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ABSTRACT 
 

Animal research suggests that exposure to inescapable stressors can lead to an 

endogenous opioid-mediated form of pain inhibition, known as stress-induced 

analgesia (SIA). Similar results have been found with humans, although the literature 

is much less extensive and at times contradictory where uncontrollable stressors have 

led to an increase, rather than a decrease in pain. More recently, there has been some 

suggestion that emotions play an important role in pain modulation, and that 

particular negative moods are associated with opioid-mediated hypoalgesia. This 

research aimed to clarify the psychological (cognitive and affective) factors 

underlying endogenous opioid-mediated pain inhibition in humans.  

 

The purpose of Study 1 was to examine the effects of stressor controllability and 

predictability on pain intensity (PI) and unpleasantness (UP) ratings during a cold 

pressor task (CPT) in 56 male and female subjects. The stressor involved a timed 

mental arithmetic task during which three moderately noxious electrical shocks were 

delivered. Although subjects were informed that shock delivery was contingent on 

math performance, the shock schedule was preset and identical across conditions. 

Perceived control over the shocks was manipulated between subjects by altering the 

difficulty of the math task. Shock predictability was manipulated by changing the 

colour of the computer screen to warn of an impending shock. Subjects were 

randomly allocated to four experimental conditions (controllable-predictable, 

controllable-unpredictable, uncontrollable-predictable, and uncontrollable-

unpredictable shocks). Visual analogue ratings of ‘perceived self-efficacy’ (to avoid 

the shocks) and mood (anxiety, confusion, discouragement, anger, sluggishness, 

liveliness) were completed before, during and after the math task. Significantly 

greater discouragement and lower self-efficacy was reported in ‘uncontrollable’ 

conditions indicating that ‘controllability’ was manipulated effectively. Results 

indicated that a perceived lack of control over shocks during the math task led to 

significantly greater decreases in PI, but not UP, ratings during the last stages of a 4-

minute fixed interval CPT after the math task. Shock predictability failed to influence 

subjective pain ratings alone; however, unpredictability interacted with lack of 
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control to initially increase pain, followed by analgesia. Stress-induced increases in 

negative affect (anxiety, discouragement, anger) were associated with decreases in 

cold pressor PI, but with increased shock PI and UP during the math task. It was 

concluded that lack of control over an aversive event and negative affect led to SIA 

during a prolonged pain stimulus, whereas shock predictability had little influence  

on pain.  

 

In Study 2, 70 male and female subjects received either an opioid antagonist 

(naltrexone) or a placebo before the math task (using a double-blind, 

counterbalanced design), in order to determine the role of endogenous opioids in 

SIA. Subjects were randomly assigned to one of three experimental conditions to 

investigate whether the shocks themselves may have contributed to analgesia 

observed after the math task: (1) easy task-few shocks, (2) hard task-few shocks,  

(3) hard task-many shocks. Increases in systolic blood pressure (SBP), diastolic 

blood pressure (DBP), anxiety, anger and discouragement indicated that negative 

affect and sympathetic arousal were induced during the math task. Endogenous 

opioids inhibited the rise in anger, but not discouragement or anxiety, during the 

math task. There was some evidence that perceived lack of control over shocks, and 

not the shocks themselves, led to opioid-mediated decreases in cold pressor UP after 

the math task. In correlational analyses, discouraged subjects under opioid blockade 

reported more cold pressor UP after the math task than their placebo counterparts. 

However, this effect was not strong enough to reach statistical significance in 

regression analyses. Anxiety, anger, discouragement and lack of control over shocks 

increased shock PI and UP during the math task.  

 

A growing body of research with normotensive subjects has linked increased 

cardiovascular activity with insensitivity to pain, but the role of endogenous opioids 

remains contentious. In addition to the investigations outlined above, Study 2 aimed 

to examine the contribution of endogenous opioids in the cardiovascular-pain 

relationship. However, there was no evidence of an interaction between pain and 

cardiovascular activity in this study. 

 

Study 3 was carried out to investigate opioid involvement in the effects of an 

uncontrollable stressor and stress-induced negative mood on cold pressor PI, UP and 
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pain tolerance, and onset/thresholds of the nociceptive flexion reflex (RIII). Forty-

three male and female subjects were administered either naltrexone or a placebo 

using a double-blind, counterbalanced design before completing a timed mental 

arithmetic stressor (identical to the ‘hard task-many shocks’ condition in Study 2). 

Increases in physiological (SBP, DBP) and affective measures (anxiety, anger and 

discouragement) indicated that the math task induced a marked state of stress. 

Negative affect increased shock PI and UP during the task, whereas self-efficacious 

subjects taking the placebo experienced less shock pain. However, uncontrollable 

stress led to an opioid-antagonised increase in cold pressor UP. Stressor 

controllability had a similar, but marginal, effect on cold pressor PI, but not pain 

tolerance. Tolerance of cold pressor pain was not associated with subjective PI and 

UP ratings, but was positively associated with endurance to non-painful, but 

unpleasant tasks (Valsalva Manoeuvre, Letter-Symbol Matching Task), indicating 

that pain tolerance was measuring the ability to tolerate discomfort, in addition to 

pain. Results of hierarchical multiple regressions demonstrated that increases in 

discouragement were positively related to increases in cold pressor UP after the math 

task, for naltrexone recipients only. These findings suggest that discouragement 

inhibits the UP of a prolonged pain stimulus via opioid mechanisms. RIII latencies 

and thresholds were not affected by the math task or by opioid blockade; however, 

these null effects may be due to methodological limitations. Unlike Study 2, higher 

blood pressure was associated with shock and cold pressor pain inhibition in 

normotensive subjects, and this relationship appeared to be mediated by opioids. 

 

The strong association between chronic pain and depression has led to speculation 

that the endogenous opioid system and pain modulatory mechanisms may be 

impaired in depression. At the time that this research was carried out, no studies had 

examined whether this was the case. In Study 4, the effect of a cognitive stressor 

(math task used in Study 3) on foot cold pressor PI, UP and pain tolerance and the 

nociceptive, or R2 component, of the blink reflex was investigated in 61 participants 

with or without major depression (as met by DSM-IV diagnostic criteria and 

confirmed by psychometric testing). Naltrexone or placebo was administered to 

subjects an hour before the math task using a double-blind, counterbalanced design. 

Increases in physiological (SBP, DBP) and affective measures (anxiety, anger and 

discouragement) confirmed that the math task induced the targeted emotional state. 
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An opioid-mediated reduction in anxiety occurred mid-way through the math task. 

Opioid-mediated decreases in foot cold pressor PI and UP were observed in 

depressed and non-depressed subjects after the math task. R2 onset to 10 mA was 

facilitated after the task regardless of opioid blockade, suggesting that endogenous 

opioids are not involved in the modulation of the BR. Increased anxiety and 

discouragement led to opioid-mediated inhibition of shock PI and UP during the task 

and, to a lesser extent, foot cold pressor PI and UP after the math task. Anger 

increased shock pain without being influenced by opioid blockade. Pain tolerance 

was not influenced by depression, opioid blockade or mood. These findings failed to 

support the idea that SIA is impaired in major depression, suggesting instead that 

uncontrollable aversive events and negative mood (anxiety, discouragement) lead to 

opioid activation and insensitivity to acute pain. Multiple regression analyses 

revealed that the inverse relationship between resting blood pressure and foot cold 

pressor PI and UP was opioid-mediated in controls only, suggesting that opioid 

dysregulation in depression might influence regulatory functions other than SIA.  

 

In Study 4, opioid involvement in hetero-segmental pain inhibitory phenomena 

termed diffuse noxious inhibitory controls (DNIC) was examined separately, before 

psychological stress. Specifically, the effect of a heterotopic noxious conditioning 

stimulus (CS i.e., hand CPT) on R2 onset latency was compared before and after 

drug absorption (before the math task). An inhibitory effect of the first CS was 

detected at each electrical stimulus intensity consistent with a DNIC effect. However, 

this effect was not detected during the second CS, suggesting that some other process 

masked the DNIC effect.  

 

In summary, the findings indicate that uncontrollable aversive events and negative 

emotion (primarily discouragement) activates endogenous opioids and inhibits pain 

in human subjects, whether depressed or not. Notably, opioids inhibited the affective 

component of pain perception, or pain UP, more consistently than PI, suggesting that 

the antinociceptive function of opioids may be secondary to an important emotional-

modulatory role. Endogenous opioids also appeared to mediate the cardiovascular-

pain relationship in normotensive non-depressed subjects, suggesting an important 

stress-regulatory role for these peptides. Opioid-mediated masking of this 

relationship in major depression suggests that functioning of the endogenous opioid 
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system may be impaired in baroreceptor-mediated analgesia. This finding provides 

preliminary support for the notion that opioid antinociceptive system dysfunction 

may contribute to cardiovascular disease in depression.  
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CHAPTER ONE 

 1.  GENERAL INTRODUCTION 

1.1  PURPOSE OF THIS RESEARCH 
 

The identification of psychological factors leading to the activation of endogenous 

pain control mechanisms (e.g., stress-induced analgesia, SIA) has important 

implications for pain control in acute and chronic pain disorders, as new discoveries 

might inform new treatments (Maier, Sherman, Lewis, Terman, & Liebeskind, 

1983). Current exogenous pain control techniques involve the prescription of 

addictive opiate drugs (e.g., morphine, pethidine, codeine), and/or destructive 

analgesic surgical techniques (Maier et al., 1983). These treatments pose problems 

for the management of chronic pain conditions, such as the development of 

tolerance. Furthermore, the reliance on external pain control techniques serves to 

remove an individual’s control over their pain, and may contribute to feelings of 

depression and anxiety and lead to avoidant and/or helpless behaviour.  

 

There is a well-established correlation between depression and pain, and some 

suggestion that depression may be involved in the aetiology or exacerbation of pain 

syndromes by chronically activating and eventually exhausting natural pain-

modulatory systems. However, existing evidence does not allow a causal direction to 

be determined. Therefore, by clarifying how negative mood and cognitions influence 

the body’s capacity to modulate pain, the role of mood disorders (such as major 

depression) in the aetiology of chronic pain may be elucidated. Additionally, the 

establishment of a causal relationship between negative mood and pain could 

highlight the importance of treating pathological mood in affectively ill patients with 

or without chronic pain. For instance, patients could learn not to exhaust endogenous 

pain systems by refraining from particular cognitions or emotions known to 

precipitate stress and the activation of finite pain inhibitory mechanisms. 

Furthermore, teaching depressed patients to appraise life events as non-threatening 
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could reduce the risk of chronic pain. This could also lessen immunosuppressive 

effects or immune pathophysiology linked to endogenous opioid release in 

depression (Leonard, 1990; Maes, De Meester, Scharpe, Desnyder, Ranjan, & 

Meltzer, 1996; Maes, Goossens, Scharpe, Meltzer, D'Hondt, & Cosyns, 1994).  

 

Thus, this research aims to: 

• Identify the psychological factors leading to SIA in humans. 

• Investigate the influence of negative mood on opioid-mediated endogenous pain 

inhibitory mechanisms in healthy humans. 

• Investigate whether chronic negative mood, manifesting in disorders such as 

major depression, alters the functioning of endogenous pain inhibitory 

mechanisms. 

1.2  CHAPTER OVERVIEW 
 

This chapter will introduce the notion of ‘pain’ as a multi-dimensional, complex 

concept involving sensory, affective, cognitive and behavioural components. 

Following this is a brief overview of theories of pain transmission, including a 

description of the neurophysiological circuitry and neurochemical mediators 

involved. Next, stimuli that activate endogenous pain control systems, including 

physical and psychological factors, are reviewed. Animal research is presented 

briefly to provide a context for the discussion of human studies. Of particular interest 

for this thesis is the phenomenon of SIA. Therefore, evidence of SIA in various types 

of settings (experimental, clinical) and subject samples (pain-free subjects, 

acute/chronic pain patients) is presented in detail. Finally, the issue of whether 

negative mood facilitates and/or inhibits pain is discussed. 

1.3  THE MULTI-DIMENSIONAL EXPERIENCE OF PAIN 
 

Classically, pain has been viewed as a uni-dimensional sensory phenomenon 

involving a physiological response to a painful stimulus that is proportional to the 

number of pain receptors stimulated (Hirsch & Liebert, 1998). However, from 

advances in areas such as functional brain imaging (Coghill, Derbyshire, & 
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Ploghaus, 2004), it is clear that pain is a complex multidimensional phenomenon in 

which sensory (i.e., intensity, location) and affective components (emotional 

reactions/expectations) contribute significantly to the experience of pain (Ahles, 

Blanchard, & Leventhal, 1983). Contemporary theorists are careful to distinguish 

between nociception and the subjective, conscious experience termed pain (Craig, 

1989). Briefly, nociception involves the peripheral activation of primary afferents in 

response to noxious stimuli, whereas pain refers to the sensory-perceptual, cognitive-

evaluative, affective-motivational, and behavioural products resulting from the 

sensory input (Melzack & Wall, 1982). Each component of pain, and the interaction 

between them, will be explored in the sections below. 

1.3.1  Nociception 

 

Nociception refers to “the processes regulating the transduction, transmission, and 

modulation of noxious stimuli in the nervous system” (Craig, 1995, p 305). Tracing a 

pathway from the periphery to the central nervous system (CNS), the nociceptive 

system includes primary afferent nociceptors (from the periphery), interneurons in 

the spinal cord or in the trigeminal system of the brain stem, ascending tracts, and 

thalamic and cerebral cortex neurons within the brain (Willis, 1995). Primary 

afferent nociceptive fibres selectively respond to noxious stimuli that may endanger 

or cause damage to the skin, joints, muscles, and internal organs, resulting in varying 

qualities and intensities of pain.  

 

Nociceptive information sent via afferent pathways is processed within the dorsal 

horn of the spinal cord, which houses both excitatory and inhibitory neurons. The 

dorsal horn facilitates nociceptive reflexes and modulates ascending-transmission 

cells (t-cells) via descending inhibitory and facilitatory influences that originate 

supra-spinally in the brainstem and higher centres of the brain. These descending 

influences originate in the periaqueductal gray, nucleus raphe magnus and medullary 

reticular formation (Willis, 1995). Theories speculating as to the action and location 

of endogenous pain control systems are still tentative at present, and will be 

discussed at length later on. 
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1.3.2  Sensory-discriminative component of pain 

 

The sensory-discriminative dimension refers to the location, quality, duration and 

intensity of pain (Gracely, McGrath, & Dubner, 1978). Extensive empirical evidence 

has revealed that sensory ratings, although being affected by the physical qualities of 

a painful stimulus, are relatively unaffected by contextual factors (e.g., Gracely et al., 

1978; Hirsch & Liebert, 1998). This is in stark contrast to affective responses to pain 

(see below).  

1.3.3  Affective-motivational component of pain 

 

Affective-motivational aspects refer to the unpleasant or uncomfortable nature of 

pain sensations, and the drive to seek pain relief (Weisenberg, Raz, & Hener, 1998). 

Unlike sensory components, affective components of pain are highly susceptible to 

psychological and (perceived or actual) environmental factors. For instance, Hirsch 

and Liebert (1998) examined the effects of aversive labelling of cold pressor stimuli 

on sensory and affective ratings of pain and pain tolerance. Affective ratings 

increased and pain tolerance decreased when aversive and painful-sounding labels 

were used, whereas sensory ratings remained the same. Pain tolerance, like pain 

affect, is also influenced heavily by contextual and affective-motivational factors 

(see 1.3.5 Behavioural reactions to pain, p 24). Ahles et al. (1983) found that 

subjects attending to affective/emotional versus sensory qualities of a cold pressor 

task (CPT) reported higher levels of distress and pain unpleasantness (UP), despite 

the task being identical across groups. Therefore, attention to emotional components 

of the pain stimulus increased fearful expectations, and facilitated emotional 

processing. It has also been established that moods such as anxiety play an important 

role in determining pain affect and behavioural elements of pain perception (Gracely 

et al., 1978) (see 1.8.1 Mood modulation of pain: Anxiety and pain, p 63). 

 

The differentiation between affective and sensory aspects of pain has resulted in the 

development of separate scales measuring ‘unpleasantness/discomfort’ and 

‘intensity/severity’, respectively (Price, Bush, Long, & Harkins, 1994). Although 

related, each scale represents a unique component of the pain experience, as 

demonstrated by different nociceptive stimulus response functions (Price et al., 1994; 
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Price, McGrath, Rafii, & Buckingham, 1983), and differential effects on the 

magnitude of each aspect following sensory or affective manipulations (Gracely et 

al., 1978). Positron emission tomography (PET) has revealed that pain UP is encoded 

in different areas of the cortex (anterior cingulate cortex) than perceptions of pain 

intensity (PI) (somatosensory cortex) (Rainville, Duncan, Price, Carrier, & Bushnell, 

1997).  

 

Clinical studies of patients who have undergone a frontal lobotomy (the 

disconnection of prefrontal lobes from the thalamus) dramatically demonstrate the 

distinction between sensory and affective components of pain, as these patients 

report sensory aspects of noxious stimuli but no longer appear distressed or complain 

about them (Melzack, 1986). Similar results have been found in patients who are 

congenitally insensitive to pain or who suffer from pain asymbolia (lesions to the 

parietal lobe and frontal cortex) (Melzack, 1986). In summary, PET, laboratory and 

clinical findings support the notion that pain is encoded on different perceptive 

dimensions in different areas of the brain and that regulation of these areas is not 

identical. 

1.3.4  Cognitive-evaluative component of pain 

 

Cognitive appraisal, involving the perception, recognition and judgement of 

sensation, is heavily influenced by an individual’s assumptions or beliefs, their prior 

experience, and the meaning they assign to noxious stimuli (Weisenberg, 1989). An 

individual’s appraisal or interpretation of sensory input largely governs the coping 

strategies they implement and the affect they experience (Weisenberg, 1989). For 

instance, outcomes of previous attempts at pain management influence perceptions of 

current ability to manage pain, and the choice of coping technique (Haerkaepaeae, 

Jaervikoski, & Vakkari, 1996). Appraisals of noxious stimuli involving threat, harm, 

or loss are usually associated with dependent coping, higher PI and greater levels of 

depression (Schiaffino & Revenson, 1995). On the other hand, the belief in the 

ability to respond successfully to noxious stimuli - termed self-efficacy - often results 

in greater persistence and more effort expended to cope with current stressors 

(Lackner, Carosella, & Feuerstein, 1996). Self-efficacy and the related construct 

‘locus of control’ are examined in more detail in the next section. 
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Locus of control and self-efficacy  

 

It is widely accepted that locus of control and self-efficacy are two cognitive factors 

that influence pain tolerance, negative affect (e.g., stress and anxiety) and choice of 

coping strategies (Arntz & Schmidt, 1989; Haerkaepaeae et al., 1996; Schermelleh-

Engel, Eifert, Moosbrugger, & Frank, 1997). Some researchers suggest that these 

two factors are the most important factors in predicting long-term change for those 

dealing with pain disorders (Schermelleh-Engel et al., 1997). Internal locus of 

control differs from self-efficacy, in that the former refers to the perception that a 

response (behavioural/overt, cognitive/covert) can alter the outcome, whereas self-

efficacy refers to the perception that the individual has the capacity to exert control 

in potentially controllable situations (Bandura, O'Leary, Taylor, Gauthier, & 

Gossard, 1987). 

 

Individuals who perceive that noxious stimuli are within their control (i.e., have an 

internal locus of control), often experience less negative affect and display higher 

pain tolerance (Litt, 1988; Martin, Holroyd, & Penzien, 1990). Davison and Valins 

(1969) demonstrated this relationship by measuring the effects of a placebo drug 

(that subjects thought had analgesic qualities), on electro-cutaneous pain threshold 

and tolerance. Prior to taking the so-called ‘analgesic’, subjects underwent a shock 

pain threshold/tolerance test. During subsequent testing, the shock intensities were 

covertly halved. Subjects who were told that they had received a placebo drug 

perceived subsequent shocks as less intense and tolerated more pain than subjects 

who continued to believe that the drug reduced the pain of electric shocks. Thus, 

when attributing pain relief to their own abilities rather than an analgesic drug, 

subjects demonstrated a higher tolerance for electric shocks. Similarly, Hill, 

Chapman, Kornell, Sullivan, Saeger and Benedetti (1990) found that cancer patients 

taught to self-regulate analgesic medication experienced less stress, higher pain 

tolerance and used 50% less morphine to achieve a similar level of pain control than 

patients whose medication regime was controlled by hospital staff. Arntz and 

Schmidt (1989) state that control per se does not influence stimulus aversiveness, but 

that the meaning assigned to the controllable stimulus does. For instance, control 

signifies that a stimulus will not exceed tolerance levels, such that the individual is 
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free to attend to other external signals. Consequently, the pain is perceived as less 

threatening and more tolerable.  

 

Individuals with high self-efficacy in relation to control over pain utilise more 

adaptive, or active coping strategies (e.g., coping self-statements, 

reinterpretation/ignoring sensations, distraction by increasing behavioural activities) 

and rely less on analgesic medication than those who feel that they do not have the 

ability to influence their experience of pain (Drummond & Holroyd, 2000). 

Therefore, self-efficacy reflects an individual’s motivation to persist with aversive 

stimulation, and has been strongly related to outcomes such as pain tolerance 

(Weisenberg et al., 1998). 

Coping strategies 

 

Coping strategies can be cognitive or behavioural in nature, and involve coping self-

statements, reinterpretation/ignoring sensations, cognitive/behavioural distraction, 

increased analgesic medication, catastrophisation and praying and hoping for a cure 

or relief from pain (Rosenstiel & Keefe, 1983). Distraction has proved to be the 

single most effective coping strategy in reducing pain-related distress and PI (Arntz 

& Schmidt, 1989). This is as long as the task leading to distraction results in a 

positive emotional outcome (McCaul, Monson, & Maki, 1992), and the level of PI is 

relatively mild and has risen slowly (Drummond & Holroyd, 2000; Melzack & Wall, 

1982). Catastrophisation about pain, worrying, resting, hoping/wishing for a cure, 

and the dependence on others for coping predicts a decrease in functional status and 

greater levels of disability (Evers, Kraaimaat, Geenen, & Bijlsma, 1998). 

Ruminations about pain (e.g., ‘Why me?’) are usually associated with depressed 

mood, cognitive deficits and the use of maladaptive coping strategies such as 

praying/hoping and catastrophising (Schiaffino & Revenson, 1995). An 

unwillingness to accept one’s pain is related to greater depression, disability and 

anxiety, and poorer adjustment (McCracken, 1998). 
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1.3.5  Behavioural reactions to pain 

 

In addition to assessing experimental pain via subjective sensory and affective 

ratings, pain can be measured behaviourally by way of pain threshold and tolerance 

parameters. In fact, several researchers have argued that separate measurement of 

each dimension of pain (i.e., sensory, affective and behavioural) is paramount in 

gaining a comprehensive understanding of an individual’s pain experience (e.g.,   

Hirsch & Liebert, 1998; Melzack & Wall, 1982).  

 

Pain threshold has been defined as “that point at which the subject just begins to feel 

pain in an ascending trial, or at which pain just disappears in a descending trial” 

(Wolff, 1978, p150). Although once viewed as a relatively objective measure of pain 

with high physiological loadings, pain thresholds have been found to be influenced 

by contextual factors (e.g., instructions - Blitz & Dinnerstein, 1968) and mood 

(Wolff, 1978).  Nonetheless, when using rigorous methodology (e.g., excluding first 

trials, standardising stimulus application), the pain threshold has proven to be a 

highly reliable pain parameter. 

 

Wolf (1978) defined pain tolerance as “that point at which the individual terminates 

noxious stimulation” (p 154), and is the highest level of experimental pain that a 

subject is willing to endure (Hirsch & Liebert, 1998). Pain tolerance is usually 

reliable (Wolff, 1978); however, as was demonstrated in Hirsch and Liebert (1998), 

this behavioural measure is highly susceptible to manipulation and other 

psychological variables. Further examples have come from Gelfand (1964), Wolff, 

Krasnegor and Farr (1965) and Neumann, Kugler, Seelbach and Krueskemper (1997) 

who found that tolerance to ultra-sound, cutaneous electrical stimulation and pressure 

pain differed depending on the permissiveness of instructions or nondirective 

suggestions given for coping with pain. These methodological manipulations had no 

impact upon pain threshold. Other contextually-manipulated factors such as 

monetary incentives (Baker & Kirsch, 1991; Blitz & Dinnerstein, 1968; Wolff et al., 

1965), quota setting (Dolce, Doleys, Raczynski, Lossie, Poole, & Smith, 1986), locus 

of control (Kanfer & Seidner, 1973), self-efficacy (Baker & Kirsch, 1991; Stevens, 

1993; Vallis & Bucher, 1986), and naturally occurring factors such as life stressors 

(Stevens, 1993) and personal reactivity (Kohn, Cowles, & Dzinas, 1989) have also 
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been demonstrated to influence pain tolerance. Thus, pain tolerance appears to have 

higher psychological than physiological loadings (Wolff, 1978).  

 

In conclusion, sensory, affective, cognitive and behavioural dimensions of pain 

interact in complex ways to either facilitate or inhibit the subjective experience of 

pain. Examination of the mechanisms by which psychological factors modulate pain 

may provide explanations for these complex relationships (Chapman, 1995). Several 

theories addressing the issue of pain transmission will now be discussed. 

1.4  THEORIES REGARDING THE TRANSMISSION OF NOXIOUS STIMULI 
 

Three theories concerning the transmission of aversive signals have been proposed: 

the specificity, pattern and spinal gate control theories (Schiffman, 1990). The 

specificity theory proposes that pain is a discrete sensory modality, involving specific 

pain receptors in the peripheral regions of the body. These receptors transmit signals 

to the CNS, which are subsequently interpreted as painful. The pattern theory 

proposes that pain is determined not by specific fibres, but by the general intensity or 

summation of impulses travelling along afferent fibres to the CNS. Neither theory 

has been empirically validated, as a simple relationship between stimulus intensity 

and the magnitude of pain has not been found (Schiffman, 1990). 

 

Melzack and Wall’s (1965) spinal gate control theory is the most widely accepted 

and influential theory of pain transmission to date. According to this theory, two 

different types of nerve fibres (i.e., large diameter-myelinated and small diameter-

unmyelinated) transfer nerve impulses to transmission-neurons (t-cells) in a gating 

mechanism within the substantia gelatinosa in the dorsal horn of the spinal cord, 

wherein the signals are facilitated or inhibited by interneurons prior to reaching 

central cells in the brain. Specifically, small diameter fibres transfer dull, burning 

sensations that ‘turn off’ the inhibitory influence of interneurons on t-cells, which in 

turn ‘open’ the gate. Conversely, large diameter fibres relay sensations of vibration 

and pressure that excite inhibitory interneurons and subsequently ‘close’ the pain 

gate. Signals from large diameter afferent fibres inhibit those of small diameter 

fibres; however, sensations from either fibre that are ongoing and of a higher 
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intensity are more likely to open the spinal gate, transferring painful stimuli. This 

theory offers an explanation regarding the progression of acute to chronic pain, as the 

prolonged transfer of noxious impulses results in a relatively open gate and a high 

intensity of pain (Schiffman, 1990). The efficacy of acupuncture, low-intensity 

electrical stimuli (Transcutaneous Nerve Stimulation, TENS), and other stimuli-

based procedures in the treatment of clinical pain provide support for this theory 

(Schiffman, 1990).  

 

Melzack and Wall also described a ‘central control’ component of pain perception 

that descends from the brain to have a profound effect on the spinal gate and 

transmission of noxious stimuli. They proposed that past experiences, perceptions 

(e.g., attention), cognitions, and emotions serve to modulate the transmission of 

noxious stimuli at the spinal gate by means of descending inhibitory and facilitatory 

influences on t-cells from the brain (Schiffman, 1990). Pain is said to occur when the 

number of sensory signals transmitted from the spinal cord to brain structures 

responsible for pain perception exceeds a threshold (Melzack, 1986).  

1.5  ENDOGENOUS PAIN MODULATORY SYSTEMS 

1.5.1  Neurophysiological circuitry 

 

Although knowledge about pain transmission (in particular the site and mechanics of 

the hypothesised spinal gate) has advanced, far greater attention has been paid to 

factors comprising the ‘central control’ component of pain than the actual 

transmission of nociceptive signals. The detailed study of central pain modulatory 

factors began in earnest after it was discovered that electrical stimulation of certain 

sites in the brain led to analgesia (Watkins & Mayer, 1986). Since then, 

neurobiological circuitry and neurochemical mediators involved in endogenous 

systems of pain modulation have been studied comprehensively. A number of pain 

modulatory systems have been identified, including those that are endocrine-

mediated and centrally-mediated (Watkins & Mayer, 1986). Each endogenous pain 

modulatory system will now be discussed. 
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Endocrine-mediated pain modulation  

 

The attenuation of analgesia both in humans and animals following hypophysectomy 

(removal of the pituitary gland), and adrenalectomy (removal of adrenal glands) 

provided strong evidence for a hormonally-mediated pain modulation system 

(Jackson, Maier, & Coon, 1979; Watkins & Mayer, 1982). Foot-shock analgesia in 

rats has been traced to the pituitary gland and sympathetic-adrenal-medullary axis 

(Watkins & Mayer, 1986). However, front paw foot-shock analgesia and other forms 

of analgesia (e.g., classically conditioned analgesia) were not eliminated by the 

removal of the pituitary or the adrenal glands, suggesting that other pain modulation 

systems existed (Watkins, Cobelli, Newsome, & Mayer, 1982b; Watkins, Wiertelak, 

Grisel, Silbert, & et al., 1992). 

Neurally-mediated pain modulation 

 

Watkins, Mayer and colleagues (e.g., Watkins, Cobelli, & Mayer, 1982a; Watkins & 

Mayer, 1982; Watkins & Mayer, 1986; Watkins et al., 1992) demonstrated the 

existence of two neurally-mediated pain modulatory mechanisms in the CNS of 

animals based on different responses to front and back paw shock in rats who had 

parts of descending circuitry lesioned. The first neurally-mediated system to be 

identified inhibited pain via descending circuitry that exit the rostral ventromedial 

medulla (i.e., nucleus raphe magnus, reticularis magnocellularis) via the dorsolateral 

funiculus within the spinal cord. Therefore, lesions of the dorsolateral funiculus in 

the spinal cord abolished front paw foot-shock induced analgesia in rats  

(Watkins et al., 1982a).  

 

Hind paw foot-shock induced analgesia was only partially abolished by lesions of the 

rostral ventromedial medulla, dorsolateral funiculus in the spinal cord or spinal 

transection, suggesting that a second neurally-mediated system existed intra-spinally, 

including a possible descending centrifugal pathway originating in the medulla. A 

variation of this intra-spinal system, where nociceptive stimuli were inhibited in the 

dorsal horn by noxious impulses projected from remote areas of the body, was 

termed diffuse noxious inhibitory controls (DNIC) by Le Bars and colleagues (Le 

Bars, Bouhassira, & Villanueva, 1995; Le Bars, Willer, & de Broucker, 1992). 
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Although likened to segmental inhibitory phenomena (e.g., conventional TENS, 

acupuncture - Price & McHaffie, 1988), the mechanisms of DNIC were found to be 

transient with a rapid onset and much shorter duration (Kakigi, 1994), and only occur 

with noxious heterotopic stimuli. In consideration of the temporal qualities of 

DNICs, Price and McHaffie (1988) concluded that these controls resembled a reflex 

response (Le Bars et al., 1995).  

