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Use of relevance feedback (RF) in the feature vec-
tor model has been one of the most widely used ap-
proaches to fine tuning queries for content-based im-
age retrieval (CBIR). We propose a framework that
extends RF to capturing the inter-query relationship
between current and previous queries. Using the fea-
ture vector model, this avoids the need to “memo-
rize” actual retrieval relationships between actual im-
age indexes and the previous queries. This approach is
suited to image database applications in which images
are frequently added and removed. In the previous
work [1], we developed a feature vector framework
for inter-query learning using statistical discriminant
analysis. One weakness of the previous framework is
that the criteria for exploring and merging with an ex-
isting visual group are based on two constant thresh-
olds, which are selected through trial and error. An-
other weakness is that it is not suited to mutually inter-
related data clusters. Instead of using constant values,
we have further extended the framework using pos-
itive feedback sample size as a factor for determin-
ing thresholds. Experiments demonstrated that our
proposed framework outperforms the previous frame-
work.

Keywords: content-based image retrieval system, inter-
query learning, relevance feedback, statistical discrimi-
nant analysis

1. Introduction

In the last decade, query tuning using relevance feed-
back (RF) has gained much attention in content-based
image retrieval (CBIR) R&D, largely due to RF’s abil-
ity to refine user queries through a sequence of interac-
tive sessions. Different approaches [2] to RF in CBIR
have yielded certain success, but most researches have
focused on query tuning ina single retrieval session,
i.e., intra-query learning. In contrast,inter-query learn-
ing, i.e.,long-term learning,analyzes the relationship be-
tween current and past retrieval sessions. By accumu-
lating knowledge learned from previous sessions, inter-
query learning improves the retrieval performance of the

current and future sessions. One may view that inter-
query is an extension of intra-query. Although intra-query
in CBIR has been studied for the last decade, inter-query
in CBIR has only begun to attract interests and has yet to
be fully explored.

We developed an inter-query learning framework based
on statistical discriminant analysis to represent character-
istics of a visual group during a retrieval session [1]. This
approach is suited to database applications in which im-
ages are regularly added and removed because it avoids
the need to establishing relationships between individual
images in a database, a common approach in most inter-
query learning frameworks. A weakness of our previous
framework is that the criterion for exploring and merging
with an existing visual group is based solely on two con-
stant thresholds determined through trial and error, and
this approach is not suited to mutually interrelated data
clusters.

Here, we extend the previous framework using avail-
able feedback samples as the factor for determining
thresholds for cluster merging and exploration. We start
by briefly reviewing current approaches to inter-query
learning for content-based image retrievals. We then re-
view our previous work and present our proposed ap-
proach. We then report results from experiments on the
implemented framework and state our conclusions.

2. Background

According to the literature, inter-query learning is
based on two approaches. The first originated in con-
ventional text search and retrievals whose goal is to an-
alyze the relationship between images and related queries
through user retrieval patterns. This assumes that if two
query retrieval patterns are identical, images retrieved by
the queries must be semantically similar. Examples of this
approach are latent semantic indexing (LSI) [3] and statis-
tic correlation [4]. This approach has been extended [5–7]
by attempting to analyze the hidden semantic relationship
among indirectly related images groups. The weakness
in this is that the image database must be relatively static
making maintenance complicated if images are frequently
added or removed from the database.

The second inter-query approach is based on the fea-
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ture vector model involving changing the feature vector
coordinate scale to bring similar images closer. The fea-
ture vector coordinate is transformed through weighting
or kernel matrix transformation. The feature vector model
approach is widely used in short-term learning. The sup-
port vector machine (SVM) [8, 9] and self-organizing map
(SOM) [10] are the most widely used machine learning
tools for image clustering for inter-query learning. In the
feature vector model approach, images retrieved from a
query session are captured as a clustered group and in-
formation on retrieved images is stored in the “user log”.
This approach avoids the need for “memorizing” actual
retrieval relationships between actual images and the pre-
vious queries. However, applying SVM in data cluster-
ing can be tricky and requires non-linear data approxima-
tion such as pre-image calculation [11, 12] to transform
data back to the original feature space before clusters are
merged. Instead of using SVM [1], uses statistical dis-
criminant analysis to analyze the inter-query relationship
in the visual feature space. In statistical discriminant anal-
ysis, two data clusters can be merged by relatively simple
algebraic mathematics. Statistical discriminant analysis is
detailed in the next section.

