Declarative-syntactic (50%),
declarative-conceptual (50%)

How is data transferred into a
procedure?

Declarative-syntactic (50%),
declarative-conceptual (50%)

What happens when the processing
associated with a procedure or
function is complete?

Declarative-conceptual (100%)

Journal of Research on Computing in Education

289




Table 2, cont.
Types of Knowledge Required to Answer the Examination Questions

How is the result of a function
activation returned?

Declarative-syntactic (50%),
declarative-conceptual (50%)

How does a program activate a
procedure and a function?

Declarative-syntactic (100%)

Why are the variables used
within a procedure referred to
as local?

Declarative-conceptual (100%)

For each of the following situations:

1.
2.
3. Specify and special precautions

Specify whether a procedure or a
function is needed.
Specify the parameters.

needed to deal with potential
problems.

. Write code for the procedure or

function.

* Print a header for a program.

* Find the square root of a
number.

* Obtain the name and age of
the program user.

* Retrieve a record from an
opened file.

* Print a warning message.

* Solve a quadratic equation.

e Return the larger of two
numbers.

* Compute the mean of some
data.

* Open a file.

Procedural-conceptual (100%)
Procedural-conceptual (100%)

Procedural-conceptual (100%)

Procedural-syntactic (50%),
procedural-conceptual (50%)

Develop a program to help with the
maintenance of a university’s
student record system. It should
allow the user to:

« Enter new records.

* Delete existing records.

* Alter existing records.

¢ Show all records.

Procedural-syntactic (33.3%),
procedural-conceptual (33.3%),
strategic/conditional (33.3%)

290

Spring 1997: Volume 29 Number 3




RESULTS AND DISCUSSION

As shown in Table 3, two of the hypotheses were fully supported. Students in
the experimental group attained higher levels of procedural-conceptual knowledge
(60.2 versus 45.4, 1(44) =2.39, p < .05) and higher levels of strategic/conditional
knowledge (66.7 versus 49.5, #(44) = 2.53, p < .01) than did the control students.

Table 3
Experimental and Control Students’ Scores
for Five Types of Computer Programming Knowledge

Declarative Knowledge Procedural Knowledge
Experimental Control Experimental  Control p
x score (sd)  x score (sd) x score (sd) x score (sd)

Knowledge
Syntactic 44.6 (26.2) 38.2(25.7) 60.3 (21.6) 42.8(24.4) 0.01
Conceptual  58.5(16.2) 54.6 (17.2) 60.2 (21.8) 45.4(19.9) 0.05

Experimental Control
x score (sd) x score (sd) p

Strategic/Conditional Knowledge  66.7 (22.1) 495(24.0) 0.01

As expected, the levels of declarative-syntactic and declarative-conceptual
knowledge were not significantly different across groups. However, contrary to
our expectations, a significant difference was found between the experimental
and control group scores for procedural-syntactic knowledge (60.3 versus 42.80,
1(44) = 2.58, p < .01). This finding indicates that the intervention also had an
impact on students’ ability to produce syntactically correct program statements.
This was not expected because the development of this form of knowledge was
not directly targeted in the intervention, and was emphasized in the laboratory
components of the course for all students. It is possible, however, that the re-
quirement of externalizing procedural-conceptual problem-solving processes in
the experimental classes had been extended to explicit justifications for the use
of syntactic knowledge, which would explain the significant differences con-
cerning this type of knowledge. An alternative explanation is motivational, and
is related to the socially supportive form of instruction adopted in the experi-
mental group. This form of instruction may have encouraged students to be-
come generally more committed to learn more in this course.

The lack of experimental difference in declarative-conceptual knowledge, in
contrast to the significant difference in procedural-conceptual knowledge, il-
lustrates the issue of learning inert forms of knowledge, that is, knowledge not
spontaneously accessed in the context of need (Schwartz et al., 1989). The form
of instruction used in Volet's (1991) experimental tutorials emphasized the de-

Journal of Research on Computing in Education 291



velopment of conceptual knowledge in action (procedural-conceptual) rather
than in a propositional form (declarative-conceptual).

Overall, the reanalysis of the experimental data using the conceptual frame-
work proposed here clarified the differences between experimental and control
students’ learning outcomes in terms of the kinds of knowledge that were fos-
tered in the study. The breakdown of students’ achievement scores into five types
of programming knowledge revealed that the experimental instructional method
had a significant positive impact on students’ development of the two types of
procedural knowledge (conceptual and syntactic) as well as their development
of the highest form of knowledge, strategic/conditional. What was not signifi-
cantly affected by the intervention was students’ amount of declarative knowl-
edge, whether of a syntactic or conceptual type.