 

Finally, a third neurally mediated analgesic pathway involving supra-spinal 

structures was discovered using a classical conditioning paradigm. In addition to 

being abolished by lesions of the spinal dorsolateral funiculus or rostral ventromedial 

medulla, classically conditioned analgesia was also abolished by decerebration. 

Other brainstem structures such as the periaqueductal gray and periventricular gray 

have also been implicated in this phenomenon.  

 

In humans, it has been proposed that the cerebral cortex modulates the sensory and 

affective domains of pain nociceptive input by transmitting pain-related cognitions, 

emotions, attention and information about past pain experiences to the reticular 

formation and dorsal horn, where signals are ultimately modulated (Melzack, 1986). 

However, involvement of the cerebral cortex in pain perception remains a 

contentious issue as processing of noxious stimuli is thought to be limited to the 

limbic system (hippocampus, amygdala), thalamus and hypothalamus in the 

forebrain (Willis, 1995). Specifically, limbic structures modulate affective-

motivational components of pain, whilst the thalamus (which receives afferent input 

via neospinothalamic and spinocervical tracts) is primarily responsible for 

modulating sensory-discriminative components of pain in humans (Melzack, 1986).  

1.5.2  Neurochemical mediators  

 

Neural pain modulatory systems are mediated by two categories of endogenous 

chemicals: opioids and neurotransmitter monoamines such as serotonin, 

noradrenaline and dopamine (Amit & Galina, 1986). Intrathecally or systemically 

administered exogenous opiates (e.g., morphine) and synthetic neurotransmitters can 

also produce analgesia (Price, 1999).  
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Endogenous opioids  

 

The analgesic effects of morphine and similar compounds have been recognised for 

many years; however, the discovery of opioid receptor sites and endogenous opioid 

peptides in the CNS and endocrine tissues has only been made in the last few 

decades (Rosenzweig, Leiman, & Breedlove, 1996). It is now known that morphine 

and endogenous ligands bind to the same receptors to modulate pain, but that only a 

small part of their chemical structure is the same. This necessitated the distinction 

between exogenous opiates (e.g., morphine) and endogenous opioids (e.g., beta-

endorphins). Endogenous opioid peptides and opiate receptors are distributed 

throughout endocrine tissues (pituitary and adrenal glands) and neural pain 

modulatory circuitry in the spinal cord dorsal horn, dorsolateral funiculus, nucleus 

raphe magnus, midbrain, and brainstem structures (i.e., periaqueductal gray and 

rostral ventral medulla). Opioid peptides are also present in areas that modulate 

mood (i.e., amygdala, hippocampus, locus coeruleus, cerebral cortex) and the 

autonomic nervous system (i.e., medulla) (Reisine & Pasternak, 1996). Therefore, 

the target receptors of opioids lie in endocrine tissues, and the peripheral, autonomic 

and CNS (Drolet, Dumont, Gosselin, Kinkead, Laforest, & Trottier, 2001). 

 

Endogenous opioids occur in at least five naturally-derived forms, including beta-

endorphins, leu-enkephalins, met-enkephalins, a-neoendorphins and dynorphins 

(Horn & Munafo, 1997). Four opiate receptor subtypes have been identified 

including delta, mu (both heavily located in the periaqueductal gray), kappa (located 

in the spinal cord), and sigma (located in the limbic system) receptors (Pfister & 

Maffesoni, 1992). The function of each receptor has been associated with specific 

effects of opioids such as analgesia (mu, kappa, delta), euphoria (mu, delta), 

dysphoria and depersonalisation (sigma), and respiratory depression (mu). For 

instance, enkephalins and dynorphins bind to mu receptors in the dorsal horn, thus 

mediating analgesia in the spinal cord.  

 

Opioids inhibit the release of pain-transmitters (Substance P) from afferent terminals 

to achieve an antinociceptive result. However, small doses have been found to have 

the opposite effect, where descending pain inhibitory systems are inhibited at the 

dorsal horn and medullary level, facilitating the transmission of nociceptive signals 
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(Gebhart, 1982; Gillman & Lichtigfeld, 1985; Simonnet & Rivat, 2003). In some 

cases, the affective response to pain (anxiety, anger, distress, depression) is altered 

by opioids but the sensation of pain is not changed (Reisine & Pasternak, 1996). A 

reduction in suffering can lead to marked increases in pain tolerance  

(Reisine & Pasternak, 1996).  

Nonopioids (Neurotransmitters) 

 

The evidence for nonopioid-mediated pain modulatory mechanisms is unequivocal in 

studies of endogenous pain modulation (Messing & Wilcox, 1987). Brain and spinal 

cord monoamines (or neurotransmitters) such as serotonin, noradrenaline and, and to 

a lesser extent, dopamine have been reliably implicated in pain modulation. Lesions 

to supra-spinal sites rich in serotonin-containing neurons (i.e., dorsal raphe nucleus) 

have resulted in hyperalgesia (Gillman & Lichtigfeld, 1985), and serotonin 

antagonists have significantly reduced SIA (Amit & Galina, 1986). Although not 

conclusive, noradrenergic-mediated effects on analgesia act primarily at the level of 

the spine. Noradrenaline is released supra- and intra-spinally to have an inhibitory 

effect on pain transmission (mostly via small diameter A-delta and A-beta fibres), 

and a facilitatory effect on the transmission of innocuous stimuli (Yaksh, 1985). 

Nonetheless, when the relative importance of each was assessed in animals, serotonin 

proved more important in the spinal transmission of nociceptive information than 

noradrenaline (Amit & Galina, 1986). Nonopioid-mediated pain inhibitory 

mechanisms originate in both spinal and supra-spinal structures such as the 

periaqueductal gray and dorsal raphe nucleus (Watkins & Mayer, 1986).  

 

Neurotransmitters also interact with endogenous/exogenous opioids to influence 

opioid-mediated analgesia. For example, serotonin is metabolised faster when in the 

presence of opioids during periods of stress (Messing & Wilcox, 1987). Also, the 

availability of tryptophan (a precursor amino acid of serotonin) mediates (i.e., 

potentiates or attenuates) the analgesic effects of morphine (Gillman & Lichtigfeld, 

1985). Furthermore, noradrenaline-mediated analgesia at the level of the spine is 

potentiated by the action of supra-spinal endogenous opioids (Gillman & Lichtigfeld, 

1985).  
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Other substances including gamma amino butyric acid (GABA-which is found in the 

same neurons as serotonin in the CNS), acetylcholine, prolactin, 

adrenocorticotrophic hormone (ACTH), glutamate, cholecystokinin, and thyroid 

releasing hormones have also been implicated in nonopioid-mediated pain 

modulation or analgesia (Gillman & Lichtigfeld, 1985). Unlike serotonin and 

noradrenaline, ACTH antagonises opioid-mediated analgesia at high doses. 

However, this hormone has agonistic characteristics at low doses. ACTH also 

reverses opioid-induced secretion of prolactin. 

1.6  ACTIVATION OF ENDOGENOUS PAIN INHIBITORY SYSTEMS 
 

Environmental conditions that activate neural and hormonal pain inhibitory systems, 

whether opioid- or nonopioid-mediated, have been of great interest to scientists over 

the past 30 years. Early on, research was limited to animals and has only been 

extended to humans more recently (Amit & Galina, 1986). It was by way of research 

with animals that the phenomenon, now referred to as SIA, was discovered in three 

different laboratories in the 1970s (Amit & Galina, 1986). Other pain inhibitory 

phenomena involve baroreceptors in the cardiovascular system, and age-old counter-

stimulation techniques where non-painful (i.e., acupuncture or TENS) or painful 

stimuli (i.e., DNIC) are applied segmentally or hetero-segmentally to the site of pain 

to induce analgesia. Counter-irritation is also known as stimulation produced 

analgesia. Therefore, the transmission of peripheral pain signals can be inhibited at 

the spinal and/or supraspinal level via a number of endogenous mechanisms.  

 

Since psychologically activated endogenous pain inhibitory systems are the main 

focus of this thesis, blood pressure-mediated and stimulation-produced analgesia will 

be discussed briefly followed by an in-depth exploration of factors leading to SIA. 

1.6.1  Blood pressure and pain 

 

Randich and Maixner (1984) state that cardiovascular and pain regulatory systems 

are interrelated, whereby primary afferents from peripheral baroreceptors (in heart, 

lungs and arteries) synapse in the caudal medulla (or nucleus tractus solitarius), and 



 32

secondarily in various other supra-medullary structures responsible for cortical 

inhibition and anti-nociception (i.e., nucleus reticularis gigantocellularis, nucleus 

raphe magnus). Some contend that the cardiovascular-pain relationship is mediated 

by endogenous opioids (e.g., McCubbin, Wilson, Bruehl, Ibarra, Carlson, Norton, & 

Colclough, 1996). In support of this contention, opioid receptors have been located in 

these central sites of pain and cardiovascular regulation (Bruehl, McCubbin, & 

Harden, 1999). Nonetheless, opioids as sole mediators of blood pressure-derived 

hypoalgesia remains controversial as others have found the relationship between pain 

and blood pressure (BP) to be mediated in part by nonopioid mechanisms (Bruehl et 

al., 1999; McCubbin & Bruehl, 1994). 

 

Beta-endorphins and enkephalins are thought to inhibit cardiovascular stress 

reactivity, and decrease the risk of hypertensive conditions (McCubbin, 1993; 

McCubbin et al., 1996). However, much of the data demonstrating an opioid-

mediated association between BP and pain has been found in hypertensive animals 

and humans (e.g., Fontana, Bernardi, Spampinato, Boschi, De Iasio, & Grossi, 1997; 

Luna & Taylor, 2001; McCubbin et al., 1996; Szilagyi, 1991). It has been 

hypothesised that hypertensive individuals respond to stress with exaggerated cardiac 

output, which activates baroreflex pain dampening mechanisms, completing the 

baroreceptor reflex arc (France, 1999; Randich & Maixner, 1984). Alternative 

hypotheses state that hypertensive subjects react abnormally to stress by releasing 

high levels of beta-endorphins peripherally and centrally, therefore producing opioid-

mediated hypoalgesia (France, 1999; McCubbin, Surwit, & Williams, 1985; 

McCubbin, Surwit, & Williams, 1988). In support of this, high levels of plasma beta-

endorphins have been found in hypertensive individuals (Fontana et al., 1997).  

 

More recent research, however, suggests that opioid-mediation of the blood pressure-

hypoalgesia relationship may occur at other ranges of BP. For instance, a small 

number of studies have demonstrated a possible opioid-mediated inverse relationship 

between resting BP and pain sensitivity in normotensive subjects (Bragdon, Light, 

Costello, Sigurdsson, Bunting, Bhalang, & Maixner, 2002; McCubbin & Bruehl, 

1994). However, in these studies effect sizes are generally weak and differences 

between placebo and opioid blockade conditions do not always achieve statistical 

significance. Others have found a direct relationship between pain tolerance, plasma 
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beta-endorphin levels and blood pressure increases in response to stress in 

normotensive subjects (Rosa, Ghione, Mezzasalma, Pellegrini, Basile Fasolo, 

Giaconi, Gazzetti, & Ferdeghini, 1988).   

 

The inverse relationship between resting BP and pain has been replicated in other 

studies with normotensive human (Bruehl, Carlson, & McCubbin, 1992) and animal 

populations (Sun, Liu, Li, & Ingenito, 1996). Unfortunately, the neurochemical 

substrates involved were not assessed in these studies.  

1.6.2  Stimulation-produced analgesia 

Segmental Inhibition 

 

In the case of techniques such as TENS or acupuncture, experimentally- or clinically-

induced afferent pain signals mediated by small-diameter fibres are inhibited in the 

dorsal horn of the spinal cord by segmentally produced input mediated by A-beta or 

A-delta large diameter fibres. The convergence of large cutaneous afferents and 

nociceptive afferents onto the same pool of spinal inter-neurones exerts an inhibitory 

effect on nociceptive messages associated with the initial painful stimulus (Freeman, 

Campbell, & Long, 1983; Willer, Roby, Boulu, & Albe-Fessard, 1982a; Willer, 

Roby, Boulu, & Boureau, 1982b). This mechanism has been referred to as 

‘segmental inhibition’ or ‘gating’, and is accounted for by Melzack and Wall’s gate 

control theory (Melzack & Wall, 1965). Origins of segmental inhibition are 

indisputably situated in the spinal cord, as gating can be demonstrated both in 

‘spinal’ animals (i.e., animals lesioned at the level of the spinal cord) and intact 

animals (Le Bars, Dickenson, & Besson, 1979b).  

 

Recent evidence suggests that this local synaptic mechanism may be mediated by 

endogenous opioids. It has been found for example that TENS increases 

concentrations of beta-endorphins in cerebrospinal fluid (CSF) (Marchand, Sluka, Le 

Bars, & Rainville, 2004) and blood plasma (Facchinetti, Sandrini, Petraglia, Alfonsi, 

Nappi, & Genazzani, 1984), and can lead to a naloxone-reversible analgesia (Kalra, 

Urban, & Sluka, 2001; Mayer, Price, & Rafii, 1977; Woolf, Mitchell, & Barrett, 

1980). The failure to reverse TENS effects with high doses of naloxone in other 
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studies (e.g., Freeman et al., 1983; Willer et al., 1982b) however, suggests that these 

results may have been induced with noxious TENS, leading instead to a DNIC 

phenomenon, also known to be mediated by opioids. The mechanism underlying 

DNIC is explained in the next section. 

Diffuse Noxious Inhibitory Controls (DNIC) - Heterosegmental inhibition 

 

The mechanism whereby a painful stimulus is inhibited by a second noxious stimulus 

applied to a part of the body remote from the peripheral excitatory field of the first, 

has been utilised for centuries to reduce pain. This mechanism is known as counter-

irritation, and has more recently been characterised by Le Bars and colleagues (Le 

Bars, Dickenson, & Besson, 1979a; Le Bars et al., 1979b) as DNIC. Functionally, 

DNIC are believed to assist with the coding of incoming/competing nociceptive 

signals by inhibiting background noise, which may include either noxious or 

innocuous signals. In amplifying or ‘signalling pain’, the potential alarm function of 

nociceptive signals is augmented (Villanueva & Le Bars, 1995). DNIC also reflect a 

‘coding’ system where the inhibition of one population of neurones and excitation of 

another creates a contrast within the nociceptive system, assisting with the coding of 

such signals (Price & McHaffie, 1988).   

 

The last two decades have seen an expansion of research into the neural schema 

involved in DNIC, which have primarily been located in the spinal cord and more 

recently thought to be influenced by supraspinal structures. Le Bars and colleagues 

demonstrated that heterotopic noxious conditioning stimuli (CS)1 powerfully 

inhibited activity in almost all wide dynamic range cells found in the spinoreticular 

and spinothalamic tracts, the spinal trigeminal nucleus, and the spinal cord dorsal 

horn, whilst nociceptive-specific neurones were not affected (Le Bars et al., 1979a; 

Le Bars et al., 1979b). Wide dynamic range neurones are so called because they are 

located in both deep and superficial laminae of the spinal cord, and receive input 

from both A- and C-fibres (Hu, 1990).  

 

                                                 
1 In this context a conditioning stimulus refers to an initial stimulus that ‘conditions’ or alters a 

response to subsequent stimuli. No part of the DNIC protocol reflects actual conditioning. 
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The most compelling evidence that DNIC recruit a complex spinal-supraspinal-spinal 

loop has come from ‘spinal animals’ whose spinal cord had been transected at the 

cervical level (Le Bars et al., 1979b). In these animals, wide dynamic range neurones 

responded to both A- and C-fibre input such as touch, heat, pressure and pinch. 

However, none of these responses were inhibited by noxious CS, suggesting that 

DNIC are not confined to the spinal cord and that ascending signals must reach 

supraspinal structures in order to activate inhibitory influences. The lack of DNIC 

influences in patients with tetraplegia (i.e., paralysis of all four limbs stemming from 

clinically complete spinal cord transection) and Wallenberg’s syndrome (in which 

lateral elements of the medulla die due to lack of blood supply) also supports the role 

of brainstem structures in DNIC (Villanueva & Le Bars, 1995). Further evidence that 

DNIC recruit a complex system involving supraspinal structures can be found in a set 

of studies conducted by Bouhassira and colleagues (Bouhassira, Bing, & Le Bars, 

1990; Bouhassira, Bing, & Le Bars, 1992a; Bouhassira, Bing, & Le Bars, 1993; 

Bouhassira, Chitour, Villaneuva, & Le Bars, 1995; Bouhassira, Villanueva, & Le 

Bars, 1992b).  

 

Some sceptics have attributed DNIC to the distracting nature of the painful stimuli, 

rather than endogenous pain inhibitory mechanisms. The most compelling evidence 

against these criticisms came from research with unilateral thalamic or parietal 

cortical lesioned patients, in which noxious electrical CS substantially inhibited the 

nociceptive flexion reflex (RIII) in the absence of subjective perceptions of pain (de 

Broucker, Cesaro, Willer, & Le Bars, 1990). That is, RIII inhibition could not be 

attributed to distracting influences of the remotely applied noxious stimulus as these 

patients typically perceived no pain. In other evidence against the distraction 

hypothesis, discriminative ability on control tasks (arithmetic subtraction) failed to 

change during heterotopic noxious CS (Plaghki, Delisle, & Godfraind, 1994; Talbot, 

Duncan, & Bushnell, 1989). Furthermore, distraction does not explain how noxious 

thresholds (such as dental pain thresholds) rise in response to a heterotopically 

applied stimulus, whereas tactile thresholds (i.e., upper lip sensitivity) remain 

relatively unchanged (Pertovaara, Kemppainen, Johansson, & Karonen, 1982). 
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Research demonstrating DNIC in both animals and humans is discussed below: 

 

Animal studies: Le Bars and colleagues found that a variety of noxious CS (e.g., 

pinch, heat), when applied outside of the excitatory receptive field of the test 

stimulus (TS), inhibited both noxious and innocuous TS in animals (e.g., Le Bars et 

al., 1979a; Le Bars et al., 1979b). However, the application of innocuous stimuli (e.g. 

stroking, jets of air, warm water) to remote areas failed to inhibit test responses. 

These findings have been reliably replicated in many types of mammals (cats - 

Duggan, 1985; rats - Hu, 1990). 

 

In an inventive animal model of DNIC in chronic pain states, Kraus, Le Bars and 

Besson (1981) measured the threshold of vocalisation in rats to electrical TS applied 

to the tail in the presence of phenylbenzoquinone (PBQ). The authors suggested that 

the visceral, dull pain induced by PBQ resembled pain experienced by chronic pain 

patients. A rise in vocalisation thresholds when PBQ was administered suggested 

that chronic pain could act as a heterosegmentally-applied painful stimulus and 

mobilise DNIC to inhibit acute pain – providing an explanation for higher pain 

thresholds found in some chronic pain patients when compared with  

pain-free subjects. 

 

Human studies: As in animals, DNIC phenomena have been reliably demonstrated in 

humans. For instance, Talbot, Duncan, Bushnell and Boyer (1987) applied non-

painful and painful heat (42-48°Celsius) to the faces of subjects before, during and 

after a noxious hand CPT (5 °Celsius). The CPT powerfully increased pain 

thresholds and decreased subjective pain ratings for noxious and innocuous heat 

stimuli. Furthermore, DNIC phenomenon continued to inhibit the TS beyond the 

application of the CPT. Similarly, Price and McHaffie (1988) applied a noxious (47-

51°Celsius) and innocuous (43°Celsius) heat stimulus to each subject’s abdomen and 

one of their feet. Noxious (15 mA) and innocuous (6-12 mA) electrical impulses 

were simultaneously applied to the ankle of the contralateral foot. Subjective pain 

reports demonstrated that only the noxious CS inhibited both noxious and innocuous 

TS. Witting, Svensson, Arendt-Nielsen and Jensen (1998) extended these findings by 

measuring the area and intensity of capsaicin-induced pain (both spontaneous and 
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brush-evoked) on the forearm, during a CPT applied to the contralateral forearm. 

DNIC inhibited the intensity but not the area of both types of pain, suggesting that 

inhibitory effects on spinal neurones were specific and not generalised. 

 

Opioid and nonopioid mediation of DNIC: Research investigating the effect of 

opioids on DNIC found that a low dose of morphine blocked these inhibitory effects 

in rats and humans (Villanueva & Le Bars, 1995; Willer & Le Bars, 1995). 

Specifically, intrathecal morphine blocked DNIC by segmentally depressing 

nociceptive messages coming from all convergent neurones, preventing the spinal 

initiation of DNIC (Villanueva & Le Bars, 1986). Others found that DNIC were 

blocked by opioid antagonists such as naloxone and naltrexone (Villanueva & Le 

Bars, 1995; Willer, Le Bars, & de Broucker, 1990; Willer, Roby, & Le Bars, 1984), 

providing credence to the notion that supraspinal structures responsible for 

endogenous opioid analgesia (i.e., periaqueductal gray, rostral ventromedial medulla, 

nucleus raphe magnus) indirectly modulate this inhibitory loop, and that DNIC are 

mediated by opioids (Villanueva & Le Bars, 1995).  

 

Although exploratory, there is evidence that nonopioid substrates may also mediate 

DNIC phenomena. For instance, animals lacking in 5-hydroxy-tryptamine, or 

serotonin, failed to activate DNIC in response to noxious CS suggesting that DNIC 

may also be mediated by descending serotonergic pathways (Chitour, Dickenson, & 

Le Bars, 1982; Le Bars et al., 1979b).  

1.6.3  Stress-induced analgesia (SIA) 

 

Knowledge about the activating factors of SIA has advanced considerably. Intensive 

investigation has not only uncovered various factors that activate SIA, but has also 

identified conditions that mobilise either opioid- or nonopioid-mediated analgesia. 

However, prior to a discussion of these factors in the context of (first) animal and 

(second) human research, ‘stress’ will be defined, and the function of SIA and 

techniques of measuring analgesia will be described. 
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Stress defined 

 

Historically there has been a lack of consistency in the literature with regard to the 

definition of stress. For the purposes of this research, a stressor is defined as “any 

stimulus, internal or external to an individual, that poses a real or perceived threat to 

the individual’s homeostasis” (Drolet et al., 2001, p 731). A stress response involves 

a range of defensive behavioural and physiological reactions to the stressor that are 

necessary to protect the integrity of the individual (Amit & Galina, 1986; Drolet et 

al., 2001). Finally, stress refers to the outcome of an interaction between the stressor 

and accompanying stress response. 

The function of SIA 

 

SIA is activated automatically and enables the organism to adapt to a changing 

environment without falling prey to events that may threaten its survival. 

Specifically, the suppression of pain reduces distracting noxious sensations enabling 

the organism to learn the ‘right’ response (e.g., to remain and defend themselves or 

to escape quickly) in a threatening situation (Bandura, Cioffi, Taylor, & Brouillard, 

1988; van der Kolk, Greenberg, Boyd, & Krystal, 1985). Also, analgesia may lessen 

pain-related behaviour in situations in which it is vital to remain still and not attract 

the attention of the aggressor (Amit & Galina, 1986; Molina, Heyser, & Spear, 

1994). Thus, in a highly threatening situation SIA may lessen the physiological and 

emotional impact of the stressor, promoting defensive behaviour, survival and 

recovery through healing later on (Bandler & Shipley, 1994; Fanselow, 1986).   

 

Opioid-mediated analgesia appears to be associated with more intense and extended 

noxious stimuli, and thus is activated to protect organs/structures important for 

survival in a life-threatening situation (e.g., front paw shock elicits opioid-mediated 

analgesia in rats who assumes a boxing-position when engaging in self-defence) 

(Amit & Galina, 1986; Watkins et al., 1982b). Furthermore, the ability to reinstate 

opioid analgesia many hours after experiencing an uncontrollable stressor (Flor, 

Birbaumer, Schulz, Grusser, & Mucha, 2002) may enable an organism to remain 

alert, and ready to respond (Maier, 1986). However, because all physiological 

systems are interdependent, the prolonged reliance on endogenous analgesia has 
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detrimental effects on other systems. For example, extended reliance on opioid 

analgesia has deleterious effects on the immune system by impairing cellular 

components and increasing vulnerability to infections (Bandura et al., 1988). 

Moreover chronic opioid activation can result in opioid receptor desensitisation 

and/or down-regulation, rendering endogenous pain inhibitory mechanisms less 

effective (Bragdon et al., 2002). 

Measuring SIA 

 

Analgesia in animals has been measured by tests of reflexes and of behavioural 

escape or avoidance of a noxious stimulus. The endogenous neurochemical 

mediators of analgesia have been investigated by the use of opioid agonistic and 

antagonistic substrates within these and other paradigms with humans. Finally, the 

surgical transection of neural tracts and removal of analgesic structures has helped to 

identify anatomical sites of analgesia.  

 

Empiricists have found that parameters of stimulus intensity, duration, timing and 

anatomical locale alter the activation of endogenous analgesic reactions. Therefore, 

the choice of pain induction method and test of analgesia is important to reliably and 

validly make deductions about the factors that activate SIA. Each experimental 

method is briefly discussed below. 

 

Reflex tests: The most common measure of analgesia involves behavioural tests of a 

motor reflex, such as tail-flick, flinch-jump (or jump-escape), vocalisation, writhing, 

and paw-lick to aversive stimuli (i.e., radiant heat to the tail/paws via a hot-plate; 

electrical shocks/pinches to the body) (Amit & Galina, 1986). Responses are 

triggered by a neuronal loop through the spinal cord; therefore, the latency of the 

behavioural response or behavioural threshold to the aversive stimuli is taken as the 

measure of analgesia (Amit & Galina, 1986). A ‘behavioural threshold’ is the lowest 

intensity of the stimulus to which an animal makes a response. Reflex tests have a 

high level of construct validity because behavioural thresholds of animals to thermal 

and electrical stimuli are similar to human thresholds.  
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Operant conditioning paradigms: In an operant paradigm, the animal learns to 

execute a behavioural response to avoid an aversive stimulus. For example, an 

animal may learn to terminate an electric shock transmitted to their foot by 

depressing a lever, or by escaping to another compartment where shocks are not 

transmitted. Alterations in the animal’s response signify changes in pain threshold 

and levels of analgesia. These responses involve learning and hence are thought to be 

mediated centrally, rather than just at the level of the spinal cord  

(Amit & Galina, 1986). 

 

Although tests of reflexes and operant conditioning offer reliable measures of 

analgesia, these tests confound the concept of pain and stressor. Because these 

procedures are both painful and aversive to the animal, it is difficult to distinguish 

the factors responsible for the activation of SIA. The methodology utilised in human 

research, where pain is measured after a stressful stimulus (e.g., cognitive stressor), 

has partly resolved this difficulty. 

 

Opioid antagonists: Endogenous opioid activation has been investigated with the use 

of opioid antagonists, which work by displacing endorphins from their receptors, 

thereby altering the function of opioids (Volavka, Anderson, & Koz, 1982). 

Naloxone and naltrexone are amongst the most common antagonists used. Naloxone 

is a competitive antagonist at some, but not all opioid receptors, unless administered 

in high doses (Amit & Galina, 1986). In contrast, naltrexone has been classified as a 

relatively pure antagonist, displacing agonists and non-selectively binding to all 

opioid receptors (Gonzalez & Brogden, 1988). Naltrexone has several other 

advantages over naloxone. For instance, naltrexone is more orally efficient (e.g., 

rapid absorption rate, where peak plasma levels are reached in 60 minutes; higher 

percentage reaches systemic circulation) and has a longer duration of action than 

naloxone (Kleber, 1985; Reisine & Pasternak, 1996). See p 115 for more information 

regarding naltrexone and its use in the present research.  

 

Importantly, the use of opioid antagonists led to the discovery of an nonopioid-

mediated analgesic state both in animals and humans (Watkins et al., 1992). 

Although proving useful, opioid antagonists can have unexpected dose-response 

effects on neurochemical release. For instance, opioid antagonists, when 
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administered in large doses, may lead to agonistic effects (i.e., opioid-like activity) or 

to nonopioid-mediated effects such as the release of catecholamines (Kleber, 1985). 

Therefore, careful consideration must be given to dosage when using opioid 

antagonists to indirectly assess chemical mediation of SIA. 

 

Cross-tolerance: Opioid or nonopioid mediation of analgesia has also been inferred 

by inducing cross-tolerance to opiates such as morphine. For example, cross-

tolerance has been induced by administering morphine over a number of days, after 

which the opiate no longer has an analgesic effect (Amit & Galina, 1986). An 

environmental stimulus (known to activate SIA) is subsequently presented, and from 

the absence of analgesia it can be inferred that SIA under these conditions is opioid-

mediated. On the other hand, if levels of analgesia are undisturbed, then nonopioid-

mediated SIA can be presumed. One precaution with the use of morphine is that this 

exogenous opiate has been found to block opiate-mediated DNIC when administered 

in low doses (Le Bars et al., 1992; Willer & Le Bars, 1995).  

 

Lesions: The source and route of analgesic substrates have been identified via 

surgical lesions of major peripheral and central sites of release, including the 

pituitary/adrenal glands and the CNS, respectively.  Hypophysectomy, 

adrenalectomy, or removal of the adrenal medulla are used to determine whether 

analgesia is hormonally or neurally-mediated (Roper, 1988). Hormonally-mediated 

analgesia is implied if any of the above mentioned procedures results in the 

significant attenuation of analgesia in SIA-producing conditions (Amit & Galina, 

1986). In cases of neurally-mediated analgesia, surgical lesions are confined to the 

dorsolateral funiculus of the spinal cord to determine whether intraspinal or 

centrifugal (descending from the brain to the spinal cord) pathways are involved in 

pain inhibition (Watkins et al., 1992). These procedures are used infrequently in 

animal research, as they are intrusive and often irreversible. 

Animal Research 

 

Data from animals suggests that various factors govern the induction of SIA, whether 

nonopioid- or opioid-mediated. Of particular relevance to the activation of SIA in 

humans is the controllability and predictability of aversive events. Therefore, the 
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effects of these variables on analgesia in animals will be presented in detail prior to a 

discussion of human literature. The reader is referred to Amit and Galina (1986) for a 

review of all other factors. 

 

Control over stressors: The failure of classical stressors (e.g., ether vapours, 

horizontal oscillation) to increase pain thresholds (Hayes, Bennett, Newlon, & 

Mayer, 1976) indicated that physiological stress alone was not the essential factor in 

endogenous pain inhibition. Specifically, prolonged exposure to intermittent or 

uncontrollable noxious stimuli led to opioid-mediated naloxone-reversible analgesia 

that was cross-tolerant with morphine (Amir & Amit, 1978; Amir & Amit, 1979; 

Drugan & Maier, 1986; Galina, Rogan, & Amit, 1983; Girardot & Holloway, 1984a; 

Girardot & Holloway, 1984b; Grau, Hyson, Maier, Madden, & Barchas, 1981; 

Lewis, Cannon, & Liebeskind, 1980; Lewis, Sherman, & Liebeskind, 1981; Lewis, 

Termin, Nelson, & Liebeskind, 1984; Maier, Drugan, & Grau, 1982). In contrast, 

aversive events from which an organism could escape or avoid often resulted in little 

or no deficits in response-learning, producing naloxone-insensitive analgesia. 

