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Background: The western barred bandicoot (Perameles bougainville) is an Australian marsupial 

species now considered endangered as a consequence of habitat destruction and predation. A 

recently discovered papillomatosis syndrome is hindering efforts to repopulate this species. 

Hematology reference intervals have been lacking for P bougainville, preventing optimal 

interpretation of hematology results from wart-affected and clinically normal animals. 

Objectives: The purpose of this study was to establish hematology reference values and describe 

morphologic characteristics of blood cells of healthy western barred bandicoots. Methods: Fifty-

nine whole blood samples were collected by jugular venipuncture into EDTA from 47 clinically 



 

healthy captive western barred bandicoots at 3 locations on the Western Australian mainland. A 

CBC was performed using an ADVIA-120 analyzer. Data were compared on the basis of 

geographic location, sex, age, and lactation status, and reference intervals were calculated. Blood 

cell morphology was evaluated using light microscopy, and transmission and scanning electron 

microscopy. Results: Significant differences were found based on sex (RBC indices, fibrinogen), 

age (% polychromatophilic RBCs), and geographic location (RBC, neutrophil, and lymphocyte 

counts, MCHC, % polychromatophilic RBCs, fibrinogen). Combined reference intervals were 

calculated for hemoglobin concentration (122–165 g/L), HCT (0.36–0.49 L/L), and total WBC 

(2.9–14.9 × 109/L), monocyte (0–0.6 × 109/L), eosinophil (0–0.9 × 109/L), and total plasma 

protein (47–63 g/L) concentrations. Leukocyte, erythrocyte, and platelet morphology was similar 

to that of other marsupial peramelid species. Nuclei in neutrophils, monocytes, and eosinophils 

occasionally had an annular configuration. Conclusions: Reference intervals and blood cell 

morphology obtained in this study will be useful for the evaluation of laboratory data from ill 

animals and assist with population health monitoring of western barred bandicoots. (Vet Clin 

Pathol. 2007;36:XXX–XXX) 

©2007 American Society for Veterinary Clinical Pathology 
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The western barred bandicoot (Perameles bougainville) (Figure 1) is an endangered Australian 

peramelid marsupial species whose natural range is now limited to Bernier Island and Dorre 

Island in the Shark Bay region of Western Australia.1,2 Historically, this bandicoot species 

occurred across the southern arid mainland of Australia but was extirpated from its former 



 

mainland range because of habitat destruction, competition with introduced species (eg, the 

European rabbit, Oryctolagus cuniculus), and predation by introduced carnivores (eg, the red 

fox, Vulpes vulpes).3 Reintroduction and captive breeding programs have been impeded by a 

debilitating papillomatosis and carcinomatosis syndrome.4 Examinations of clinically normal and 

wart-affected western barred bandicoots have included hematologic analyses of peripheral blood; 

however, interpretation of these data has been hindered by the absence of species-specific 

reference intervals. The purpose of this study was to establish hematologic reference values and 

define morphologic features of blood cells of healthy P bougainville that can be used to guide 

clinical interpretation of laboratory data from ill animals and assist with population health 

monitoring. 

 

Materials and Methods 

 

Animals and blood samples 

Samples were obtained from 3 captive populations of P bougainville on the Western Australian 

mainland: Heirisson Prong (26°02'S, 113°22'E), Dryandra Woodland (32°45'S, 116°56'E), and 

Kanyana Wildlife Rehabilitation Centre (31°57'S, 116°03'E).  Heirisson Prong was visited in 

October 2005 and May 2006, Dryandra Woodland was visited in April, July and December 2005 

and April 2006 and Kanyana Wildlife Rehabilitation Centre was visited in June and October 

2005 and February 2006. Trapping, handling and sampling activities were conducted with the 

permission of the Murdoch University Animal Ethics Committee (R1115/05). 

 In total, 47 bandicoots (27 males and 20 females) were sampled from Heirisson Prong (n 

= 28; 19 males, 9 females), Dryandra Woodland (n = 13; 5 males, 8 females), and Kanyana 



 

Wildlife Rehabilitation Centre (n = 6; 3 males, 3 females). Six females (1 from Dryandra 

Woodland, 5 from Heirisson Prong) were lactating. All of the animals were adults, with the 

exception of 1 female and 2 male subadults, distinguishable by their size, pes and head lengths, 

the virginal pouch of the female and scrotal dimensions in the males. Nine adult animals (5 

males and 4 females from Dryandra Woodland and Kanyana Wildlife Rehabilitation Centre) 

were sampled on 2 or 3 occasions, with at least 3 months between consecutive blood collections; 

these samples were included in the analysis, for a total of 56 samples. 

