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Abstract

Component-based Software Engineering (CBSE) pro-
vides solutions to the development of complex and evolv-
ing systems. As these systems are created and maintained,
the task of selecting components is repeated. The Context-
driven Component Evaluation (CdCE) project is develop-
ing strategies and techniques for automating a repeatable
process for assessing software components. This paper
describes our work using Artificial Intelligence (AI) tech-
niques to classify components based on an ideal component
specification. Using AI we are able to represent dependen-
cies between attributes, overcoming some of the limitations
of existing aggregation-based approaches to component se-
lection.

1 Introduction

One of the dilemmas facing software developers is
how to maintain a high level of quality and trust in sys-
tems that are increasingly complex and rapidly evolving.
Component-based Software Engineering (CBSE) is based
on reusable software components that can be replaced or up-
dated easily [1]. These components are developed in-house
and/or acquired from third party vendors. Commercial-
Off-the-Shelf (COTS) components share many issues with
COTS software in general. Trust in third party software
tends to be low as the application developer has not been
involved in the development and testing, and could fear that
malicious code is included in the software [2]. Component
testing and/or certification can help to increase the level of
trust in individual components [3]. However, many of the
issues with components appear when they are placed in con-
text, with mismatches and context-dependencies affecting
the correctness of the component’s performance in the tar-
get environment [4]. The process of selecting components
is made more complex by the generality of the components.
It is important that the selection process be context-aware
to ensure that the chosen component will work correctly

in the target environment. The selection process must also
be repeatable and scalable to allow confidence that suffi-
cient numbers of components have been considered before
a choice has been made.

Other issues making component selection difficult are
the evolution of systems, documentation that is available
and methods of assessment. Frequent releases of compo-
nents and changes in the software marketplace will dictate
that the selection process needs to be repeated and ripple
effects may result in a continous cycle of updates [5]. Com-
ponent developers and brokers do not have a standard for
describing their components, resulting in varied levels of
documentation that are difficult to compare. An intrinsic is-
sue with components is that there are few (if any) artifacts
available from the development process, and access to the
source code is unlikely [6]. With a growing market of com-
ponents from which to choose, and rapidly evolving sys-
tems, it is important to minimise the manual effort required
to assess each component.

In the Context-driven Component Evaluation (CdCE)
Project1 we approach the selection of third party compo-
nents by creating an ideal specification of the requirements
for the component(s) in a particular project. Any CBSE
development will need to document requirements for aqui-
sition of components, so this specification does not cause
additional work for developers. The ideal specification is
used to generate training data for the AI classifiers, as well
as for the generation of tests for dynamic assessment. AI is
a largely unexplored area in component selection. We seek
to use AI to automate the assessment of components, allow-
ing a larger number to be considered. Maintenance and re-
assessment of components is simplified as the model can be
reused for subsequent searching and component evaluation.
Many of the existing component selection techniques use an
aggregation approach for determining a recommendation.
This assumes independence of selection criteria, which is
unlikely to be true. Our approach incorporates interplay be-
tween criteria. We are investigating AI techniques that can
learn these dependencies and classify the components ac-

1Formerly known as the Context-driven Component Testing Project

Proceedings of the 28th Annual International Computer Software and Applications Conference (COMPSAC’04) 

0730-3157/04 $20.00 © 2004 IEEE 

Authorized licensed use limited to: Murdoch University. Downloaded on June 7, 2009 at 22:16 from IEEE Xplore.  Restrictions apply.



cordingly.
In the following section looks at current approaches for

selecting components and the application of AI in this area.
We then describe our project and the CdCE Process for
component selection. Section 4 shows our work using AI
techniques to classify components and we conclude with a
summary of our observations and a description of the future
work for this project.

2 Component Selection

Much of the work in component quality and trust re-
lies on a correct and detailed specification of the compo-
nent under consideration. Evaluation of components aims
to determine the suitability of a component to a particular
project based on the project requirements and the attributes
of the candidate component. There are number of models
for component specification [11][12], usually grouping the
attributes as functional and non-functional. In most cases
a template is offered where the values or scores are en-
tered for each attribute. Other approaches provide a process
for identifying and organising the criteria for each selec-
tion task [7][13]. COTS component selection needs to be
more flexible on requirements as an exact match may not
be possible and a loosening of criteria may be required [6].
Some approaches deal with this issue by iterating stages of
defining and refining criteria then assessing the components
returned from a matching process, e.g. using a goal-driven
approach [14]. It should be noted that many of the selection
processes require a manual assessment on each criterion,
with those adopting the AHP requiring a pairwise compari-
son between all components on each criterion [7].

