
Educating ‘Agents of Change’

Jocelyn Armarego
Murdoch University Australia
jocelyn@eng.murdoch.edu.au

Abstract

This paper describes the journey undertaken by staff and students in an undergraduate SE
program. It charts the progress to a learning environment that fosters reflective practice
through a Problem-based (cognitive) apprenticeship based on Design Studios. SE students
benefit through the increased opportunity to learn to make appropriate use of knowledge
gained through their studies. SE staff benefit from the double-loop approach: the espoused
theory of teaching is aligned with the theory in practice as innovation is introduced,
evaluated then reflected on to initiate further development in the learning environment. The
wisdom of our approach will be tested by the success of our graduates in engaging with the
profession in practice.

1. Introduction
Murdoch University has, since 1995 provided a suite of programs in Software

Engineering (SE). Our teaching objectives are focused on producing engineers with a
special skill in software: we expect our graduates to find career opportunities in both
professional engineering industries that have a strong interest in software as well as in
IT disciplines where the design and implementation of quality software is considered a
priority. Pursuing these objectives has meant a gradual shift from more traditional
engineering learning. Our School has focused over the past several years on balancing a
foundation in the content with elements of creativity and experience based on practice,
as we address characteristics specific to SE. This paper describes the journey
undertaken by both staff and students in the pursuit of this balance within an
engineering educational context.

2. Issues in SE education

Software development has been described as a ‘craft’. The negative connotations of
this label include an inability to consistently guarantee a quality product, fit for the
purpose for which it was developed, produced on time and within budget. A mid-1990s
study of over 8,000 projects [1] reported only 16.2% of software was successful. These
rates do not significantly differ from those reported in the 1970s and 1980s [2].

2.1. Engineering software

Those involved in the development of software agreed that one mechanism for
dealing with the intrinsic difficulties (eg complexity, visibility, and changeability [3])
of developing successful software was to embed its production within an applied
science environment. Royce [4] was the first to note explicitly that an engineering

Proceedings of the 18th Conference on Software Engineering Education & Training (CSEET’05)
1093-0175/05 $ 20.00 IEEE

Authorized licensed use limited to: Murdoch University. Downloaded on June 3, 2009 at 03:30 from IEEE Xplore. Restrictions apply.

approach was required, in the expectation that adhering to a defined, repeatable process
would enhance software quality. The underlying assumption of this approach is that
“ good” software development is achieved by applying scientific investigative
techniques [5].

This interest in engineering is mirrored in the education of software developers, with
an exponential growth in offerings of undergraduate software engineering degrees.
Increasingly, this education focuses on process and repeatability, modelling scientific
and engineering methodologies. In general it is based on a normative professional
education curriculum, in which students first study basic science, then the relevant
applied science [6], so that learning may be viewed as a progression to expertise
through task analysis, strategy selection, try-out and repetition [7]. As Waks [6]
explains, in this normative model science provides “ a rational foundation for
practice” [original emphasis], with practical work at the last stage of the curriculum,
where students are expected to apply science learned earlier in the curriculum to real-
life problems. He continues that the crisis of the professions arises because real-life
problems do not present themselves neatly as cases to which scientific generalisations
apply.

2.2. Creating software

There are positive implications as well for the label ‘craft’. Each system is
considered a unique synergy between the hardware, software and organisational context
in which it will be utilised. This approach suggests that the development process cannot
be repeatable, as the forces at play will differ for each context, continually changing as
understanding of the characteristics of the developing system grows in all stakeholders.
From this perspective software is a collaborative invention: its development an
exploratory and self-correcting dialogue [8]. The process of defining and designing a
system is seen as one of insight-driven knowledge discovery [9] facilitated by
opportunistic behaviour [10, 11].

The quintessential creativity of this process [12-15] may be hampered by strict
adherence to engineering and science methodologies. These:

? restrict essential characteristics such as opportunism [9]
? assist in adding accidental complexity through their attempts to control the RE's

professional practice. (Sutcliffe and Maiden [16] suggest strict adherence to
methods and procedures may restrict natural problem-solving) and

? impose a plan at odds to inherent cognitive planning mechanisms and hence
interfering with the management of knowledge (Hoc [17] suggest that, in
practice, a plan is followed only as long as it is cognitively cost-effective).

2.3. Practicing software

Another issue is the multi-disciplinary nature of the skills and knowledge required to
be active as competent professionals. In SE, Zucconi [18] suggests, the underlying
disciplines of central importance are psychology, computer science and discrete
mathematics, while disciplines such as physics and continuous mathematics only
support some applications. Zucconi also suggests an SE needs to be well organised,
able to work as a member of a multi-disciplinary team, and able to work within the
scope of the employer’s policies and procedures and society’s tenets.