 Western barred bandicoots were trapped at night by using baited Sheffield traps or were 

hand caught, as appropriate. Examinations were conducted in the morning, with the bandicoots 

under general anesthesia induced and maintained with isoflurane (Isorrane; Baxter Healthcare, 

Old Toongabbie, NSW, Australia). A thorough clinical examination was performed to assess 

health status, and whole blood was collected by jugular venipuncture by using a 25-gauge 

needle. Approximately 250 µL of blood was decanted into a 500 µL collection tube (Microtainer, 

Becton-Dickinson, North Ryde, NSW, Australia) and mixed thoroughly with the dry EDTA 

anticoagulant. 

 

Hematologic analyses 

Samples from Dryandra Woodland and Heirisson Prong were refrigerated for up to 72 hours 

before analysis while samples from Kanyana Wildlife Rehabilitation Centre were submitted 

within a few hours of collection for analysis with an ADVIA-120 hematology analyzer and 

multispecies software using the canine setting (Bayer Diagnostics Division, Tarrytown, NY, 

USA). Analytes included total WBC concentration, RBC concentration, and hemoglobin (Hgb) 

concentrations, HCT, MCV, MCH, and MCHC. 



 

 Blood smears were made from EDTA-anticoagulated whole blood within 2 hours of 

collection, air-dried, and stained using a Hema-tek® Slide Stainer and Hema-tek® Wright’s-

Giemsa stain (Ames Company, Miles Laboratories, Victoria, Australia). The blood smears were 

examined by using light microscopy to determine differential leukocyte concentrations (based on 

counting 100 WBCs) and polychromatophilic RBC counts (based on counting 1000 RBCs); 

check for the presence of parasitic organisms; and assess RBC, platelet, and WBC morphology. 

 The total plasma protein concentration was determined by refractometry using a Reichert 

TS Meter (Reichart Scientific Instruments, Buffalo, NY, USA). Plasma protein was measured 

after centrifugation of a capillary tube filled with EDTA-anticoagulated whole blood for 

determination of PCV. A second centrifuged capillary tube was assessed for fibrinogen 

concentration by using the heat precipitation method.5 (Note: sample numbers are indicated in 

the table). 

 

Scanning and transmission electron microscopy 

Approximately 500 µL of EDTA–anticoagulated whole blood was centrifuged at 500g for 10 

minutes. The plasma was removed, replaced with 5% glutaraldehyde in Sorensen phosphate 

buffer, and refrigerated overnight. After this initial fixation, the buffy coat was harvested and 

post-fixed in Dalton chrome osmic acid; dehydrated through graded alcohols; transferred into 

propylene oxide, then propylene oxide/epon 812; and embedded in pure epon 812 (reagents were 

from TAAB Laboratories Equipment Ltd, Reading, Berkshire, UK). Ultrathin sections were cut, 

mounted on grids, stained with lead citrate and uranyl acetate, and viewed with a Philips CM 100 

BioTwin transmission electron microscope (Philips; Eindhoven, Netherlands). Whole blood was 

fixed as described above, dehydrated through graded alcohols, dropped on a stub, and sputter-



 

coated with gold for visualization with a Philips XL 20 scanning electron microscope (Philips; 

Eindhoven, Netherlands). 

 

Statistical analysis 

The D’Agostino-Pearson test was used to check the data for conformation to the Gaussian 

distribution, and the Levene test was used to assess homogeneity of variances. One-way 

ANOVA or Student’s t-test was used to compare the means of data sets with homogeneous 

variances and parametric distributions. The Kruskal-Wallis test or Mann-Whitney U-test was 

used to compare data sets with homogeneous variances but nonparametric distributions. When 

data sets failed the Levene test, data were transformed by using the logarithm, square root, or 

reciprocal of the raw data prior to analysis. The effect of geographic location, sex, lactation 

status, and age was investigated for each reported analyte by using SPSS software (SPSS, 

version 14.0.0, Chicago, IL, USA). Statistical significance was set at P < .05. 

 For analytes whose data sets or transformed data sets conformed to a parametric 

distribution and were not significantly influenced by geographic location, sex, lactation status, or 

age, a Gaussian tolerance interval was calculated that had a probability of .90 of containing 95% 

of the population.6 The lower and upper interval limits L1 and L2 are defined thus: L1 = sample 

mean – ks and L2 = sample mean + ks, where k = 2.252 (for n = 59) and 2.276 (for n = 52) and s 

= [∑(xi – sample mean)2/n–1]½. 