Furthermore, exposure to uncontrollable shocks resulted in analgesia that was 

reinstated following brief re-exposure to uncontrollable conditions 24 hours later 

(Grau et al., 1981; Hemingway & Reigle, 1987; Jackson et al., 1979; Maier et al., 

1983). Reinstated analgesia did not occur in animals submitted to controllable 

aversive events. After discovering that only inescapable shocks led to opiate 

analgesia, Maier (1986), concluded that it was not the physical qualities of the 

stressor, but what an organism learnt about a stressor that  determined the  

type of analgesia.  

 

Since this discovery, it has been widely demonstrated that inescapable or 

unavoidable aversive events lead to opioid-mediated SIA, and that this form of 

analgesia is often accompanied by a deficit in escape/avoidance learning (in the same 

or different environment) (e.g., Akil, Madden, Patrick, & Barchas, 1976; Maier, 

1986; Maier et al., 1982). This behavioural correlate resembled characteristics of 

Seligman’s concept of learned helplessness (LH) triggering speculation as to 

whether psychogenic and environmental factors producing helplessness might also 

activate opioid analgesia (Maier, 1986; Maier et al., 1982; Maier et al., 1983). The 

cataleptic effects of opiates (Mineka & Hendersen, 1985), and the prevention of 
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opioid-mediated SIA and LH with a high dose of naloxone or naltrexone 

(Hemingway & Reigle, 1987; Hunziker, 1992; Teixeira, Pereira, & Hermini, 1997; 

Whitehouse, Walker, Margules, & Bersh, 1983) or anti-anxiety agents (Maier, 1990) 

suggests that endogenous opioids may underlie the learning deficits and 

immobilisation observed in animals displaying LH. Nonetheless, a causal 

relationship between opioid-mediated SIA and LH is difficult to determine from this 

data.  

 

Predictability of stressors: An aversive event is predictable if a conditioned stimulus 

predicts the occurrence or non-occurrence of the unconditioned stimulus (Seligman, 

Maier, & Solomon, 1971). In an extensive review of the animal literature, Abbott, 

Schoen and Badia (1984) concluded that predictable (or signalled) shocks were less 

physiologically aversive than unpredictable shocks, leading to fewer stomach lesions, 

less weight loss and lower secretions of gastric acid. Moreover, predictable shocks 

led to less distress vocalisations and were preferred over unpredictable shocks when 

the duration of the stress was brief and not intense (Abbott et al., 1984).  

 

The variations in physiological and behavioural responses to predictable versus 

unpredictable aversive stimuli were originally attributed to the activation of SIA 

(Abbott et al., 1984). For example, analgesia was thought to reduce the intensity of a 

signalled shock, subsequently reducing distress vocalisations, gastric acid secretions 

and other ulcer forming substances, whilst increasing an organism’s preference for 

predictable shocks (Abbott et al., 1984). There is some support for this interpretation. 

For instance, Fanselow (1979) found an opiate-mediated SIA biased preference 

towards predictable shocks. In this experiment rats were injected with either saline or 

naloxone subsequent to being trained for 90 minutes to recognise cues identifying the 

signalled condition. Only saline-injected rats indicated a significant preference (i.e., 

more time in the signalled compartment than their naloxone counterparts) for cues 

identifying predictable shocks (Fanselow, 1979). These results suggest that naloxone 

interfered with preferences for predictable shocks by blocking opioid-mediated SIA 

elicited by the signal. Fanselow and Baackes (1982) suggested that the activation of 

opioid-mediated pain inhibition in response to a signalled aversive event has survival 

value, in that analgesia diverts attention and energy from a (potential) wound, 

promoting defensive behaviour against the threat.



 44

Evidence suggesting that signal preference is not primarily influenced by opioid-

mediated SIA draws attention to the differing time course of both phenomena. For 

instance, opioid-mediated SIA habituates over time whereas preference strengthens 

and remains potent for a considerable number of shocks. Also, signal preference and 

SIA vary under different conditions (e.g., the strong stimulation required to activate 

opioid-mediated SIA is not necessary to influence signal preference) (Abbott et al., 

1984). Therefore, it has been suggested that opioid-mediated SIA may increase the 

initial attraction to signalled aversive events, but that subsequent responses are 

nonopioid-mediated (Abbott et al., 1984). 

 

Analgesic responses can also be automatically elicited following exposure to 

stimulus-related cues (Seligman et al., 1971). In demonstrating evidence of 

classically conditioned analgesia, MacLennan, Jackson, and Maier (1980) found that 

rats became analgesic when placed in the shock apparatus for 5 seconds, after 

experiencing 80 tail-shocks (one per 60 seconds) over 6 sessions in the same 

apparatus. Similarly, Chance and Rosecran (1979) identified conditioned analgesia 

(tested via tail flick latencies) in rats when administering grid-shocks. Hayes, Price, 

Bennett, Wilcox, and Mayer (1978) extended these findings when they discovered 

that conditioned analgesia was naloxone-reversible and cross-tolerant to morphine, 

and thus was mediated by endogenous opioids. Conversely, there is evidence 

suggesting that conditioned analgesia arising from predictable aversive events may 

not be mediated by endogenous opioids. For instance, Guile and McCutcheon (1984) 

found that the attenuation of vocalisations and ulceration in the signalled group was 

not affected by naltrexone. Other data shows that rats respond similarly to signalled 

and stronger unsignalled shocks (Miller, Greco, Vigorito, & Marlin, 1983).  

 

Predictability regulates the release of ACTH from the anterior pituitary, suggesting a 

possible pathway by which hormonal opioids could be released (Davis & Levine, 

1982). Nonetheless, the suggestion that conditioned SIA is mediated hormonally 

does not appear to be supported, as conditioned opioid analgesia is not attenuated by 

the removal of the pituitary or adrenal glands, and is therefore more likely to be 

mediated neurally (Watkins et al., 1982b; Watkins et al., 1992). 
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In conclusion, although evidence for signal preference and conditioned analgesia is 

strong, the neurochemical substrates mediating both effects are yet to be clarified in 

animals.  

1.7  STRESS-INDUCED ANALGESIA (SIA) IN HUMANS 
 

In comparison with animal literature, research exploring the activation of SIA in 

humans is sparse (Bandura et al., 1988). Moreover, the lack of control over an 

aversive event appears to be noxious in humans, leading to more pain not less. In 

instances where uncontrollable stressors do lead to analgesia in humans, the stressor 

seems to be more intense, threatening, longer in duration and entail a realistic 

manipulation of ‘lack of control’.  

 

In the following section, laboratory and clinical pain studies in which uncontrollable 

stressors increase pain, and the apparent contradictions between human and animal 

research will be addressed. Next, these findings will be contrasted with human data 

that is commensurate with SIA observed in animals, including findings from ‘real-

life’ stressors. Finally, the impact of stressor predictability, and interactive influences 

of ‘control’ and ‘predictability’ on analgesia will be discussed. 

1.7.1  Lack of control: Pain sensitisation 

Laboratory-induced pain 

 

Actual/perceived control: In an extensive review, Arntz and Schmidt (1989) defined 

numerous different types of control over aversive events, all of which were found to 

have varying effects on endogenous pain inhibition. Each type of control (shown in 

italics) is defined and the resulting effects on pain perception are briefly reviewed.  

 

The self-administration of a painful stimulus was preferred to stimuli administered 

by an experimenter in a study conducted by Weisenberg, Wolf, Mittwoch, 

Mikulincur and Aviram (1985). The two techniques in this study did not vary in their 

effect on subjective pain reports; however, the manipulation of control was 

reportedly weak (Arntz & Schmidt, 1989). Others demonstrated a more positive 
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effect of self-administration on pain perception. For instance, Lepanto, Moroney and 

Zenhausern (1965) found that subjects who were unable to control the termination of 

an aversive heat stimulus reported lower heat pain thresholds.  

 

An increase in pain tolerance was observed among subjects who had instrumental 

control over the noxious stimulus i.e., they could, or perceived they could avoid, 

escape from, reduce or alter the stimulus (Arntz & Schmidt, 1989; Geer & Maisel, 

1972; Rosenbaum, 1980). Studies examining the effects of locus of control on pain 

tolerance echoed these findings, in that subjects who perceived that they could 

control their surroundings were able to tolerate painful stimuli longer than those 

attributing control to external sources (Davison & Valins, 1969; Kanfer & Seidner, 

1973). Also, instrumental control either resulted in less subjective impact or did not 

differ from having no control (Arntz & Schmidt, 1989). Conversely Weisenberg et 

al. (1985) found that instrumental control over the painful stimulus was related to 

more pain. However, their manipulation of control over pain and definition of the 

controlling response lacked validity (Arntz & Schmidt, 1989).  

 

Potential control over a noxious stimulus is where a subject has a controlling 

response available to them, but they do not use it. An example of potential control 

can be found in a CPT where a subject is told they can remove their hand from the 

water if they need to, but they do not. Research has found that when subjects are 

given the option to use a controlling response they tolerate more pain (Kilminster & 

Jones, 1986). However, the effects on pain tolerance and intensity become less clear 

when subjects are urged not to use the controlling response (Arntz & Schmidt, 1989). 

The impact of ‘potential’ control on noxious stimuli has been made salient in studies 

where a subject’s control is removed. Staub, Tursky and Schwartz (1971) found that 

by removing a subject’s control over shock intensity, they reported higher PI and 

tolerated less pain than subjects who never had control in the first place.  

 

Despite the benefits on pain perception, actual or perceived control over a noxious 

stimulus has been found to have deleterious effects on physiological arousal and PI 

when a response becomes too difficult or the outcome of the response is no longer 

easy to predict (Houston, 1972; Litt, 1988). For example, Litt (1988) found that 

subjects with high levels of perceived control over the termination of a CPT 
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experienced greater PI than those with low perceived control when they could not 

end the task promptly. It was suggested that subjects high in internal locus of control 

altered their perceptions of control after not being able to control the aversive 

stimulus, thereby heightening levels of distress and perceived PI. Litt (1988) 

suggested that a subject’s perceived ability to modify the painful stimulus was one 

factor that mediated the effect of perceived/actual control on the experience of the 

noxious stimulus.  

 

In summary, it is clear that control over an aversive stimulus (whether actual or 

perceived) increases pain tolerance. However, this is only the case when there is a 

high chance that a subject will succeed in controlling the noxious event. Effects of 

control on subjective pain are less consistent.  

 

Self-efficacy: As previously noted, a closely related cognitive variable that mediates 

pain tolerance and PI is self-efficacy. Bandura et al. (1987) defined perceived self-

efficacy as “...a person’s judgement of their capabilities to execute a given level of 

performance and to exercise control over events” (p 563). While perceived control 

refers to the availability of a controlling response over an event, self-efficacy refers to 

an individual’s confidence in carrying out that response (Litt, 1988). Research into 

the general effects of self-efficacy on the experience of pain is limited, and even less 

is known about the neurochemical mechanisms (opioid or nonopioid) by which self-

efficacy moderates pain.  

 

Litt (1988) investigated how self-efficacy and perceived control interacted to impact 

upon experimental PI and tolerance. Perceptions of efficacy regarding the control of 

sensations arising from a perceivably controllable or uncontrollable stressor (i.e., 

CPT) were manipulated via performance-related feedback about tolerance of the cold 

water. Self-efficacious subjects tolerated the CPT for longer periods of time, 

indicating that self-efficacy mediated the coping behaviour executed by subjects. 

Furthermore, self-efficacy mediated the effects of perceived control on pain 

tolerance, in that self-efficacious subjects who perceived that they had control over 

termination of the aversive stimulus tolerated the CPT for the longest time. 

Surprisingly, it was perceived control and not self-efficacy that influenced subjective 

reports of pain, where subjects in ‘controllable’ conditions experienced greater 
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perceived pain (Litt, 1988). Litt explained that subjects in the perceived control 

condition may have become distressed at not being able to terminate the CPT at the 

time the first pain rating was made (30 seconds into the task). Self-efficacy typically 

influences pain tolerance but not PI (Baker & Kirsch, 1991; Dolce et al., 1986; Vallis 

& Bucher, 1986), as self-efficacy represents a measure of behavioural intention or 

active coping as reflected in pain tolerance. 

 

A possible explanation as to why self-efficacy was not associated with subjective 

reports of pain is that self-efficacy ratings usually refer to expectations about 

performance or pain tolerance, and not the regulation of PI (Litt, 1988). Stevens 

(1992) and others (e.g., Ohlwein, Stevens, & Catanzaro, 1996) addressed this 

hypothesis by assessing the relationship between self-efficacy for regulating PI and 

finger pressure pain. Contrary to expectations, no relationship was found between 

these variables. However, the null finding was attributed to a poorly defined measure 

of self-efficacy, and a demand for pain endurance rather than pain regulation. After 

addressing these methodological shortcomings, Stevens (1993) found that self-

efficacy for regulating PI did predict finger pressure pain. Similarly, Reese (1983) 

found that self-efficacy influenced both pain tolerance and ratings of pain in subjects 

trained in various pain coping techniques. Specifically, self-efficacious subjects 

experienced lower PI, higher pain thresholds and tolerated the CPT for longer than 

their self-inefficacious counterparts. In sum, these results suggest that whilst 

perceived self-efficacy leads to greater endurance and active coping with pain (i.e., 

pain tolerance), the effects on PI are unclear due to methodological shortcomings. 

Furthermore, PI appears to be confounded with pain tolerance in many of  

these studies.  

 

In a unique study, Ohlwein et al. (1996) investigated how self-efficacy may interact 

with temporal context (fixed/set duration or open interval pain stimulus) to mediate 

pressure pain tolerance and intensity. Contrary to expectations, self-efficacy relating 

to pain endurance did not maximise performance during the open interval pain 

stimulus, and expectations regarding the regulation of PI did not affect pain reports 

during the fixed interval stimulus. A number of factors may have overridden the 

effect of self-efficacy on pain in both contexts, including incentive/experimenter 

demand to endure pain, tolerance ceiling for an insufficiently intense pain stimulus, 
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weak manipulations of the relationship between expected coping and pain in each 

context and/or a discrepancy between expectations and actual experience (and 

resulting emotional distress) (Ohlwein et al., 1996). Interestingly, subjects in the 

fixed interval context expected less pressure pain, suggesting that their coping efforts 

would be directed towards regulating instead of tolerating pain. 

 

To date, Bandura and colleagues (1988; 1987) remain the only ones to have 

investigated the role of opioid and nonopioid substrates in the cognitive control of 

pain. In their first study, subjects were either trained in cognitive pain coping 

strategies (self-efficacious subjects), administered a so-called ‘analgesic’ drug which 

was actually a placebo (external pain relief) or they waited to complete repeated cold 

pressor pain tolerance tasks (control group) (Bandura et al., 1987). Prior to the CPT, 

subjects in each condition were administered an injection of either saline or 

naloxone. They rated their perceived ability to withstand and reduce cold pressor 

pain before and after each CPT. Perceived self-efficacy to withstand pain was 

positively associated with pain tolerance regardless of experimental condition, 

suggesting that the more a subject believed they could tolerate pain, the more they 

actually did. However, perceived ability to alleviate pain was only associated with 

longer pain tolerance in groups relying on internal coping skills (cognitive copers 

and controls). With regards to opioid activation, Bandura et al. (1987) found that 

saline ‘cognitive copers’ were significantly more able to tolerate the cold pressor 

stimulus than their naloxone counterparts. Similar effects were found for the placebo 

medication group; however, the effect of naloxone was less pronounced. Progressive 

increases in pain tolerance in ‘cognitive copers’ under an opioid blockade suggested 

that nonopioid mechanisms were also contributing to pain control. 

 

In a related study, Bandura et al. (1988) investigated cognitive conditions that led to 

the activation of endogenous opioids. Importantly, this study did not confound the 

stressor (math task) with the measure of pain (CPT). Specifically, maths items were 

presented at a speed controlled by the subject or by the experimenter (whereby 

conditions strained or exceeded the cognitive capacity of each subject). Following 

completion of the mathematical problem-solving session, subjects received either a 

saline or naloxone injection, at which point pain tolerance was assessed during a 

number of CPTs. Bandura et al. (1988) found that subjects in the low control 
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condition who had received naloxone experienced more physiological arousal (heart 

rate), subjective stress, mental strain and lower pain tolerance than their saline 

counterparts. In contrast, pain tolerance in the perceived control condition was not 

affected by opioid blockade, indicating no evidence of opioid activation. Concurring 

with several lines of evidence (Holroyd, Penzien, Hursey, Tobin, Rogers, Holm, 

Marcille, Hall, & Chila, 1984; Reese, 1983), high control was associated with high 

pain tolerance. 

 

At first glance, the lack of opioid activation in the high control condition in this study 

appears to contradict results found earlier by Bandura et al. (1987), where opioids 

were activated in efficacious ‘pain copers’. On the contrary, Bandura suggested that 

in the event that pain could not be managed effectively (as is often the case with cold 

pressor pain), stronger pain control efficacy would eventually lead to more distress 

and opioid activation. A parallel can be drawn between opioid activation in 

Bandura’s low control condition and opioid analgesia in animals exposed to 

inescapable stress.  

Clinical pain 

 

Acute clinical pain: Research exploring the inhibition of acute pain has primarily 

focussed on pain during childbirth and dental procedures.  

 

As in laboratory studies, a perceived lack of control over childbirth was associated 

with aversive outcomes such as greater pain and heavier reliance on medication 

during labour. For instance, Brewin and Bradley (1982) found that women who had 

attended preparatory classes on childbirth tended to perceive that they and hospital 

staff members had control over labour-related discomfort and labour duration. These 

women also tended to experience less pain and discomfort during actual childbirth. 

Manning and Wright (1983) investigated the effects of self-efficacy on time in labour 

without medication and use of medication during childbirth. Perceived self-efficacy 

regarding pain control was found to be a strong predictor of the time spent in labour 

without medication (pain tolerance), and actual use of medication (Manning & 

Wright, 1983). In summary, perceptions of control over labour resulted in less pain 

and discomfort, less reliance on medication and more time in labour without 
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medication. Unfortunately, none of these studies investigated the substrates involved 

in endogenous pain control during childbirth. 

 

Similarly, when dental patients possessed more control over surgical procedures they 

tended to experience less pain and discomfort. For instance, Thrash, Marr and Boone 

(1982) found lower levels of discomfort and pain in patients who could communicate 

their level of discomfort and control dental proceedings by illuminating a red light, 

than patients who could not. Thus, perceived control mediated pain control; however, 

the substrates involved were not investigated. Decreasing the uncertainty 

surrounding dental procedures can be just as effective in modulating the intensity of 

pain when compared to perceived control (Arntz & Schmidt, 1989). To illustrate, 

Wardle (1983) found that dental procedural information (including the kind of 

sensations to expect) was as effective in modulating pain as allowing patients to 

control proceedings by signalling the dentist to stop if they became distressed.  

 

In contrast with other dental research, Chaves and Brown (1987) found that a lack of 

perceived control and catastrophisation, or exaggerating about the fearful aspects of 

dental procedures, led to increases in stress/anxiety but not pain. However, trends in 

their results suggested that the more confident a patient perceived themselves to be in 

controlling pain, the more predictable procedures and sensations were and the less 

pain and discomfort was experienced during dental surgery. 

 

Although not directly manipulating control or predictability during painful dental 

surgery, Gracely, Dubner, Wolskee and Deeter (1983) found that naloxone 

significantly increased pain ratings following extraction of an impacted molar. Those 

who received a placebo analgesic also experienced an increase, but not a complete 

resurgence, of pain after naloxone. This suggested that placebo analgesia is both 

mediated by opioid and nonopioid mechanisms.  

 

In conclusion, studies have found that perceived control, self-efficacy and 

predictability often lead to less discomfort and pain in acute clinical pain. However, 

very few studies have investigated the neurochemical mechanisms by which these 

factors modify pain. Hence, the substrates by which acute clinical pain is modulated 

remain unclear. 
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Chronic pain: Individuals suffering from intractable or chronic pain disorders often 

experience depression and anxiety resulting from perceptions that their pain is 

uncontrollable and unpredictable (Craig, 1989). According to the notion of LH, a 

perceived lack of control should activate endogenous pain inhibitory systems, 

thereby reducing pain in chronic pain patients. On the contrary, it has been 

demonstrated that in patients with low self-efficacy (relating to the capacity to reduce 

pain), the belief that pain is controlled by external influences and an ensuing display 

of helpless behaviour is related to lowered pain tolerance (McCracken, 1998) and 

higher reports of PI in chronic pain patients (Schiaffino & Revenson, 1995). 

Nonetheless, these relationships do not imply causality as high levels of pain may 

also lead to low self-efficacy regarding pain regulation. 

 

Holroyd (1984) demonstrated the effects of self-efficacy on recurrent tension 

headache pain by providing bogus feedback to headache sufferers as to their success 

(high or low) in reducing pain with an electromyographic (EMG) biofeedback 

technique. Regardless of whether subjects decreased or increased EMG activity, 

subjects receiving high success feedback experienced increased perceived self-

efficacy and locus of control, in addition to reductions in headache complaints and 

reliance on medication. Similarly, when cancer patients were granted control over 

morphine administration, they typically used 50% less morphine to achieve similar 

levels of pain relief, and developed a tolerance to exogenous opiates much more 

slowly than patients whose medication was controlled by hospital staff (Hill et al., 

1990).  

Contradiction between human and animal research 

 

The majority of human studies reviewed herein suggest that higher levels of 

perceived control and self-efficacy are related to greater pain tolerance, and in cases 

of acute and/or chronic pain, less pain and distress. In contrast, animal research 

indicates that pain inhibitory systems are activated in the event that aversive 

conditions are uncontrollable. Although seemingly irreconcilable, these differences 

have been attributed to varying experimental paradigms, where ‘control’ is 

associated with different consequences for humans versus animals (Bandura et al., 

1987).  
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In animal research ‘control’ means that the animal can terminate the stressor, or 

promptly escape from the situation. ‘Control’ in human studies may lead to extended 

exposure to the stimulus which increasingly tax the subject’s ability to cope. For 

example, a self-efficacious individual may increase engagement in an activity, and in 

turn generate more pain and distress. It is possible that the stressor, or pain generated 

from sustained endurance may eventually overwhelm the individual’s capacity to 

cope – at which time opioid-mediated pain inhibitory systems are activated.  

 

Bandura et al. (1987) suggested that opioid mechanisms are activated if the response 

becomes too difficult, or the outcome is no longer easily predicted or controlled. 

Nonopioid mechanisms are presumed to be active until coping begins to fail, a time 

at which the endogenous opioid system is activated (Bandura et al., 1987). This 

explanation is consistent with the finding that losing control over a stressor is more 

physiologically taxing than never having had control in the first place (Staub et al., 

1971). 

 

In light of this argument, it is possible that self-efficacious subjects in Bandura et al. 

(1987) found their prolonged endurance and failing cognitive control over cold 

pressor pain more aversive and stressful than subjects in other conditions. Therefore, 

extended exposure to an aversive stimulus and heightened levels of physiological 

arousal may have contributed to opioid activation. In comparison, subjects 

completing a non-stressful, controllable mathematical task in Bandura et al. (1988) 

did not activate opioid mechanisms, whereas subjects experiencing failure of 

cognitive control over the task did. Therefore, the activation of opioid mechanisms in 

these two studies may be attributed to the lack of control over a stimulus, or the 

experience of failing control and self-efficacy.  

 

Other inconsistencies between human and animal research could be attributed to the 

flawed definition of ‘control’ in studies on humans. For instance, many laboratory 

studies of pain tolerance have unwittingly confounded ‘potential control’ with 

‘instrumental control’, as human subjects can withdraw at any time. In animal 

research, potential control is not available to the organism in a shock chamber, 

beaker of water or harness. Thus, differing manipulations of control between animal 
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and human research could explain why uncontrollable stressors do not lead to SIA in 

all human investigations. 

 

Pain and stress have often been confounded in both animal and human research, 

whereby methods of pain induction (i.e., CPT) have been used to induce stress. 

Confounding pain and stress is problematic in human research for two reasons: first, 

control cannot be effectively manipulated in pain tolerance designs; second, pain, 

although often aversive, does not necessarily lead to the level of psychological stress 

required to induce SIA.  

 

Finally, in humans the effects of actual or perceived control and self-efficacy on pain 

have often been evaluated using inadequate pain parameters. For instance, 

psychological effects have primarily been measured on pain tolerance, a behavioural 

component of pain that also measures factors unrelated to the pain experience (e.g., 

expectancy, motivation, experimental demand/instructions) (Blitz & Dinnerstein, 

1968; Gelfand, 1964). In contrast, pain threshold and intensity are typically measured 

in animal research. Moreover, when the effects of psychological factors have been 

measured on PI in humans, results are unclear as this parameter is often assessed 

inadequately. For example, Litt (1988) only recorded one set of pain ratings after 30 

seconds into a 5-minute CPT. As pain perceptions change over time, important 

fluctuations could have been overlooked. Finally, few studies have explored the 

neurochemical mechanisms by which control and self-efficacy modulate pain, 

limiting comparisons between animal and human literature. 

1.7.2  Lack of control: Pain inhibition 

Laboratory-induced pain 

 

Opioid-mediated endogenous analgesia in the laboratory is more likely to occur 

when stressors are high intensity, noxious, novel, and threaten to overwhelm a 

subject’s capacity to cope (Price, 1999; Rosenzweig et al., 1996). Buchsbaum, Davis, 

Naber and Pickar (1983) demonstrated a naloxone-reversible effect after delivering a 

large number of moderately painful shocks (n>690) to subjects. In this study, 

somatosensory evoked potential amplitudes decreased whereas pain ratings did not, 
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suggesting that evoked potentials provide a more sensitive measure, containing less 

inter-subject variability than subjective ratings. Physical stressors such as CPTs 

(Pickar, Cohen, Naber, & Cohen, 1982a), capsaicin-induced acute pain (Anderson, 

Sheth, Bencherif, Frost, & Campbell, 2002), and physical exercise (Lobstein, 

Rasmussen, Dunphy, & Dunphy, 1989; Pickar et al., 1982a) that exceed thresholds 

for pain or stress have also led to increased concentrations of plasma beta-endorphins 

and alterations in pain perception. Other human studies corroborate these findings 

using a variety of intense cognitive stressors in the laboratory. As mentioned 

previously, Bandura et al. (1988) found an opioid-mediated increase in cold pressor 

pain tolerance in subjects during a difficult mental arithmetic task, whilst subject 

who could cope with the demands of the task experienced no stress or opioid 

activation.  

 

Fear also has an analgesic quality. Willer and colleagues (Willer & Albe-Fessard, 

1980a; Willer, Dehen, & Cambier, 1981) found an opioid-mediated increase in 

thresholds of the RIII in subjects who were anticipating previously experienced 

intensely noxious foot-shocks (70 mA). In a related study (Willer & Ernst, 1986), 

this effect was reduced with diazepam (an anti-anxiety drug) suggesting a mediating 

effect of fear or intense anxiety on SIA. In support of a pain inhibitory role for fear, 

Pitman, van der Kolk, Orr and Greenberg (1990) found that Vietnam veterans 

suffering from post-traumatic stress disorder displayed analgesic responses (decrease 

in heat pain) after viewing a segment of the Platoon film depicting combat scenes 

during the Vietnam war. Controls demonstrated no analgesia in response to this 

segment of film, and neutral films had no analgesic effect on either group. Others 

have supported the notion that negative emotions such as fear inhibit human pain 

(Rhudy & Meagher, 2000; Rhudy & Meagher, 2001a; Rhudy & Meagher, 2001b) 

(see 1.8 Mood modulation of pain for more discussion, p 61). 

Clinical pain  

 

In a study of a small number of patients undergoing laparotomies for the assessment 

of testicular or ovarian cancer, Dubois, Pickar, Cohen, Roth, Macnamara and Bunney 

(1981) found that surgical stress was associated with an increase in beta-endorphin 

plasma concentrations. Moreover, an inverse relationship between plasma beta-
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endorphin levels prior to surgery and post-operative requests for morphine suggested 

that opioid levels not only reflected a patient’s ability to cope with surgery (i.e., 

stress response), but were also related to decreased pain sensitivity. As with 

experimentally induced pain, negative mood or pre-operative anxiety has been found 

to mediate reports of pain and coping after surgery (de Bruin, Schaefer, Krohne, & 

Dreyer, 2001). 

 

Other painful and stressful clinical procedures such as molar extraction (Levine, 

Gordon, & Fields, 1978), dental stimulation (Butler, Colpitts, Gagliardi, Chen, & 

Chapman, 1983), the later stages of labour and childbirth have also been associated 

with opioid-mediated SIA (Cohen, Pickar, & Dubois, 1983; Price, 1999). Finally, 

chronic pain has been associated with decreased lumbar CSF levels of beta-

endorphins (Cohen et al., 1983). 

Real-life stress 

  

Painful stimuli used to induce stress in laboratory studies have been frequently 

criticised as artificial and lacking the ‘danger’ element that produces psychological 

trauma, such as in animal research where an animal may fear for its life. Researchers 

wanting to investigate the effects of real life aversive situations on pain have studied 

soldiers in military training, where stress involved fear of bodily harm and fear of 

failure (Rosenzweig et al., 1996). For instance, Yamaguchi, Toda and Hayashi 

(2003) investigated the effects of intensive ground training on the pain thresholds 

(skin and tooth pulp) of seven members of the Japanese defence force. Significant 

increases in pain thresholds were observed at both anatomical sites after forty days of 

training. Others have shown similar reactions to such training (Ursin, Baade, & 

Levine, 1978), including changes to neuroendocrine functioning (i.e., increased 

noradrenaline, adrenaline, growth hormone and cortisol secretions). Unfortunately, 

neurochemical mediators of pain inhibition were not investigated in either study. 

 

A naloxone-reversible opioid-mediated analgesia was demonstrated in civilian 

parachute jumpers following their first jump (Janssen & Arntz, 2001). In comparison 

to naloxone recipients, the placebo group showed lower pain sensitivity and a sudden 



 57

large increase in plasma levels of beta-endorphins after the jump that was associated 

with reports of anxiety and loss of control during the jump.  

 

As evident from the discussion above, few studies have investigated the effect of 

‘lack of control’ in real-life situations on pain, and even fewer have delineated 

chemical mediators of this phenomena. Therefore, there is an obvious need for more 

human research in this area. 

1.7.3  Pain perception in chronic pain 

 

Paradoxically, chronic pain patients often demonstrate higher pain thresholds (e.g., 

Yang, Richlin, Brand, Wagner, & Clark, 1985) but lower tolerance to pain (e.g., 

Brands & Schmidt, 1987) when compared to pain free individuals. Two theories 

have attempted to explain the variations in psychophysiological responses to painful 

stimuli, including DNIC and the adaptation theory.  

 

Proponents of DNIC hypothesised that ‘pain inhibits pain’, such that chronic pain 

would inhibit experimentally induced pain, thus increasing the threshold to 

experimental pain (e.g., Peters, Schmidt, Van den Hout, Koopmans, & Sluijter, 

1992). This theory has gained little support as DNIC is mediated in part by 

endogenous opioids and naloxone has failed to alter the pain thresholds of chronic 

pain patients (Peters & Schmidt, 1991; Peters & Schmidt, 1992; Peters et al., 1992). 