Given a set of attributes, the ideal specification (require-
ments) and the values presented by a particular compo-
nent, the screening or short-listing process needs to com-
bine the data to create a ranking or recommendation. Much
of the literature uses the Weighted Sum Method (WSM)
to aggregate a value by summing attribute weights multi-
plied by their respective values [15][16]. Criticism of the
WSM includes the summing of differing types of data (e.g.
cost plus memory plus quality), lack of process for deter-
mining attribute weights and the inherent problem with the
formula losing dependency information between attributes
(e.g. conflicts and co-requisites). A commonly used alter-
native is the AHP, which includes a method for determining
weights and component scores against attributes [5][7][17].
These scores are based on pairwise comparisons, and thus
use the same ‘units’, even when combining qualitative and
quantitative data. Features of the AHP are that it organises
the criteria into a hierarchy (e.g. group quality attributes as
subnodes of the quality node) and that scores can be consis-
tency checked. Disadvantages are the number of pairwise
comparisons (and therefore time) required and that the in-

terplay between the attributes is lost as the final aggregation
is essentially the WSM formula. A technical criticism of the
AHP is the rank-reversal problem, which can be addressed
by using a multiplicative formula for aggregation [18].

The common problems with WSM and AHP stem from
the assumption that attributes are independent, resulting in
compensations in scores and ‘passing’ unworkable combi-
nations of values (e.g. C# with Linux). Another option for
COTS and component selection is the outranking approach
using the ELECTRE family of methods [19]. These meth-
ods rank each candidate on each attribute and determine
an outranking relationship to categorise attributes into pre-
ferred and non-preferred. As with the AHP, comparisons
are made between candidates on each attribute, removing
the issue of units and attribute types. Although it has been
successfully used for software evaluation [20][21], there are
issues with explaining the reasoning for decisions and that
a complete ranking may not be possible [5].

As we consider attribute dependencies to be important,
along with reducing time and effort through automation, we
look to the field of AI for applicable techniques. Those cur-
rently being used with components concentrate on fuzzy
logic. Some work on the fuzzy retrieval of components
via faceted classification [22][23], while others use formal
specifications to carry out fuzzy clustering [24]. The for-
malisation of specifications in repositories allows for the
use of a range of AI techniques, however we do not include
formal specification of candidates in the scope of our work.

3 Context-driven Component Evaluation

The CdCE Project provides a formalised process for the
evaluation and testing of components, and is developing
tools and strategies for a high level of automation. We ap-
proach component selection as a classification problem: as-
signing each component to a class based on its assessed suit-
ability to the project. As part of this project we have pro-
duced the CdCE Process for assessing components (Figure
1).

Our process begins with the development of the ideal
component specification (Step 1). A critical factor in
automation of component assessment is that brokers and
repositories adopt a standardised template for documenting
their components. This will include context-specific val-
ues, priorities and interplay of attributes to determine the
classification criteria. We then train the system to recog-
nise suitable components, compiling a short-list of compo-
nents from selected repositories in Step 2. If the short-list
is not acceptable, the developer is provided with an analysis
of the component data to guide the refinement of the ideal
specification. The formal specification of the behaviour of
the component, which can include context-specific aspects
such as usage profiles and interfacing systems, is used to
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Figure 1. The CdCE Process for Component
Selection

generate tests in Step 3. These are abstract tests that will
be adapted to each candidate component in Step 4. Us-
ing a test-suite generated from the ideal specification allows
us to make meaningful comparisons between components.
The tests can also be used for system and regression testing.
The results from executing the tests in Step 5 are evaluated
in Step 6. If an alternate or supplementary evaluation is
preferred, Steps 3, 4, 5 and 6 can be combined with other
assessment methods.

Step 7 involves the assessment of components and their
ranking. We have investigated and used a number of tech-
niques for taking the actual values a component displays for
the attributes and giving an overall assessment. These in-
clude heuristics (manual), Weighted Score Method (WSM)
[7], the Analytical Hierarchy Process (AHP) [8] and Ex-
pert Systems. Our current interest is to train classifiers to
recognise suitable components based on AI techniques. The

Figure 2. Ideal Component Specification

two described in this paper are the C4.5 algorithm for gen-
erating decision trees [9] and neural networks. All of the
techniques listed are applicable to both the short-listing and
ranking tasks (Steps 2 and 7). The final step generates a re-
port on the results which includes the reasoning behind the
recommendation(s) and information to assist in the adapta-
tion of component(s) to the target system. A more detailed
description of the CdCE process appears in [10].

4 Classifying Components

The scenario for this case study is the selection of com-
ponents to provide scientific calculator functionality. As it
is an exploratory case study, the selection criteria are sim-
ple. There are four mandatory and six preferable criteria.
Attributes not in those categories remain as the default pri-
ority other. We assigned adjustable thresholds to require
four out of four mandatory and three out of six of the pre-
ferred criteria to be satisfied. The ideal component specifi-
cation is given in Fig. 2.