3. Previous Framework

In previous work [1], we proposed a framework for
inter-query learning in content-based image retrieval sys-
tem. The framework was based on kernel-biased dis-
criminant analysis as proposed by Zhou and Huang [13]
for short-term learning in an image retrieval. Unlike the
short-term learning framework, our proposed framework
captures retrieval information using a data cluster consist-
ing of a center point, a boundary value and the transforma-
tion matrix used to transform the extracted image feature
from the original feature space to a new feature space. If
an image falls within the boundary, the image becomes
part of this group of images. The boundary distance is
the distance of the furthest positive sample from the cen-
ter. The proposed inter-query learning analysis locates the
data cluster able to identify and contain most the current
positive samples. The searching criterion is written as:

criteria�
Nni

Np
. . . . . . . . . . . . . (1)

whereNp denotes the total number of positive samples
gathered during the feedback cycle, andNni is the number
of positive samples that fall within the boundary of cluster
i.

Once clusters within the user log are identified, the sys-
tem decides how the group is to be used. The system ei-
ther merges feedback samples with the identified cluster
to form a new query point. Alternatively, the system cre-
ates multiple query points created in short-term learning
using feedback samples and the query point created by
the identified group from the long-term learning. The de-
cision to create a merged group or to separate query points
is based on search criteria (Eq. (1)). If the value of crite-

Fig. 1. Threshold for missing classification whenM� 5 and
N� 10.

ria exceeds a certain threshold, then a new merge group
or two separate queries are created. This is designed to
enable the user to further explore related visual groups
having similar semantic content.

At the end of the retrieval session, the user log is up-
dated. The user log updating policy is similar to the query
expansion policy discussed above, but this search criteria
differs from criteria as shown in Eq. (1). Negative feed-
back samples are used to determine the data cluster most
suitable for updating. Negative feedback samples provide
additional information on the discrimination of selected
data clusters for feedback samples. This criterion is writ-
ten as:

criteria�
Nsi

Nt
. . . . . . . . . . . . . (2)

whereNt denotes the total number of samples gathered
during the retrieval session, andNsi is the number of posi-
tive samples that fall within the boundary of clusteri. Us-
ing feedback samples, the system searches through groups
to find the most appropriate group. A new group is cre-
ated if the search criterion is less than the threshold, or
the current group is updated with samples. Similarly, the
rule for merging two clusters depends on the threshold in
Eq. (2) and the Euclidean distances between the two pos-
itive centre points.

4. Proposed Framework

Our previously proposed framework had room for im-
provement. Thresholds for exploring or merging clusters
were determined through trial and error, and exploring
and merging criteria were based on the number of sam-
ples falling within the cluster. Since the boundary of the
cluster is based on the furthest positive sample from the
center, the discriminant approach cannot clearly separate
the positive sample furthest away from the negative sam-
ples.

Most importantly, thresholds are constant and based
only on the ratio of samples falling within the cluster with-
out considering actual sample size which is important to
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consider when dealing with any statistical analysis. If the
threshold as listed in Eq. (1) is set to 0.5, this implies that
the cluster is selected if more than 50% of positive sam-
ples fall within the cluster. A huge difference in impli-
cation lies between scenarios in which “2 samples have
been labeled positive, and 1 of them falls within the clus-
ter” and “20 samples have been labeled positive, and 10 of
them fall within the cluster.”In these two scenarios, if the
cluster is explored, the second scenario will receive pref-
erence. This issue is resolved by only enabling the system
to search clusters after the number of positive samples
gathered exceeds a minimum preset value. This, how-
ever, prevents system from exploring the cluster in earlier
search cycle.

To resolve these three issues, we propose Eqs. (3) and
(4) for replacing for criteria in Eqs. (1) and (2).

α �
Nir

Nr
. . . . . . . . . . . . . . . (3)

threshold�

����
���

0� 0� R�M
R�N
N�M

� M � R� N

1� N� R

. . . (4)

whereα is the misclassification factor and parameterNir
is the number of negative labeled samples in whose Eu-
clidean distances to the positive center are smaller than
average Euclidean distances of positive samples,Nr is the
number of positive labeled samples whose Euclidean dis-
tances are smaller than average Euclidean distances of
positive samples. This minimizes the effect of poor dis-
crimination between furthest positive samples and nega-
tive samples.

For the threshold in Eq. (4),R is the number of positive
samples gathered from each relevance feedback cycle and
parametersM and N are boundary sample sizes for the
threshold for setting 0 or 1. As an alternative to the previ-
ous framework, the newly proposed threshold is no longer
a constant, it is now depends on sample size. When the
threshold is set to 0, it implies that zero classification is
allowed. When the threshold is set to 1, it allows that half
of the samples are falsely classified so that the threshold
for exploring the cluster is harsher when the sample size
is small. As the sample size increases, the rule for explor-
ing the cluster becomes more lenient.Fig. 1 depicts the
value of the threshold when the minimum and maximum
sample sizes are set to 5 and 10.

The decision for exploring is, in short, “exploring the
cluster only when the misclassification factor is smaller
than or equal to the threshold.” Similarly, the same
threshold is used along with similarity Euclidean distance
calculation to determine if two clusters are to be merged.