 

The adaptation theory appears to account better for the differences in chronic pain 

patients. This theory proposes that chronic and constant pain leads to the 

establishment of higher internal anchors, and thus higher pain thresholds (Peters & 

Schmidt, 1992; Peters et al., 1992). Chronic pain patients become less able to 

discriminate between levels of stimuli within a context of constant pain (Clark, 

Yang, & Janal, 1986), and often under-predict pain (Arntz & Peters, 1995). Poorer 

discrimination of pain intensities (Clark et al., 1986) and less physiological 

habituation to pain (Peters & Schmidt, 1991) provides pain patients with very little 

opportunity to learn preventative responses, resulting in overestimation of physical 

capabilities and exhaustion (Arntz & Peters, 1995). Furthermore, since chronic pain 

patients are used to experiencing no pain at lower intensities and have not habituated 
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to higher intensities, anything above threshold is likely to be experienced as 

overwhelming and intolerable (Arntz & Schmidt, 1989) - hence, the lower pain 

tolerance in chronic pain patients than pain free individuals (e.g., Brands & Schmidt, 

1987). Moreover, chronic pain patients are likely to experience a loss of control over 

their pain, feel helpless, become fearful of future intensities and perceive pain as 

unpredictable. As mentioned previously, losing control is more psychologically and 

physiologically stressful than never having had control at all (Staub et al., 1971).  

 

In searching for explanations as to why pain becomes intractable in some people, 

attention has been drawn to the higher levels of beta-endorphins being released 

tonically in chronic pain patients than in pain free controls (Clark et al., 1986). 

Higher tonic levels of opioids have been associated with higher levels of depression 

and helplessness in those suffering from chronic pain (Almay, Johansson, von 

Knorring, Terenius, & Wahlstrom, 1978). Drummond and Holroyd (2000) suggested 

that a perceived lack of control in chronic pain patients may lead to the release of 

endogenous opioids but that opioids only provide short-term relief, as once  a 

tolerance develops, the analgesic quality of opioids are reduced significantly. 

Lindblom and Tegner (1979) provided strong evidence that endogenous opioids 

provided very little alleviation from pain, as naloxone had no effect on pain reports 

or heat pain thresholds in chronic pain patients. Thus, opioid activation has very little 

impact on a system that is already flooded (Arntz & Schmidt, 1989).  

 

To conclude, it is possible that endogenous pain inhibitory systems are activated in 

chronic pain patients in the context of uncontrollable pain, but that chronic activation 

of these systems appears to be ineffective for long-term pain inhibition.  

1.7.4  Predictability of stressors  

 

Two types of predicability have been investigated in human research. Descriptive 

predictability is where subjects have been told what an event will be like. The more 

frequently explored contingency predictability is where subjects are informed of 

conditions under which an aversive event will occur (Miller, 1981). Since 

contingency predictability has been explored in the bulk of research and is 
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experimentally manipulated in this thesis, studies detailing this form of predictability 

will be reviewed. 

 

Although the effects of predictability on pain perception have been less clear in 

humans than in animal subjects, trends in results suggest that predictability has a 

minimal effect on pain. For instance, in 15 of the 20 studies reviewed by Miller 

(1981), predictability had no effect on subjective reports of pain. Of the remaining 

five studies, four found that predictable shocks led to less pain, whereas only one 

found that they increased pain (Miller, 1981). In accordance with these findings, 

Klemp and Rodin (1976) demonstrated that shock predictability had no real effect on 

perceptions of stimulus intensity. Furthermore, Crombez, Baeyens and Eelen (1994) 

found that temporal predictability had no effect on subjective reports of intensity in 

an experiment where subjects were informed (or not) of when a heat stimulus would 

be applied.  

 

By using a paradigm commensurate to those used in animal research, Willer and 

colleagues (1980a; 1981) induced naloxone-reversible conditioned SIA in humans by 

submitting subjects to predictable, foot-shock-related cues. More recently, Flor et al. 

(2002) conditioned naloxone-reversible SIA in humans, where auditory cues served 

as conditioned stimuli whilst a mental arithmetic stressor served as the unconditioned 

stimulus. Although conditioned analgesia was evident both in pain tolerance and pain 

threshold, only tolerance to pain was influenced by endogenous opioids. Aside from 

these three studies, the neurochemical (opioid/nonopioid) mechanisms that mediate 

the effects of stressor predictability on SIA are relatively unexplored in humans. 

 

The preceding studies demonstrated that both predictable (or signalled/conditioned) 

and uncontrollable stimuli result in opioid-mediated analgesia, suggesting that 

different relationships exist between predictability and controllability in the 

activation of SIA (Abbott et al., 1984). 

Interactions between controllability and predictability  

 

Traditionally, predictability was viewed as impossible to disentangle from 

controllability, in that a controllable response would provide information about the 
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predictability of the event (Seligman et al., 1971). What's more, controllable 

responses that were not predictable were viewed as instances of uncontrollable 

responses (Nickels, Cramer, & Gural, 1992). Consequently, conditions whereby the 

response could be controlled but was unpredictable were ignored, and in many 

studies controllability and predictability were confounded (Miller, 1981).  

 

More recently control has been disentangled from prediction, whereby a subject is 

permitted actual or perceived control over a response but cannot predict the 

likelihood of the outcome of their response (Nickels et al., 1992). An example of 

predictionless control given by Langlois, Cramer and Mohagen (2002) involved a 

TV remote control whose label is no longer visible – which when used will have 

some effect on the TV, but the user will have no idea of what the effect will be (e.g., 

channels may be changed or volume adjusted). Some have argued that under these 

conditions subjects may feel that they have no control (Langlois et al., 2002). Nickels 

et al. (1992) found this to be untrue in that subjects controlling their response 

reported more influence over the outcome than subjects without control, regardless 

of prediction.  

 

Despite this advance, few studies have examined the relative contributions of stressor 

controllability and predictability on pain. After reviewing studies that had explored 

the impact of predictability on stimulus aversiveness whilst keeping control constant, 

Miller & Grant (1979) agreed that the available physiological and subjective 

evidence is inconclusive. For instance, only three out of eleven of the pain rating 

studies indicated lower pain following predictable noxious events, whilst the 

remaining studies showed no difference in pain perception with regards to stressor 

predictability. In four experimental conditions (resulting from crossing control with 

predictability), Nickels et al. (1992) found that, despite increasing the subject’s 

estimate of influence over the aversive stimulus (noise), neither control nor 

predicability (alone or in combination) affected stimulus UP. The lack of effect of 

either psychological variable may be attributed to the relatively brief nature and low 

intensity of the stimulus (Nickels et al., 1992). In more limited designs where 

stressor predictability is controlled and perceived/actual control is varied, control 

alone has been found to have positive effects on pain tolerance and, less 
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conclusively, on subjective pain (Arntz & Schmidt, 1989) (see 1.7.1 Stress-induced 

analgesia in humans: Actual and perceived control, p 45).  

 

The preceding discussion illustrates the extraordinary complexity of the relationship 

between stressor predictability and controllability and the activation of SIA. Clearly, 

this relationship requires analysis at many different levels, including investigation of 

psychological and neurochemical mediators of endogenous pain inhibition.  

1.8  MOOD MODULATION OF PAIN 
 

Emotions have been viewed as both a cause and consequence of nociception, and are 

central to the experience and expression of pain (Craig, 1989). Common emotional 

concomitants of acute pain include anxiety and grief, which can escalate into fear 

and depression as the pain deteriorates into a chronic condition (Vlaeyen, 1991). 

Anxiety and fear are often the emotional result of not being able to predict the 

occurrence or absence of pain, whereas depression or feelings of hopelessness result 

from an individual’s response having no impact on pain (i.e., does not reduce, 

produce, terminate or prevent pain) (Seligman et al., 1971). Emotional bi-products of 

anxiety and depression include anger and guilt (Craig, 1989).  

 

It is generally accepted that negative emotions (particularly anxiety) modulate pain; 

however, despite much conjecture, the mechanisms by which emotions influence 

pain remain unclear (Janssen & Arntz, 1997). Several hypotheses have been 

formulated in an attempt to explain the interaction between pain perception and 

emotion. For instance, Fernandez (2002) proposed six different relationships between 

mood and pain, namely mood as a predisposing, precipitating, exacerbating, and 

perpetuating factor, as well as a correlate or a consequence of pain. Others have 

focussed on the facilitatory and inhibitory nature of mood on pain (Janssen, 2002). 

For instance, emotions such as anxiety have been hypothesised to heighten 

sensations of pain through the release of noradrenaline, which sensitise nociceptors 

in the periphery (Rosenzweig et al., 1996). Similarly, depression supposedly inhibits 

the release of serotonin, and enhances the release of noradrenaline, which in turn 

excites nociceptors and increases PI (Romano & Turner, 1985). Within their gate-
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control theory, Melzack and Wall (1965) proposed a mechanism by which 

psychological processes could regulate nociceptive signals travelling from the 

periphery to the brain. It was hypothesised that descending controls travelling from 

brain structures responsible for processing emotions would modulate peripheral pain 

by either ‘closing’ or ‘opening’ a hypothesised gating mechanism within the spinal 

dorsal horn.  

 

Studies examining the effect of experimentally induced emotion on pain have 

generally found that valence, meaning the pleasant or unpleasant nature of the 

emotion (Rhudy & Meagher, 2001b), influenced pain perception. For instance, 

Hertel and Hekmat (1994), after inducing mood using pleasant, unpleasant or neutral 

imaginal scenes, found that pleasant mood led to an increase in cold pressor pain 

tolerance. In a number of related studies, Stevens and colleagues (Stevens, Heise, & 

Pfost, 1989; Stevens & Rogers, 1990) found that experimentally induced pleasant 

mood was associated with higher pain tolerance, whereas negative affect (i.e., anger) 

decreased tolerance to pressure pain. In a large study (N = 200) in which films were 

used to induce amused, negative and neutral mood, Weisenberg et al. (1998) found 

increased pain tolerance and reduced pain ratings following the humorous film. 

However, this occurred only after a waiting period of 30 minutes post-film, 

suggesting that positive emotional memories faded more slowly than negative 

memories. Difficult to explain was the finding that longer films (regardless of 

emotional valence) had a positive effect on pain tolerance after this same waiting 

period (Weisenberg et al., 1998).  

 

Research demonstrating that negative emotion can inhibit as well as facilitate pain 

suggests that the emotional modulation of pain involves factors other than valence. 

Rhudy and Meagher (2001b) suggested that negative valence may interact with the 

intensity of emotional arousal to yield either hyperalgesia (negative valence and low 

arousal) or analgesia (negative valence and high arousal). Moreover, it would seem 

that situations invoking intense negative affect (e.g., fear) typically are those that are 

uncontrollable and extremely threatening. 
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Evidence regarding how the three most frequent negative emotional concomitants of 

pain i.e., anxiety, depression, and anger modulate experimentally induced acute and 

chronic clinical pain is reviewed below. 

1.8.1  Anxiety and pain 

 

Of the three emotions, the role of anxiety in pain modulation has been examined 

most extensively. Most studies induced anxiety with pain-related (e.g., threat of 

painful shocks) or pain-unrelated stimuli (e.g., cognitive stressors), and examined 

these effects on responses to a variety of pain induction techniques (i.e., CPT, hand-

grip/ischemic procedures, and painful electro-cutaneous stimuli).  

 

Research involving the induction of anxiety with pain-unrelated stimuli such as 

imaginal scenes (Hertel & Hekmat, 1994) demonstrated that anxiety reduced the 

subject’s ability to tolerate pain. Similarly, Meagher, Arnau and Rhudy (2001) found 

that exposure to pain-unrelated fear-evoking slides (from the International Affective 

Picture System) resulted in reduced cold pressor pain tolerance, and reduced UP and 

PI thresholds, when compared to exposure to neutral slides. Conversely, intense 

anticipatory anxiety and fear relating to the noxious stimulus inhibited pain by 

decreasing pain ratings, and increasing pain thresholds and tolerance (Rhudy & 

Meagher, 2000; Schull, Kaplan, & O'Brien, 1981; Willer & Ernst, 1986). These 

results suggested that in order for anxiety to inhibit pain, it has to be related 

naturalistically to the pain experienced (Fernandez, 2002) or of high intensity (Rhudy 

& Meagher, 2001b).  

 

In light of findings from studies where noxious, anxiety-provoking but pain-

unrelated stimuli inhibited pain (stressful mental arithmetic task - Bandura et al., 

1988; parachute jumps by novices - Janssen & Arntz, 2001; combat-related stimuli 

shown to Vietnam war veterans - Pitman et al., 1990; noise bursts - Rhudy & 

Meagher, 2001a), the relevance of anxiety to the painful stimulus does not appear to 

be the most important factor. Instead the intensity of emotional arousal appears to 

determine whether anxiety-fear facilitates or inhibits pain (Rhudy & Meagher, 

2001b). Rhudy and Meagher (2000; 2001a; 2003b) concurred with this notion, 

finding that fear (whether it resulted from shock pain or intensely aversive noise 
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bursts) led to pain inhibition, whereas anticipatory anxiety (a less arousing version of 

fear) led to pain facilitation. Interestingly, other emotions such as humour, when 

experienced concurrently with fear, can inhibit the hypoalgesic response usually 

induced by fear alone (Rhudy & Meagher, 2003a). When surprise is experienced 

instead of fear, hyperalgesia results (Rhudy & Meagher, 2001a). 

 

Similar results have been found in animal research (Maier, 1990; Takahashi, 

Tokuyama, & Kaneto, 1988). For instance, Maier (1990) found that diazepam (an 

anti-anxiety, benzodiazepine solution) blocked SIA if the animals had received 80 

tail-shocks, but not if they had received 1-20 shocks. The effect was powerfully 

persistent as diazepam blocked endogenous analgesia even when the animals were 

removed from the shock environment. In a related study, Takahashi, Tokuyama, and 

Kaneto (1988) found that diazepam  reduced the degree of analgesia induced in rats 

by traditional uncontrollable stress-paradigms (i.e., tail-pinch, foot-shock, swim-

stress, tail-flick). These results suggested that anxiety or fear contributed 

significantly to the inhibition of pain in these animals. In an equivalent set of studies 

in humans, Willer et al. (1980a; 1981; 1986) examined the effect of anticipatory 

anxiety about extremely aversive foot-shocks on the RIII threshold and on subjective 

pain reports by administering diazepam. Since diazepam reduced the analgesic effect 

of the stressor on RIII and subjective pain responses, intense anxiety was deemed to 

have a moderating effect on SIA in humans.  

 

The mediation of endogenous analgesia by fear has been replicated with a range of 

painful stressors. In a study where the aversiveness and anticipatory anxiety of two 

pain procedures were maximised, Schull et al. (1981) found increases in ischaemic 

pain tolerance and reductions in pain ratings, however, no analgesia was noted 

during a CPT. Reductions in tension-anxiety were reported after both procedures. 

Notably, the novelty of the ischaemic pain procedure had been maintained, whereas 

subjects had been exposed to a ‘practice run’ CPT prior to the experimental trials. 

Additionally, Schull et al. (1981) speculated that it may have been the deep, dull, 

worsening ache of the pressure pain that led subjects to experience it as 

uncontrollable and fear provoking, which in turn led to pain inhibition. Grevert and 

Goldstein (1978) found no effect of tension-anxiety on either ischemic or cold 

pressor pain. These null findings could be attributed to certain ‘anxiety–reducing’ 
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methodological factors such as the use of the dominant hand (which typically has a 

higher pain threshold), mildly painful stressors (CPT – 10°C for 5 minutes; ischemic 

pressure inflated to 250 mmHg for 10 minutes, whilst squeezing a ball 20 times) and 

contact with the experimenter. By comparison, Schull et al. (1981) used the non-

dominant hand, more intense stimuli (CPT – 10°C for 7 minutes; ischemic pressure 

inflated to 250 mmHg for 20 minutes, whilst squeezing a ball 30 times), and 

minimised contact between the subject and experimenter (i.e., the subject was left 

alone whilst procedures were delivered from outside the testing cubicle).  In another 

study where negative mood failed to play a role in mediating cold pressor pain 

(Palmer, 2000), it was suggested that cold pressor stimuli were not stressful enough 

and did not lead to high enough levels of arousal to activate endogenous pain 

inhibitory systems.  

 

Clinically, elevated levels of anxiety and depression have been found to reduce a 

patient’s threshold and tolerance to pain, and in some cases increase PI (McCracken, 

1998). For instance, Gil, Ginsberg, Muir, Sykes and Williams (1990) found that 

following orthopaedic surgery those reporting higher anxiety also reported more pain 

and self-administered more analgesics. Although not measuring mood directly, 

Gracely et al. (1978) found that affective responses (degree of discomfort and UP) to 

handgrip and painful electro-cutaneous stimulation were significantly reduced by 

diazepam in subjects who were due to undergo oral surgery immediately after the 

experiment. In contrast, sensory ratings regarding PI were not affected at all by 

diazepam. In this case, diazepam decreased the affective responses to pain by 

reducing anticipatory anxiety relating to upcoming dental surgery. 

 

In conclusion, most data supports the notion that strong anxiety-fear responses lead 

to pain inhibition, whereas low to moderately arousing anxiety leads to pain 

facilitation (Rhudy & Meagher, 2001b). However, it is clear from the review above 

that many studies have confounded stress with pain by inducing anxiety with a pain 

stimulus. Others have examined this effect in clinical populations, contrasting results 

with non-medicated clinical subjects instead of healthy controls (Pitman et al., 1990). 

Also, physiological measures such as heart rate have been used to represent stress 

and anxiety instead of subjective mood ratings (Bandura et al., 1988). This overview 

suggests that research should examine the relationship between subjectively rated 
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anxiety and experimental pain in healthy controls, employing designs that do not 

confound pain and stress. 

1.8.2  Depression and pain 

 

A number of studies using films (Weisenberg et al., 1998) or Velten (1968) emotive 

statements (Willoughby, 2000; Zelman, Howland, Nichols, & Cleeland, 1991) to 

induce mood found that depressive affect decreased motivational aspects of cold 

pressor pain perception (i.e., pain tolerance) without influencing sensory aspects, 

such as pain ratings. Furthermore, subjects experiencing depressed mood 

catastrophised more about painful cold pressor sensations than controls (Willoughby, 

2000). Hyperalgesia may have been a result of depressed mood being induced 

passively in these contexts, unlike in animal research where anhedonia and 

helplessness was ‘acquired’ after the animals learnt that they no longer, or never, had 

control over an aversive event (e.g., Hemingway & Reigle, 1987; Jorum, 1988; 

McCubbin, Kizer, & Lipton, 1984).  

 

Only one human study examining the effects of experimentally induced subjective 

helplessness (a concomitant of depression) on PI was located at the time of this 

literature review (Mueller & Netter, 2000). Using a ‘yoked control’ design, 

subjective helplessness was induced via ‘uncontrollable’ electric shocks, where 

shock delivery was not contingent on performance during a reaction time task. A 

strong positive association between experimentally induced helplessness and PI was 

demonstrated using a path analysis. Anxiety and anger, on the other hand, were not 

significantly correlated with PI. It is unclear whether helplessness and depressed 

mood was induced within the ‘uncontrollable’ condition as shocks were of low 

intensity (1 mA, 100 ms duration), and individual pain thresholds were not 

determined for shock stimuli. Furthermore, evidence of helplessness in both 

‘controllable’ and ‘uncontrollable’ conditions raises the question as to whether the 

conditions were manipulated adequately. Finally, the subject sample consisted only 

of males, limiting the extent to which these results could be applied to females or 

clinical groups.  
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In sum, the lack of robust data calls for future research with humans to examine the 

effects of stress-induced depressed or discouraged mood on pain perception. 

1.8.3  Anger and pain 

 

Very few studies have examined the effects of anger on pain (Fernandez, 2002), and 

those that do have adopted heterogenous methodologies producing divergent results. 

For instance, experimentally induced anger has increased cold pressor pain 

sensitivity (Janssen, Spinhoven, & Brosschot, 2001) and decreased pressure pain 

tolerance in some studies (Stevens et al., 1989), whilst leading to increased tolerance 

to cold pressor pain in others (Westcott & Horan, 1977). However, Westcott and 

Horan (1977) acknowledged that female subjects in the anger imagery condition may 

have tolerated the cold pressor for significantly longer than those in the neutral or 

relaxation imagery conditions due to alterations in subject response criteria or 

questionable methodology (e.g., covert demand characteristics), and not the 

mobilisation of pain inhibitory mechanisms. Despite these inconsistencies, it would 

appear in general that anger-related dimensions are most readily associated with pain 

sensitivity. 

 

Others have examined the effect of anger management styles (i.e., anger-

in/suppressed anger, anger-out/expressed anger) on pain, finding that the expression 

and suppression of anger were significantly related to acute ischaemic and finger 

pressure pain responsiveness (Bruehl, Burns, Chung, Ward, & Johnson, 2002). 

Conversely, in other studies one style over the other was strongly correlated with 

increased cold pressure pain sensitivity (anger-in - Gelkopf, 1997; anger-out - 

Janssen et al., 2001). Only anger-out has been associated with opioid antinociceptive 

dysfunction (Bruehl et al., 2002). 

 

Bruehl et al. (2002) speculated that anger management style may influence pain 

through different mechanisms, and that “anger-in may work in conjunction with 

depressed mood and its biochemical sequelae” (p 230) in activating opioid-mediated 

pain inhibitory mechanisms. Fernandez (2002) agreed that situations that produce 

fear and sadness often result in anger. Correspondingly, Burns, Bruehl and Caceres 

(2004) found that suppressed anger was associated with increased cold pressor pain 
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tolerance after anger provocation. However, the involvement of endogenous opioids 

was not explored in this study. 

 

Anger represents the emotional component of an active, fight-flight response to a 

stimulus that is perceived as ‘threatening’. It has been hypothesised that the frequent 

experience of anger and hostility may create a chronically stressful environment in 

which anti-nociceptive mechanisms are continually activated, and eventually 

impaired through exhaustion. In accordance with this notion, Bruehl et al. (2002) 

found that low anger-out and anger-in styles in healthy controls and chronic low back 

pain patients were associated with opioid-mediated endogenous analgesia (lower 

pressure PI), suggesting that the expression of anger may lead to the dysfunction of 

descending inhibitory influences, and eventually increase pain sensitivity. Janssen et 

al. (2001) also supported this hypothesis, finding that experimentally induced anger 

in healthy subjects increased ischemic pain sensitivity, especially in those inclined to 

express anger. More recently, it has been suggested that the deleterious effects of 

anger-out on acute pain sensitivity can be exacerbated by anger provocation (Burns 

et al., 2004) or ameliorated if behavioural anger expression is allowed to occur 

(Burns, Kubilus, & Bruehl, 2003).  

 

Although this notion has gained support from recent data, the idea that anger 

expression exhausts opioid-mediated antinociceptive mechanisms remains 

speculative, as no study has measured the effects of anger resulting from an 

uncontrollable stressor on pain-related outcomes. Anger has been induced either 

retrospectively via imagery (Stevens et al., 1989; Westcott & Horan, 1977), or 

experimentally during harassment (Janssen et al., 2001). The effects of pre-existing 

anger on pain have also been evaluated (Bruehl et al., 2002). Studying the effects of 

anger induced during a stressful, uncontrollable task on pain could help clarify the 

effects of this mood on endogenous antinociceptive mechanisms. 

 

In sum, negative emotions serve not just as correlates or consequences, but also as 

potent modulators of pain. In particular, the inhibitory influence of intense negative 

emotions on pain is adaptive and important for survival (see 1.6.3 Stress-induced 

analgesia: Function of SIA, p 38).  
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1.8.4  Attributional and attentional mediators 

 

In addition to emotional valence and intensity, attribution of arousal and attention 

can also influence how emotions modulate pain. According to the attributional 

theory, physiological arousal arising from pain-related emotions serves to indirectly 

increase PI when the increased arousal is labelled as pain. However, PI is more likely 

to be inhibited by negative emotions if the emotions are attributed to factors 

unrelated to the pain (Reisenzein, 1983).  

 

According to the attentional model, mood modulation of pain is mediated by 

attentional, and not attributional factors (Arntz, Dreessen, & de Jong, 1994). 

Specifically, pain is facilitated by negative emotions if they are pain-related and if 

attention is focussed on the pain (Janssen & Arntz, 1997). In contrast, a negative 

emotion unrelated to pain would draw attention toward pain-irrelevant factors and 

away from the pain, hence, reducing painful sensations. The effects of attention on 

pain have been widely demonstrated in the literature. Whether it be pain reduction 

from distraction or pain facilitation from directing attention towards the painful 

sensation, attention modulates sensory-discriminative responses to pain in healthy 

(Hodes, Howland, Lightfoot, & Cleeland, 1990) and chronic pain samples 

(Eccleston, Crombez, Aldrich, & Stannard, 2001; Johnson & Petrie, 1997). McCaul, 

Monson and Maki (1992) found that affective-motivational elements of pain could 

only be inhibited by distraction if this technique did not lead to high levels of arousal 

and that the emotional arousal that did occur was positive.  

 

In an attempt to test the validity of attributional and attentional models, Arntz et al. 

(1994) examined the influence of pain-relevant and pain-irrelevant anxiety, and 

attention on the perception of painful electrical stimulation in arachnophobic 

subjects. They found that attentional focus influenced pain ratings, whereas pain-

relevant anxiety influenced autonomic pain responses (e.g., skin conductance). Thus, 

these results suggested that attention mediates the influence of anxiety on pain (Arntz 

et al., 1994). Others concur with these results, providing support for the attentional 

model in favour of the attributional model (Janssen & Arntz, 1996). Although some 

go as far to say that attention influences pain regardless of anxiety (Arntz & de Jong, 

1993), the evidence is insufficient to draw such a conclusion.  
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1.9  GENERAL SUMMARY/CONCLUSIONS 
 

In animal and human research, the cognitive evaluation of an aversive stressor has 

been associated with the activation of endogenous pain inhibitory systems. Within 

animal research, inescapable or uncontrollable aversive stimulation unequivocally 

leads to the activation of either an opioid- or nonopioid-mediated analgesia, termed 

SIA. Nonopioid-mediated analgesia occurs in response to constant stimuli of brief 

duration and low intensity, whereas opioid-mediated analgesia is activated after 

extended, intermittent exposure to a more noxious stimulus. Furthermore, SIA can be 

conditioned in animals. Conditioned analgesia often appears to be mediated by 

opioids, suggesting that the predictability of an aversive stimulus also influences the 

activation of endogenous opioids.  

 

The activation of SIA in humans has been less extensively investigated and the 

mechanisms involved in endogenous pain inhibition are speculative at present. 

Laboratory investigations suggest that actual and perceived control, and perceived 

self-efficacy in executing control over a noxious event, have a positive effect on pain 

endurance. However, the effects on subjective pain are unclear. In contrast, loss or 

lack of control and low self-efficacy leads to the activation of opioid and nonopioid-

mediated forms of analgesia. Research investigating the conditions that inhibit 

clinical (acute or chronic) pain states is limited, and the substrates mediating the 

inhibition of acute and chronic pain require further investigation. However, there is 

some suggestion that the psychological conditions and neurochemical substrates 

inhibiting experimentally induced pain are also responsible for the modulation of 

clinical pain. The impact of predictability on the activation of SIA in humans is 

uncertain, as many studies have confounded it with the controllability of a stressor. 

 

It would appear that the valence (negative or positive) and intensity of mood interacts 

to modulate pain. In particular, intense negative emotions such as fear contribute 

significantly to pain inhibition in animals and humans, whereas moderately arousing 

negative emotions such as anxiety increase pain sensitivity. The effects of other 

emotional concomitants of pain (i.e., depression, anger) remain relatively 

unexplored. The studies that do exist suggest a hyperalgesic effect for depressed 
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mood and anger; however, the intensity of each mood has not been controlled in any 

study. Finally, there has been considerable suggestion that attention mediates the 

effect of negative mood (in particular, anxiety) on pain. 

1.10  OVERVIEW OF THIS RESEARCH 
 

This thesis investigates the effects of psychological factors on natural pain inhibitory 

mechanisms in four sequential experiments. The first three studies were conducted 

on university students, whilst the fourth study was carried out on participants from 

the community, including a sub-group diagnosed with major depression.  

 

The purpose of Study 1 was to investigate the effects of the perceived control and 

predictability of a stressor (shocks during a timed math task) on PI and UP in an 

experimental design that systematically addressed the shortcomings of previous 

research with humans. Study 2 investigated the role of endogenous opioids in SIA, 

by administering an opiate antagonist (naltrexone) to one half of the subject sample 

and a placebo to the other half. The number of stressful events or shocks was altered 

in an additional experimental condition to ensure that the shocks themselves were not 

responsible for analgesic effects observed during the math task.  

 

The primary aim of Study 3 was to examine the effect of negative mood (in 

particular, discouragement - a state-like depressive emotion) on pain modulatory 

systems, and to determine the opioid or nonopioid nature of these effects. 

Additionally, Study 3 aimed to investigate whether the activation of endogenous SIA 

could be replicated using a variety of pain response parameters, including pain 

tolerance and a nociceptive reflex (RIII). The concept of pain tolerance as a measure 

of endurance of unpleasantness was also investigated.  

 

Due to the suggestion that opioid functioning and pain inhibitory mechanisms may 

be impaired in depression, Study 4 assessed a number of endogenous antinociceptive 

phenomena mediated by opioids (i.e., SIA, DNIC) in depressed and non-depressed 

participants. As in Study 3, analgesia was assessed in a variety of ways, including 

pain ratings, pain tolerance and the nociceptive component of the blink reflex (R2).  
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The role played by the cardiovascular system in endogenous anti-nociception is well 

established. However, the suggestion that endogenous opioids mediate blood 

pressure-related analgesia is relatively unexplored in normotensive human subjects. 

Therefore, the involvement of endogenous opioids in the interaction between 

cardiovascular and pain regulatory systems was explored under conditions of rest and 

stress in Studies 2, 3 and 4.  
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CHAPTER TWO 

2.  STUDY 1 

2.1  INTRODUCTION 

2.1.1  Rationale/Purpose of this study 

Stressor controllability and predictability 

 

It has long been recognised that endogenous analgesia is activated not only in 

response to noxious environmental conditions, but is also powerfully triggered by 

psychological factors such as the controllability and predictability of an aversive 

event. These findings have been based mainly on experimentation with animals (e.g., 

Maier, 1986; Maier et al., 1982; Maier et al., 1983), whereas laboratory studies with 

humans have been less definitive (Bandura et al., 1988). For instance, some lines of 

evidence suggest that perceived control over an aversive event (often pain) leads to 

an increase in pain tolerance (Dolce et al., 1986; Litt, 1988; Ohlwein et al., 1996; 

Vallis & Bucher, 1986), whilst the effects on PI remain unclear (Ohlwein et al., 

1996; Stevens, 1992). Acute and chronic pain studies concur with laboratory 

findings, whereas studies involving real life stress reflect findings from animal 

research, which may be attributed to more stressful, realistic manipulations of control 

(e.g., Janssen & Arntz, 2001).  

 

It has generally been acknowledged that when the stressor is brief and not intense, 

animals prefer aversive events that are predictable, rather than unpredictable (Abbott 

et al., 1984). Endogenous analgesia has been conditioned by signalled aversive 

events in both animals (MacLennan et al., 1980) and humans (Flor et al., 2002; 

Willer & Albe-Fessard, 1980a; Willer et al., 1981); however, poorly designed 

methodologies have meant that the effects of stressor predictability on pain remain 

uncertain. This is especially relevant to experimentally induced pain in humans 
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(Miller, 1981). In consideration of these points, the effect of stressor controllability 

and predictability on pain needs to be examined in a well-controlled study.   