For this investigation we selected two AI techniques to
generate classifiers. They are Quinlan’s decision tree al-
gorithm (C4.5), and a neural network. Both classifiers are
available through the Weka software package for machine
learning [25].

4.1 Training Data Generation

Our two classifiers were trained on the same data, gen-
erated from the ideal specification. The data generator has
been developed to create a data distribution that captures
the complexity of the criteria used in the assessment, while
avoiding an internal bias. Each training dataset is validated
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using Weka’s 10-fold cross-validation and those used in this
case study scored over 96%. The generator application au-
tomates the labelling of the data into output classes, allow-
ing us to use supervised learning techniques to train the
classifers.

Early tests with data generation showed that the C4.5
classifier was highly sensitive to the distribution of the
data2. If too high a proportion of the instances were rejected
(e.g. 82%), then the classifier rejected them all. The neu-
ral network did not oversimplify the classification, but also
saw performance improvements with the optimised training
data.

The data is now generated using a technique similar to
boundary value analysis in test case generation [26]. We
concentrate on discriminating values close to the border be-
tween acceptance and rejection. Incremental experiments
provided feedback on the distribution of data required for
the classifiers to learn strongly visible patterns, such as
identifying mandatory and other attributes. Further work
is required for determining the best way to deal with ranges
of numeric values. Validation and training results show that
this approach is successful, but may be able to be improved.

4.2 C4.5

The most widely used decision tree classifier is the C4.5
algorithm [9]. C4.5 generates a tree incorporating all in-
stances within the dataset and their classifications. It then
groups the data to allow ‘pruning‘ to create a manageable
decision tree. The decision tree for this dataset has 147
nodes, including 74 leaves (classification points).

Table 1 details the results for the C4.5 classifier against
the case study training and test sets. The results for the
training dataset included twelve misclassifications out of
2736 (below 0.5% error rate). These errors were all in situ-
ations where the mandatory requirements were met and the
assessment of the preferable criteria failed. We are investi-
gating additional improvements to the generator algorithm
to resolve these problems and move closer to 100% correct
classification.

We then assessed unseen data to further evaluate the clas-
sifier. The datsets represent all combinations of attribute
values that are acceptable (Unseen Dataset 1) and those
that should be rejected (Unseen Dataset 2). Attributes that
do not affect the decision (other) are randomised. Both
datasets were classified with an acceptable level of accu-
racy. Unseen data will generally have more classification
errors than the training data. Dataset 1 performed better
than the training due to the distribution of the values and

2An alternative approach to dealing with imbalance in the distribution
of data is the use of cost matrices. This would have the side effect of lower-
ing the overall performance of the classifer and is therefore not appropriate
for our work.

Table 1. C4.5 Performance
Dataset % Correctly Total

Classified Instances

Training 99.5614% 2736

10-fold Cross-validation 96.3085% 2736

Unseen Dataset 1 100% 96

Unseen Dataset 2 98.1183% 744

the size of the dataset. The training sets is focussed on the
combinations close to acceptance/rejection, whereas many
of the combinations in the unseen datasets were clearly in
one of these classes (e.g. reject with no matches of manda-
tory attributes).

4.3 Artificial Neural Network

The neural network classifier is based on a simulation
of the neurons of the human brain, organised into intercon-
nected layers. In Weka’s implementation, a backwards pro-
pogation algorithm updates the weights connecting the neu-
rons and reinforces those that result in a correct classifica-
tion.

There are many parameters available to tune a neural net-
work. We used an empirical approach to determine their
effect on the classification of the case study data. The de-
fault parameters were 500 epochs, a learning rate of 0.3, the
momentum value of 0.2 and a network with 18 nodes in the
hidden layer. Sensitivity analysis indicated that changing
the number of epochs had little effect on the classification:
the network had converged before 250 epochs. A learning
rate of 0.1 performed poorly on the test sets, while each of
0.2, 0.3 and 0.4 had similar results. Increasing the momen-
tum produced a downward trend in performance, although
all of the training results were above 98%.

There are an infinite number of possible configurations
of the neural network. For most problems, a network with
two nodes in a hidden layer is sufficient. We used this as the
baseline and sought an improved configuration. After con-
ducting specific sensitivity analysis between sample data
and the network configuration, we chose a network with
eighteen nodes in a single hidden layer. This was of sim-
ilar performance to a ten node hidden layer and over 10%
better at classifying the training data than a two node con-
figuration. We will need to investigate the configuration fur-
ther with future datasets as networks with two hidden layers
also performed well (10,5 nodes and 10,2 nodes) and may
be better in more complex selection tasks.