This equates well with the stated needs of practitioners. Practitioner-based studies
(eg [19-21] and in the Australian context [22-25]) assist us in building a profile of a

Proceedings of the 18th Conference on Software Engineering Education & Training (CSEET’05)
1093-0175/05 $ 20.00 IEEE

Authorized licensed use limited to: Murdoch University. Downloaded on June 3, 2009 at 03:30 from IEEE Xplore. Restrictions apply.

practicing Software Engineer. They show us that, to paraphrase Fielden [26], in
addition to traditional technical skills, software development professionals of the 21st
century need to

? understand the learning process as a meta-skill and to develop flexibility in
thinking

? have a deep understanding of self and others in complex human activity systems
? be adept in questioning underlying cultural, political, and intellectual

assumptions
? be tolerant, compassionate, and at ease with multiple realities in complex

systems
? value people as agents of change and technology as the tool
? value subjective involvement in technological areas
? allow time to explore new ideas and to reflect on possible processes and

outcomes
? develop balanced approaches both structurally and creatively to managing

change.
Industry requires professionals who integrate into the organisational structure, and,

rather than cope specifically with today's perceived problems, have models, skills and
analytical techniques that allow them to evaluate and apply appropriate emerging
technologies. More broadly, software technology is seen as a rapidly shifting landscape:
new methods, tools, platforms, user expectations, and software markets underscores the
need for SE education that provides professionals with the ability to adapt quickly [27].

2.4. Teaching software

This relates to a further issue that needs to be addressed: the need to engage in life-
long learning. The speed with which technology evolves, the multiplicity of its impact
on society and the ramifications of that impact mean that metacognitive and knowledge
construction skills as well as adaptability become vital. Professional practitioners with
such skills become agents of change [27].

However, Patel, Kinshuk, and Russell [28] argue that learners in a traditional setting
predominantly constitute students preparing for a career – classroom-based students.
With the relevance of domain knowledge not fully understood by students, the focus
shifts to skills that will yield higher grades as an immediate objective. Cognitive skills
related to ‘exam techniques’ acquire importance though they do not model real life
situations. The learning, in many cases, is reduced to assignment hopping with ‘just-in-
time’ and ‘just-enough’ learning to fulfill the assessment tasks. This defeats the
objective of providing a well-balanced learning experience.

3. Learning software engineering

Macauley and Mylopoulos [29] acknowledge that a standard university lecture
cannot achieve what industry requires. For them efficient software development
activities “require a certain level of knowledge and maturity which can only be gained
through experience in dealing with practical problems”. Others also note the
inadequacy of formal education in training competent software professionals [21, 30],
while Bach stated that one reason software engineering is not more seriously studied is
the common industry belief that most of the books and classes that teach it are
impractical [31].

Proceedings of the 18th Conference on Software Engineering Education & Training (CSEET’05)
1093-0175/05 $ 20.00 IEEE

Authorized licensed use limited to: Murdoch University. Downloaded on June 3, 2009 at 03:30 from IEEE Xplore. Restrictions apply.

A need to address these issues:
? an increasing focus on a single discipline (engineering) as the education of

choice for software (hence with an emphasis on scientific generalisation)
? the potential for misalignment with industry needs
? an acknowledged need for life-long learning

within the constraints of an accredited curriculum has led our School on a journey of
exploration of the pedagogy of learning.

3.1. Phase 1: engaging with authentic practice

The current curriculum for the BE(SE) integrates three primary components:
? Computer Science – these courses cover fundamental aspects (eg programming,

algorithm analysis, database and operating system concepts) and form the basis
of technical knowledge and skills in software and hardware

? Software Engineering – these courses focus on SE theory and practice and form
the basis of core knowledge and skill in software development and evolution

? Engineering – these courses offer knowledge and skills in engineering practice
and principles and are common to all our engineering students. They include
natural sciences, mathematics, management, ethics

to provide the basis for:
? Engineering Internship/ Thesis – this is also common to all engineering

students, though the domain of application targets the appropriate discipline of
study. While the Internship is wholly industry-based in that the student is an
‘employee’ of the organisation, it is carefully monitored by academic staff. The
Thesis may also be linked to work place experiences, but the student is not
employed during the duration of the project.

The reduced opportunity for group-based projects due to the introduction of the
semester-long internship/ thesis was one trigger for the restructure of some of the core
SE units. Other triggers included:

? students in their final year of studies had raised issues regarding the need to
apply knowledge acquired to more ‘real world’ scenarios – and to engage with
the material on offer

? a need to provide students with a taste of the types of messy problems they
would encounter during their internship. Exposure to the uncertainties,
inconsistencies and idiosyncrasies associated with real problems enhances
graduates’ potential to deal in their own turn with ill-structured problems within
an organisational context

? a belief that learning beyond the foundation stages may best be achieved
through situational problems with rich contextual information [32].