In view of these results, it could be argued that a simple distinction between
declarative and procedural knowledge is sufficient for educational computing
purposes and that there is no need for a more complex model. Yet, the educa-
tional computing literature provides substantial theoretical and empirical sup-
port for the usefulness of distinguishing between syntactic and conceptual
knowledge of programming. As previously discussed in this article, the two sets
of categories (syntactic and conceptual versus declarative and procedural) do
not overlap and, in fact, can each independently subsume both terms of the other
set of categories. However, more empirical research is needed to fully estab-
lish the conceptual usefulness of these four categories of programming knowl-
edge. The present investigation could only attempt to discern differences in
categories of knowledge resulting from the particular experimental instructional
approach used. Different instructional approaches may target the development
of other categories of knowledge.

The inclusion in the conceptual framework of strategic/conditional knowledge
as a higher level type of knowledge was justified because of its theoretical im-
portance in the educational computing and the educational psychology litera-
ture. The re-marking of Volet’s (1991) experimental and control students’
examination papers using the new knowledge-based coding scheme provided
empirical support for the assumption that the experimental instructional pack-
age had facilitated students’ development of strategic/conditional knowledge and
procedural-conceptual knowledge.

IMPLICATIONS

The results of this study suggest that an instructional approach that emphasises
the development and use of a planning strategy for algorithm development in con-
junction with modeling, coaching, and collaborative-learning activities can have
positive effects on students’ development of introductory programming knowledge.
As hypothesised, the categories of programming knowledge most enhanced were
procedural-conceptual and strategic/conditional, with procedural-syntactic know]-
edge also significantly improved. As expected, students’ development of declara-
tive-syntactic and declarative-conceptual knowledge were not significantly affected,
but the two groups’ scores did move in the right direction.

292 Spring 1997: Volume 29 Number 3



It is argued that the success of the instructional approach was because of the
explicit interface in the experimental tutorials, the declarative-conceptual knowl-
edge presented to complete the practical exercises and write good programs.
The ability to appropriately interface and use declarative and procedural forms
of knowledge to solve complex and challenging tasks requires strategic/condi-
tional knowledge (or metacognitive knowledge), which was precisely the tar-
get of the intervention. Winograd & Chou Hare’s (1988) claim that when
strategic/conditional knowledge is fostered, significant gains occur in appropri-
ate use of declarative and procedural knowledge was empirically supported in
the present study. Although control students were introduced to the same amount
of declarative knowledge in lectures and given the same opportunities to de-
velop procedural knowledge through the completion of practical exercises in
tutorials, their development of strategic/conditional knowledge was not guided
by structured interactive-modeling and cognitive-coaching instruction. These
results support Oliver’s (1993) assertion that computing educators should give
attention not only to the mode of delivery but also to the use of appropriate re-
hearsal and consolidation learning activities. Recent work by Bielaczyc, Pirolli,
and Brown (1993) also stresses the benefits of fostering computing students’
development of metacognitive strategies relevant to the discipline in conjunc-
tion to their development of computing knowledge.

One important issue not addressed in this investigation relates to the sequenc-
ing of these different types of knowledge in computer programming instruction.
Once the conceptual usefuiness of the five categories of knowledge has been
fully established, it will become important to examine how the different types
of knowledge should be taught to optimize students’ learning—whether progress
through the categories should take place in a certain sequence, concurrently. or,
possibly, in a cyclic fashion. The repeated finding in the empirical educational
computing literature that the emphasis typically placed on the acquisition of
syntactic knowledge in introductory classes and many introductory textbooks
at the expense of conceptual knowledge leads to the development of inert knowl-
edge provides support for concurrent or cyclic instructional approaches.

With regard to the declarative versus procedural dimensions, there is less
agreement about which aspect of knowledge should be fostered first during in-
struction. Anderson’s (1987) claim that procedural knowledge is acquired
through a proceduralization process whereby declarative knowledge is acquired
first and then gradually converted into procedures is endorsed by Chi & Bassok
(1989), who argue that for successful proceduralization to take place, an indi-
vidual must have fully understood the principles governing the derivation of a
solution. If this is the case, more concrete improvements in declarative knowl-
edge might be obtained by focusing on the pace at which declarative knowl-
edge is introduced, ensuring that students have sufficient time to increase their
procedural knowledge bases before further adding to their declarative knowl-
edge bases. This is supported by Palumbo and Reed’s (1991) work on the ef-
fects of BASIC programming on problem-solving ability.

However, there is also theoretical and empirical support for the notion that
much procedural knowledge can be learnt through simple observation, and that

Journal of Research on Computing in Education 293



despite limitations regarding transfer of such knowledge, some skills can be
performed correctly without full understanding of the underlying principles.
According to Salomon & Globerson (1987). the initial acquisition of some low-
level, automated types of knowledge can be very useful in some cases to fa-
cilitate the development of more complex and mentally demanding forms of
learning. such as in the case of conceptual understanding and the development
of conditional knowledge. Designing instruction in introductory programming
courses is a complex task and requires further attention.