 

Results 

 

Reference intervals and the effect of geographic location, sex, lactation status, and age 



 

The data distribution and type of transformation was tabulated for all hematology analytes (Table 

1). Because most samples had clumped platelets in blood smears, platelet counts were not 

reported. Hemoparasites were not observed in any samples. 

 Statistically significant differences were observed in some analytes in western barred 

bandicoots at different geographic locations. Statistically significant differences were also 

observed among males, females, and lactating females for MCV (P = .028), MCH (P < .001), 

MCHC (P = .002), and fibrinogen (P = .019) concentration (ANOVA, data not shown), however 

these differences were negligible from a clinical perspective. A statistically and potentially 

clinically significant difference was observed between adults and subadults in the percentage of 

polychromatophilic RBCs with subadults having 1.0 ± 0.20% (n=3) and adults having 0.48 ± 

0.3% (n=56), (P = .004, Student’s t test). For those analytes that did not differ significantly based 

on geographic location, sex, or age, Gaussian tolerance intervals were calculated (Table 1).  

 

Erythrocyte morphology 

Erythrocytes were anucleated, eosinophilic, shallow biconcave discocytes (Figure 2). Howell-

Jolly bodies, anisocytosis, and polychromasia were occasionally seen. A few echinocytes, and 

sporadic stomatocytes, torocytes, knizocytes, and schistocytes were observed. Nucleated 

erythrocytes were very rarely observed.   

 

Leukocyte morphology 

Neutrophils and lymphocytes were the most numerous leukocytes, with fewer eosinophils and 

monocytes, and rare basophils (Table 1). Neutrophils (Figure 3) had 3 to 7 lobes of often 

tortuously segmented and densely clumped nuclear chromatin. The almost colorless cytoplasm 



 

contained weakly–staining granules (Figure 3a). Occasionally, mature neutrophil nuclei were 

hyposegmented or had an annular configuration (Figure 3b). Immature neutrophils had band-

shaped or annular nuclei, and basophilic cytoplasm with scattered azurophilic granules. 

Ultrastructurally, neutrophil nuclei typically were multilobulated and composed of more hetero- 

than euchromatin. The cytoplasm contained several organelles, including rough endoplasmic 

reticulum, Golgi body, mitochondria, a few small vacuoles, and numerous membrane-bound 

granules of at least 2 types. The most numerous granule type was ovoid to elongate in 

longitudinal section, round in cross-section, and electron-dense (secondary granules). Round to 

ovoid and less electron-dense granules consistent with primary granules also populated the 

cytoplasm but were far fewer in number (Figure 3c). 

 Lymphocytes had central, round, ovoid or indented nuclei surrounded by light basophilic 

cytoplasm. Small lymphocytes had high nuclear to cytoplasmic (N:C) ratios, scant cytoplasm, 

and small nuclei with dense chromatin; whereas medium and large lymphocytes had lower N:C 

ratios, more abundant basophilic cytoplasm, and larger, less densely staining nuclei with more 

dispersed chromatin. Ultrastructurally, lymphocytes had round nuclei with moderately 

condensed chromatin rimmed by cytoplasm that contained several mitochondria. 

 Monocytes (Figure 4) were the largest leukocytes and often had an irregular cell shape. 

Nuclei were usually horseshoe–shaped or irregular, had reticular chromatin, and were 

surrounded by abundant mildly basophilic cytoplasm (Figure 4a). Monocyte nuclei frequently 

had an annular configuration (Figure 4b). Ultrastructurally, monocytes had indented or irregular 

nuclei, with more abundant euchromatin than neutrophils, and a cytoplasm rich in variably sized 

vacuoles, mitochondria, ribosomes, and moderately electron-dense primary granules. There were 

numerous fine projections of the plasma membrane, some fusing to form phago- or pinocytotic 



 

vesicles (Figure 4c). Eosinophils (Figure 5) had 2–4 nuclear lobes with densely clumped 

chromatin and a moderate amount of pale basophilic cytoplasm, with innumerable ovoid brightly 

eosinophilic granules scattered throughout (Figure 5a). Some eosinophil nuclei had an annular 

configuration (Figure 5b). In transmission electron micrographs, eosinophil nuclei were 

multilobulated and composed of hetero- and euchromatin. Eosinophil granules were large, ovoid 

in longitudinal section, and circular in cross-section, with homogeneous electron density; they 

were noticeably larger than neutrophil granules. No distinct crystalline structures were observed 

within eosinophil granules; however, 16 of 124 granules from 4 photographed eosinophils 

(12.9%) had small, round, membrane invaginations (Figure 5c).  