As described previously [33] a Design Studio model was applied, anchored by a PBL
process based on Koschman et al [34] and in the context of the phased development of a
software product. Student evaluation undertaken in weeks 4, 7 11 and 13 highlighted
student concerns:

? the need to learn new content as well as adapt previous knowledge
? dependence on other members of the team (10+ members) both for achieving

the tasks and for critical assessment components through peer and self
assessment

Proceedings of the 18th Conference on Software Engineering Education & Training (CSEET’05)
1093-0175/05 $ 20.00 IEEE

Authorized licensed use limited to: Murdoch University. Downloaded on June 3, 2009 at 03:30 from IEEE Xplore. Restrictions apply.

? the lack of stability in teams and task (students were rotated into and out of
teams, roles and problem component) requiring a need to ‘come up to speed’
very quickly at each change

but also identified benefits:
? “we learn so much ‘practical’ stuff from this project, it would be good to get

another chance to actually do it right”
? “learnt a lot about design skills and approaches for problems”
? “interesting group experience”
? “you need more practical application of the theory you teach ([this course’s]

style)”.
The restructured course was seen to provide students with a number of opportunities

[33]:
? to identify, analyse and solve a number of issues, repetitively. This acts as

preparation for professional employment
? to practise the art as well as science of SE in a controlled setting
? to test the understanding of theory, its connection with application, and develop

theoretical insight
? to deal with incompleteness and ambiguity
? to think independently and work co operatively, fostering insight into individual

strengths and weaknesses.
However, an unexpected problem was encountered early in the semester. While

students were comfortable with the idea of directing their own learning in a capstone-
project and thesis environment, they felt (very strongly, at times) that within a formal
course they should be taught. This perception could be traced back to a reasonably high
level of teacher direction in prerequisite SE units, which did not challenge students’
expectations of traditional learning. The initial student resistance to changes made
showed that these expectations were still evident two years later in their studies.

3.2. Phase 2: creative engineering

Reflection on the learning experience highlighted a need to emphasise student-
centred learning earlier – the final year was too late. This led to a review of pre-
requisite courses, with a view to making pedagogical changes early in the SE
curriculum. Opportunities to focus in greater depth on issues raised in the discussion of
SE education were also identified. One additional issue could also be addressed: SE
education has historically been plagued by a lack of integration - the methods,
techniques, tools, etc acquired within a few isolated courses do not permeate the
students’ approach to other software-related tasks within their program of study. An
attempt could now be made to present a more holistic approach to SE education within
the School.

This second wave focused on the first SE course students encounter, currently in
semester 1 of Year 2 of the 4-year degree program. The core component –
Requirements Engineering (RE) - provided an appropriate environment for attacking
student expectations of a learning environment.

Education for REs based on traditional learning models tends to emphasise technical
knowledge, and is based largely on notations and prescribed processes [35]. Although
Budgen [36] suggests this is a requirement of the software domain, it is at odds with the
inherent characteristics associated with real problems, especially in RE where [37]:

Proceedings of the 18th Conference on Software Engineering Education & Training (CSEET’05)
1093-0175/05 $ 20.00 IEEE

Authorized licensed use limited to: Murdoch University. Downloaded on June 3, 2009 at 03:30 from IEEE Xplore. Restrictions apply.

? complexity is added to rather than reduced with increased understanding of the
initial problem

? metacognitive strategies are fundamental to the process
? problem-solving needs a rich background of knowledge and intuition to operate

effectively
? a breadth of experience is necessary so that similarities and differences with

past strategies are used to deal with new situations.
The nature of software development, and in particular the RE component of it

(opportunistic, exploratory, creative, emergent [9, 14, 37, 38]) implies a need to
? incorporate creativity-enhancing activities within the curriculum
? foster adaptability in students by providing for divergent as well as convergent

thinking
? focus on metacognitive strategies and reflection as an aid to transfer of the

skills and knowledge learnt.
Glass [39] suggests that discipline and creativity are the odd couple of software

development – the discipline imposed by methodology, for example, forms a frame for
the opportunistic creativity of design. Cropley and Cropley [40], however, suggest that
the process of creativity and innovation in engineering is poorly understood and not
adequately fostered in under-graduate teaching. This deficiency results in an
engineering culture that is frequently resistant to the factors that promote creativity and
innovation.

A focus on flexibility and productive thinking is also necessary, so that students
learn to use past experience on a general level, while still being able to deal with each
new problem situation in its own terms. Gott et al [41] posit that this
adaptive/generative capability suggests the performer not only knows the procedural
steps for problem solving but understands when to deploy them and why they work, in
effect is wise in the use of them.

The implication of this is the explicit development of metacognitive strategies, and
the ability to reflect in as well as on action [42]. The recurring findings from Scott’s
work on applying a Professional Capability Framework (eg [43]) is the high ranking of
Intellectual Capability (defined by two components, Way of Thinking (incorporating
cognitive intelligence and creativity) and Diagnostic Maps (developed through
reflection on experience)).

