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Abstract

Essential hypertension is defined as a chronicagiew of blood pressure of
unknown cause. Though a definitive trigger fosttinange in blood pressure has not
been established, there is a strong associatidm avitupregulation of sympathetic
output from the central nervous system. Thereaareimber of central autonomic
nuclei involved in the maintenance of blood pressincluding the brainstem regions
of the nucleus tractus solitarii (NTS), caudal velateral medulla (CVLM), rostral
ventrolateral medulla (RVLM), the sympathetic pregfgonic neurons (SPNs) within
the intermediolateral cell column (IML) of the spincord, as well as forebrain
regions such as the paraventricular nucleus (PViNdhe hypothalamus. Within
these centers, a vast number of neurotransmitsars been identified that contribute
to the control of blood pressure, including glutsenaangiotensin Il, serotonin,
neurotensin, neuropeptide Y, opioids and catechiakesn Recognition of the role of
nitric oxide (NO) and its multiple influences ouwbe neural control of blood pressure

IS gaining increasing significance.

Nitric oxide is a unique modulatory molecule thatsaas a non-conventional
neurotransmitter. As NO is a gas with a short-hf@fof 4 — 6 seconds, its’
synthesising enzyme, nitric oxide synthase (NOSpften used as a marker of
location of production. Once activated, the besivin “receptor” for NO is soluble
guanylate cyclase (sGC), which drives the prodactiof cyclic guanosine
monophosphate (cGMP). Identifying the presenceGNIP can therefore be used to
determine sites receptive to NO. Previous studi@snining the role of NO in the
central autonomic control of blood pressure haveudsed predominantly upon
application of either excitatory or inhibitory dugnto the key central autonomic

regions and assessing pressor or depressor effébts.thesis aims instead to study



the neuroanatomical relationship and functionahificance of NO and cGMP

expression in the brain and spinal cord of a hygpesitze and normotensive rat model.

In the first experimental chapter (Chapter 3), mmparative neuroanatomical
analysis of neuronal NOS expression and its relahgp with cGMP in the SPN of
mature Spontaneously Hypertensive Rats (SHR) aanl tontrols, Wistar Kyoto
(WKY) was undertaken. Fluorescence immunohistocsieyn confirmed the
expression of NNOS in the majority of SPN locatdthm the IML region of both
strains. However, a strain specific anatomicahrmgement of SPN cell clusters was
evident and while there was no significant diffeerbetween the total number of
SPN in each strain, there were significantly fewBiOS positive SPN in the SHR
animals. All nNOS positive SPN were found to esgr&eGMP, and a novel
subpopulation of NNOS negative, cGMP-positive SPak wdentified. These cells
were located in the medial edge of the IML SPN getlup. These results suggest
that cGMP is a key signalling molecule in SPN, #mat a reduced number of NNOS
positive SPN in the SHR may be associated withinlbeease in sympathetic tone

seen in essential hypertension.

The second experimental chapter (Chapter 4) aimeatetermine if reduced
numbers of NNOS containing SPN translated into cedudetectable cGMP. The
functional significance of cGMP signalling in thead strains was then examined.
Based on previous work by our group, it was predidhat reduced nNOS in the
SHR would translate into reduced cGMP and thatath&cal administration of
exogenous cGMP in the spinal cord would drive &edéhtial pressor response in the
two animal strains. Immunohistochemical techniqaesfirmed that within each
SPN, the relative level of cGMP expression was igantly reduced in the SHR

when compared to the WKY. Intrathecal applicatmm8-bromo-cGMP, a drug
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analogous to cGMP, increased blood pressure in §toims and had a differential
and dose dependent effect, causing only a smatkase in blood pressure in
anaesthetised WKY animals, while driving a sig@fit pressor response in the SHR.
This finding raised the novel hypothesis that i@ 8HR, reduced nNOS expression is
not a driver of hypertension, but is instead agutwe mechanism limiting the potent

pressor effects of cGMP within SPN.