Cognitive-affective mediators of pain 

 

In addition to having a direct effect on pain, the controllability and predictability of 

an aversive event indirectly influences pain perception by inducing changes in self-

efficacy and negative emotions common in clinical pain such as anxiety, depression 

and anger (Fernandez, 2002) . Although it is agreed that mood and self-efficacy 

modulate pain, the literature is unclear as to conditions under which these mediating 

factors may facilitate or inhibit pain.  Therefore, well-controlled research needs to be 

conducted to examine the effects of mood and self-efficacy on pain. 

2.1.2  Aims of Study 1 

 

The first aim was to develop a cognitive stressor that could activate SIA. 

 

The second aim was to investigate the impact of perceived control over a cognitive 

stressor (i.e., mental arithmetic task) on a painful stimulus (i.e., CPT). To rectify the 

shortcomings of pain measures in previous research, a 4-minute fixed interval cold 

pressor paradigm was adopted. In a fixed interval paradigm pain intensity (PI) and 

unpleasantness (UP) ratings were made frequently throughout the task, rather than 

when the pain stimulus was terminated, to avoid confounding PI and UP with pain 

tolerance (Ohlwein et al., 1996). To ensure that ‘control’ during the math task was 

believable and not beyond the capacity of the subject, mental arithmetic questions 

were chosen so that the majority of subjects could answer them. Conversely, the 

difficulty of questions in ‘uncontrollable’ conditions was beyond the ability of most 

subjects but not so difficult that subjects gave up straight away. Perceived instead of 

actual control was adopted as the effects are equally potent when it comes to 

influencing pain-related outcomes (Arntz & Schmidt, 1989). 

 

Many studies have confounded control and prediction – or viewed the separation of 

both concepts and the creation of ‘predictionless control’ as logically impossible 

(Seligman et al., 1971). As indicated by Nickels, Cramer and Gural (Nickels et al., 
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1992), predictionless control is possible by permitting a subject actual or perceived 

control over a response without allowing them to predict the likelihood of the 

outcome of their response. Moreover, very few studies have systematically studied 

the relative effects of control and stimulus certainty. Hence, the third aim of this 

study was to investigate the interaction between control and predictability by creating 

four conditions (i.e., controllable–predictable shocks; controllable–unpredictable 

shocks; uncontrollable–predictable shocks; uncontrollable–unpredictable shocks). 

Predictionless control was achieved by using an easy, controllable task in the context 

of shocks delivered at a random, pre-determined schedule set by the experimenter.  

 

Most studies examining the effect of psychological variables on endogenous 

analgesia have utilised a pain stimulus to induce stress, thereby confounding pain 

with the experimental stressor. Confounding pain with stress also prevents the 

induction of negative affect that is not simply a result of the pain (Janssen, 2002). 

Therefore, the fourth aim was to remove this confound by manipulating pain and 

stress separately. This aim was addressed by studying the effects of a cognitive 

stressor (math task) on a commonly utilised method of pain induction, the CPT.  

 

To summarise, the first study aimed to identify psychological variables (i.e., 

perceived control) and environmental conditions (i.e., predictability) that lead to the 

activation of SIA in humans, and systematically address the shortcomings of 

previous research in doing so.  

2.1.3  Hypotheses for Study 1 

 

In light of the previous review of relevant research and aims of the first study, it was 

hypothesised that: 

 

Lack of control over the cognitive stressor would lead to stress and the activation of 

endogenous antinociceptive mechanisms. This would be evident by lower ratings of 

PI and UP during the CPT after the math task, in comparison to pre-math task cold 

pressor ratings. Since subjects in ‘controllable’ conditions were expected not to 

experience stress, endogenous pain inhibitory systems would not be activated and 

cold pressor pain ratings would not differ before and after the math task. To sum up, 
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it was hypothesised that subjects in uncontrollable conditions would experience 

greater decreases in PI and UP than those in controllable conditions. 

 

The effects of predictability on SIA are uncertain; therefore, no specific hypotheses 

could be formulated. Rather, by controlling for predictability it would be possible to 

determine whether stimulus certainty contributed any unique element, and whether it 

interacted with perceived control to influence endogenous analgesia. If not, then this 

factor would be omitted from subsequent studies. 

2.2  METHOD 

2.2.1  Subjects 

 

Fifty-six subjects aged between 17 and 50 years [28 males: M = 23.11 years, SD = 

7.28; 28 females: M = 25.18 years, SD = 7.82] participated in Study 1. Subjects 

suffering from any previous/current injury to their non-dominant arm (used during 

the CPT), chronic pain conditions (including headaches/migraines), and/or medical 

or psychiatric conditions necessitating the use of any form of analgesic, 

antidepressant/anti-anxiety or BP medication were excluded from the present 

experiment. As previous research has demonstrated clear sex differences in pain 

sensitivity (Giles & Walker, 2000; Stevens, 1993; Westcott, Huesz, Boswell, & 

Herold, 1977) and age-related decline in endogenous analgesia (Washington, Gibson, 

& Helme, 2000), equal numbers of young male and female subjects were included in 

this sample. Three subjects were excluded from the study due to the failure of 

equipment during testing. An additional three subjects withdrew prematurely either 

due to the noxious nature of the cold pressor (N = 2), or ‘uncontrollable-predictable’ 

condition of the math task (N = 1). Subjects were recruited from Murdoch University 

undergraduate psychology classes and the general university population via posters 

advertising the study on campus. Subjects were remunerated $10 for their 

participation. All subjects were right-handed as established by Bryden’s Handedness 

Questionnaire (1977) (Appendix 2, p 320).  
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2.2.2  Experimental design/Overview 

 

As shown in Figure 2.1, subjects completed mood/self-efficacy ratings using visual 

analogue scales (VAS), and a CPT before and after a timed mental arithmetic task. 

Electric shocks were delivered randomly throughout the math task and subjects 

completed PI and UP ratings after each electrical shock. Mood and self-efficacy 

ratings were also completed during the math task. Prior to the math task, subjects 

were randomly assigned to one of four experimental conditions balanced for age (F 

(3,52) = 1.46; p = .24) and sex (Table 2.1). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2.1: Subject age and sex in each experimental condition. 

 

 Experimental conditions 

 C-U C-P UC-U UC-P 

Mean 26.64 24.36 24.71 20.86 

SD 9.72 7.52 8.05 2.66 

N 7F, 7M 7F, 7M 7F, 7M 7F, 7M 
Note. C-U = controllable-unpredictable; C-P = controllable-predictable; UC-U = uncontrollable-

unpredictable; UC-P = uncontrollable-predictable; F = females; M = males. 

Figure 2.1: Experimental timeline for Study 1. 
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 78

2.2.3  Procedure/Materials  

 

The subject was seated at a desk inside one of two air-conditioned cubicles 

maintained at 22 ± 2°C (Cubicle A) and given a consent form to read (Appendix 3,  

p 321). Once all queries about the experiment had been addressed, informed consent 

was obtained from the subject in writing and the experiment commenced. The 

Murdoch University Human Research Ethics Committee approved these and all other 

procedures in the present thesis. Each subject was tested individually, and the same 

two cubicles were used for all subjects. 

Mood and self-efficacy ratings 

 

Moods (anxiety, confusion, discouragement, anger, sluggishness and liveliness) and 

perceived self-efficacy with regards to avoiding electric shocks during the math task 

were rated before and after the math task in Cubicle A. Subjects marked how they 

felt right at that moment on separate 0-100 point VAS grouped together on a single 

sheet of paper. As shown in Figure 2.2, each scale consisted of a horizontal line 10 

cm in length, with endpoints ‘Not (mood) at all’ and ‘Extremely (mood)’, or ‘No 

ability to prevent shocks’ and ‘Complete ability to prevent shocks’, for mood and 

self-efficacy respectively. The two-anchor, horizontal format of each VAS was 

adopted to reduce clustering around particular labels (Scott & Huskisson, 1976). 

Ratings were scored to the nearest millimetre (on a 100-point scale) as this has been 

found to be the most convenient, appropriate and sufficiently sensitive scoring 

technique (Aitken, 1969).  

 

  

  

 

 

 

 

The use of VAS to reliably (test-retest with short intervals, inter-rater reliability), 

validly (concurrent) and efficiently assess mood states such as depression and 

Not anxious  Extremely anxious
at all 

Figure 2.2: Example of a visual analogue scale. 
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anxiety has been established recently when compared to well-established, 

standardised instruments such as the Beck Depression Inventory, Spielberger State-

Trait Anxiety Inventory and the Profile of Mood States (Bond, Shine, & Bruce, 

1995; Cella & Perry, 1986; McCormack, Horne, & Sheather, 1988). However, Cella 

& Perry (1986) recommend the use of supporting instruments with clinical groups as 

VAS alone may not be as reliable or sensitive when assessing mood disorders.  

 

The same dependent variables were rated at irregular intervals during the math task 

(1:30, 7:39, 15:20 minutes) in Cubicle B using computer-generated VAS, where 

ratings were made by shifting a cursor from the mid-point either left (less so) or right 

(more so) according to how the subject felt right at that moment. To minimise the 

time taken to make ratings and prevent subjects from disengaging from the task, they 

were instructed to complete their ratings within 15 seconds, “or risk increasing their 

chance of getting an electric shock” while completing the rating. If subjects exceeded 

the time limit they did not receive any shocks; however, an aversive loud siren 

sounded until the rating was completed and the subject returned to the task. 

Computer generated VAS retain the same construct validity established for paper and 

pencil VAS (Maruff, Wood, Currie, McArthur-Jackson, Malone, & Benson, 1994). 

Cold pressor tasks 

 

The CPT stimulates pain fibres peripherally and centrally, exciting neurones entering 

the spinal cord and travelling to the thalamus (to the somatosensory cortex), the 

medulla (to the reticular formation) and limbic system (Lovallo, 1975). The 

extensive representation of cold pain throughout cortical and limbic structures 

supports the selection of the CPT as one of the most valid methods of pain induction 

(Wolff, 1978).  Furthermore, the CPT meets stringent criteria for laboratory-evoked 

pain by achieving stimulus controllability, reliability and sensitivity throughout the 

range of the stimulus, and by being non-hazardous and convenient by design (Hardy, 

Wolff, & Goodell, 1952).  

 

As illustrated in Figure 2.1, a CPT was completed in Cubicle A before and after the 

math task. Two insulated containers measuring 21 cm (width) x 33 cm (length) x 25 

cm (height) housed approximately 15 litres of warm or cold water. The temperature 
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of each bath was monitored with a mercury thermometer (range = -5°C to +50°C). 

Temperatures of both baths changed slightly throughout each CPT (warm: -1.95°C; 

cold: +1.5°C); however, changes were consistent across groups.  

 

During each CPT subjects first placed their left, non-dominant hand into a 37°C 

warm water bath for 3 minutes up to their wrist crease to standardise hand 

temperature. This temperature approximated normal body and hand temperature 

(Kenshalo & Nafe, 1963; Wolff, 1978), and has been used previously to equalise 

initial hand temperature (Bandura et al., 1987). Subjects then immediately placed the 

same hand into a nearby 7°C water bath for 4 minutes. To prevent pockets of warm 

water from developing near the subject’s hand, an aquarium pump submerged and 

secured at the bottom of the bath continuously circulated the cold water. Preliminary 

piloting indicated that 7°C was extremely noxious but could be tolerated by subjects 

for the entire 4 minutes. Furthermore, when using hand temperature as a 

physiological indicator of distress, previous research has shown that 7°C, after an 

initial vasoconstriction, causes considerable vasodilation (Ahles et al., 1983). The 

duration of 4 minutes was chosen to capture the time at which distress peaks (2 to 2.5 

minutes in Ahles et al., 1983), but avoid the point at which the hand becomes so 

numb that the CPT no longer retains noxious qualities (5 minutes according to 

Williams & Thorn, 1986). 

 

The CPT was a fixed interval task with the option of withdrawal if necessary 

(Appendix 4, p 322). However, all subjects kept their hand in the water for the entire 

time. A fixed-interval paradigm was chosen because the sensory and affective, and 

not behavioural components (i.e., tolerance time) of pain were of interest with 

regards to testing experimental hypotheses. Pain tolerance, although a central facet of 

the pain experience, measures an individual’s belief in their ability to endure 

different types of pain (Hirsch & Liebert, 1998). The sensory dimension refers to the 

location, quality and - of particular interest in this study - intensity of pain, whereas 

an individual’s emotional reaction to pain comprises the affective, or UP dimension 

(Hirsch & Liebert, 1998). Although both dimensions are often closely related, 

contextual factors (e.g., labelling of cold pressor stimuli -  Hirsch & Liebert, 1998) 

and psychological factors (e.g., fearful expectations - Ahles et al., 1983) have been 
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shown to influence the affective component. In some cases, different nociceptive 

stimulus response functions (or regression lines) have resulted from ratings of 

sensory and affective dimensions of pain (Price et al., 1994; Price et al., 1983), 

highlighting the importance of assessing PI and UP. 

 

In right-handed subjects, previous researchers have established a greater sensitivity 

to cold pressor pain in the left, non-dominant hand (Ferracuti, Seri, Mattia, Cruccu, 

Schiff, & Gagliese, 1994b; Westcott et al., 1977; Wolff & Jarvik, 1964; Wolff et al., 

1965). Conversely, other researchers have found either no difference in thermal pain 

sensitivity of the right and left hands (Long, 1994), or that cold pressor pain 

threshold and tolerance is greater for the right, than left hand despite handedness 

(Murray & Safferstone, 1970). However, results from the latter study also suggest 

that the non-dominant hand (or left hand in most of their subjects) was more 

sensitive to pain than the dominant, right hand as their sample consisted mostly 

(88%) of right-handed subjects. Haslam (1970) assessed pressure pain thresholds for 

non-dominant and dominant hands in left and right-handed subjects. Hand 

dominance only made a difference to pain thresholds in right-handed subjects; 

however, left-handed subjects only made up 20% of the sample.  

 

Greater sensitivity in the left hand has been attributed to lateralization in the brain, 

where the right cerebral hemisphere dominates processing of negative affect (Long, 

1994; Schiff & Gagliese, 1994), and physiological differences in neural origins of the 

left arm, where neural connections with the heart and neck exist in the left but not in 

the right arm (Murray & Safferstone, 1970). To date, no research has 

comprehensively compared cold pressor pain threshold and tolerance for the left and 

right hand of left-handed subjects. Therefore, considering that right-handed subjects 

were more abundant and that previous research has demonstrated the activation of 

emotional components of pain and greater sensitivity for the left, non-dominant hand 

– the left hand was tested during the CPT. 

 

Subjects were prompted at 30-second intervals to rate the PI and UP of the cold 

water by using their right hand to slide a guide along a 0-100 point, mechanical 

visual analogue scale (M-VAS) with anchors 0 = ‘No Pain’/‘Not unpleasant at all’ 

(left side) and 100 = ‘Pain as bad as it could get’/‘As unpleasant as it could get’ 
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(right side). According to Price, McGrath, Rafii and Buckingham (1983) ratings from 

VAS reliably and validly represent the intensity and unpleasantness of the 

experimental pain experience. Furthermore, VAS demonstrate true ratio properties, 

allowing meaningful comparisons of both aspects of pain across occasions, 

conditions or subjects (Price et al., 1983). Ratio properties of VAS also apply to M-

VAS (Price et al., 1994). 

 

Previous researchers have demonstrated that cold pressor pain ratings vary according 

to the frequency of pain reports (Loftin, Zeichner, & Given, 1998), and that ratings 

‘commit’ subjects to certain levels of pain, affecting future ratings (Hirsch & Liebert, 

1998). Nonetheless, since relative changes in pain rather than absolute levels of pain 

were of interest in this study, frequent ratings were deemed appropriate. 

Furthermore, frequent ratings interrupt the use of cognitive coping strategies (i.e., 

distraction), drawing attention to and potentially increasing the pain (Loftin et al., 

1998). Since the use of coping strategies was not monitored nor manipulated in this 

study, the interruption of their use by ratings was advantageous. Adding further 

comfort to this, Spanos, Hodgins, Stam and Gwynn (1984) demonstrated that when 

not explicitly instructed to do so, subjects would not use available coping strategies 

to reduce pain. Finally, to prevent subjects from using rating intervals as ‘markers’ to 

help them withstand the pain, the timing device was not visible to subjects and no 

cues were given as to when the next rating was due.  

Math task  

 

Subjects completed a computer programmed 20-minute2 mental arithmetic task in 

Cubicle B. The math task was completed in a different cubicle to heighten the 

novelty and anticipatory anxiety with regards to the task. The experimenter entered a 

code into the computer, randomly allocating subjects to one of four conditions of 

which the experimenter was unaware. Identifying information was entered into the 

computer and saved with each subject’s performance record on completion of the 

task. The experimenter left the room and delivered initial instructions (Appendix 4,  

                                                 
2 Subjects took approximately 23-26 minutes to complete the task as the task was suspended each time 

subjective ratings were completed. 
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p 322) from outside Cubicle B using a two-way headset system. A closed-circuit 

television screen and speaker relaying performance-indicated sounds (see description 

below) enabled the progress of subjects to be monitored. Equipment used solely by 

the experimenter (i.e., stimulator, constant current unit, TV, speaker) was kept 

outside both Cubicle A and B. 

 

Once the headset was turned off subjects read the remaining computer generated 

instructions and began a brief set of practice trials (2-3 minutes), during which 

subjects were reminded no shocks would be delivered. On completion of the practice 

trials, the task was suspended and subjects rated their ability to avoid shocks (self-

efficacy) on a pen and paper VAS located on the desk. Subjects initiated the ‘real’ 

task by a keystroke and continued solving problems at the same level of difficulty 

seen at the end of the practice trials. On initiating the task subjects were reminded 

that shocks could be delivered after this point.  

 

Each question appeared in yellow 2 cm high numbers in the middle of a black 

computer screen. When solving questions, subjects were instructed to use their left 

hand and the row of numbers at the top of a computer keyboard (and not the number-

pad) to increase the difficulty and aversive nature of the task. When each problem 

was completed, feedback such as ‘CORRECT’ (green), ‘INCORRECT’ (red) or 

‘TOO SLOW’ (purple) appeared on the computer screen, and either a pleasant 3-note 

jingle (correct responses) or an aversive loud beep (too slow or incorrect responses) 

sounded for one second. 

 

Each question involved addition and subtraction and varied according to five levels 

of difficulty beginning at the easiest, level 1 [(1 + 3) – 2], level 2 [(56 + 4) – 6], level 

3 [(77 + 19) – 2], level 4 [(245 + 63) – 4], and the most difficult level 5 [(771 + 195) 

– 2]. A different time limit was set for questions at each level on the basis of 

preliminary piloting3. 

                                                 
3 Pilot: Twenty-four subjects were asked to complete as many questions as possible within 2 minutes, 

at each level. The average time taken to complete items at each level was calculated. In the present 

experiment, time limits were either set slightly above the mean for easier questions (Level 1 and 2), at 
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At the outset of the task subjects were instructed that the number of shocks received 

depended on their mathematical performance, i.e., poor or slow performers were led 

to believe that they had a greater chance of being shocked. However, so that the 

number of shocks did not confound results, no such contingency existed and subjects 

received an identical number of shocks at approximately similar stages throughout 

the task. In order to deliver shocks at similar stages during the task subjects were 

‘forced’ to make an error or respond too slowly by ‘shifting’ subjects into a higher 

level of difficulty (only if at ≤ Level 4), and simultaneously providing a shorter time-

limit. Shocks were delivered at irregular intervals to prevent subjects from 

anticipating their occurrence. When queried after the task, all subjects reported being 

unaware of the ‘contingency’ of shock delivery.  

 

Conditions in the math task were designed to create a combination of either high or 

low ability to predict shocks, and either high or low perceptions of self-efficacy 

regarding arithmetic problems and control over electrical shocks. This resulted in 

four experimental conditions: ‘Controllable – Predictable’, ‘Controllable – 

Unpredictable’, ‘Uncontrollable – Predictable’, ‘Uncontrollable – Unpredictable’.  

 

Starting from the practice trials, subjects in the ‘controllable’ condition were 

presented with arithmetic problems from Level 1 and ‘shifted’ to the next level of 

difficulty if ≥ 7 out of 8 consecutive questions were answered correctly. When 

reaching an error rate of 25% (2 wrong in 8 questions) subjects were maintained at 

the same level for the next 8 questions. If their error rate was >25% (>2 wrong in 8 

questions), subjects were dropped down a level (if at ≥ Level 2) making the task 

relatively easy. Subjects in the ‘uncontrollable’ condition were presented problems 

from Level 3 at the outset of the practice trials, and were maintained at this level if 

their error rate was 75% (6 wrong in the first 8 questions). If >75% errors were being 

made, subjects were shifted down a level. However, if less than 75% of questions 

were incorrect subjects were shifted up a level, making this task much harder.  

 

                                                                                                                                           
the mean (Level 3), or slightly below the mean for harder questions (Level 4 and 5) to increase the 

challenge of the task, but not make it so difficult that subjects gave up trying. 
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Subjects in the ‘predictable’ condition witnessed the computer screen intermittently 

change from black to blue, and were warned that they were in increased danger of 

receiving an electric shock during this time. Subjects were not told that the 

presentation of a blue screen was pre-programmed to standardise the experience of 

each subject, and that shocks would not be presented during every blue screen. 

Shocks were only delivered during the blue screens that coincided with pre-

programmed timing of shocks set for all subjects (see Task Shocks below), and never 

during black screens. In the ‘unpredictable’ condition the computer screen remained 

black and no such instructions were given. 

 

Task shocks 

 

Stimulation consisted of three 15 mA ± 1.10 (SEM) rectangular pulses of 25 

milliseconds duration. The delivery of repeated shocks throughout the task led to 

minor fluctuations in skin conductance and variations in shock intensity. Each pulse 

was delivered via 1 cm2 Grass silver/silver chloride surface electrodes. Electrodes 

were attached with double-sided adhesive washers and secured with 3M surgical 

tape. They were positioned 2 cm apart on the ventral surface of the forearm, 10 cm 

from the elbow towards the wrist, along the cutaneous branch of the ulnar nerve. The 

ulnar nerve was stimulated due to the aversive nature of this stimulation as 

demonstrated in a small pilot4. The skin was slightly abraded with a pumice stone 

and degreased with an alcohol swab to achieve skin impedance lower than 5 K ohms 

[M = 3.5 K ohms ± 0.7 (SEM); measured by a PA300 impedance meter]. 

Furthermore, silver/silver chloride electrodes and water-soluble, saline electrode gel 

were used to decrease skin impedance.  

 

Each pulse was delivered 3, 10 and 17 minutes into the task using an SD9 Grass 

Square Pulse stimulator and constant current unit. A custom-built digital current 

meter monitored current intensity (mA) delivered from the constant current unit to 

                                                 
4 Pilot: Twenty-four subjects had electrical pulses delivered to the ulnar and median nerve in the non-

dominant forearm in 1 mA steps (via the staircase method) to compare aversion to the sensation. In 

general, pain threshold and tolerance of the ulnar nerve was lower, and led to an unpleasant burning 

sensation not apparent when stimulating the median nerve. 
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the subject. A ‘trigger box’ connected to the computer was programmed to turn the 

stimulator on and off at the times when shocks were to be delivered during the task.  

 

The task was suspended whilst subjects gave PI and UP ratings after each shock 

using a computer-generated 0-100 point VAS, where 0 = ‘No pain’/‘Not unpleasant 

at all’ and 100 = ‘Pain as bad as it could get’/‘As unpleasant as it could get’. As with 

mood and self-efficacy ratings, subjects were instructed to complete their ratings 

within 15 seconds or risk receiving an electric shock whilst making their rating. 

Debriefing 

 

The purpose of the experiment was explained and subjects were remunerated at the 

end of the experimental session. Details regarding the math program were not 

revealed as the task was to be used in subsequent studies. 

2.3  RESULTS  

2.3.1  General data considerations 

 

Cell sizes were insufficient to investigate sex differences in each condition; 

therefore, all analyses were performed on data collapsed across males and females. 

To ensure that sex was not a confounding factor within the analyses, and that results 

could be generalised to the general population, equal numbers of males and females 

were recruited for each condition. Multivariate solutions for repeated measures 

factors with more than two levels are reported to minimise the likelihood of Type 1 

errors. These practices were adopted across all studies. 

2.3.2  Mood and self-efficacy  

 

Data considerations 

 

Mood and perceived self-efficacy with regards to avoiding electric shocks during the 

math task were rated on a 0-100 point VAS prior to, during and after the math task. 

Only results for anxiety, discouragement and anger are presented as these moods 
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most often accompany pain (Zelman et al., 1991). Ratings of confusion, sluggishness 

and liveliness were included as filler items and thus were not analysed. Moods were 

analysed separately to facilitate interpretation of findings. These procedures were 

adopted in all studies. 

 

Randomisation check  

 

Separate 2 (controllable, uncontrollable shocks) x 2 (predictable, unpredictable 

shocks) univariate ANOVAs were carried out on pre-math task mood and self-

efficacy ratings. As indicated in Tables 2.2 and 2.3, groups did not differ on mood or 

self-efficacy prior to the math task.  
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Table 2.2: Mood and self-efficacy ratings before, during and after the math task in 

each experimental condition.  

 

  Controllable Uncontrollable 

  Predictable Unpredictable Predictable Unpredictable 

Mood Time Mean SD Mean SD Mean SD Mean SD 

Ax. Pre 36.39 24.54 40.83 22.95 42.18 23.03 52.80 22.78 

 1 55.29 12.98 59.93 22.55 68.29 11.68 54.29 29.45 

 2 61.93 20.62 61.86 21.69 65.07 15.54 60.71 27.11 

 3 57.00 26.10 61.64 26.76 57.79 18.96 61.07 29.81 

 Post 41.51 29.95 47.37 29.55 47.20 27.93 54.82 32.60 

Ds. Pre 14.09 12.90 20.85 22.28 23.84 27.02 23.00 24.19 

 1 36.14 20.52 36.64 23.40 59.86 28.36 59.86 22.76 

 2 36.64 14.26 40.43 29.85 54.57 21.30 59.36 19.92 

 3 41.43 24.06 41.07 32.28 63.43 18.64 62.36 30.31 

 Post 32.04 26.13 31.76 27.49 58.88 28.39 60.71 32.21 

Ag. Pre 6.11 5.78 8.13 10.45 6.30 14.03 11.84 20.21 

 1 22.00 21.01 21.64 20.62 39.71 25.14 30.71 31.05 

 2 32.86 23.51 28.21 29.10 37.93 23.73 38.64 29.18 

 3 33.50 28.02 29.00 27.47 45.29 27.05 44.00 33.60 

 Post 29.98 28.95 25.84 26.09 41.35 30.84 43.89 36.34 

Sf. Pre 54.19 18.52 46.76 24.81 52.13 26.12 41.62 24.95 

 Prac 53.00 20.79 50.47 25.06 22.95 20.22 19.14 18.06 

 1 53.21 20.28 50.14 26.92 28.29 22.90 21.93 13.20 

 2 50.36 20.02 50.64 27.74 30.86 24.07 26.71 20.12 

 3 57.50 17.72 42.93 28.54 29.29 21.73 29.14 24.63 

 Post 61.47 15.92 44.95 27.93 28.85 30.67 15.62 12.93 
Note. N = 14 subjects in each condition; Ax. = anxiety; Ds. = discouragement; Ag. = anger; Sf. = self-

efficacy; Pre = prior to practice trials and math task; Prac = following practice trials, prior to math 

task; 1-3 = 1:30, 7:40, and 15:20 minutes into math task, respectively; Post = after math task. 
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Table 2.3: F ratios of pre-task mood and self-efficacy ratings across conditions. 

 

Source Anxiety Discouragement Anger Self-efficacy 

Controllable (C) 2.03 1.00 0.28 0.32 

Predictable (P) 1.46 0.25 1.07 1.99 

C x P 0.24 0.41 0.23 0.06 
Note. Degrees of freedom = 3,52. 

 

Effects of the math task on mood and self-efficacy 

 

Effects of the math task on mood ratings were investigated with separate 5 (Time: 

pre-task, during task at 1:30", 7:40", 15:20", post-task) x 2 (controllable, 

uncontrollable shocks) x 2 (predictable, unpredictable shocks) repeated measures 

ANOVA. Similar analyses were carried out on self-efficacy ratings, except that 

ratings made after the practice trials were deemed a more relevant point of 

comparison than those made before the practice trials and math task i.e., ‘pre-task’ in 

Time factor in mood analyses (Table 2.2 and 2.4).  

 

Subjects experiencing difficult math questions and who perceived shocks to be 

uncontrollable experienced significantly greater levels of discouragement (M = 

52.59) than those who believed they could control the shocks (M = 33.11). Shock 

predictability failed to affect mood during or after the math task.  

 

The exploration of Time main effects with simple contrasts (where pre-task ratings 

were the point of comparison) revealed that significantly higher levels of anxiety, 

discouragement, and anger were reported during the math task, than beforehand. 

Subjects remained significantly more discouraged and angry following the math task; 

however, anxiety returned to pre-task levels. 

 

The Controllable main effect for self-efficacy indicated that subjects experiencing 

difficult math questions and ‘uncontrollable’ shocks perceived that they were 

significantly less able to prevent electric shocks after the practice trials and beyond, 

compared to their counterparts in controllable conditions. As expected, the 

predictability of shocks did not influence self-efficacy as “…perceived self-efficacy 
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is concerned with people’s judgements of their capabilities to execute given levels of 

performance and to exercise control over events” (Bandura et al., 1987, p 563). No 

other interactions were found. 

 

 

Table 2.4: F ratios for mood and self-efficacy before, during and after the math task. 

 

Source Anxiety Discouragement Anger Self-efficacya 

 Between subjects 

Controllable (C) 0.69 15.52*** 3.11 25.26*** 

Predictable (P) 0.22 0.09 0.05 1.51 

C x P 0.11 0.01 0.03 0.03 

 Within subjects 

Time† (T)  11.13*** 19.07*** 17.17*** 0.47 

T x C† 0.46 2.10 1.49 1.35 

T x P† 1.52 0.35 0.51 2.15 

T x C x P† 1.26 0.09 0.74 1.84 
Note. a Self-efficacy ratings after the practice trial  = first level of Time factor in self-efficacy 

analyses; † Pillai’s Trace F ratio; degrees of freedom: between S’s = 1,52; within S’s = 4,49. 

***p≤.001. 

 

2.3.3  Electro-cutaneous task shocks  

 

Subjects received three 15 mA shocks during the math task and gave PI and UP 

ratings after each shock, using a computer-generated 0-100 point VAS. Separate 2 

(controllable, uncontrollable shocks) x 2 (predictable, unpredictable shocks) x 3 

(Trials: first, second, third shock) repeated measures ANOVAs were carried out on 

PI and UP ratings (Tables 2.5 and 2.6). 

 

Cell means suggested that subjects perceived the shocks to be moderately to 

somewhat severely painful and unpleasant (i.e., M = 45.43 – 66.71). A Trial main 

effect indicated that PI and UP ratings increased with shock repetition. Neither 

‘controllability’ nor ‘predictability’ affected either shock-related PI or UP. 
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Table 2.5: Pain intensity and unpleasantness ratings for shocks during the math task. 