The educational dilemma becomes one of providing an educational base that enables
software developers to both create and engineer the systems they build: to be adaptable
to the changing environment that is inevitable in their chosen discipline.

3.2.1. Attacking expectations: During their first year students have been immersed in a
scientific/engineering paradigm where problem-solving through laboratory procedure,
repeatability of experimentation and rigour in mathematics are key learning objectives.
The RE course (ENG260) provides a contrast to this learning environment that some
students find difficult to assimilate.

Although due process and procedure has its place, the focus of the course is on
divergent thinking and the development and evaluation of alternatives. Students are
asked to ignore the problem-solving (coding) of a situation presented and to explore and
then formulate the problem itself. However, experience in teaching RE has shown that
this is a challenge to students’ expectations of learning:

? they expect there to exist a definitive solution to the problems with which they
are presented (à la science/mathematics)

Proceedings of the 18th Conference on Software Engineering Education & Training (CSEET’05)
1093-0175/05 $ 20.00 IEEE

Authorized licensed use limited to: Murdoch University. Downloaded on June 3, 2009 at 03:30 from IEEE Xplore. Restrictions apply.

? they expect to define the problems only in terms of the programming language
with which they are familiar (currently Java)

? they expect a fundamentally competitive class environment to exist (so that co-
operation and collusion have blurred definitions)

? they expect their ‘wild ideas’ to be laughed at and ultimately rejected, and
therefore are inhibited in expressing them.

The Creative Problem-based Learning (CreatePBL) approach taken is a refinement of
that implemented in Phase 1 above. In an attempt to provide students with a solid
foundation in introductory concepts in SE/RE while at the same time exposing them to
the real-world characteristics, there is a greater need to ground student learning in the
pedagogy.

As an ideology, PBL is rooted in the experiential learning tradition, but with a
number of different forms according to the nature of the field and goals of the learning
situation [44]. It has been argued [45] that problem-based learning is an educational
strategy that required three components to be differentiated:

? an integrated curriculum organised around real-world problems rather than
disciplines and with an emphasis on cognitive skills

? small groups, tutorial instruction and active learning conditions to facilitate
problem-based learning

? outcomes such as the development of skills and motivation together with the
development of an ability to be lifelong learners.

Its supporters claim PBL results in increased motivation for learning, better
integration of knowledge across disciplines and greater commitment to continued
professional learning [32]. As well as offering the flexibility to cater for a variety of
learning styles, the focus moves from dealing with content and information in abstract
ways to using information in ways that reflect how learners might use it in real life
[46].

Three components of Amabile’s general theory of creativity:
? domain relevant skills - the more skills the better, and the ability to

imagine/play out situations
? creativity-relevant processes - including breaking perceptual (the way you

perceive a situation) and cognitive (the way you analyse) set and breaking out of
performance ‘scripts’, suspending judgement, knowledge of heuristics, adopting
a creativity inducing work style (eg tolerance for ambiguity, high degree of
autonomy, independence of judgement). and

? intrinsic task motivation
are seem to influence positively creative potential. These were applied to the learning
environment developed.

Activities identified by Edmonds and Candy [47] as elements of creativity were
embedded into the PBL environment. This CreatePBL model (Figure 1) was developed
to focus on creativity and divergent thinking, so that, instead of students aimed at
finding the single, best, ‘correct’ answer to a standard problem in the shortest time
(convergent thinking) they aimed at redefining or discovering problems and solving
them by means of branching out, making unexpected associations, applying the known
in unusual ways, or seeing unexpected implications.

This approach also had the value of addressing issues identified by Thomas et al
[15]. They suggest there is a widening gap between the degree of flexibility and
creativity needed to adapt to a changing world and the capacity to do so. These
difficulties are attributed to:

Proceedings of the 18th Conference on Software Engineering Education & Training (CSEET’05)
1093-0175/05 $ 20.00 IEEE

Authorized licensed use limited to: Murdoch University. Downloaded on June 3, 2009 at 03:30 from IEEE Xplore. Restrictions apply.

? individuals or groups not engaging in effective and efficient processes of innovative
design. As examples of structuring failure, people typically fail to spend sufficient
time in the early stages of design: problem finding and problem formulation, then
often bring critical judgment into play too early in the idea generation phase of the

Learners

PBL Stage
1

PBL Stage
2

PBL Stage
3

PBL Stage
4

PBL Stage
5

Exploration

Idea
Generation

Evaluation

Figure 1. The CreatePBL process

problem solving. As another example, empirical evidence shows that people’s behaviour
is path-dependent and they are often unwilling to take what appears to be a step that
undoes a previous action even if that step is actually necessary for a solution [48]

? evidence suggests individuals have a large amount of relevant implicit knowledge they
often will not bring to bear on a problem. Providing appropriate strategies, knowledge
sources or representations can significantly improve an individual’s effectiveness in
problem solving and innovation [48]

? the appropriate level, type, and directionality of motivation are not brought to bear
[49].