The third experimental chapter (Chapter 5) examities expression of
neuronal and inducible isoforms of NOS (nNOS, iIN@fthin the RVLM of SHR
and WKY rats. Reverse transcription-polymeraserncheaction (RT-PCR) was used
to analyse the level of mMRNA expression and immustobhemistry was then used
to further analyse protein levels of nNOS. TotdNARwas extracted and reverse
transcribed from the RVLM of mature male WKY andSHQuantitative real-time
PCR indicated that relative to WKY, mRNA levels faNOS was significantly
higher in RVLM of the SHR. This was confirmed imnalnistochemically. When
compared to INOS, nNOS was expressed at significamgher levels overall,
however there was no difference in INOS mRNA exgsbetween the two strains.
This demonstration of differential expression level nNOS and INOS in the RVLM
raises the possibilities that (i) NO productiomupsregulated in the RVLM in SHR in
response to increased sympathetic activity in ongemre-establish homeostatic
balance or alternatively that (ii) an alteratiorthie balance between nNOS and INOS
activity may underlie the genesis of augmented sithgiic vasomotor tone during

hypertension.

The fourth experimental chapter (Chapter 6) extetigs observations in
Chapter 5 through examination of the expressiorc®@MP and sGC within the

RVLM. There is strong functional evidence to sugjgiat NO signalling in the
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RVLM relies on cGMP as an intracellular signallimgplecule and that this pathway
is impaired in hypertension. Immunohistochemistvgs used to assess cGMP
expression as a marker of active NO signallindien€1 region of the RVLM, again
comparing SHR and WKY animals. Fluorescence imrhigtochemistry on
sections of the RVLM, double labelled for cGMP arather nNOS or
phenylethylamine methyl-transferase (PNMT) faileal teveal cGMP positive
neurons in the RVLM from aged animals of eitheaistrdespite consistent detection
of cGMP immunoreactivity neurons in the nucleus mubs from the same or
adjacent sections. This was demonstrated bothamptesence and absence of the
phosphodiesterase inhibitor isobutylmethylxanthiigMX) and in young vs. aged
animals. In-vitro incubation of RVLM slices in the NO donor DETA-N&® NMDA
did not reveal any additional cGMP neuronal stgnwithin the RVLM. In all
studies, cGMP was prominent within the vasculatuoluble guanylate cyclase
immunoreactivity was found throughout the RVLM,haltigh it did not co-localise
with the PNMT or nNOS neuronal populations. OwJerasults suggest that within
the RVLM, cGMP is not detectable in the restingtestand cannot be elicited by
phosphodiesterase inhibition, NMDA receptor stinialaor NO donor application.
A short time course of cGMP signalling or degraafatinot inhibited by the

phosphodiesterase inhibitor utilised (IBMX) in tR¥LM cannot be excluded.

The final experimental chapter (Chapter 7) examic@8P expression in
magnocellular and preautonomic parvocellular nesiroh the PVN. Retrograde
tracing techniques and immunohistochemistry weredus$o visualise cGMP
immunoreactivity within functionally, neurochemiyabnd topographically defined
PVN neuronal populations in Wistar rats. Basal d&ilhmunoreactivity was readily

observed in the PVN, both in neuronal and vascuylefiles. Cyclic GMP
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immunoreactivity was significantly higher in magetualar compared to
preautonomic neuronal populations. In preautonomeigrons, the level of cGMP
expression was independent on their subnuclei imtatinnervated target or
neurochemical phenotype. The data presented & dhapter indicates a highly
heterogeneous distribution of basal cGMP levelsiwithe PVN, and supports work
by others indicating that constitutive NO inhibitoactions on preautonomic PVN

neurons are likely mediated indirectly through\aation of interneurons.

Summary

Together, these studies comprise a detailed asabfsihe neuroanatomical
expression of NO and its signalling molecule cGMRey central autonomic regions
involved in the regulation of blood pressure. Unisting or basal conditions, the
studies demonstrate notable differences in the emgpyn of NO synthesising
enzymes between normotensive and hypertensive Eiamal correlating changes in
the downstream signalling molecule cGMP. In thenapcord, novel functional
differences in cGMP activity were also demonstratesh the RVLM, although
differences in nNOS were demonstrated, cGMP exjamessould not be readily
detected in either the WKY or SHR, while in contragthin the PVN, cGMP was

detected in both magnocellular and parvocellularoeal populations.