 

 Controllable Uncontrollable 

 Predictable Unpredictable Predictable Unpredictable 

Trial  Mean SD Mean SD Mean SD Mean SD 

 Pain intensity 

1 48.36 21.13 45.43 20.16 54.93 20.89 55.50 23.05 

2 53.29 21.28 48.64 21.84 62.00 21.12 61.86 17.13 

3 54.86 25.35 57.29 26.35 59.14 21.21 63.64 21.06 

 Unpleasantness  

1 52.57 20.01 53.07 17.93 59.36 19.94 54.29 27.29 

2 53.79 21.45 55.43 20.41 66.36 16.54 62.29 21.65 

3 60.93 20.94 61.50 22.69 66.71 16.63 66.14 26.83 
Note. N = 14 subjects in each condition. 

 

 

Table 2.6: F ratios for shock pain and unpleasantness ratings during the math task.  

 

Source Pain Intensity Unpleasantness 

 Between subjects 

Controllable (C) 2.29 1.44  

Predictable (P) 0.00 0.05 

C x P 0.10 0.16 

 Within subjects 

Trial†(T) 7.53*** 11.31*** 

T x C† 1.35 1.24 

T x P† 1.26 0.18 

T x C x P† 0.06 0.22 
Note. †Pillai’s Trace F ratio; degrees of freedom: between S’s = 1,52; within S’s = 2,51. 

***p≤.001. 
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Effect of mood and self-efficacy on task shock sensitivity 

 

The degree to which mood and self-efficacy impacted upon task shock ratings was 

explored with Pearson product correlations (Table 2.7). Since mood and self-efficacy 

per se were of interest in relation to perception of the shocks (and not what 

contributed to a subject’s affective state i.e., experimental condition), correlations 

were carried out on results collapsed across experimental conditions.  

 

As shown in Table 2.7, anxiety, discouragement, and anger were positively 

associated with task shock ratings, in that the more negative a subject felt the more 

PI and UP they reported for each shock. Being the only positive ‘cognitive mediator’ 

of pain, self-efficacy was inversely associated with task shock sensitivity.   

 

 

Table 2.7: Pearson product correlations between mood, self-efficacy and pain 

intensity and unpleasantness of task shocks during the math task5.  

 

Mean shock pain index Mean task mood/ 

self-efficacy Pain intensity Unpleasantness 

Anxiety .51** .58** 

Discouragement .50** .58** 

Anger .44** .47** 

Self-efficacy -.44** -.54** 
Note. **p<.01. 

                                                 
5 Correlations were calculated between mood and individual shock ratings; however, results 

corresponded with the analyses of mean ratings. For brevity, results for mean ratings are presented. 



 93

2.3.4  Cold pressor pain perception 

 

Data considerations 

 

PI and UP were rated using a 0-100 point M-VAS at 30-second intervals spanning 4 

minutes of the CPT. M-VAS ratings were averaged and analysed minute by minute 

to simplify statistical analyses and, importantly, identify analgesic effects likely to 

develop over the course of the CPT. As shown in Table 2.8 (shaded areas), sensory 

(PI) and affective (UP) M-VAS ratings during the CPT were only moderately related, 

giving credence to separate analyses of each aspect of the cold pressor pain 

experience. 

 

Table 2.8: Pearson product correlations between cold pressor pain intensity and 

unpleasantness ratings before and after the math task. 

 

 Pain intensity  

Pre-maths task CPT Post-maths task CPT  

Unpleasantness  1st min 2nd min 3rd min 4th min 1st min 2nd min 3rd min 4th min 

1st minute .52**    .83**    

2nd minute .36** .67**   .44** .79**   

3rd minute  .30* .56** .75**  .14 .55** .87**  

4th minute .20 .49** .74** .84** .06 .39** .75** .87** 
Note. CPT = cold pressor task. 

*p<.05; **p<.01 

 

Randomisation/Methodological check  

 

Separate 2 (controllable, uncontrollable shocks) x 2 (predictable, unpredictable 

shocks) univariate ANOVAs were carried out on pre-math task mean PI and UP 

ratings that were averaged over the duration of the CPT. As indicated in Tables 2.9 

(shaded areas) and 2.10, groups did not differ on cold pressor ratings prior to the 

math task. According to Collins, Moore and McQuay (1997), the CPT in this 

experiment was a valid pain induction method, as PI and UP did not drop below 

moderate levels at any time. 
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Table 2.9: Cold pressor pain intensity and unpleasantness ratings before and after the 

math task.    

 

Pain Intensity 

 

 Controllable Uncontrollable 

CPT Predictable Unpredictable Predictable Unpredictable 

Minute Mean SD Mean SD Mean SD Mean SD 

 
Pre-math task 

1 62.68 17.48 56.79 22.87 53.75 21.94 57.18 22.44 
2 57.07 20.16 54.68 22.37 60.32 15.34 54.39 22.61 
3 44.61 21.04 42.07 27.02 51.30 18.00 39.11 18.19 
4 31.57 20.66 28.79 25.26 34.71 18.33 32.29 18.31 

Mean 48.98 16.77 45.58 20.20 50.02 14.72 45.74 18.30 
 

Post-math task 
1 61.93 20.63 60.21 22.98 56.57 19.08 60.71 15.41 
2 61.25 20.94 56.14 20.83 56.21 15.49 62.04 11.69 
3 41.18 20.81 39.32 26.05 42.39 18.92 42.80 14.12 
4 27.39 20.58 29.68 26.27 30.46 18.00 21.11 15.13 

Mean 47.94 16.32 46.34 20.16 46.41 15.04 46.66 11.27 
 

Unpleasantness  
 

 Controllable Uncontrollable 

CPT Predictable Unpredictable Predictable Unpredictable 

Minute Mean SD Mean SD Mean SD Mean SD 

 
Pre-math task 

1 64.89 19.42 65.46 15.65 51.64 21.89 64.04 19.98 
2 58.71 20.26 55.71 21.52 55.50 20.42 55.68 18.41 
3 47.36 20.83 39.82 22.76 46.20 19.42 40.32 18.30 
4 31.04 19.59 30.75 24.88 30.64 19.91 29.64 17.64 

Mean 50.50 15.81 47.94 19.27 45.99 17.61 47.42 14.15 
 

Post-math task 
1 61.96 21.98 64.54 22.30 54.93 20.93 68.71 12.94 
2 55.96 19.70 53.32 21.24 53.64 18.19 64.21 17.32 
3 36.21 18.53 38.57 25.84 38.18 20.30 43.41 17.53 
4 25.43 20.19 28.64 24.22 26.64 16.81 26.36 21.72 

Mean 44.89 15.72 46.27 20.14 43.35 16.49 50.67 14.12 
Note. CPT = cold pressor task. 
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Table 2.10: F ratios of cold pressor pain intensity and unpleasantness ratings in each 

condition, before the math task. 

 

Source Pain Intensity Unpleasantness 

Controllable (C) 0.02 0.31 

Predictable (P) 0.67 0.02 

C x P 0.01 0.20 
Note. Degrees of freedom = 3,52. 

 

 

Effects of the math task on cold pressor pain perception 

 

Effects of the math task on cold pressor PI and UP ratings were investigated in 

separate 2 (Time: pre- and post-math task) x 4 (Minute: 1", 2", 3", 4") x 2 

(controllable, uncontrollable shocks) x 2 (predictable, unpredictable shocks) repeated 

measures ANOVAs (Table 2.11).  

 

Main effects of Minute were found for PI and UP ratings. Repeated pair-wise 

comparisons (where the rating during the previous minute was the point of 

comparison) indicated that cold pressor UP decreased significantly after each minute 

in the cold water, whereas cold pressor intensity only became less painful from the 

second minute onwards. However, the Time x Minute, Time x Minute x Controllable 

and Time x Minute x Controllable x Predictable effects suggested that changes in PI 

were not equivalent across experimental conditions or occasions.  

 

Since the four-way interaction subsumes the two- and three-way, only the four-way 

interaction will be discussed. To locate the source of significance, change scores 

were calculated by subtracting pre- from post-task ratings, and repeated pair-wise 

comparisons were carried out within each experimental condition. As indicated in 

Table 2.12 and Figure 2.3, subjects in the ‘Uncontrollable-Predictable’ condition 

found the CPT to be less painful after the math task than beforehand, from one 

minute onwards (F (1,13) = 5.34; p = .04). Similarly, subjects in the ‘Uncontrollable-

Unpredictable’ condition found the CPT to be less painful after the math task than  
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beforehand, during the final minute of the CPT (F (1,13) = 19.45; p = .001). Subjects 

in ‘controllable’ conditions experienced no change in cold pressor PI or UP after the 

math task. 

 

 

Table 2.11: F ratios for cold pressor pain and unpleasantness ratings before and after 

the math task.  

 

Source Pain Intensity Unpleasantness 

 Between subjects 

Controllable (C) 0.00 0.02 

Predictable (P) 0.30 0.21 

C x P 0.00 0.36 

 Within subjects 

Time†(T) 0.18 0.86 

T x C† 0.11 1.20 

T x P† 0.80 1.87 

T x C x P † 0.15 0.07 

Minute† (M)  66.16*** 62.40*** 

M x C† 0.69 1.44 

M x P† 0.51 1.78 

M x C x P† 0.59 0.52 

T x M† 3.32* 1.37 

T x M x C† 4.08* 0.53 

T x M x P† 2.25 2.19 

T x M x C x P† 4.81** 0.96 
Note. †Pillai’s Trace F ratio; degrees of freedom: within S’s ‘Minute’ factor = 3,50, and 1,52 for 

remaining analyses. 

*p<.05; **p<.01; ***p≤.001. 
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Table 2.12: Repeated pair-wise comparisonsa of change in cold pressor pain intensity 

ratings from before to after the math task.  
 

Experimental Post-maths cold pressor minute 

Condition 1 2 3 4 

C-P -0.75 4.18 -3.43 -4.18 

C-U 3.43 1.46 -2.75 0.89 

UC-P 2.82 -4.11* -8.91  -4.25 

UC-U 3.54 7.64 3.70 -11.18*** 
Note. a minute 2 was compared with minute 1, minute 3 was compared with minute 2 and minute 4 

was compared with minute 3; C-P = controllable-predictable shocks; C-U = controllable-unpredictable 

shocks; UC-P = uncontrollable-predictable shocks; UC-U = uncontrollable-unpredictable shocks; 

degrees of freedom for comparisons within each group = 1, 13. 

*p<.05; ***p≤.001. 

 

 

 

1 2 3 4

-14
-12
-10

-8
-6
-4
-2
0
2
4
6
8

10
12
14 Contro llab le-Predic tab le

Contro llab le-Unpredic tab le
Uncontro llab le-Predic tab le
Uncontro llab le-Unpredictable

*

* * *

C old pressor minute

C
ha

ng
e 

in
 c

ol
d 

pr
es

so
r 

pa
in

 

 

 

 

 

 

Figure 2.3: Change in cold pressor pain intensity in each group, following 

the math task. Note. *p<.05; ***p≤.001 for within group, minute-by-minute 

comparisons. 
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Effect of mood and self-efficacy on cold pressor pain perception 

 

Change scores 

 

The effects of (task-induced) change in mood and self-efficacy on cold pressor pain 

perception were of primary interest, and explored with Pearson product correlations. 

Since change in mood and self-efficacy per se was of interest in relation to changes 

in cold pressor perception (and not what caused these changes i.e., experimental 

condition), results were collapsed across conditions. ‘Change scores’ were calculated 

by subtracting pre-math task ratings from corresponding ratings after the task. In 

self-efficacy analyses, post-practice trial ratings were used to calculate change after 

the math task. 

 

As shown in Table 2.13, greater increases in anxiety, anger, and to a lesser extent 

discouragement were associated with smaller increases in cold pressor PI and UP 

after the math task. When examined minute-by-minute, these associations appear to 

be strongest for PI ratings towards the end of the CPT. Changes in self-efficacy were 

not related to cold pressor pain perception after the math task. 

 

 

Table 2.13: Pearson product correlations between change in mood, self-efficacy and 

change in cold pressor pain intensity and unpleasantness after the math task.  

 

 Cg in cold pressor pain perception 

Pain intensity  Unpleasantness Cg in 

mood 1 2 3 4 M  1 2 3 4 M 

Ax. -.10 -.07 -.34* -.32* -.26*  -.12 -.24 -.23 -.19 -.26a 

Ds. -.11 -.01 -.17 -.28* -.18  .15 .23 -.05 -.07 .08 

Ag. -.04 -.00 -.18 -.37** -.18  -.04 -.07 -.38** -.38** -.29* 

Sf. -.12 -.11 -.11 -.02 -.12  .08 .12 -.11 -.00 .02 
Note. Cg = change; Ax. = anxiety; Ds. = discouragement; Ag. = anger; Sf. = self-efficacy; 1-4 = cold 

pressor minute; M = mean changes in mood/cold pressor pain perception. 
a p = .055; *p<.05; **p<.01.  
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Absolute scores 

 

In an alternate analysis, the effects of mood and self-efficacy on cold pressor pain 

were explored with Pearson correlations at each time-point. As illustrated in Table 

2.14, no association was found between absolute mood and mean cold pressor PI and 

UP ratings. Since self-efficacy ratings related to performance during the math task, 

the relationship between self-efficacy and cold pressor responses were only explored 

after the math task. Self-efficacy for preventing shocks during the math task was 

negatively related to cold pressor UP and (less so) PI, where self-efficacious subjects 

reported less PI and UP after psychological stress.  

 

 

Table 2.14: Pearson product correlations between mood, self-efficacy and cold 

pressor pain intensity and unpleasantness before and after the math task.  

 

 Cold pressor pain perception 

Pain intensity  Unpleasantness  

Mood 1 2 3 4 M  1 2 3 4 M 

 Pre-math task 

Ax. .09 -.02 -.08 .02 -.16  -.08 -.27* -.16 -.03 .00 

Ds. -.01 -.03 -.06 .02 -.04  .04 -.03 -.12 -.01 -.02 

Ag. -.01 .05 .03 .15 -.11  -.15 -.12 -.16 -.05 -.07 

 Post-math task 

Ax. .15 .24 .11 .10 .16  .15 .15 .11 .11 .18 

Ds. -.14 -.00 -.05 -.14 .03  -.04 .08 .05 .02 -.11 

Ag. .25 .21 .00 -.10 -.01  .20 .02 -.11 -.12 .10 

Sf. -.00 -.25 -.27* -.14 -.20  -.17 -.30* -.34* -.19 -.30* 
Note. Ax. = anxiety; Ds. = discouragement; Ag. = anger; Sf. = self-efficacy; Mood was measured just 

prior to each CPT (see Figure 2.1: Experimental Timeline, p 77). 

*p<.05. 
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2.4  DISCUSSION 

2.4.1  Summary of major findings 

 

The key findings to emerge from the present study were: 

• Lack of control over an aversive stimulus (i.e., shocks during a stressful math 

task) led to an analgesic response to sustained cold pressor pain. Analgesia did 

not occur with shocks during the math task presumably due to their brief, 

infrequent, and moderately intense nature.  

• Stressor predictability alone had no effect on the perception of painful stimuli; 

however, when interacting with stressor controllability, this variable influenced 

the onset and degree of analgesia.  

 

Other findings of interest were that negative mood was associated with heightened 

pain to brief electrical stimuli during the task, whereas negative mood apparently 

inhibited sustained cold pressor pain after the task. Interestingly, low self-efficacy in 

terms of avoiding the shocks was associated with high pain ratings both for shocks 

and the CPT.  

2.4.2  Effects of stressor controllability and predictability on pain 

 

Inhibition of sustained cold pressor pain 

 

As hypothesised, subjects who perceived that they had very little control over shocks 

during the math task experienced significantly greater decreases in cold pressor pain 

when compared to their counterparts in ‘controllable’ (less difficult/ stressful) 

conditions. Significant decreases in self-efficacy after the practice trials for subjects 

in ‘uncontrollable’ conditions confirmed that stressor controllability was successfully 

manipulated in the math task. Studies have shown that exposure to an aversive event 

– over which the subject is not permitted to alter or exert control – produces strong 

analgesic reactions in humans (Gracely et al., 1983; Janssen & Arntz, 2001) and 

animals (Maier, 1986; Maier et al., 1982; Maier et al., 1983) that persists for some 
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time after the termination of the stressful stimulus. Thus, the present findings of SIA 

in humans concur with results demonstrated previously in the literature. 

 

With regards to the effect of stressor predictability on pain perception, no hypotheses 

could be formulated due to largely inconclusive effects in recent literature. Instead, 

stressor predictability was controlled in each condition to clarify the effects (alone 

and in conjunction with stressor controllability) on cold pressor PI and UP. Alone, 

the predictability of task shocks seemed to have very little impact on cold pressor 

pain sensitivity, self-efficacy, mood, or the mediation of mood on pain. These results 

appear to be in contrast with evidence of conditioned analgesia in humans (Flor et 

al., 2002; Willer & Albe-Fessard, 1980a; Willer et al., 1981). However, pain 

tolerance and threshold rather than PI were assessed in conditioning studies – 

measures which are affected by factors other than pain sensitivity (e.g., instructions, 

motivation - Gelfand, 1964; Wolff et al., 1965). Moreover, Willer et al. (1980a; 

1981) failed to separate pain from stress (using noxious foot-shocks as a stressor), 

and measured the nociceptive flexion reflex as a pain-related outcome instead of 

subjective reports of pain. Therefore, divergent methodologies make it difficult to 

compare these findings with the current results. 

 

Despite having relatively little effect on its own, stressor certainty interacted with 

stressor controllability, resulting in pain insensitivity in ‘uncontrollable-

unpredictable’ and ‘uncontrollable-predictable’ conditions at different times during 

the CPT. A slight hyperalgesic effect noted early on in the ‘uncontrollable-

unpredictable’ condition appeared to mask an analgesic response observed in the 

‘uncontrollable-predictable’ condition. Previous research has established that 

unpredictable events are more aversive than predictable events (Seligman et al., 

1971), leading to higher secretions of gastric acid, more stomach lesions, greater 

weight loss in response to stress, and more distress vocalisations (Abbott et al., 

1984). Furthermore, predictable shocks are preferred over unpredictable shocks when 

the duration of the stress is brief and not intense (Abbott et al., 1984). In accordance 

with these findings, distress associated with unpredictable shocks may have initially 

overridden endogenous analgesic effects that developed towards the end of the CPT.  
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Hyperalgesia in response to brief electrical stimuli 

 

The controllability of electric shocks did not influence shock PI or UP. Moreover, 

ratings increased throughout the math task. These findings diverge from animal 

studies (Akil et al., 1976; Hayes et al., 1976; Hyson, Ashcraft, Drugan, Grau, & 

Maier, 1982; Jackson et al., 1979; Lewis et al., 1980; Lewis et al., 1981; Lewis et al., 

1984; Maier et al., 1982) and human studies (Flor et al., 2002; Willer & Albe-

Fessard, 1980a; Willer et al., 1981) that demonstrated immediate SIA with 

inescapable shocks. The difference between this study and findings with animals 

could be attributed to the number and duration of shocks delivered. To illustrate, 

shocks in animal research were considerably longer in duration (i.e., 5-180 seconds 

versus 25 milliseconds), and delivered more frequently during experimentation (i.e., 

60-80 shocks versus 3 shocks). In animals, it has been established that many (at least 

5) prolonged shocks (>60 seconds - Maier et al., 1983), over an extended period of 

time (20-30 minutes) are necessary for the animal to learn that it has no control over 

these events, and subsequently activate descending pain inhibitory influences (Hyson 

et al., 1982). Similarly, shocks used in other human studies were considerably more 

intense and frequently delivered (e.g., 70 mA, 19-20 times during three 90 minute 

sessions - Willer et al., 1981) than those used in the present study (i.e., 15 mA, 3 

times during a 20 minute math task). Therefore, although subjects in uncontrollable 

conditions learnt that the electrical shocks were inescapable, the frequency, duration 

and intensity of shocks may have been insufficient for SIA to inhibit shock  

PI and UP. 

 

Similarly, shock predictability failed to influence reports of shock PI or UP. In a 

large number of studies reviewed by Miller (1981), there was very little effect of 

stressor certainty on subjective reports of pain. Thus, the unremarkable effects of 

predictability on cold pressor and electrical pain stimuli concurs with this extensive 

review and recent laboratory studies (Crombez et al., 1994; Klemp & Rodin, 1976; 

Lejuez, Eifert, Zvolensky, & Richards, 2000).  
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2.4.3  Cognitive-affective mediators of pain 

 

The current study examined the effects of experimentally induced anxiety, 

discouragement, anger and perceived self-efficacy on pain perception.  The math task 

proved to be a powerful cognitive stressor as subjects from each experimental 

condition experienced significant increases in negative emotion during the task. 

Some moods, such as discouragement and anger, remained elevated even after the 

task had been completed. As expected, ‘control’ over shocks influenced feelings of 

discouragement and self-efficacy both during and after the task, where subjects who 

perceived shocks to be uncontrollable reported significantly greater levels of 

discouragement and lower self-efficacy than those who perceived the shocks to be 

controllable. 

 

Previous research with animals has established that predictable events are less 

aversive than unpredictable events (Abbott et al., 1984). Therefore, it is not 

surprising to find that anxiety in humans is lower for predictable than unpredictable 

aversive events (Crombez et al., 1994). In the present study, subjects in predictable 

and unpredictable conditions experienced similar levels of anxiety. This may be 

attributed to a number of factors. First, anxiety was not measured during the warning 

period, when the screen changed from black to blue, only periodically throughout the 

task and anxiety was averaged at the end. Therefore, the measurement of anxiety 

may not have been sensitive enough to detect differences during times in which 

shocks were predictable. Second, the task required that subjects perform well in 

between blue screens, meaning that times signalling no aversive event (i.e., black 

screen) were not times to relax, unlike in other experiments. Furthermore, the math 

task was a powerful stressor causing persistent negative mood (including anxiety), 

and it may be that effects of the stressor itself outweighed the benefits of warning 

periods.  Finally, the lack of difference between conditions could be attributed to the 

fact that shocks were not delivered during every warning period, possibly weakening 

the manipulation of predictability in this study.  

 

The manipulation of predictability failed to influence mood and had little effect on 

pain perception, therefore, appearing not to be a promising technique. Thus, stressor 

predictability was not adopted in subsequent studies. Methodological limitations of 
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the present study and possible implications of assessing predictability in future 

studies will be addressed in the general discussion. 

 

Negative mood and inhibition of cold pressor pain 

 

Increases in anxiety, discouragement and anger during the math task were associated 

with a reduction in cold pressor pain after the math task. Emotional inhibition of cold 

pressor PI and UP following the cognitive stressor concurs with the majority of 

animal and human studies in which subjects were exposed to uncontrollable, 

aversive, and intensely arousing stimuli. For instance, SIA experienced by animals 

exposed to uncontrollable stressors was reversed by diazepam, an anti-anxiety agent 

(Maier, 1990; Takahashi et al., 1988). These results have been replicated in humans 

in situations where intense anticipation (Willer & Ernst, 1986) or fear of actual 

electrical stimuli (Rhudy & Meagher, 2000) led to analgesic responses that could be 

reduced or reversed by diazepam.  

 

Rhudy and Meagher (2001b) suggested that the valence (negative/positive) and 

intensity of emotions interact to influence pain. According to this notion, pain is 

facilitated by negative emotion of low to moderate intensity, but inhibited by 

negative emotions that lead to high levels of arousal. Therefore, the association 

between intense negative emotions and a reduction in cold pressor pain in the present 

study provides support for Rhudy and Meagher’s (2001b) notion that highly arousing 

negative emotions inhibit pain. These results also demonstrate that negative mood 

mediated analgesic effects for some time after the math task. 

 

No relationship was detected between absolute mood and cold pressor pain ratings 

before or after the math task. At first glance, these results seem puzzling and at odds 

with those of change scores (discussed above). However, one possible explanation is 

that inter-subject variability in absolute mood ratings diluted the relationship 

between mood and cold pressor pain perception. To explain, absolute ratings reflect 

rating biases and socially desirable reporting, and would thus be highly subject to 

individual differences. Change in mood, on the other hand, would probably be rated 

according to ‘similar rules’ across participants, thus reducing the error variance and 

‘unmasking’ the effects of mood on pain. 
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There was no relationship between changes in self-efficacy and changes in cold 

pressor PI and UP after the math task; hence, self-efficacy failed to mediate SIA 

persisting beyond the stressor. The present findings concur with studies 

demonstrating a lack of relationship between self-efficacy and PI (Litt, 1988; 

Ohlwein et al., 1996; Stevens, 1992). Absolute ratings of self-efficacy were 

negatively related to cold pressor pain sensitivity after the math task, perhaps for the 

same reasons mentioned for electro-cutaneous stimuli (i.e., positive mood associated 

with high self-efficacy leading to pain reduction; see next paragraph). 

 

Negative mood and sensitisation to brief electrical pain 

 

Correlational analyses identified a positive association between mood and the 

perception of electric shocks. For instance, the more anxious, discouraged and angry 

a subject was, the more UP and/or PI they experienced during the shocks. Although 

pain sensitisation by negative affect has been corroborated by a large body of human 

research (Bandura, Taylor, Williams, Mefford, & Barchas, 1985; Cornwall & 

Donderi, 1988; Drolet et al., 2001), these findings are at odds with those found for 

the cold pressor stimulus.  

 

It has been proposed that emotions such as anxiety and depression heighten 

sensations of pain through the increased release of noradrenaline - a neurotransmitter 

known to sensitise nociceptors in the periphery, thereby increasing PI (Romano & 

Turner, 1985). Furthermore, there is some suggestion that a reduction in 

parasympathetic tone during stress may also deactivate other pain inhibitory systems 

(Pinerua-Shuhaibar, Prieto-Rincon, Ferrer, Bonilla, Maixner, & Suarez-Roca, 1999). 

Others explain negative mood-induced acute pain sensitivity with theories of 

attention (Arntz et al., 1994) and, less convincingly, attribution of arousal (Janssen, 

2002). Neither theory adequately accounts for mood sensitisation of pain, as negative 

mood should be attributed to the math task (away from the pain), hence decreasing 

perceived intensity of the shocks. 

 

In the context of cold pressor findings, the most credible explanation for these results 

is that the hyperalgesic effects of negative mood masked pain inhibitory mechanisms 

for brief, intermittent electrical pain but not prolonged cold pressor pain. In other 
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words pain facilitatory effects of negative mood were evident for less arousing pain 

stimuli, namely electric shocks. This explanation is in keeping with Rhudy and 

Meagher’s (2001b) notion that low to moderate emotional arousal facilitates pain, 

whilst high levels of arousal inhibits pain. It is possible that negative mood and 

arousal during the math task intensified during the highly noxious cold pressor 

stimulus, unmasking pain inhibitory influences.   

 

Perceived self-efficacy to control shock frequency was negatively related to shock 

sensitivity, in that self-efficacious subjects reported less shock PI and UP. Although 

self-efficacy has been identified as a strong predictor of pain threshold and tolerance 

(Baker & Kirsch, 1991; Bandura et al., 1988; Bandura et al., 1987; Reese, 1983; 

Vallis & Bucher, 1986), the effect of self-efficacy on PI or UP is less clear (Holroyd 

et al., 1984; Litt, 1988; Ohlwein et al., 1996; Stevens, 1992; Stevens, 1993). 

Moreover, in the only known study in which an association was identified, self-

efficacy and PI were positively related (Stevens, 1993). The divergent results of the 

present study may be explained by the type of self-efficacy measured, which related 

to performance on the math task rather than PI/UP regulation (in contrast to Stevens, 

1993). According to Bandura and colleagues (1987), self-efficacy can bring relief 

from pain in two ways: firstly, by reducing negative anticipations which heighten 

physiological arousal and bodily tension that exacerbates perceived pain; secondly, 

by diverting attention to the challenge at hand, rather than towards painful 

sensations. Positive mood has been associated with reductions in pain (Rhudy & 

Meagher, 2001b) and since self-efficacy was inversely associated with anxiety, 

discouragement and anger in the present study6, it is possible that high self-efficacy 

may have indirectly reduced shock PI and UP via positive mood. This explanation is 

corroborated by the positive relationship found between negative mood and shock  

PI and UP. 

 

In summary, negative mood and self-efficacy mediated the effects of stressor 

controllability on the perception of both electrical and cold pressor pain stimuli. 

Specifically, more intense anxiety, discouragement, anger, and low self-efficacy 

were associated with high ratings of electrical PI and UP during the math task. 

                                                 
6 See Appendix 1, p 319. 
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Conversely, negative mood persisting beyond the math task appeared to inhibit cold 

pressor pain perception. The action of these mediators could be partially explained 

by the nature of each pain stimulus. To clarify, although subjects were strongly 

encouraged to persist with each pain stimulus, the CPT was prolonged, and intensely 

painful which may have encouraged the activation of endogenous pain inhibitory 

mechanisms. However, since cold pressor analgesia was only found in the 

‘uncontrollable’ conditions, the stress of the math task in conjunction with the CPT 

appeared to be necessary to activate pain inhibitory systems. Electrical shocks, on the 

other hand, were brief and intermittent, and were more likely to be affected by pain 

facilitatory effects of moderately arousing negative emotions during the math task.  
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CHAPTER THREE 

3.  STUDY 2  

3.1  INTRODUCTION 

3.1.1  Rationale/Purpose of this study 

Opioid and nonopioid mediators of stress-induced analgesia (SIA) 

 

The previous study provided preliminary support for the notion that the 

controllability of an aversive event and intense, experimentally induced anxiety, 

discouragement and anger were associated with endogenous pain inhibition – at least 

with cold pressor pain stimuli.  

 

Studies have shown that endogenous opioids mediate a late-analgesic response in 

animals exposed to prolonged inescapable stressors (Grau et al., 1981; Jackson et al., 

1979; Lewis et al., 1980; Lewis et al., 1981; Maier et al., 1982), and similarly in 

humans exposed to uncontrollable stress that is induced experimentally (Bandura et 

al., 1988; Clark et al., 1986; Flor et al., 2002; Pitman et al., 1990; Willer et al., 1981; 

Willer & Ernst, 1986) and in real-life (Janssen & Arntz, 2001; van der Kolk et al., 

1985). Nonopioid forms of SIA, on the other hand, are induced after exposure to 

escapable stressors and dissipate more rapidly than opioid-mediated analgesia (Maier 

et al., 1982; Maier et al., 1983). Also, opioids are present in neural pathways that 

mediate both mood and pain in humans (Janssen, 2002). Therefore, mood-mediated 

and stress-induced decreases in pain after the psychological stressor in Study 1 may 

have been due to the release of endogenous opioids. Thus, the administration of 

naltrexone, an opioid antagonist, would help assess whether opioid or nonopioid 

substrates mediated the analgesic effect observed in Study 1.  
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Separation of pain and stress 

 

Pain and stress have often been confounded in studies examining SIA. To ensure that 

pain (from the electric shocks) was not confounded with the stress of the math task, 

an additional ‘uncontrollable’ condition with double the number of shocks was 

included in the experimental design. Therefore, any difference in pain perception 

between the ‘hard task-many shocks’ and ‘hard task-few shocks’ conditions would 

suggest that the pain stimulus, and not the psychological stressor alone, may be at 

least partly accountable for analgesic effects. Shocks were increased from three to 

seven, as this was the maximum number of shocks that could be delivered 

throughout the math task whilst still maintaining the ‘random’ delivery sequence. 