3.3. Evaluating the results

Both formal and informal assessment was undertaken over the semester: data may be
categorised as:

? quantitative assessment:
o the major assessment of the unit was based on group work (three

components)
o the exam modelled previous exams, and was based on questions that had

been used before, so in theory it was possible to compare how well
students performed in comparison to previous cohorts

o two individual components (a Performance Review and a Portfolio) and
? qualitative assessment:

o in-semester year surveys - these are conducted within the Engineering
discipline in week 4 and 11

o students completed an end of semester course assessment – this is
University-based

o as noted above, one of the final components of their formal assessment
was to prepare for a Performance Review. As well as some more

Proceedings of the 18th Conference on Software Engineering Education & Training (CSEET’05)
1093-0175/05 $ 20.00 IEEE

Authorized licensed use limited to: Murdoch University. Downloaded on June 3, 2009 at 03:30 from IEEE Xplore. Restrictions apply.

technically based issues (eg how easy would it be to go to design from
the specification developed by your team) students were asked for their
impressions on their team performance and asked to comment on
whether they thought they learnt less or more this way.

3.3.1. Quantitative assessment: The results achieved by these students will not be
described here: there are many factors to be addressed, including characteristics of the
cohort. However, it can be noted that the PBL environment did not appear to unduly
disadvantage students: average raw exam and final marks were at worse within the
range established by previous cohorts of students (see Figure 2).

48.0851.00
55.86 56.53 55.53

0
10
20
30
40
50
60
70
80
90

100

Total

P
er

ce
n

ta
g

es

1999 2000 2001 2002 2003

Figure 2a). Average raw exam mark
1999 – 2003

61.45 64.5357.88
56.68

60.477

0
10
20
30
40
50
60
70
80
90

100

Total

P
er

ce
n

ta
g

es

1999 2000 2001 2002 2003

Figure 2b). Average final mark 1999-
2003

3.3.2. Qualitative assessment: Within Engineering we survey all students in each year
group to identify general problems that are both course-specific and that relate to the
mix of courses undertaken. During Weeks 4 and 11 of semester (ie usually near the first
point of feedback and towards the end formal classes) students are asked to identify
good and bad points of each course. As the lists of representative comments below
show, some elements considered ‘bad’ by the students (eg learning by doing) are a
highlight of the PBL process. This may be a reflection of student approach to study or
preferred learning style, and has been the subject of further investigation.

As a part of the “ Performance Review” component of the coursework students were
asked to comment (anonymously, if preferred – only submission/no submission was
recorded as an assessment object) on the course by addressing the following questions:
? what is good/bad about a unit structured this way . Figure 3 shows the results. While

some students could appreciate the authentic nature of the environment, this
learning style did not sit well with all

? things to add/change/delete in how the virtual secondment and project were
organised. Figure 4 shows that students felt they lacked guidance in the form of
examples and exercises to use for benchmarking their performance. In addition,
they expressed concern that such a large component of their assessment was based
on group work.

Proceedings of the 18th Conference on Software Engineering Education & Training (CSEET’05)
1093-0175/05 $ 20.00 IEEE

Authorized licensed use limited to: Murdoch University. Downloaded on June 3, 2009 at 03:30 from IEEE Xplore. Restrictions apply.

a) Good things about a unit structured this way
(n = 25)

20%

44%

20%

16%

self
learning/motivation

group
skills/alternate
viewpoints/conflict
resolutions
simulates real world

online/content
organisation

Figure 3 Recoded comments from Performance Review: good/bad things about a
course structured this way

Figure 5 shows that the class was fairly evenly divided on the point of learning more
or less from this approach: comments on a lack of mastery of subjects: (less every time
new content arrives); of only focusing on components addressed by the project, on
delegating and relying on others for concepts, indicate less content learning. Towards
the end of semester, some of these students still felt lost and confused: “self teaching is
not one of my fortes” stated one student, perhaps with a hint of despair.

Students felt they learnt more in the areas of research, communications (confidence
to speak up; need to be heard & get ideas across) and team skills. They added “concepts
easier to grasp”; “ forced to learn more for project relevant components”; and, finally
they had to grapple with various perspectives from others. In summary “there were
ample resources & up to us to take it”.

Week 4

Good:
–“helps with thinking about all areas of a

problem(good for other units)”
–“interesting, practical, well presented”
–“it’s really good”
Bad:
–“very vague on assessment and what

specifically needs to be
completed”
–“inability to work alone”
–“no lecture or tutorial”
–“don’t really like how it’s structured”
–“don’t know what is going on”

Week 11

Good:
–“learn what you like at your own pace”
–“more practical training & real time
example”
–“probably useful”
–“easy to get help for unit”
Bad:
–“objectives sometimes unclear”
–“learning by doing”
–“only get the general idea and concept of

unit later in semester”
–“not very structured”
–“hard to determine what we are
supposed to be working towards”

b) Bad things about a course structured
this way
(n = 18)

67%

11%

11%

11%

new learning
style/lack of
guidance

losing focus

group 'lottery'

non-problem-
related elements

Proceedings of the 18th Conference on Software Engineering Education & Training (CSEET’05)
1093-0175/05 $ 20.00 IEEE

Authorized licensed use limited to: Murdoch University. Downloaded on June 3, 2009 at 03:30 from IEEE Xplore. Restrictions apply.