5. Experiments

To evaluate the performance of our proposal, we have
designed and implemented a prototype CBIR using the
Matlab simulation software toolbox. This prototype en-

ables the user to query the image database with an image
sample. After the first retrieval iteration, users select rel-
evant images while ignoring non relevant images. The
system labels selected images as positive while treating
ignored images as negative. Retrieval is as follows:

1. The user inputs a query image.

2. Visual features of the query are extracted by the sys-
tem.

3. All images in the database are sorted in ascending
order based on the distance of dissimilarity.

4. The top 20 images with the highest rank are dis-
played.

5. The user selects positive images and the rest are au-
tomatically labeled as negatives.

6. A new query is created from feedback samples based
on the proposed decision algorithm. The equations
for the proposed algorithm are given in Eqs. (3) and
(4).

7. The top 20 images not labeled by the user are ranked
and displayed.

8. Return to step 5 for the next retrieval cycle.

9. Update the user log at the end of the retrieval session.

5.1. Experiment Environment
To test the performance of our proposal, we imple-

mented three systems. They are (i) our proposal, (ii)
our previous framework, and (iii) a short-term learning
framework based on [13]. To evaluate the validity of the
experiment, the environment and parameters used by all
three systems are identical. Image features and general-
ized eigenvector calculation are the same and the same pa-
rameters are used in the kernel transformation algorithm
for all three systems based on analysis of shape [14], tex-
ture [15], and RGB and HSV color histograms of images.
Each feature is composed of a number of elements. A to-
tal of 48 feature elements are used. The Gaussian Radial
Basis Function (RBF) is the kernel transformation ma-
trix for the KBDA approach based on literatures on CBIR
[13, 16] reporting that RBF yields the best accuracy of all
kernel transformation approaches.

5.2. Experiment Procedure and Data
This experiment uses 500 images from the Corel image

database of which 300 are classified under seven themes
and each consists of several different visual groups. The
inter-relationship of each theme is shown inFig. 2. The
themes “bird” and “cat” are subsets of “animal,” “fish”
is the subset for both “animal” and “water,” and “water”
consists of “water scene.” “Yellow flower” is independent
of all other themes. The interrelationship between each
theme emulates the complexity of the semantic relation-
ship between each object in the real world.
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Fig. 2. Relationship between themes in test data set.

Fig. 3. Retrieval performance of three frameworks with five
independent themes.

The retrieval performance of the frameworks was mea-
sured via four different tests. The first two tests involved
selecting all themes independent of each other, i.e., “bird,”
“fish,” “cat,” “water scene,” and “yellow flower” were se-
lected in the first two tests. Tests were generated by ran-
domly selecting 300 positive labeled images from each
theme as an input entry point to the system. The same
data set was then applied in the second test with a differ-
ent random sequence to ensure consistency of test results.
The last two tests were done using all themes (Fig. 2).
These four tests measured the performance of the two
frameworks under a simple and a more complex cluster
relationship. Retrieval accuracy is used as the main factor
for comparing system performance.

5.3. Test Results and Discussion

Figure 3 shows the average accuracies of the five inde-
pendent themes after two random sequences of 300 feed-
back sessions. While short-term learning has the worst
retrieval performance, test results with the new criterion
and threshold value are only marginally better than re-
sults with the original threshold value. In fact, the frame-
work with the original threshold has better retrieval per-
formance in the themes “cat” and “yellow flower.” Over-
all, test results generated from the new threshold are con-
sistently better than results from the short-term learning

Fig. 4. Retrieval performance of three frameworks with
more complex relationship between themes.

framework. The retrieval performance of the framework
with the original threshold is compatible in some areas
but significantly worse in others. This is clearer (Fig. 4)
when a more complex relationship between each theme is
introduced. InFig. 4, the framework with a new threshold
maintains advantages over the other two frameworks, the
performance of the framework with the original threshold
in themes “bird,” “water,” and “animal” is worse than the
short-term learning framework.

6. Conclusion

We have introduced a new criterion and threshold in a
statistical discriminant analysis framework for inter-query
learning in CBIR. The proposed criterion and threshold
are more flexible than the previously used constant thresh-
old because the new threshold is no longer constant but
dependent on the size of positive samples, which may dif-
fer for different cases. The proposed criterion is based
on the number of samples whose Euclidean distances to
the positive centre are smaller than average Euclidean dis-
tances of positive samples. This minimizes the effect of
poor discrimination between furthest positive samples and
negative samples. Test results demonstrated that the accu-
racy retrieval performance for the proposed criterion and
threshold is better than the original threshold from a pre-
vious proposal. Currently, we use only aflat structure
in grouping images. Using a complex hierarchical struc-
ture to organize these image groups, which are semanti-
cally similar, yet visually different, would more accurate
retrieval results.
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