CONCLUSION

Three distinct types of programming knowledge emerging from the educa-
tional computing literature (syntactic, conceptual. and strategic) and three dis-
tinct forms of knowledge proposed in the cognitive psychology literature
(declarative, procedural, and conditional) were integrated into a single concep-
tual framework. Empirical data from a previous experimental study (Volet, 1991)
provided support for the usefulness of the model. its educational potential for
diagnosing deficiencies in the programming knowledge of novice programmers
during a course of instruction, and for designing appropriate instruction in in-
troductory programming.

Contributors

Tanya McGill is a lecturer in information systems at Murdoch University in
Western Australia. She teaches computer literacy, systems analysis and design,
and programming. Her research interests include computing education, infor-
mation-seeking behaviour, and end-user computing. Simone Volet is a senior
lecturer in educational psychology at Murdoch University. Her research focuses
on adult learning and education and the development of effective instructional
models for teaching adults in academic and professional learning settings. (Ad-
dress: Tanya McGill, School of Physical Sciences, Engineering and Technol-
ogy., Murdoch University, Murdoch 6150, Western Australia: megill@murdoch.
edu.au.)

References

Adelson, B. (1981). Problem solving and the development of abstract catego-
ries in programming languages. Memory and Cognition, 9(4), 422-433.

Adelson. B. (1984). When novices surpass experts: The difficulty of a task
may increase with expertise. Journal of Experimental Psychology: Learning,
Memory, and Cognition, 10(3), 483-495.

Anderson, J. R. (1976). Language, memory, and thought. Hillsdale, NJ:
Ertbaum.

Anderson, J. R. (1982). Acquisition of cognitive skill. Psychological Re-
view, 89, 369-406.

294 Spring 1997: Volume 29 Number 3



Anderson, J. R. (1983). The architecture of cognition. Cambridge, MA:
Harvard University Press.

Anderson, J. R. (1987). Skill acquisition: Compilation of weak-method prob-
lem solutions. Psychological Review, 94, 192-210.

Anderson, J. R., Conrad, F. G., & Corbett, A. T. (1989). Skill acquisition and
the LISP tutor. Cognitive Science, 13, 467-505.

Bayman, P., & Mayer, R. (1988). Using conceptual models to teach BASIC
computer programming. Journal of Educational Psychology, 80(3), 291-298.

Bielaczyc, K., Pirolli, P., & Brown, A. (1993). Strategy training in self-ex-
planation and self-regulation strategies for learning computer programming
(Report No. CSM-5). Berkeley, CA: University of California.

Brown, A. L. (1980). Metacognitive development and reading. In R. J. Spiro,
B. C. Bruce, & W. F. Brewer (Eds.), Theoretical issues in reading comprehen-
sion: Perspectives from cognitive psychology, linguistics, artificial intelligence.,
and education (pp. 453-481). Hillsdale, NJ: Erlbaum.

Chi, M. T. H,, & Bassok, M. (1989). Learning from examples via self-expla-
nations. In L. B. Resnick (Eds.), Knowing, learning, and instruction: Essays
in honor of Robert Glaser (pp. 251-282). Hillsdale, NJ: Erlbaum.

Dalbey. J., & Linn, M. C. (1985). The demands and requirements of computer
programming: A review of the literature. Journal of Educational Computing
Research, 1,253-274.

De Corte, E., Verschaffel, L., & Schrooten, H. (1992). Cognitive effects of learn-
ing to program in Logo: A one-year study with sixth graders. In E. De Corte, M.
Linn, H. Mandl, & L. Verschaffel (Eds.), Computer-based learning environments
and problem solving (pp. 207-228). Berlin: Springer-Verlag.

Flavell, J. H. (1979). Metacognition and cognitive monitoring: A new area
of cognitive developmental inquiry. American Psychologist, 34, 906-911.

Flavell, J. H., & Wellman, H. (1977). Meta memory. In R. Kail & J. Hagen
(Eds.), Perspectives on the development of memory and cognition. Hillsdale, NI:
Erlbaum.

Gagné, E. D. (1985). The cognitive psvchology of school learning. Boston:
Little Brown.

Goetz, E., Alexander, A., & Ash, M. (1992). Educational psychology: A class-
room perspective. New York: Macmillan.

Husic, F,, Linn, M. C., & Sloane, K. D. (1989). Adapting instruction to the
cognitive demands of learning to program. Journal of Educational Psychology,
81, 570-582.

Karmiloft-Smith, A. (1986). From metaprocesses to conscious access: Evi-
dence from children’s metalinguistic and repair data. Cognition, 23(2), 95~147.