Things to add on how the secondment
and the project were organised

(n = 31)

19%

13%

6%

62%

guidance/examples/f
eedback(right track)

individual component

exercises

other (log, project
management)

Learning this w ay
(n = 23)

48%

9%

43%

less

same

more

Figure 4. Recoded comments from
Performance Review: things to add

Figure 5. Student perception of learning
in ENG260 - 2003 cohort

Other feedback re-enforced the conclusion that, although a great deal of effort went
into preparing the PBL environment, more scaffolding is required. Students need
greater preparation in order to tackle a different learning model (eg a better
understanding of the PBL process), and support structures (examples, guidelines) so
that they have a clear indication of the appropriateness of their learning.

3.3. Phase 3: reflecting on practice

While these interventions have had some measure of success, at least in terms of
learning outcomes, one issue to be addressed is that innovation introduced a few
courses may be undermined if traditional approaches are maintained elsewhere in the
students’ program – so that benefits may only be apparent or are enhanced if it is
introduced across the entire curriculum. During 2004 a complete restructure of the final
two years of the BE programs is being undertaken to introduce an integrated Design
Studio approach.

In attacking the normative professional education curriculum, Schön looks to an
alternative epistemology of practice “in which the knowledge inherent in practice is
understood as artful doing”[42]. He notes that in the ordinary form of practical
knowledge practitioners do not think about what they are doing, except when puzzled or
surprised. Schön named this reflecting-in-action, and argued that it is central to our
ability to act effectively in unique, ambiguous, or divergent situations.

According to Schön, practitioners (including engineers) have their own ‘esoteric’
knowledge codes woven right into their practices. They apply tacit knowledge-in-
action, and when their messy problems do not yield to it, they ‘reflect-in-action,’ and in
the languages specific to their practices. Even when they do stop to reflect on action,
they think in the language of practice, not the language of science. For Schön the ideal
site of education for reflective practice is the Design Studio. Under the close
supervision of a master practitioner serving as coach the novice learns the vocabularies
of the professional practice in the course of learning its ‘operational moves’. In making
the moves, talking about them and even talking about their talk about them (meta-
reflection), the novice and master ‘negotiate the ladder of reflection’ [50].

Proceedings of the 18th Conference on Software Engineering Education & Training (CSEET’05)
1093-0175/05 $ 20.00 IEEE

Authorized licensed use limited to: Murdoch University. Downloaded on June 3, 2009 at 03:30 from IEEE Xplore. Restrictions apply.

4. Conclusion

As we learn more about how students learn, and what they need to learn in order to
practice as competent professionals in their chosen discipline, we move further from
traditional teaching and closer to the concept of learning as a reflection on professional
practice undertaken by both teachers and learners.

This view of professional education has implications for the design of teaching [51]:
? academic learning must be situated in the domain of the objective: the activities must

match that domain
? academic teaching must address both the direct experience of the world, and the

reflection on that experience that will produce the intended way of representing it.
The progression to Problem-based Design Studios in SE is a journey being

undertaken by academics of this University. In empowering graduates to be industry-
ready SE staff benefit from a double-loop approach as the espoused theory of teaching
becomes aligned with the theory in practice. It provides learning situations to examine
and experiment with our theories of action [52]. For the student, the collaborative
nature of the learning environment that has evolved transcends the classroom, fostering
self-directed learning and reflective practice through a co operative (cognitive)
apprenticeship [53] that integrates class and work experience. Preliminary results from
a longitudinal study of students involved in this approach suggest they integrate into
their internship more easily.

However, the future will test the long-term wisdom of our approach.

5. References

[1] Standish, "Most Programming Projects Are Late," Standish Group, West Yarmouth (MA) 1995.
[2] J. Mann, "The Role of Project Escalation in Explaining Runaway Information Systems Development

Projects: A Field Study," Georgia State University, 1996.
[3] F. P. Brooks, "No silver bullet - essence and accidents of software engineering," presented at

Proceedings of Information Processing 86: the IFIP 10th World Conference, Amsterdam, 1986.
[4] W. W. Royce, "Managing the development of large software systems: concepts and techniques,"

presented at IEEE WESCON, 1970.
[5] S. L. Pfleeger, "Albert Einstein and empirical software engineering," IEEE Computer, vol. 32, pp. 32-37,

1999.
[6] L. J. Waks, "Donald Schon's Philosophy of Design and Design Education," International Journal of

Technology and Design Education, vol. 11, pp. 37-51, 2001.
[7] W. Winn and D. Snyder, "Cognitive perspectives in psychology," in Handbook of Research for

Educational Communications and Technology, D. H. Jonassen, Ed. New York: Simon & Schuster
Macmillan, 1996, pp. 112-142.