Physiological measures of stress – BP/pulse rate 

 

Challenging mental activities such as timed mental arithmetic questions, and stressful 

tasks requiring active coping can lead to increases in BP and heart rate (Andreassi, 

1989). Hence, measures of systolic and diastolic BP and pulse rate were included as 

general physiological indices of mental stress in the present study.  

Interaction between cardiovascular and pain inhibitory systems 

 

The cardiovascular system - via the stimulation of baroreceptors or centrally-

mediated analgesic mechanisms - plays an important role in endogenous 

antinociceptive responses to acute pain in normotensive humans (Bruehl et al., 1992; 

McCubbin & Bruehl, 1994). Recent investigations have suggested that opioids may 

mediate the blood pressure-hypoalgesia relationship that occurs within the 

normotensive humans (Bragdon et al., 2002; McCubbin & Bruehl, 1994). 

Nonetheless, few studies have convincingly identified the physiological substrates 

underlying this relationship within the normotensive range of BP. Examining the 

relationship between cardiovascular and acute pain responses in normotensive 

subjects under opioid blockade could shed light on the role of opioids in the 

cardiovascular-pain regulatory relationship. 
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3.1.2  Aims of Study 2 

 

Primary aims 

 

The first aim was to replicate the finding from Study 1 that an uncontrollable 

psychological stressor (math task) decreased pain. 

 

The second aim was to determine whether analgesia induced by the math task was 

mediated by opioid or nonopioid substrates. To test whether the opioid system was 

activated, one half of the subjects received a capsule containing naltrexone, an opioid 

antagonist. The other half were given an identical capsule of sugar (i.e., placebo). 

 

The third aim was to investigate whether the number of noxious electrical shocks 

during the math task, or the task itself, inhibited pain.  

 

Secondary aim 

 

The fourth aim was to investigate the effect of cardiovascular activity on pain 

sensitivity in normotensive subjects, both during the psychological stressor and at 

times of rest. Opioid mediation of the cardiovascular-pain relationship was examined 

by comparing responses in subjects under opioid blockade with those who were not. 

3.1.3  Hypotheses for Study 2 

 

In light of aims of the second study, it was hypothesised that: 

 

Lack of control over shocks during the math task should lead to stress and the 

activation of endogenous opioids. Therefore, placebo recipients in ‘uncontrollable’ 

conditions should give lower ratings of cold pressor PI and UP after the math task, 

compared to ratings beforehand. Conversely, subjects under opioid blockade should 

demonstrate increased cold pressor pain sensitivity. Subjects in the ‘controllable’ 

condition were expected not to experience stress, nor the activation of endogenous 

opioids. Hence, cold pressor pain perception was expected not to change in either 

placebo or naltrexone groups before or after the math task in the ‘controllable’ 

condition. 
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As the inclusion of more shocks in the ‘hard task-many shocks’ condition was purely 

exploratory, it was unclear what effects this would have on the inhibition of pain. 

Thus, no hypotheses could be generated. 

 

Based on results of previous normotensive research, it was hypothesised that 

cardiovascular activity would be negatively related to PI and UP ratings for electrical 

and cold pressor stimuli in placebo participants. However, there should be no 

evidence of a relationship between cardiovascular activity and pain sensitivity 

following opioid blockade with naltrexone.  

3.2  METHOD 

3.2.1  Subjects 

 

Seventy subjects aged between 17 and 55 years [34 males: M = 24.88 years, SD = 

8.49; 36 females: M = 23.61 years, SD = 8.77] participated in Study 2. Criteria used 

to exclude subjects were identical to criteria described in Study 1. Additional 

exclusion criteria included digestive problems, as naltrexone produces ‘gastric 

distress’ in 20% of healthy subjects (Meyer, Straughn, Lo, Schary, & Whitney, 

1984), and medication that alters liver metabolism, as these drugs alter the 

concentration of naltrexone (Kleber, 1985). Four subjects withdrew prematurely due 

to the noxious nature of the CPT (N = 1) or ‘hard task-few or many shocks’ 

conditions of the math task (N = 3). Although attrition from the math task was non-

random, numbers were minimal and deemed not to impact upon the overall results. 

Subjects were recruited from Murdoch University undergraduate psychology classes 

and the general university population. Subjects were remunerated $15 for their 

participation. Sixty-eight subjects were right-handed and two were left-handed as 

established by Bryden’s Handedness Questionnaire (1977) (Appendix 2, p 320).  

 

Subjects refrained from eating and smoking two hours prior to the experiment, as an 

empty stomach would facilitate drug absorption. As naltrexone interacts with alcohol 

(Kleber, 1985), subjects abstained from consuming alcohol 12 hours prior to, and at 

least 24 hours after ingesting the drug. Subjects abstained from consuming 
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caffeinated beverages 12 hours before being tested so that reproducible 

cardiovascular measures could be obtained (Shapiro, Jamner, Lane, Light, Myrtek, 

Sawada, & Steptoe, 1996).  

3.2.2  Experimental design/Overview 

 

As shown in Figure 3.1, subjects completed mood/self-efficacy ratings, CPTs and 

had their BP and pulse rate measured before the drug, approximately 50-60 minutes 

after the drug, and on completion of the math task. Prior to the math task, subjects 

were randomly assigned to the placebo or naltrexone group in one of three 

experimental conditions (‘easy task-few shocks’, ‘hard task-few shocks’, and ‘hard 

task-many shocks’) balanced for age (F (5,64) = 1.28; p = .28) and sex (Table 3.1).  

Mood/ self-efficacy ratings, cardiovascular measurements, and PI/UP shock ratings 

were completed during the task. Subjects were tested individually. 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.2.3  Procedure/Materials 

 

As in Study 1, the subject was seated at a desk inside one of two air-conditioned 

cubicles maintained at 22 ± 2°C (Cubicle A) and given a consent form to read 

(Appendix 5, p 325). Informed consent was obtained from each subject in writing, 

and a medical checklist (Appendix 6, p 326) was completed.  

Figure 3.1: Experimental timeline for Study 2. 
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Table 3.1: Subject age and sex in each experimental condition. 

 

 EFS HFS HMS 

 Naltrexone Placebo Naltrexone Placebo Naltrexone Placebo 

Mean 24.45 22.90 21.00 29.17 23.23 24.82 

SD 6.79 4.82 4.58 12.86 7.96 10.65 

N 6F, 5M 5F, 5M 6F, 7M 6F, 6M 7F, 6M 6F, 5M 
Note. EFS = easy task-few shocks; HFS = hard task-few shocks; HMS = hard task-many shocks; F = 

females; M = males. 

 

Mood and self-efficacy ratings 

 

As described in Study 1, mood (anxiety, confusion, discouragement, anger, 

sluggishness and liveliness) and self-efficacy (with regards to avoiding electric 

shocks during the math task) were rated on separate 0-100 point VAS. Paper and pen 

ratings were made pre-drug, post-drug, and after the math task, and ratings were 

made using computer-generated VAS at irregular intervals during the math task, as 

described in Study 1. 

Cardiovascular responses 

 

BP and heart rate were measured as they serve to indicate mental load and task 

difficulty (Andreassi, 1989). Resting measures were compared with those taken 

during the math task, to assess the effect of a cognitive stressor on cardiovascular 

activity.  

 

Systolic and diastolic blood pressure (SBP, DBP) and pulse rate were measured pre-

drug, post-drug, during and after the math task with an M4 Omron automatic digital 

BP monitor. The automatic monitor measured BP within ± 3 mmHg (or 2 %), and 

pulse rate within ± 5 % of the actual reading (manufacturer’s guarantee)7. Initial 

                                                 
7 Prior to use, the accuracy of the electronic monitor was calibrated with a mercury manometer by 

connecting a cuff to both. Three measures were taken from eight subjects and averaged. During the 

manual method, SBP was indicated by the first appearance (Phase 1) and DBP by the disappearance 

(Phase 5) of the Korotkoff sounds (Shapiro et al., 1996). Measuring DBP at Phase 5 rather than at 
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measures were taken after the subject had been resting in excess of five minutes 

(Shapiro et al., 1996). A medium 140 mm (width) x 480 mm (length) BP cuff was 

applied to the (clothing free) dominant forearm, with the bottom edge of the cuff 2 

cm above the bend of the elbow covering the brachial artery. Although the right arm 

can lead to BP measures 2-10 mmHg higher than the left, BP is usually measured 

from this arm (O'Brien & O'Malley, 1981). The cuff automatically inflated to 170 

mmHg, deflating 5 mmHg/sec until the DBP range was reached, after which the 

pressure was released and the cuff was fully deflated.  

 

During all measurements, subjects were seated with their forearm resting 

horizontally on a desk, at the level of the heart. Placing the cuff at heart level reduced 

the hydrostatic effects on BP (Shapiro et al., 1996). Hydrostatic effects alter BP by 

0.7 mmHg per centimetre that the cuff is placed above or below the level of the 

heart. Subjects were instructed to not speak and remain as relaxed and still as 

possible when the cuff was inflating, as movement or muscle tension often resulted 

in an error. This was stressed to subjects prior to the math task, and a sock was 

placed over the subject’s dominant hand to prevent him or her from using this hand 

to answer math questions during the task. 

 

Although automatic devices have been deemed highly convenient (Shapiro et al., 

1996), it is their susceptibility to artifactual readings that highlights the importance of 

identifying such errors (Clark, Denby, Pregibon, Harshfield, Pickering, Blank, & 

Laragh, 1987). According to Shapiro et al. (1996), a measurement ± 30 mmHg in the 

context of adjacent readings could be classified as an artefact or outlier. Since BP 

varies at most ± 10 % over a 24-hour period (Parati, Mutti, Omboni, & Mancia, 

1992), Shapiro’s criterion appeared to be justified. Therefore, any SBP, DBP or pulse 

reading ± 30 mmHg from adjacent readings was substituted with an average of 

nearby readings. Similarly, a missing measurement (resulting from an error) was 

                                                                                                                                           
Phase 4 when Korotkoff sounds have become muffled is the preferred method (O'Brien & O'Malley, 

1981). SBP and DBP obtained from the electronic monitor correlated closely with measures from the 

manual method (SBP: r=.88, p=.004; DBP: r=.92; p=.001).  Similar relationships were found when 

calibrating the unit (averaging three measures from six subjects) at the end of the study  

(i.e., SBP: r=.99, p<.001; DBP: r=.69, p=.13), as recommended by Shapiro et al. (1996). 
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substituted with an average of values temporally closest to the missing value (e.g., 

readings taken before and after). The presence of a camera inside Cubicle B assisted 

in ascertaining the reason for erroneous readings. 

 

On each occasion, resting measures were taken five times at 2-minute intervals. To 

avoid the effect of startle (Shapiro et al., 1996), the first two measures were 

discarded, and the following three measures were averaged. Throughout the math 

task measures were taken every two minutes until task-completion, resulting in a 

maximum of 17 measures. The cuff was inflated at 2-minute intervals to allow re-

circulation of blood, and to minimise discomfort during prolonged, repeated 

measures (O'Brien & O'Malley, 1981). Realistically, the rate of inflation/deflation 

only allowed for this rate of measurement. 

Cold pressor tasks 

 

As detailed in the previous study, subjects completed a 4-minute CPT in Cubicle A 

before and after the drug, and immediately after the math task. The equipment and 

procedures used during each CPT were identical to those used in Study 1 (Appendix 

7, p 327 for standardised instructions). Slight changes in water temperatures during 

each CPT (warm -1.90°C; cold +1.5°C) were consistent across groups.  

Naltrexone intervention 

 

Naltrexone is known to competitively bind to opioid receptors, thereby counteracting 

analgesic effects of opiates and endogenous opioid activity (Gonzalez & Brogden, 

1988). To investigate endogenous opioid activation during the current experiment, 

half the subjects in each experimental condition were administered a flour-packed 

opaque gel capsule containing a 50 ml caplet of naltrexone, and the other half 

received an identical capsule containing a same-sized sugar pellet, or placebo. A 50 

ml dose of naltrexone can block the powerful subjective and objective effects of 

intravenously-administered heroin (25 ml) in opiate-dependent individuals (Gonzalez 

& Brogden, 1988). Therefore, this dose was deemed adequate to produce complete 

blockade of endogenous opioids. Using a double-blind design, each drug condition 
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was assigned a code by someone other than the experimenter, and the experimenter 

randomly assigned subjects to either code.  

 

When compared to another commonly investigated opioid-antagonist, naloxone, 

naltrexone possesses minimal agonistic properties (Gonzalez & Brogden, 1988) and 

is longer-lasting with a half-life of approximately four hours (Meyer et al., 1984). 

Naltrexone is administered easily (orally) and demonstrates excellent systemic 

availability in proportion to the administered dose - with a reported 60% reaching 

systemic circulation (Gonzalez & Brogden, 1988). Naltrexone reaches peak plasma 

levels within one hour when taken on an empty stomach; hence, testing was 

suspended for approximately 60 minutes after drug administration to achieve 

maximum absorption. 

 

In a small proportion of healthy subjects (4-20%) a 50 ml dose of naltrexone is 

associated with side effects such as lethargy (King, Volpicelli, Frazer, & O'Brien, 

1997), mild malaise (Hollister, Johnson, Boukhabza, & Gillespie, 1981; Mendelson, 

Ellingboe, Keuhnle, & Mello, 1978; Meyer et al., 1984), decreased mental acuity 

(King et al., 1997), anxiety (Malcolm, O'Neil, Von, & Dickerson, 1987), 

constipation, light-headedness, nausea, lack of appetite, body aches and headaches 

(Meyer et al., 1984). However, these studies have been criticised for serious 

methodological flaws such as inadequate sampling, reliance on anecdotal reports and 

lack of valid assessment instruments (Malcolm et al., 1987). In the treatment of 

alcohol and opiate addiction, Miotto, McCann, Basch, Rawson, and Ling (2002) 

reported that dysphoria was not a serious side-effect stemming from the long-term 

use of naltrexone. Similar results have been found in non-addicted healthy 

individuals taking naltrexone for two months (Malcolm et al., 1987). In light of these 

results, a one-off dose of naltrexone was deemed unlikely to cause serious malaise. 

In fact, only 14% of subjects taking naltrexone in the present study reported mild 

side effects (i.e., nausea, fatigue or decreased mental acuity) – none of which 

prevented subjects from completing the experiment. 
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Math task  

 

Subjects completed a timed, computer programmed 30-minute8 mental arithmetic 

task in Cubicle B. Aside from the parameters of each experimental condition 

(described in the next paragraph), the instruments and procedures were identical to 

those used in Study 1. 

  

Specifically, the ‘easy task-few shocks’ (EFS) and the ‘hard task-few shocks’ (HFS) 

conditions were identical to the ‘controllable’ and ‘uncontrollable’ experimental 

conditions, respectively, in Study 1. The ‘hard task-many shocks’ (HMS) condition 

also resembled the ‘uncontrollable’ condition in the first study; however, the number 

of shocks was increased from three to seven. Task duration was extended from 20 to 

30 minutes to accommodate the increase in number of shocks. Consequently, shocks 

were scheduled at different times across conditions (EFS and HFS: 3, 14, 27 minutes 

into the task; HMS: 3, 6, 12, 14, 16:30, 19, 27 minutes into the task). As in Study 1, 

shocks were delivered at irregular intervals to prevent subjects from guessing the 

schedule of shocks, and to add validity to the cover story of the ‘performance-shock’ 

contingency during the math task. 

 

Task shocks 

 

Stimulation consisted of either three or seven 15 mA ± 0.95 (SEM) rectangular 

pulses of 25 milliseconds duration. Minor variations in shock intensity may be 

attributed to slight fluctuations in skin impedance (M = 4.2 K ohms ± 0.5 SEM) 

induced by the repeated delivery of shocks. The instruments and procedures used to 

deliver the shocks and record the PI and UP ratings of each pulse were identical to 

those described in Study 1.  

 

 

                                                 
8 Subjects took approximately 32-34 minutes to complete the task as the task was suspended each time 

subjective ratings were completed. 
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Debriefing 

 

The purpose of the study was explained and subjects were remunerated after all tasks 

were completed. Details of the math program were concealed as the task was to be 

used in Study 3. Subjects were not told which drug they had taken to preserve the 

double-blind nature of the design. Instead, subjects were instructed to contact the 

experimenter if they experienced any adverse effects, and that the code could be 

‘broken’ if necessary. After being ‘broken’, the code was re-set according to 

procedures mentioned above (see Naltrexone intervention, p 115). Due to the double-

blind nature of the design, all subjects were warned against consuming alcohol 

within 24 hours after the experiment. 

3.3  RESULTS 

3.3.1  General data outline 

 

Dependent variables were explored at three time points during the experiment: prior 

to drug administration; post-drug administration/prior to the math task; and post-

math task. Initial ratings helped identify pre-existing, chance differences among 

groups. Post-drug ratings served a dual purpose: first, to detect the effects of 

naltrexone on the dependent variables, and second, to act as baseline ratings from 

which change during and after the math task could be calculated. 

 

Pearson product correlations and hierarchical linear multiple regression analyses 

were both computed as they each provided a unique insight into the data. In 

particular, correlations provided an overview of relationships between continuous 

dependent variables, whilst multiple regression analyses allowed for the 

simultaneous analysis of continuous and categorical data - from which definitive 

conclusions regarding group differences could be drawn. Results of regression 

analyses are summarised as t values due to the large number of analyses. The issue of 

multicollinearity, whereby variables (including the interaction term) are correlated, is 

usually addressed by centering continuous variables (Jaccard, Turrisi, & Wan, 1990). 

Centering is the process by which the grand mean is subtracted from each subject’s 
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raw score, resulting in a deviation score (Cohen & Cohen, 1983). In the present 

study, the data satisfied the criterion of r ≤ .85 within the matrix of independent 

variables (Pedhazur & Kerlinger, 1982), thus departing from singularity. Therefore, 

centering was deemed unnecessary.  

 

Identical practices were adopted in Study 3 and 4. 

3.3.2  Randomisation check 

 

Separate 2 (Drug: naltrexone, placebo) x 3 (Condition: EFS, HFS, HMS) univariate 

ANOVAs were carried out on each pre-drug mood, self-efficacy, resting BP and 

pulse rate, and mean PI and UP ratings on the CPT. As indicated in Tables 3.2 and 

3.3, groups did not differ on any dependent variable at the outset of the experiment. 

Cardiovascular measures were within normotensive ranges (Lobstein et al., 1989; 

O'Brien & O'Malley, 1981). 
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Table 3.2: Pre-drug measures in each experimental condition. 

 

 Placebo Naltrexone 

 EFS  

(N = 10) 

HFS 

(N = 11) 

HMS 

(N = 11) 

EFS  

(N = 11) 

HFS 

(N = 14) 

HMS 

(N = 13) 

 M SD M SD M SD M SD M SD M SD 

 Mood 

Ax. 29.5 19.3 27.0 22.1 38.0 23.1 33.2 19.0 24.1 19.7 35.8 21.0

Ds. 12.4 10.3 16.7 17.7 29.4 28.3 27.8 22.5 10.2 12.3 17.5 22.9

Ag. 3.2 3.2 2.7 4.2 10.4 11.3 8.6 13.7 6.1 8.8 10.6 17.4

Sf. 53.6 30.1 44.2 27.4 39.9 18.9 52.1 22.7 56.7 17.3 48.3 17.2

 Cardiovascular measure 

SBP 119 12.5 118 8.8 121 12.6 116 18.6 118 12.2 113 12.8 

DBP 74.0 11.0 73.1 10.8 72.5 12.8 72.8 11.3 71.6 8.8 67.1 6.7 

Pulse  79.5 15.1 84.4 12.6 81.3 11.9 81.7 12.2 77.0 7.0 74.6 12.6 

 Cold pressor pain index 

PI 46.5 10.2 39.5 13.3 46.4 19.0 44.1 21.1 45.6 12.7 46.4 14.5

UP 47.8 8.3 43.2 16.3 48.1 21.2 40.5 24.6 45.4 14.1 40.8 17.2
Note. M = mean; SD = standard deviation; Conditions: EFS = easy task-few shocks; HFS = hard task-

few shocks; HMS = hard task-many shocks; Ax. = anxiety; Ds. = discouragement; Ag. = anger; Sf. = 

self-efficacy; SBP and DBP = systolic and diastolic blood pressure, respectively (scale = mmHg); 

Pulse = heart beats per minute; PI = pain intensity; UP = unpleasantness. 

 

 

Table 3.3: F ratios for pre-drug measures across conditions. 

 

 Mood Cardiovascular Cold pressor 

Source Ax. Ds. Ag. Sf. SBP DBP Pulse PI UP 

Condition (C) 1.79 1.56 1.92 0.94 0.09 0.75 0.41 0.40 0.00 

Drug (D) 0.01 0.04 1.24 1.45 1.31 1.22 1.91 0.12 0.94 

C x D 0.17 2.87 0.31 0.57 0.55 0.31 1.11 0.46 0.58 
Note. Degrees of freedom = 5, 64; Ax. = anxiety; Ds. = discouragement; Ag. = anger; Sf. = self-

efficacy; SBP and DBP = systolic and diastolic blood pressure, respectively (scale = mmHg); Pulse = 

heart beats per minute; PI = pain intensity; UP = unpleasantness. 
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3.3.3  Mood and self-efficacy 

 

Effects of the drug on mood and self-efficacy 

 

Separate 2 (Drug: naltrexone, placebo) x 2 (Time: pre-drug, post-drug) repeated 

measures ANOVAs were carried out on each mood rating (Table 3.4 and 3.5). Apart 

from being examined in an initial randomisation check, self-efficacy ratings were not 

analysed before the math task as they related to performance during the task. 

Similarly, analyses were collapsed across experimental conditions, as this factor was 

not expected to influence mood ratings before the math task. As indicated by results 

in Table 3.5, anxiety (M = 31.25 versus M = 25.83) and discouragement (M = 18.99 

versus M = 13.79) decreased after subjects had remained in the experimental 

environment for over an hour. Mood was not affected by drug, and no interactions 

were found. 

 

Table 3.4: Pre-and post-drug mood ratings (collapsed across experimental condition). 

 

 Placebo (N = 32) Naltrexone (N = 38) 

 Pre-drug Post-drug Pre-drug Post-drug 

Mood Mean SD Mean SD Mean SD Mean SD 

Anxiety 31.54 21.47 27.15 22.47 30.73 20.10 24.75 24.45 

Discouragement 19.72 21.08 13.38 18.21 17.78 20.27 13.83 17.65 

Anger 5.51 7.93 4.81 11.43 8.38 13.42 5.54 9.48 

 

 

Table 3.5: F ratios of pre- and post-drug mood ratings (collapsed across condition). 

 

Source Anxiety Discouragement Anger 

Time† (T) 4.20* 5.32* 2.27 

Drug (D) 0.12 0.03 0.60 

T x D† 0.10 0.29 0.83 
Note. † Pillai’s Trace F ratio; degrees of freedom = 1,68. 

*p<.05. 
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Effects of the math task on mood and self-efficacy 

 

Separate 2 (Drug: naltrexone, placebo) x 3 (Condition: EFS, HFS, HMS) x 5 (Time: 

pre-task, during task at 1:30", 7:40", 15:20", post-task) repeated measures ANOVAs 

were carried out on mood and self-efficacy ratings (Table 3.6 and 3.7). In self-

efficacy analyses, post-practice trial ratings were used instead of pre-task ratings.  

 

The exploration of Time effects with planned simple comparisons (where pre-task 

ratings were the point of comparison) indicated that all moods worsened during the 

task (Table 3.8). Discouragement and anger remained elevated once the task was 

completed, whereas anxiety returned to pre-task levels.  

 

Post-hoc multiple comparisons (with Bonferroni corrections) were used to explore 

Condition main effects. Anxiety was influenced by the number of shocks delivered 

during the task, as subjects in the HMS condition reported significantly higher 

anxiety (M = 54.08) compared to those in the EFS (M = 38.99) and the HFS 

condition (M = 41.24). Task difficulty (and control over shocks) influenced how 

discouraged and inefficacious a subject became, as subjects in the HFS and HMS 

conditions were significantly more discouraged (HMS: M = 47.08, HFS: M = 39.46) 

and less self-efficacious (HMS: M = 24.52; HFS: M = 22.76) than their counterparts 

in the EFS condition (M discouragement = 26.63; M self-efficacy = 51.33). Anger 

increased with the number of shocks and task difficulty. 

 

Time x Condition effects were found for discouragement and self-efficacy. Between-

group comparisons at each time-point indicated that subjects in the EFS condition 

became significantly less discouraged, and more self-efficacious throughout the math 

task than subjects in the difficult conditions (Figure 3.2 and 3.3).  
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Table 3.6: Mood and self-efficacy before, during, and after the math task.  

 

  Placebo Naltrexone 

  EFS  

(N = 10) 

HFS 

(N = 11) 

HMS 

(N = 11) 

EFS  

(N = 11) 

HFS 

(N = 13a) 

HMS 

(N = 13) 

Mood Time M SD M SD M SD M SD M SD M SD 

Ax. Pre 22.7 20.5 17.9 14.1 40.4 26.0 19.4 22.7 19.6 25.7 35.7 23.2

 1 57.9 14.8 46.6 27.2 66.4 16.3 52.1 25.4 61.3 17.0 67.1 27.7

 2 50.9 21.7 50.2 22.4 55.8 20.0 44.8 23.8 56.1 15.4 64.3 21.4

 3 49.1 19.4 46.7 16.9 56.2 26.8 41.6 20.1 56.0 19.7 64.8 26.3

 Post 29.6 23.0 25.8 18.7 37.8 29.0 23.1 15.9 28.7 23.5 49.9 32.3

Ds. Pre 11.3 10.5 9.5 11.2 19.2 27.3 19.6 20.5 9.6 14.5 14.2 18.2

 1 42.0 26.1 38.4 20.3 60.7 16.4 34.8 26.8 51.7 22.0 56.0 31.0

 2 39.4 20.7 38.6 20.6 51.3 19.5 24.1 23.7 58.4 21.8 57.8 24.6

 3 32.6 23.9 46.0 13.7 56.5 25.0 23.3 22.3 59.1 17.5 57.7 28.2

 Post 25.7 27.3 28.2 23.6 44.0 16.6 13.1 13.9 40.6 35.2 52.8 29.0

Ag. Pre 2.8 4.8 2.3 3.1 9.2 18.5 1.7 1.7 4.1 5.6 10.2 14.3

 1 17.5 19.7 9.0 9.9 28.6 21.9 16.4 21.7 36.4 23.7 29.5 28.4

 2 16.2 20.7 10.9 11.3 25.7 22.0 13.1 17.4 39.9 21.6 37.8 24.6

 3 10.6 15.7 15.3 13.5 31.2 29.0 20.5 23.8 42.8 25.3 45.2 30.5

 Post 4.9 8.0 4.4 4.3 15.7 23.0 11.3 18.4 29.6 29.4 34.3 28.2

Sf. Prac 50.5 24.5 19.4 18.0 32.0 23.7 43.9 32.0 16.4 17.4 14.6 13.4

 1 49.0 23.8 27.5 17.6 32.5 22.4 47.5 28.8 23.5 19.8 21.6 22.1

 2 51.6 21.8 22.6 16.2 33.1 16.5 55.3 20.2 27.1 16.9 18.9 16.8

 3 43.6 21.2 21.9 22.2 34.6 16.4 55.2 22.6 28.6 17.6 15.2 13.7

 Post 54.1 27.6 21.1 20.9 26.5 20.3 62.5 25.6 19.3 15.7 16.1 15.7

Note. a N = 1 missing data; M = mean; SD = standard deviation; Conditions: EFS = easy task-few 

shocks; HFS = hard task-few shocks; HMS = hard task-many shocks; Ax. = anxiety; Ds. = 

discouragement; Ag. = anger; Sf. = self-efficacy; Pre = prior to practice trials and math task; Prac = 

following practice trials, prior to math task; 1-3 = 1:30, 7:40, and 15:20 minutes into math task, 

respectively; Post = after math task.  
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Table 3.7: F ratios for mood and self-efficacy before, during and after the math task. 

 

Source Anxiety Discouragement Anger Self-efficacy 

 Between subjects 

Condition (C) 6.74** 8.45*** 5.15** 19.31*** 

Drug (D) 0.32 0.24 8.57** 0.58 

C x D 1.16 1.83 2.31 1.93 

 Within subjects 

Time† (T)  24.84*** 29.36*** 18.42*** 2.36 

T x C† 0.40 2.77** 0.62 2.14* 

T x D† 0.16 0.12 2.44a 1.29 

T x C x D† 0.53 1.13 1.43 1.40 
Note. † Pillai’s Trace F ratio; degrees of freedom: C, C x D = 2,63; D = 1,63; T, T x D = 4,60;  

T x C, T x C x D = 8,122. 
ap=.056; *p<.05; **p<.01; ***p≤.001. 

 

 

Table 3.8: Simple pair-wise comparisonsa of mood and self-efficacy before, during 

and after the math task.  

 

  Math Task  

Mood Pre 1 2 3 Post 

Anxiety 25.98 58.59*** 53.68*** 52.41*** 32.48 

Discouragement 13.90 47.27*** 44.93*** 45.88*** 34.08*** 

Anger 5.05 22.89*** 23.95*** 27.60*** 16.70*** 

Self-efficacy  29.42 33.56** 34.83* 33.29 33.25 
Note. a Each rating was compared to pre-math task (mood) or post-practice trial ratings (self-efficacy); 

1-3 = 1:30, 7:40, and 15:20 minutes into math task, respectively; Post = after math task. 

*p<.05; **p<.01; ***p≤.001.  
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Figure 3.2: Discouragement before, during and after the math task in each 

experimental condition. Note. EFS = easy task-few shocks, HFS = hard task-few 

shocks, HMS = hard task-many shocks; *p<.05, **p<.01, ***p<.001 within-group, 

repeated pair-wise contrasts comparing ratings to the previous point; +p<.05, ++p<.01, 

+++p≤.001 t-test comparisons between EFS and each difficult condition at each  

time-point (i.e., no differences were found between HFS and HMS).  
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Figure 3.3: Self-efficacy before, during and after the math task in each experimental 

condition. Note. *p<.05, ***p≤.001 within-group, repeated pair-wise contrasts 

between successive points; ++p<.01, +++p≤.001 t-test comparisons between EFS 

and each difficult condition at each time-point (i.e., no differences were found 

between HFS and HMS). 
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As shown in Figure 3.4, a Drug and marginal (p = .054) Time x Drug effect for anger 

indicated that endogenous opioids served to inhibit rising anger in subjects taking the 

placebo. Drug did not affect any other mood, self-efficacy, nor interact with any 

other factor. 

3.3.4  Electro-cutaneous task shocks  

 

Subjects received three 15 mA shocks in the EFS and HFS conditions, and seven 

shocks during the HMS condition. Ratings were averaged across all shocks and 

separate 2 (Drug: naltrexone, placebo) x 3 (Condition: EFS, HFS, HMS) univariate 

ANOVAs were carried out on mean PI and UP ratings (Tables 3.9 and 3.10).  