Conclusion

This thesis gives insight into the physiologicalerof NO and cGMP as
mediators of central blood pressure control. Témults presented indicate that the
NO-cGMP dependent signalling pathway may not bedtimainant driver responsible
for maintaining high blood pressure in the SHR madessential hypertension, and
that there is no globally consistent pattern ofregpion, and indeed the role of NO as

a mediator of pressor and depressor function may batween the autonomic
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regions examined. Further, it is possible thad frathway is only recruited during
activation of reflex homeostatic pathways or durtimges of marked physiological
stress, and that the differences we see in bagpatgsion between the normotensive

and SHR animals are instead a result of compensatechanisms.
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1. Literaturereview

1.1. Regulation of blood pressure

1.1.1. Hypertension

Homeostasis, the regulation of the internal envirent, is dependent on
efficient and appropriate blood flow to all regiown$ the body. This flow is
determined by pressure gradients within the caedioular system which we routinely
gauge through assessment of mean arterial pre@dd) (Bernard, 1865; Dampney
et al.,, 2002). Various stressors in a daily ratian cause blood pressure (BP) to
fluctuate dramatically, but ultimately, over a 2ddi period it is a tightly controlled
variable (Guyenet, 2006). However, in responserngoing stressors that challenge
the maintenance of BP, individuals may lose thditglio maintain MAP within the
normal physiological range (Monahan, 2007). Hygesion is diagnosed when there
is chronic elevation of the 24-hour average BP, @ard be classified as one of either
two broad categories of hypertension essential gomary) hypertension, and
secondary hypertension (Guyenet, 2006).

Essential hypertension is defined as a rise in BRinknown cause that
increases risk for cerebral, cardiac, and renahtsvéMesserli et al., 2007). It is
generally agreed that essential hypertension afieesa combination of genetic and
environmental influences (Folkow, 1982). Human yapon studies have shown
that the development of hypertension has some igebbasis (Staessen et al., 2003)

with at least 17 human genes having been identiidtl either hypertension or



hypotension (Lifton et al.,, 2001). However, intemtional studies show that
environmental changes, such as diet, exerciseahohtake can affect BP, regardless
of genetic disposition, indicating that environnariaictors are powerful contributors
to essential hypertension (Fagard, 2001; Graudall €1998; Sacks et al., 2001).

Secondary hypertension is diagnosed in patientsa/imcrease in BP has an
identifiable cause (Messerli et al., 2007). Thestmmmmon cause is chronic renal
disease, which can be brought on by diabetes, gldoreephritis, or polycystic
kidney disease (Fesler et al., 2005; Phillips, 200&xtor, 2004). Other known
factors include phaeochromocytoma, Cushing’s symérand primary aldosteronism
(Barzon et al., 2002; Sawka et al., 2003).

Present statistics indicate that 20 — 30% of theldwede population is
afflicted with hypertension (Mackay and Mensah, £08taessen et al., 2003), and
given that its’ prevalence rises with age, betwéén- 70% of those over 60 are
afflicted (Staessen et al., 2003). While hypeitamgself has no physical symptoms,
the secondary effects of hypertension can be davwagt For example, one of the
most consistent and powerful predictors of strakelevated BP (Zhang et al., 2006).
Estimates published by the World Health Organisaiaicate that up to 15 million
people each year suffer from stroke, of whom ~Sionildie and another ~5 million
are left permanently disabled (Mackay and Mens@B4p Furthermore, population
mortality trends show that those who have sufferstroke have symptoms similar to
those who suffer from hypertension (Luepker et 2006; Wolf-Maier et al., 2003)
with elevated systolic BP >115mmHg and above erplgi 60% of the population-
attributable risk of stroke (Lawes et al., 200G)lypertension also aggregates with

other disorders, such as abdominal obesity, dgslgmia, glucose intolerance,



hyperinsulinaemia and hyperuricaemia, indicatingt tthese are likely to have
hypertension as a contributing factor (Staessea,2003).

A number of early studies have shown that the oaset early stages of
human hypertension is characterised by augmentegatpetic activity at both rest
and during physical and psychological stressorsaifEgt al., 1987; Julius, 1986;
Nestel, 1969). Plasma adrenaline (Goldstein, 1988l noradrenaline (Esler et al.,
1986) levels are higher in younger persons withehtgmsion (under the age of 40),
and muscle sympathetic nervous activity is elevataddividuals in the early stages
of hypertension (Anderson et al.,, 1989b). Togethbese data suggest that
augmented sympathetic output may contribute todiénelopment of hypertension

(Anderson et al., 1989b).

1.1.2. The baroreceptor reflex

Blood pressure is a function of vascular resistasmoe cardiac output, two
variables that are tightly controlled by the autmmonervous system (ANS). Itisin a
constant state of flux, and is regulated over saod long-term time frames, through
changes in vasomotor tone and sodium fluid bala(®@essen et al., 2003).
Vasomotor tone refers to the degree of vasculatraatiity and reflects sympathetic
drive, with increased peripheral resistance beingptreer key factor driving
hypertensive states (Staessen et al., 2003). Thesbkan<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>