 Basophils typically had 2 nuclear lobes of densely clumped chromatin, a moderate 

amount of faintly basophilic cytoplasm that contained numerous variably–sized round to 

irregular, intensely basophilic granules that frequently obscured the nucleus. Basophils were not 

identified on transmission electron microscopy. 

 

Platelet morphology 

Platelets varied markedly in size, from 1 to 6 µm, lacked a nucleus, and had slightly basophilic 

cytoplasm with many azurophilic granules. 

 

Discussion 

 

The light microscopic appearance of erythrocytes and leukocytes in this study was similar to that 

previously reported for P bougainville7, and ultrastructural features of leukocytes were 

comparable to those described by Clark7 for other marsupial species. All leukocyte types 



 

typically present in mammalian blood smears were found in blood smears from healthy P 

bougainville. Total leukocyte concentrations in peramelemorphs such as bilbies (Macrotis 

lagotis), northern brown bandicoots (Isoodon macrourus) southern brown bandicoots (Isoodon 

obesulus) and eastern barred bandicoots (Perameles gunnii) tend to be low compared with other 

mammalian orders7, and P bougainville was no exception. Hematologic data reported for the 

northern brown bandicoot (I macrourus) and eastern barred bandicoot (P gunnii)8 were similar to 

those obtained for P bougainville. Our findings for P bougainville were also similar to those 

reported for southern brown bandicoots (I obesulus) from Western Australia.9 Samples from 

captive and wild populations of juvenile northern brown bandicoots (I macrourus)10 had 

comparable HCTs with those we obtained for P bougainville; however, total leukocyte 

concentrations were approximately double those we obtained in this study, with very high 

percentages of circulating lymphocytes and low percentages of circulating neutrophils.  

 Hematologic data from bilbies (M lagotis)11 included higher values for HCT, MCV, 

MCH, RBC, Hgb, and total WBC concentrations than those we obtained for P bougainville. 

Differences in levels of stress, sedation and anesthetic protocol, site of venipuncture, age, 

presence of subclinical disease, and methods of analysis, as well as true differences between the 

2 peramelemorph species may explain these dissimilarities.  

 The complex interplay between genetics, environment, nutrition, age, sex, and social 

structure may account for the differences we observed in some hematologic results between 

colonies of P bougainville at different geographic locations, as previously reported for Parma 

wallabies (Macropus parma).12 Nutrition, environment, and social structure are likely to vary 

considerably between the 3 study sites and, therefore, may be the most important of these factors 

in terms of the current study. Western barred bandicoots at the 3 study sites are all descendents 



 

of P bougainville translocated from Bernier Island or Dorre Islands and, therefore, are closely 

related. 

 One potential limitation of this study was the length of time (72 hours) between sample 

collection and analysis. Results of experiments with the western grey kangaroo (Macropus 

fuliginosus) indicate that delays of up to 108 hours between blood sample collection and 

processing have minimal effects on RBC parameters if samples are refrigerated at 4°C.13 A 

transient mild decrease in RBC and Hgb concentrations was noted in western grey kangaroo 

blood samples refrigerated for up to 48 hours, after which time these values returned to normal.13 

The effect of protracted refrigerated storage on total WBC concentration is more difficult to 

predict; however, the total WBC concentrations from the 3 geographic locations were all 

approximately equal, despite discrepancies in storage time. In our study, blood smears were 

made at the time of sample collection, therefore, cell morphology and WBC differential counts 

could be accurately assessed. Underfilling of collection tubes that contained dry EDTA 

anticoagulant may have resulted in echinocytes observed because of RBC crenation.14 Excess 

EDTA also can artifactually increase total plasma protein concentration, as measured by 

refractometry. Half-filling the EDTA tubes used in this study appeared to induce an overestimate 

of approximately 3 g/L in the total plasma protein concentration when assessed by refractometry 

compared with the biuret method for plasma protein concentration determination (unpub. obs.).  

 Platelet aggregation, observed in almost all samples, may lead to spuriously decreased 

platelet concentrations and increased mean platelet volumes using automated analyzers; thus the 

results were not reported in this study. Platelet aggregation may have resulted from prolonged 

storage in EDTA. 