Linn, M. C. (1985). The cognitive consequences of programming instruction
in classrooms. Educational Researcher, 14(5), 14-16, 25-29.

Linn, M. C., & Clancy, M. J. (1992). The case for case studies of program-
ming problems. Communications of the ACM, 35(3), 121-132.

Linn, M. C., & Dalbey, J. (1985). The cognitive consequences of program-
ming: Influence of instructional setting, student access, and student ability
(ACCCEL Report). Berkeley: University of California.

Journal of Research on Computing in Education 295



Mandinach, E., & Linn, M. C. (1986). The cognitive effects of computer learn-
ing environments. Journal of Educational Computing Research, 2(4), 411-427.

Oliver, R. (1990, July). The contextual model: An alternative teaching model
for introductory computer programming. Paper presented at WCCE ’90:
Informatics at the Secondary Level Stream conference, Perth, Australia.

Oliver, R. (1993). Measuring hierarchical levels of programming knowledge.
Journal of Educational Computing Research, 9(3), 299-312.

Oliver, R., & Malone, J. (1993). The influence of instruction and activity on
the development of semantic programming knowledge. Journal of Research on
Computing in Education, 25(4), 521-533.

Palumbo, D. B. (1990). Programming language/problem-solving research: A
review of relevant issues. Review of Educational Research, 60(1), 65-89.

Palumbo, D. B., & Reed, W. M. (1991). The effect of BASIC programming
language instruction on high school students’ problem solving ability and com-
puter anxiety. Journal of Research on Computing in Education, 23(3), 343-372.

Paris, S. G., Lipson, M. Y., & Wixson, K. K. (1983). Becoming a strategic
reader. Contemporary Educational Psychology, 8, 293-316.

Piaget, I. (1978). Success and Understanding. Cambridge, MA: Harvard
University Press.

Reed, W. M., & Palumbo, D. B. (1992), The effect of basic instruction on
problem-solving skills over an extended period of time. Journal of Educational
Computing Research, 8(3), 311-325.

Rumelhart, D. E. (1980). Schemata: The building blocks of cognition. InR. J.
Spiro, B. C. Bruce, & W. F. Brewer (Eds.), Theoretical issues in reading com-
prehension (pp. 33-58). Hillsdale, NJ: Erlbaum.

Rumelhart, D. E., & Norman, D .A. (1978). Accretion, tuning, and restruc-
turing: Three modes of learning. In J. W. Cotton & R. Klazky (Eds.), Semantic
factors in cognition (pp. 37-53). Hillsdale, NJ: Erlbaum.

Salomon, G., & Globerson, T. (1987). Skill may not be enough: The role of
mindfulness in learning and transfer. International Journal of Educational Re-
search, 11, 623-637.

Schwartz, S., Perkins, D. N, Estey, G., Kruidenier, J., & Simmonds, R. (1989).
A *metacourse” for BASIC: Assessing a new model for enhancing instruction.
Journal of Educational Computing Research, 5(3), 263~297.

Shih, Y., & Alessi, S. (1993-1994). Mental models and transfer of learning
in computer programming. Journal of Research on Computing in Education,
26(2), 154-175.

Shneiderman, B. (1977). Measuring computer program quality and compre-
hension. International Journal of Man-Machine Studies, 9, 465-478.

Shneiderman, B., & Mayer, R. (1979). Syntactic/semantic interactions in pro-
grammer behavior: a model and experimental results. International Journal of
Computer and Information Sciences, 8(3), 219-238.

Shuell, T. J. (1990). Phases of meaningful learning. Review of Educational
Research, 60(4), 531-547.

Snow, R. E., & Lohman, D. F. (1984). Towards a theory of cognitive aptitude
for learning from instruction. Journal of Educational Psychology, 76, 347-376.

296 Spring 1997: Volume 29 Number 3



Soloway, E. (1985). From problems to programs via plans: The content and
structure of knowledge for introductory LISP programming. Journal of Edu-
cational Computing Research, 1(2), 157-172.

Volet, S. E. (1991). Modeling and coaching of relevant metacognitive
strategies for enhancing university students’ learning. Learning and Instruc-
tion, I, 319-336.

Volet, S. E., & Lund, C. P. (1994). Metacognitive instruction in introductory
computer programming: A better predictor of achievement than traditional fac-
tors. Journal of Educational Computing Research, 10(4), 297-328.

Winograd, P., & Chou Hare, V. (1988). Direct instruction of reading com-
prehension strategies: The nature of teacher explanation. In C. E. Weinstein,
E. T. Goetz, & P. A. Alexander (Eds.), Learning and study strategies: Is-
sues in assessment, instruction, and evaluation (pp. 121-139). San Diego,
CA: Academic Press.

Journal of Research on Computing in Education 297