[8] J. Bach, "Reframing requirements analysis," IEEE Computer, vol. 32, pp. 120-122, 1999.
[9] R. Guindon, "The process of knowledge discovery in system design," in Designing and Using Human-

Computer Interfaces and Knowledge Based Systems, G. Salvendy and M. J. Smith, Eds. Amsterdam:
Elsevier, 1989, pp. 727-734.

[10] R. Guindon, " Knowledge exploited by experts during software systems design," International Journal
of Man-Machine Studies, vol. 33, pp. 279-304, 1990.

[11] W. Visser, "Designers' activities examined at three levels: organisation strategies and problem-solving
processes," Knowledge-Based Systems, vol. 5, pp. 92-104, 1992.

[12] M. Lubars, C. Potts, and C. Richer, "A review of the state of the practice in requirements modeling,"
presented at International Symposium on Requirements Engineering, San Diego, 1993.

[13] N. A. M. Maiden and A. G. Sutcliffe, "Exploiting reusable specifications through analogy,"
Communications of the ACM, vol. 34, pp. 55-64, 1992.

[14] N. Maiden and A. Gizikis, "Where do requirements come from?," IEEE Software, vol. 18, pp. 10-12,
2001.

[15] J. C. Thomas, A. Lee, and C. Danis, "Enhancing creative design via software tools," Communications of
the ACM, vol. 45, pp. 112-115, 2002.

Proceedings of the 18th Conference on Software Engineering Education & Training (CSEET’05)
1093-0175/05 $ 20.00 IEEE

Authorized licensed use limited to: Murdoch University. Downloaded on June 3, 2009 at 03:30 from IEEE Xplore. Restrictions apply.

[16] A. G. Sutcliffe and N. A. M. Maiden, "Analysing the novice analyst: cognitive models in software
engineering," International Journal of Man-Machine Studies, vol. 36, pp. 719-740, 1992.

[17] W. Visser and J. Hoc, "Expert software design strategies," in Psychology of Programming, J. M. Hoc, T.
R. G. Green, S. R, and G. D. J, Eds. San Diego (CA): Academic Press, 1990, pp. 235-247.

[18] L. Zucconi, "Essential knowledge for the practicing Software Engineer and the responsibilities of
university and industry in her education," presented at Software engineering education: 8th SEI
Conference on software engineering education, New Orleans, 1995.

[19] E. M. Trauth, D. Farwell, and D. M. S. Lee, "The IS expectation gap: industry expectation versus
academic preparation," MIS Quarterly, vol. 17, pp. 293-307, 1993.

[20] D. M. S. Lee, "Organizational entry and transition from academic study: examining a critical step in the
professional development of young IS workers," in Strategies for Managing IS/IT Personnel, M. Igbaria
and C. Shayo, Eds. Hershey (PA): Idea Group, 2004, pp. 113-141.

[21] T. C. Lethbridge, "What knowledge is important to a software professional?," IEEE Computer, vol. 33,
pp. 44-50, 2000.

[22] R. Turner and G. Lowry, "Education for a technology-based profession: softening the Information
Systems curriculum," in Current Issues in IT Education, T. McGill, Ed. Hershey (PA): IRM Press, 2003,
pp. 153-172.

[23] R. Snoke and A. Underwood, "Generic attributes of IS graduates - a Queensland study," presented at
Proceedings of the 10th Australasian Conference on Information Systems, Wellington (NZ), 1999.

[24] G. Scott and W. Yates, "Using successful graduates to improve the quality of undergraduate engineering
programs," European Journal of Engineering Education, vol. 27, pp. 60-67, 2002.

[25] O. Minor, "Theory and Practice in Requirements Engineering: an investigation of curricula and industry
needs." Koblenz (Germany): University of Koblenz-Landau, 2004.

[26] K. Fielden, "Training Information Systems professionals to balance at the edge of chaos in a technical
world," presented at Proceedings of IFIP Working groups 8.2 and 8.6 joint Working Conference on
Information Systems: Current Issues and Future Changes, Helsinki, 1998.

[27] D. Garlan, D. P. Gluch, and J. E. Tomayko, "Agents of Change: Educating Future Leaders in Software
Engineering," IEEE Computer, vol. 30, pp. 59-65, 1997.

[28] A. Patel, Kinshuk, and D. Russell, "Intelligent tutoring tools for cognitive skill acquisition in life long
learning," Educational Technology & Society, vol. 3, pp. 32-40, 2000.