 Despite these limitations, to our knowledge, this is the most comprehensive study of the 



 

hematology of P bougainville documented thus far in the scientific literature. The population 

sampled is approximately 10% of the estimated captive population, and comprises 1%–2% of all 

western barred bandicoots thought to be alive. The reference values and morphologic 

descriptions in this study characterize the expected hematologic findings in healthy western 

barred bandicoots and can be used to inform clinical decision-making and population health 

monitoring. 
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Figure 1. Clinically healthy adult western barred bandicoot (Perameles bougainville). 

Photograph courtesy of Linda Reinhold. 

 

Figure 2. Scanning electron micrograph of erythrocytes of Perameles bougainville. A knizocyte 

can be seen (arrow). 

 

Figure 3. Neutrophils from Perameles bougainville. (A) A typical segmented neutrophil. 

Wright’s-Giemsa, bar = 10 µm. (B) A segmented neutrophil with an annular nuclear 



 

configuration. Wright’s-Giemsa, bar = 10 µm. (C) Transmission electron micrograph of a 

segmented neutrophil. The neutrophil nucleus appears divided into 2 parts by the plane of 

section. Primary (P) and secondary (S) granules can be seen in the cytoplasm. Lead citrate and 

uranyl acetate stains. 

 

Figure 4. Monocytes from Perameles bougainville. (A) A typical monocyte with a large 

horseshoe–shaped nucleus and abundant cytoplasm. Wright’s-Giemsa, bar = 10 µm. (B) A 

monocyte with an annular nuclear configuration. Wright’s-Giemsa, bar = 10 µm. (C) 

Transmission electron micrograph of a typical monocyte with an indented nucleus and numerous 

projections and invaginations of the plasma membrane. Lead citrate and uranyl acetate stains. 



 

 

Figure 5. Eosinophils of Perameles bougainville. (A) A typical eosinophil with a lobulated 

nucleus and abundant eosinophilic cytoplasmic granules. Wright’s-Giemsa, bar = 10 µm. (B) An 

eosinophil with an annular nuclear configuration. Wright’s-Giemsa, bar = 10 µm. (C) 

Transmission electron micrograph of a typical eosinophil. Some cytoplasmic granules have a 

round membrane invagination (arrow). Lead citrate and uranyl acetate stains. 

 



 



 

Table 1. Hematology and plasma protein values (minimum-maximum) for 3 captive populations of clinically healthy western barred bandicoots (Perameles 

bougainville) in Western Australia. 

Analyte Heirisson Prong 

(n = 28) 

Dryandra 

Woodland 

(n = 20) 

Kanyana Wildlife 

Rehabilitation Centre 

(n = 22) 

Data Distribution 

or Transformation 

P Value* Reference 

Interval† 

(n = 59) 

RBCs (×1012/L) 6.24–7.83 5.57–7.65 5.68–7.51 Normal .006 — 

Hemoglobin (g/L) 125–153 118–167 127–162 Reciprocal .778 122–165 

HCT (L/L) 0.38–0.47 0.36–0.48 0.39–0.50 Normal .327 0.36–0.49 

MCV (fL) 58.8–63.1 60.3–66.7 60.3–67.9  — — 

MCH (pg) 19.1–20.7 20.3–22.2 20.2–22.5  — — 

MCHC (g/L) 315–336 315–345 316–344 Normal .003 — 

Polychromatophilic RBCs (%) 0.1–0.9 0–1.2 0.3–1.3 Normal <.001 — 

Total WBCs (×109/L) 3.6–12.4 2.7–11.4 3.4–13.2 Logarithm .305 2.9–14.9 

Neutrophils (×109/L) 2.25–10.3 0.7–8.8 1.1–3.7 Normal <.001 — 

Lymphocytes (×109/L) 0.5–3.2 0.5–5.3 1.5–10.6 Logarithm <.001 — 

Monocytes (×109/L) 0–0.6 0–0.5 0–0.5 Square root .676 0-0.6 

Eosinophils (×109/L) 0–0.6 0–0.5 0–1.1 Square root .172 0-0.9 

Basophils (×109/L) 0–0.1 0–0.1 0–0.1  — — 

Total plasma protein (g/L) 50–62 46–62‡ 51–61‡ Normal .562 47–63‡ 

Fibrinogen (g/L) <1–4 1–4‡ 1–2‡ Square root .020 — 

*P values obtained by 1-way ANOVA for results from western barred bandicoots at different geographic locations. 

†Gaussian tolerance limits calculated on normally distributed or transformed data for all sites combined. See text for the details of the calculation. 

‡Data were obtained from fewer samples: plasma protein concentration at Dryandra (n = 17), Kanyana (n = 7), and reference interval (n = 52); fibrinogen 

concentration at Dryandra (n = 16) and Kanyana (n = 3). 
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