The results for the eighteen node neural network are
given in Table 2. The model correctly classified over 99.5%
of the instances in the dataset. Investigation of the misclas-
sified instances showed that they related to the boundaries
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Table 2. Neural Network Performance
Dataset % Correctly Total

Classified Instances

Training 99.5249% 2736

10-fold Cross-validation 96.6009% 2736

Unseen Dataset 1 90.625% 96

Unseen Dataset 2 90.3274% 744

of the numeric values. For example, a value of $14 for price
may have been accepted, when it should strictly have been
rejected as being below $15. All of the errors in classifica-
tion resulted from similar borderline cases. We hope that
modifying the generator algorithm will reduce these errors.
The classification of unseen datasets produced good results
that can be improved upon. Refinement of the generator
algorithm should result in more accurate classification.

4.4 Interplay

Exploration of the ability to recognise interplay between
attributes has also produced good results. In a simple
example of interplay, we looked at three interrelated at-
tributes: development language, framework and operating
system. The scenario is that an organisation has exper-
tise in Java, C++ and C#, ActiveX, Enterprise JavaBeans
(EJB) and acceptable platforms are Windows and Linux.
Clearly, there are combinations of the three attributes
that will be preferred, for example, (Java,EJB,Linux) and
(C#,ActiveX,Windows). Combinations to avoid include
(‘all’,ActiveX,Linux) and (C#,EJB,‘all’). The training data
for this scenario is given an output class ranging from 0 (not
acceptable) to 5 (recommended). Using this data to generate
C4.5 and neural network classifiers resulted in 100% cor-
rect classification of the data for both techniques. 10-fold
cross-validation on the data was also 100%. The resulting
C4.5 decision tree (Fig. 3) shows the reasoning used by the
classifier to allocate a ‘score’ to each component based on
the attribute values. The different treatment of the attribute
in each branch of the tree is the key to the correct assess-
ment of the attribute interplay. In an aggregation based ap-
proach, a component with conflicting attribute values would
still score highly as each attribute is independently valid.
For example (Java,EJB,Linux) would score (5,5,5)=15/15
as would the inadvisable (C#,EJB,Linux). Weightings upon
the attributes could not differentiate these results.

4.5 Observations

The case study results for both classifiers are promising
in that they give a high degree of accuracy in identifying
suitable components. A similar percentage of components

Figure 3. Decision Tree for Interplay Dataset

were classified incorrectly during training, but there was no
overlap in the instances that caused confusion. Improve-
ments to the generator algorithm are expected to correct
most, if not all of these classification problems. Both clas-
sifiers performed well when classifying unseen data (over
98% and 90%). This indicates the classifiers are able to
correctly identify suitable components with high accuracy,
based on the ideal specification of the component. Results
of over 96% in 10-fold cross-validation of the training data
gives confidence that the data itself did not bias the training
of the classifiers.

Our investigation of generating classifiers to recognise
attribute interplay were also successful. A small study was
carried out to ensure that the classifiers are capable of deal-
ing with this more complex combination of data. Both clas-
sifiers correctly classified all instances in the data. We will
be investigating interplay with a larger case study in the fu-
ture.

5 Conclusion

In this paper we have described a technique for training
AI classifiers to assist the selection of software components
for development projects. The training data is generated
from an ideal specification of the required component, us-
ing an XML Schema as a generalised template. Using the
XML Schema and the instance document for the ideal com-
ponent, the data generator creates an internal model of the
component. The training data is automatically labelled into
classes, overcoming one of the difficulties with supervised
learning. The results from training a C4.5 decision tree al-
gorithm and an Artificial Neural Network were better than
99%. Ten-fold validation of the training data set produced
results over 96%.

The trained classifers managed to correctly identify
98% (C4.5) and 90% (neural network) of the test datasets.
Planned improvements to the generator algorithm should
bring about further improvements in these results. Another
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trial for the classifiers was a study to test if they could cap-
ture the interplay between component attributes. The study
demonstrated that both classifiers performed correctly when
given data including interplay (both rating 100%).

This paper explores some of the possibilities of using AI
in component selection. We have developed a specification
model for software components that includes context and
interplay information. This specification is used to auto-
mate a process for the assessment of components, allow-
ing the process to be repeated, and to be applied to large
numbers of components. As an alternative to aggregation-
based techniques, we have used C4.5 and neural network
classifiers to recognise suitable components, with a high
level of accuracy. The techniques demonstrated are able to
capture the interplay between attributes, unlike aggregation
techniques. We have little overhead to our approach as the
specification of the desired component must be developed
for any selection task. The decision tree produced by C4.5
can provide reasoning for decisions that are made, allowing
confidence and trust in the recommendations.

Future work for the CdCE Project is to complete a larger
case study using data harvested from component reposito-
ries. We are investigating alternative data representations to
suit clustering and mining of association rules. These tools
will provide information for the refinement of ideal specifi-
cations. We will also enhance the training data generator.
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