[29] L. Macauley and J. Mylopoulos, "Requirements Engineering: an educational dilemma," Automated
Software Engineering, vol. 4, pp. 343-351, 1995.

[30] P. N. Robillard, "The role of knowledge in software development," Communications of the ACM, vol.
42, pp. 87-92, 1999.

[31] J. Bach, "SE education: we're on our own," IEEE Software, vol. 14, pp. 26,28, 1997.
[32] H. L. Dreyfus and S. E. Dreyfus, Mind over Machine. New York: Free Press, 1986.
[33] J. Armarego, "Advanced Software Design: a case in problem-based learning," presented at CSEET2002

15th Conference on Software Engineering Education and Training, Covington (Ke), 2002.
[34] T. D. Koschmann, A. C. Myers, H. S. Barrows, and P. J. Feltovich, "Using technology to assist in

realising effective learning and instruction: a principled approach to the use of computers in
collaborative learning," The Journal of the Learning Sciences, vol. 3, pp. 227-264, 1994.

[35] L. Nguyen and P. A. Swatman, "Essential and incidental complexity in requirements models," presented
at Fourth International Conference on Requirements Engineering Education, Schaumburg (Il), 2000.

[36] D. Budgen, Software Design. Harlow (Essex): Pearson Education Ltd, 2003.
[37] J. Bubenko, "Challenges in Requirements Engineering: keynote address," presented at RE'95: Second

IEEE International Symposium on Requirements Engineering, York (UK), 1995.
[38] L. Nguyen and P. A. Swatman, "Complementary Use of ad hoc and post hoc Design Rationale for

Creating and Organising Process Knowledge," presented at Proceedings of the Hawaii International
Conference on System Sciences HICSS-33, Maui (Hawaii), 2000.

[39] R. L. Glass, Software Creativity. Englewood Cliffs (NJ): Prentice-Hall, 1995.
[40] D. H. Cropley and A. J. Cropley, "Teaching Engineering Students to be Creative - Program and

Outcomes," presented at Australasian Association of Engineering Education: 10th Annual Conference,
1998.

[41] S. P. Gott, E. P. Hall, R. A. Pokorny, E. Dibble, and R. Glaser, "A naturalistic study of transfer: adaptive
expertise in technical domains," in Transfer on Trial: intelligence, cognition and instruction, D. K.
Detterman and R. J. Sternberg, Eds. Norwood (NJ): Ablex, 1993, pp. 258-288.

[42] D. A. Schön, The Reflective Practitioner: How Professionals Think in Action. New York: Basic Books,
1983.

[43] G. Scott and D. Wilson, "Tracking and profiling successful IT graduates: an exploratory study,"
presented at Proceedings of the 13th Australasian Conference on Information Systems, 2002.

Proceedings of the 18th Conference on Software Engineering Education & Training (CSEET’05)
1093-0175/05 $ 20.00 IEEE

Authorized licensed use limited to: Murdoch University. Downloaded on June 3, 2009 at 03:30 from IEEE Xplore. Restrictions apply.

[44] D. Boud, "Problem-based learning in perspective," in Problem-based Learning in Education for the
Professions, D. Boud, Ed. Sydney: Higher Education Research Society of Australasia, 1985, pp. 13-18.

[45] H. J. Walton and M. B. Mathews, "Essentials of problem-based learning," Medical Education, vol. 23,
pp. 542-548, 1989.

[46] R. Oliver and C. McLoughlin, "Using web and problem-based learning environments to support the
development of key skills," presented at Responding to Diversity: Proceedings of ASCILITE '99,
Brisbane, 1999.

[47] E. Edmonds and L. Candy, "Creativity, art practice and knowledge," Communications of the ACM, vol.
45, pp. 91-95, 2002.

[48] J. C. Thomas, D. Lyon, and L. Miller, "Aids for Problem Solving," IBM T. J. Watson Research Report,
New York RC-6468, 1977.

[49] T. M. Amabile, The Social Psychology of Creativity. New York: Springer Verlag, 1983.
[50] D. A. Schön, Educating the Reflective Practitioner: Towards a New Design for Teaching in the

Professions. San Fransisco: Jossey-Bass Inc, 1987.
[51] D. Laurillard, Rethinking University Teaching: a framework for the effective use of educational

technology. London: Routledge, 1993.
[52] C. Argyris and D. A. Schön, Theory in practice: Increasing professional effectiveness. San Francisco:

Jossey Bass, 1974.
[53] C. Berkenkotter and T. N. Huckin, Genre Knowledge in Disciplinary Communication:

Cognition/Culture/Power. Hillsdale (NJ): Lawrence Erlbaum Associates, 1995.

Proceedings of the 18th Conference on Software Engineering Education & Training (CSEET’05)
1093-0175/05 $ 20.00 IEEE

Authorized licensed use limited to: Murdoch University. Downloaded on June 3, 2009 at 03:30 from IEEE Xplore. Restrictions apply.