 

Figure 3.4: Anger before, during and after the math task for placebo and naltrexone 

recipients. Note. **p<.01 ***p≤.001 within-group, repeated pair-wise contrasts 

between successive points;  ++p<.01 between group t-test comparisons at each 

time-point. 
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Table 3.9: Pain intensity and unpleasantness ratings for shocks during the math task. 

 

 Placebo Naltrexone 

 

Shock 

EFS 

(N = 10) 

HFS 

(N = 11) 

HMS 

(N = 11) 

EFS 

(N = 11) 

HFS 

(N = 14) 

HMS 

(N = 13) 

rating M SD M SD M SD M SD M SD M SD 

PI 34.9 16.2 45.8 16.7 45.5 24.9 29.1 17.2 48.4 21.7 46.9 24.7

UP 36.4 17.4 52.4 17.2 48.5 25.3 34.4 18.3 49.9 23.0 56.3 24.8
Note. Mean = mean; SD = standard deviation; PI = pain intensity; UP = unpleasantness. 

 

 

Table 3.10: F ratios of pain intensity and unpleasantness ratings for shocks during the 

math task. 

 

Source Pain intensity Unpleasantness 

Condition (C) 3.65* 4.24* 

Drug (D) 0.01 0.05 

C x D 0.26 0.43 
Note. Degrees of freedom = 5,64. 

*p<.05. 

 

 

Overall means suggested that subjects perceived the shocks to be moderately painful 

and unpleasant. The Condition main effect was explored with multiple comparisons 

corrected with the Bonferroni method. The difficulty of the task, and not the number 

of shocks influenced shock perception, as subjects in the EFS condition reported 

significantly lower PI and UP compared to subjects in HFS and HMS conditions. 

Shock ratings did not differ between HFS and HMS conditions. Drug failed to 

influence shock pain sensitivity. 
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Effects of mood, self-efficacy and the drug on task shock sensitivity 

 

Hierarchical multiple linear regression analyses were used to explore the effect of 

mood and self-efficacy on shock PI and UP in each drug condition. Since the 

intensity of mood and self-efficacy (and not the experimental condition leading to 

these states) were of primary interest, results were entered into the regression 

analyses collapsed across condition. In each regression model, drug was the 

categorical independent variable, whilst mood and self-efficacy were considered 

moderator variables on shock PI and UP. The interaction term consisted of the 

product of drug and mood, or drug and self-efficacy variables. Drug and mood (or 

self-efficacy) were entered first, followed by the drug x mood (or drug x self-

efficacy) interaction. As with earlier analyses, each mood and self-efficacy were 

investigated separately to help identify qualitatively different effects on shock 

responses. Pearson product correlations between these variables provided a context 

in which to interpret these results (Tables 3.11 and 3.12).  

 

 

 Table 3.11: Pearson correlations between mood, self-efficacy, shock pain and 

unpleasantness during the math task. 

 

 Task shock pain index 

 Placebo (N = 33) Naltrexone (N = 37) 

Mood during task PI UP PI UP 

Anxiety .50** .52** .46** .31 

Discouragement .43* .32 .45** .37* 

Anger .39* .32 .43** .34* 

Self-efficacy -.12 -.30 -.16 -.13 
Note. PI = pain intensity; UP = unpleasantness. 

*p<.05; **p<01. 
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Table 3.12: Summary of t-values from hierarchical regression analyses illustrating 

the effects of mood, self-efficacy and drug on shock pain intensity and 

unpleasantness during the math task. 

 

 Task shock pain index 

 Pain intensity Unpleasantness 

Step Variable Ax. Ds. Ag. Sf. Ax. Ds. Ag. Sf. 

1 Drug (D) -0.46 -0.44 -1.17 -0.18 0.03 0.05 -0.53 0.19 

 Mood (M) 4.44*** 4.02** 3.76*** -1.18 3.56*** 3.08** 2.88** -1.65 

2 D x M 0.93 0.81 0.11 -0.18 -0.85 -0.05 0.05 0.71 

Note. Step 1 = main effects model (degrees of freedom = 2,67); Step 2 = full model (df = 3,66);  Ax. = 

anxiety; Ds. = discouragement; Ag. = anger; Sf. = self-efficacy. 

**p<.01; *** p≤.001. 

 

 

Anxiety, discouragement and anger were positively associated with shock PI and UP, 

indicating that the more negative a subject was feeling, the more PI and UP they 

experienced during each shock, regardless of drug (Table 3.12). Self-efficacy did not 

affect task shock sensitivity.  

3.3.5  Cold pressor pain perception 

 

A 4-minute CPT was completed at the beginning of the experiment, after absorption 

of the drug 60 minutes later, and after the math task. As in Study 1, participants rated 

PI and UP at 30-second intervals using a M-VAS. In order to simplify statistical 

analyses, M-VAS ratings were averaged across each minute. As indicated in Table 

3.13 (shaded areas), sensory (PI) and affective (UP) cold pressor ratings were 

moderately to strongly related on each occasion. Nonetheless, these variables were 

analysed separately for exploratory purposes.   
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Table 3.13: Pearson product correlations between pain intensity and unpleasantness 

ratings on pre-drug, post-drug and post-math task cold pressor tasks.  

 

 Unpleasantness 

Pain Pre-drug Post-drug Post-math task 

Min. 1 " 2" 3" 4" 1 " 2" 3" 4" 1 " 2" 3" 4" 

1" .66    .86    .93    

2" .57 .69   .80 .89   .87 .96   

3" .34b  .49 .84  .64 .74 .92  .74 .85 .94  

4" .22a .33 b .77 .92 .40 .50 .78 .93 .49 .60 .80 .95 

Note.  ap<.05; bp<.01; remaining correlations are significant at p≤.001. 

 

Effects of the drug on cold pressor pain perception 

 

Separate 2 (Drug: naltrexone, placebo) x 2 (Time: pre-drug, post-drug) repeated 

measures ANOVAs were carried out on mean cold pressor PI and UP ratings (Tables 

3.14 and 3.15). To maintain consistency between Study 1 and 2, analyses were 

initially carried out on minute-by-minute cold pressor PI and UP ratings. However, 

since analyses of mean versus minute-by-minute cold pressor ratings did not differ, 

mean ratings were reported for brevity. Once again, analyses were collapsed across 

experimental condition, as this factor was not expected to influence pain before the 

math task. Subjects found the second CPT marginally more painful than the first (M 

= 46.76 versus M = 44.81; p = .10); however this was not due to drug absorption.  

 

Table 3.14: Cold pressor pain intensity and unpleasantness ratings before and after 

the drug (collapsed across experimental condition). 

 

 Placebo (N = 32) Naltrexone (N = 38) 

 Pre-drug Post-drug Pre-drug Post-drug 

CPT pain index Mean SD Mean SD Mean SD Mean SD 

Pain intensity 44.24 14.47 47.46 16.85 45.38 15.92 46.06 17.90 

Unpleasantness 46.26 15.75 46.75 18.06 42.36 18.55 42.93 19.23 
Note. CPT = cold pressor task. 
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Table 3.15: F ratios of cold pressor pain intensity and unpleasantness ratings before 

and after the drug (collapsed across experimental condition). 

 

Source Pain intensity Unpleasantness 

Time† (T) 2.83 0.17 

Drug (D) 0.00 0.88 

T x D† 1.21 0.00 
Note. † Pillai’s Trace F ratio; degrees of freedom = 1,68. 

 

 

Effect of the math task on cold pressor pain perception 

 

Separate 2 (Drug: naltrexone, placebo) x 3 (Condition: EFS, HFS, HMS) x 2 (Time: 

pre- and post-math task) repeated measures ANOVAs were carried out on mean PI 

and UP ratings (Tables 3.16 and 3.17). Experimental condition did not affect cold 

pressor PI and UP ratings after the math task. However, exploratory 2 (Drug: 

naltrexone, placebo) x 2 (Time: pre- and post-math task) repeated measures 

ANOVAs on difficult conditions alone (HFS, HMS) indicated that UP decreased 

after the task in the placebo group (pre-task M = 46.4 to post-task M = 42.3), but 

increased in the naltrexone group (pre-task M = 44.3 to post-task M = 46.3) (F (1,46) 

= 3.89; p = .05). A similar, although non-significant, trend existed for PI. 
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Table 3.16: Cold pressor pain intensity and unpleasantness ratings before and after 

the math task. 

 

 Placebo Naltrexone 

EFS 

(N = 10) 

HFS 

(N = 12) 

HMS 

(N = 11) 

EFS 

(N = 11) 

HFS 

(N = 13a) 

HMS 

(N = 13) 
 

Pain 

index M SD M SD M SD M SD M SD M SD 

 Post-drug/Pre math task 

PI 49.3 9.8 42.4 18.0 50.4 21.3 44.0 23.0 47.6 15.4 46.7 16.2

UP 47.5 10.4 42.7 20.1 49.9 22.6 39.3 22.6 46.6 17.6 42.5 18.0

 Post-math task  

PI 49.8 15.0 39.6 19.3 46.4 23.7 43.4 21.7 47.8 22.4 46.2 21.1

UP 49.3 14.7 39.0 20.4 45.4 24.0 41.6 23.4 48.1 23.0 44.3 21.9
Note. a N = 1 missing data; M = mean; SD = standard deviation; PI = pain intensity;  

UP = unpleasantness.  

 

 

Table 3.17: F ratios for cold pressor pain intensity and unpleasantness ratings before 

and after the math task. 

 

 Pain intensity Unpleasantness 

 Between subjects 

Condition (C) 0.18 0.04 

Drug (D) 0.01 0.16 

C x D 0.64 0.82 

 Within subjects 

Time† (T)  0.90 0.01 

T x C† 0.29 0.60 

T x D† 0.65 2.17 

T x C x D† 0.41 0.41 
Note. † Pillai’s Trace F ratio; degrees of freedom: any effect including Condition = 2,63; any effect 

including Drug = 1,63.  
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Effects of mood, self-efficacy and the drug on cold pressor pain perception 

 

Pearson product correlations (Table 3.18) and hierarchical multiple linear regression 

analyses (Table 3.19) were used to explore the effects of mood on cold pressor PI 

and UP in each drug condition. For reasons mentioned earlier, effects of self-efficacy 

were only examined after the math task. Given that the intensity of mood and self-

efficacy, and not the condition that led to these states, was of primary interest in 

relation to cold pressor pain perception, absolute and change scores were analysed 

collapsed across experimental conditions. 

 

Absolute scores 

 

As shown in Tables 3.18 and 3.19, higher levels of anxiety were associated with 

higher reports of PI and UP after drug absorption. A similar relationship existed for 

anger in the correlations, but did not reach significance in regression analyses. 

Neither anxiety nor anger was associated with cold pressor pain perception at any 

other time. 

 

High levels of discouragement were associated with high reports of PI prior to the 

drug (PI: r = .25, p = .03). A Drug x Mood effect (Figure 3.5) indicated a similar 

relationship between discouragement and cold pressor pain for placebo, but not 

naltrexone recipients after drug absorption. A similar trend existed for cold pressor 

UP, but failed to reach significance. It is interesting to note that naltrexone recipients 

who experienced high levels of discouragement after the math task reported more UP 

than discouraged placebo recipients (Table 3.18); however, this effect was not strong 

enough to achieve statistical significance in regression analyses (Table 3.19). Self-

efficacy did not influence cold pressor PI or UP.
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Table 3.18: Pearson product correlations between mood, self-efficacy and cold 

pressor pain intensity and unpleasantness ratings. 

 

  Placebo (N = 33) Naltrexone (N = 37) 

 Pre-drug Post-drug Post-task Pre-drug Post-drug Post-taska 

Mood PI UP PI UP PI UP PI UP PI UP PI UP 

Ax. .05 .00 .37* .45** .17 .08 .00 .16 .20 .24 .17 .15 

Ds. .36* .23 .50** .43** .10 .02 .17 .15 -.03 .04 .32b .38*

Ag. .27 .08 .37* .38* .19 .14 .13 .10 -.04 -.08 .17 .23 

Sf.     .13 .15     -.02 -.03 
Note. a N = 36 due to missing data; Ax. = anxiety; Ds. = discouragement; Ag. = anger;  

Sf. = self-efficacy. 
bp=.055; *p<.05; **p<.01. 

 

 

Table 3.19: Summary of t-values from hierarchical regression analyses illustrating 

effects of mood, self-efficacy, and drug on cold pressor pain intensity and 

unpleasantness ratings. 

 

  Mood on cold pressor pain perception 

  Pre-drug Post-drug Post-task 

 Variable Ax. Ds. Ag. Ax. Ds. Ag. Ax. Ds. Ag. Sf. 

  Pain intensity 

1 Drug (D) 0.32 0.51 0.22 -0.18 -0.34 -0.36 0.11 0.10 -0.32 0.15 

 Mood (M) 0.21 2.19* 1.46 2.32* 1.79 1.36 1.16 1.99a 1.43 0.37 

2 D x M -0.16 -0.59 -0.78 -0.79 -2.19* -1.58 -0.24 0.76 -0.33 -0.58 

  Unpleasantness 

1 Drug (D) -0.98 -0.81 -.98 -0.69 -0.87 -0.87 0.06 0.05 -0.43 0.10 

 Mood (M) -0.69 1.52 0.76 2.85** 1.83 1.23 1.02 2.03* 1.66 0.38 

2 D x M -0.74 -0.14 0.00 -0.98 -1.56 -1.75 0.29 1.39 1.55 -0.71 
Note. Step 1 = main effects model (degrees of freedom = 2,66); Step 2 = full model (df = 3,65); Ax. = 

anxiety; Ds. = discouragement; Ag. = anger; Sf. = self-efficacy.   
ap=.051; *p<.05; **p<.01. 
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Change scores 

 

Analyses regressing change in mood and self-efficacy on changes in cold pressor 

pain indices (in each drug condition) investigated the effects of negative emotional 

reactivity on pain perception.  

 

A ‘moving’ baseline was used to calculate change in cold pressor pain indices during 

subsequent CPTs. To explain, pain indices reported during the pre-drug CPT were 

subtracted from ratings during the second, post-drug CPT to illustrate ‘pure’ effects 

of the drug on pain. Ratings during the post-drug CPT were subtracted from the 

third, post-math task CPT ratings to illustrate effects of the math task (in conjunction 

with the drug) on pain perception. Changes in mood were calculated in the same 

way. For reasons mentioned above, changes in self-efficacy were only calculated 

after the task (using post-practice trial ratings as the baseline). Although mood and 

self-efficacy were also rated during the math task, the effects of changes in mood 

during compared to after the math task on cold pressor pain were similar. To avoid 

r = -.03; p = .87 

r = .50; p = .003 

Figure 3.5: Scattergram indicating a positive relationship between discouragement 

and cold pressor pain for placebo, but not naltrexone recipients after the drug. 
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repetition, only effects of cumulative change in mood (as reflected by ratings after 

the task) on cold pressor pain, will be presented. 

 

Post-drug: As shown in Tables 3.20 and 3.21, neither mood, drug, nor self-efficacy 

influenced cold pressor pain perception after drug absorption.  

 

Post-math task: Increases in anxiety after the task were associated with increased 

ratings of UP for subjects taking the placebo (Figure 3.6, Tables 3.20 and 3.21). 

Changes in self-efficacy after the task did not affect changes in cold pressor 

responses. However, correlational analyses suggest that increases in self-efficacy 

were associated with decreases in cold pressor responses in the placebo group only. 

 

 

Table 3.20: Pearson product correlations between change in mood and self-efficacy 

and cold pressor pain intensity and unpleasantness. 

 

  Placebo (N = 33) Naltrexone (N = 37) 

Cg in Cg after drug Cg after maths Cg after drug Cg after mathsa 

Mood PI UP PI UP PI UP PI UP 

Ax. .12 .11 .31 .42* .25 .18 -.07 -.17 

Ds. .15 .10 .02 .09 -.06 -.14 .03 -.13 

Ag. -.00 .04 .01 .20 -.03 .03 .22 .07 

Sf.   -.41* -.43*   .04 .05 
Note. Cg = change; a N = 36 due to missing data; PI = cold pressor pain intensity; UP = cold pressor 

unpleasantness; Ax. = anxiety; Ds. = discouragement; Ag. = anger; Sf. = self-efficacy. 

*p<.05. 
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Table 3.21: Summary of t-values from hierarchical regression analyses illustrating 

effects of change in mood and self-efficacy on change in cold pressor pain intensity 

and unpleasantness in each drug condition. 

 

  Mood on cold pressor pain perception 

  Cg after drug Cg after maths 

Step Variable Ax. Ds. Ag. Ax. Ds. Ag. Sf. 

  Pain intensity 

1 Drug (D) -1.04 -1.10 -1.06 1.02 0.99 0.59 1.26 

 Mood (M) 1.50 0.42 -0.14 0.92 0.23 1.11 -1.80 

2 D x M 0.82 -0.80 -0.13 -1.50 0.04 0.69 1.60 

  Unpleasantness 

1 Drug (D) 0.05 0.04 0.04 1.24 1.65 1.24 1.95 

 Mood (M) 1.18 -0.12 0.25 1.56 -0.30 1.01 -1.98 

2 D x M 0.56 -1.05 -0.01 2.50* -0.85 -0.77 1.77 
Note. Step 1 = main effects model (df = 2,66); Step 2 = full model (df = 3,65); Ax. = anxiety;  

Ds. = discouragement; Ag. = anger; Sf. = self-efficacy. 

*p<.05. 
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r = .42; p = .01 

r = -.17; p = .33 

Figure 3.6: Scattergram indicating a positive relationship between anxiety and cold 

pressor unpleasantness for placebo, but not naltrexone recipients after the math task. 
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3.3.6  Cardiovascular activity 

 

Effects of the drug on cardiovascular activity 

 

SBP, DBP and pulse rate were taken on entering the experimental environment, and 

60 minutes later following absorption of the drug. Separate 2 (Drug: naltrexone, 

placebo) x 2 (Time: pre-drug, post-drug) repeated measures ANOVAs were carried 

out on mean SBP, DBP and pulse rate (Tables 3.22 and 3.23). Once again, analyses 

were collapsed across experimental condition, as this factor was not expected to 

influence pain before the math task. 

 

As indicated in Table 3.23, SBP (pre-drug M = 117.68 versus post-drug M = 115.39) 

and pulse rate (pre-drug M = 79.65 versus post-drug M = 74.08) were significantly 

lower after the drug. Since the drug did not affect cardiovascular responses, 

decreases in SBP and heart rate may be attributed to subjects’ familiarity with 

experimental procedures and setting, and a prolonged time at rest. The lack of effect 

of naltrexone on cardiovascular responses at rest meant that influences of the math 

task could be clearly determined without prior contamination from this opioid 

antagonist (McCubbin et al., 1996).  

 

Table 3.22: Blood pressure and pulse rate before and after the drug (collapsed across 

experimental condition). 

 

 Placebo (N = 33) Naltrexone (N = 37) 

Cardiovascular Pre-drug Post-drug Pre-drug Post-drug 

response Mean SD Mean SD Mean SD Mean SD 

SBP 119.24 11.04 117.15 9.88 116.12 14.47 113.63 11.53 

DBP 72.79 11.31 71.53 10.46 70.67 9.03 69.72 9.25 

Pulse 82.02 12.77 75.96 10.15 77.27 10.81 72.20 8.81 
Note. SBP and DBP = systolic and diastolic blood pressure, respectively (scale = mmHg);  

Pulse = heart beats per minute. 
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Table 3.23: F ratios of blood pressure and pulse rate before and after the drug 

(collapsed across experimental condition). 

 

Source SBP DBP Pulse 

Time† (T) 5.90* 1.57 24.93*** 

Drug (D) 1.51 0.78 3.42 

T x D† 0.04 0.03 0.19 
Note. † Pillai’s Trace F ratio; degrees of freedom = 1, 68; SBP and DBP = systolic and diastolic blood 

pressure, respectively (scale = mmHg); Pulse = heart beats per minute.  

*p<.05; ***p<.001. 

 

Effects of the math task on cardiovascular activity 

 

SBP, DBP and pulse rate were measured at 2-minute intervals throughout the math 

task spanning approximately 28 minutes. To simplify interpretation, measures were 

averaged across two intervals (of 14 minutes each). Separate 2 (Drug: naltrexone, 

placebo) x 3 (Condition: EFS, HFS, HMS) x 4 (Time: pre-task, task interval 1-14 

minutes and 15-28 minutes, post-task) repeated measures ANOVAs were carried out 

on SBP, DBP and pulse rate (Tables 3.24 and 3.25). Absolute scores were followed 

over time as they provided a more representative, and conceptually clearer picture of 

cardiovascular activity than change scores. 

 

Time main effects for DBP and pulse rate were explored with planned simple 

comparisons, where each measure was compared to measures taken before the task. 

As indicated in Table 3.26, DBP was significantly higher during and after the math 

task compared to pre-task levels. Conversely, pulse rates remained at pre-task levels 

during the task and dropped off significantly after the math task. No general time 

effect was found for SBP; however, simple contrasts indicated that SBP rose 

significantly during the first 14 minutes of the task, but returned to pre-task levels 

from this time onwards. Neither naltrexone nor experimental condition influenced 

changes in cardiovascular activity.  
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Table 3.24: Blood pressure and pulse rate prior to, during and after the math task. 

 

  Placebo (N = 32)  Naltrexone (N = 37) 

  Math task    Math task   

CVR  Pre 1 2 Post  Pre 1 2 Post 

  Easy task-few shocks 

SBP M 118.24 118.09 115.98 119.19  112.76 117.33 117.16 114.68 

 SD 10.56 12.73 19.41 13.46  13.12 11.61 9.64 11.14 

DBP M 74.45 77.56 77.99 74.48  72.65 75.81 74.84 75.49 

 SD 9.64 12.54 15.47 10.86  9.21 8.18 9.13 10.13 

Pulse M 75.92 76.77 75.22 74.82  74.68 79.03 77.39 73.77 

 SD 10.81 11.69 10.08 9.77  10.79 8.52 10.37 8.84 

  Hard task-few shocks 

SBP M 118.54 117.82 117.98 114.65  115.86 118.94 114.52 117.85 

 SD 8.00 12.79 11.91 14.18  13.24 10.65 9.50 9.32 

DBP M 71.85 76.91 76.58 75.18  71.33 74.81 72.77  73.26 

 SD 10.69 11.77 11.40 12.87  10.35 8.88 8.19 9.11 

Pulse M 74.45 76.24 73.84 69.15  71.99 70.92 69.06 68.47 

 SD 10.89 9.85 8.49 12.01  8.89 5.88 6.85 5.96 

  Hard task-many shocks 

SBP M 115.89 121.24 124.62 117.78  111.28 114.12 113.81 113.18 

 SD 11.30 8.96 15.17 13.20  8.60 5.31 7.52 13.25 

DBP M 69.51 75.18 78.44 72.48  65.32 70.49 70.62 69.49 

 SD 11.30 9.94 15.99 9.24  7.21 8.26 11.16 9.55 

Pulse M 77.26 78.50 79.17 72.39  70.49 70.44 68.55 67.63 

 SD 10.02 7.70 8.72 9.16  7.07 7.97 7.58 6.40 
Note. M = mean; SD = standard deviation; Pre = prior to practice trials and math task; Math task: 1 = 

1-14 mins, 2 = 15-28 mins; Post = after math task; CVR = cardiovascular response; SBP and DBP = 

systolic and diastolic blood pressure, respectively (scale = mmHg); Pulse = heart beats per minute. 
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Table 3.25: F ratios of blood pressure and pulse rate before, during and after the math 

task. 

 

Source SBP DBP Pulse 

 Between subjects 

Condition (C) 0.02 1.04 1.74 

Drug (D) 1.77 1.51 3.48 

C x D 0.63 0.22 1.57 

 Within subjects 

Time† (T) 1.97 9.83*** 6.89*** 

T x C† 0.92 0.70 0.51 

T x D† 0.81 0.86 0.49 

T x C x D† 1.12 0.24 0.96 
Note. † Pillai’s Trace F ratio; degrees of freedom: C, C x D = 2,63; D = 1,63; T, T x D = 3,61;  

T x C, T x C x D = 6,124; SBP and DBP = systolic and diastolic blood pressure, respectively  

(scale = mmHg); Pulse = heart beats per minute.  

***p<.001.  

 

 

Table 3.26: Simple pair-wise comparisonsa of blood pressure and pulse rate before, 

during and after the math task. 

 

 Blood pressure across time 

Math task  

CVR 

 

Pre-task 1-14 mins  15-28 mins 

 

Post-task 

SBP  115.43 117.91* 117.34 116.22 

DBP  70.85 75.13*** 75.21*** 73.40** 

Pulse  74.13 75.32 73.87 71.04** 
Note.  a Pre-math task is the point of comparison; CVR = cardiovascular response; SBP and DBP = 

systolic and diastolic blood pressure, respectively (scale = mmHg); Pulse = heart beats per minute. 

*p<.05; **p<.01; ***p<.001. 
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Association between cardiovascular activity and task shock sensitivity  

 

Task shock sensitivity was regressed onto cardiovascular activity during the math 

task using hierarchical linear regression analyses. Pearson product correlations 

demonstrated the relationship between these variables. As shown in Tables 3.27 and 

3.28, cardiovascular activity was not related to shock PI or UP during the task.  

 

 

Table 3.27: Pearson correlations between blood pressure, pulse rate, pain intensity 

and unpleasantness ratings for shocks during the math task. 

 

 Task shock pain index 

Placebo (N = 33) Naltrexone (N = 37)  

CVR PI UP PI UP 

SBP -.06 -.02 -.06 -.21 

DBP .11 .02 .05 .03 

Pulse -.18 -.04 -.21 -.27 
Note.  PI = pain intensity; UP = unpleasantness ratings; CVR = cardiovascular response; SBP and 

DBP = systolic and diastolic blood pressure, respectively (scale = mmHg); Pulse = heart beats per 

minute. 

 

Table 3.28: Summary of t-values from hierarchical regression analyses illustrating 

the effects of drug, blood pressure and pulse rate on task shock pain and 

unpleasantness during the math task. 

 

 Task shock pain index 

 Pain intensity Unpleasantness 

Step Variable SBP DBP Pulse  SBP DBP Pulse  

1 Drug (D) -0.18 -0.03 -0.60 0.18 0.26 0.15 

 CVR -0.47 0.65 -1.16 -0.67 -0.03 -1.40 

2 D x CVR -0.13 -0.09 -0.31 -1.16 -0.25 -1.07 
Note. Step 1 = main effects model (df = 2,67); Step 2 = full model (df = 3,66); CVR = cardiovascular 

response; SBP and DBP = systolic and diastolic blood pressure, respectively (scale = mmHg); Pulse = 

heart beats per minute. 
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Association between cardiovascular activity and cold pressor pain perception 

 

Pearson correlation coefficients (Table 3.29) and hierarchical linear regression 

analyses (Table 3.30) were used to explore the relationship between resting 

cardiovascular activity and cold pressor pain perception. These analyses were 

conducted on CPT data collected after the drug and after the math task, but not on 

data collected at the outset of the experiment (before the drug), as opioid 

involvement in this relationship was of interest.  

 

Neither blood pressure nor pulse rate was associated with cold pressor pain 

perception either after drug absorption or the math task. Although correlations 

suggested differences amongst naltrexone and placebo groups at the end of the 

experiment, group differences failed to emerge in regression analyses. 

 

 

Table 3.29: Pearson product correlations between cold pressor pain intensity and 

unpleasantness, blood pressure and pulse rate before and after the math task. 

 

 Post-drug Post-math task 

 Placebo  Naltrexone Placebo Naltrexone 

CVR PI UP PI UP PI UP PI UP 

SBP -.15 -.14 -.21 -.26 .00 -.06 -.29 -.31 

DBP .01 .00 -.02 -.12 -.03 -.07 -.24 -.21 

Pulse -.21 -.21 -.06 -.06 -.06 -.14 -.13 -.13 
Note. Placebo N = 33; Naltrexone N = 37; CVR = cardiovascular response; PI = pain intensity;  

UP = unpleasantness; SBP and DBP = systolic and diastolic blood pressure, respectively (scale = 

mmHg); Pulse = heart beats per minute. 
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Table 3.30: Summary of t-values from hierarchical linear regression analyses 

illustrating the effects of drug, blood pressure and pulse rate on cold pressor pain 

intensity and unpleasantness. 

 

 Cold pressor pain index 

 Pain intensity Unpleasantness 

Step Variable SBP DBP Pulse  SBP DBP Pulse  

  Post-drug 

1 Drug (D) -0.58 -0.34 -0.55 -1.14 -0.89 -1.05 

 CVR -1.51 -0.05 -1.10 -1.76 -0.50 -1.09 

2 D x CVR -0.17 -0.10 0.53 -0.44 -0.57 0.50 

  Post-math task 

1 Drug (D) 0.07 0.08 0.02 0.00 0.03 -0.08 

 CVR -1.19 -1.15 -0.72 -1.54 -1.16 -1.10 

2 D x CVR -1.34 -0.97 -0.45 -1.25 -0.70 -0.22 
Note. Step 1 = main effects model (pre-/post-drug df = 2,67; post-task df = 2,66); Step 2 = full model 

(pre-/post-drug df = 3,66; post-task df = 3,65; CVR = cardiovascular response; SBP and DBP = 

systolic and diastolic blood pressure, respectively (scale = mmHg); Pulse = heart-beat per minute. 
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3.4  DISCUSSION 

3.4.1  Summary of major findings 

 

The key findings to emerge from the present study were: 

• The difficulty or uncontrollable nature of the math task, and not the shock 

stimulus itself, was responsible for hyperalgesia, increased discouragement, and 

lower self-efficacy during the task, and opioid-mediated SIA after the math task. 

Anxiety increased with shock frequency, whereas anger increased with both 

shock frequency and task difficulty. 

• Negative mood was associated with pain sensitisation to electrical stimuli during 

the math task, whilst (unexpectedly) anxiety was associated with opioid-mediated 

increases in cold pressor UP after the task. Discouraged subjects under opioid 

blockade reported more cold pressor UP after the task. However, these results 

failed to reach significance in regression analyses. Self-efficacy was not 

associated with pain sensitivity. 

• No relationship existed between cardiovascular activity and pain during times of 

stress (shocks) or rest (CPTs before and after the math task). 

3.4.2  Success of experimental manipulations 

 

Subjective mood ratings and physiological indicators of stress (DBP) indicated that 

the math task induced the desired emotional state. For instance, anxiety, 

discouragement and anger worsened in all conditions during the task, but (as 

explained below) more so in some conditions than others. Interestingly, increases in 

anger were dampened by the release of opioids midway through the task. 

Furthermore, DBP increased and remained elevated throughout the task. Increases in 

SBP were transient, however, and heart rate did not change during the math task. 

Opioids typically dampen cardiovascular activity; however, heart rate was higher in 

placebo recipients than in subjects under opioid blockade during the task. Group 

differences in heart rate may have been due to paradoxical effects of opioids 

observed when minimal amounts of opioids are released (Le Bars et al., 1992). 
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Alternatively, group differences may not have been due to the task but to random 

differences noted at the outset of the experiment. Finally, effects of the math task 

persisted as subjects remained discouraged and angry, and DBP remained elevated 

after the math task had been completed. 

 

As expected, the difficulty of the task in HMS and HFS conditions intensified 

discouragement and reduced perceived self-efficacy to answer questions correctly 

and avoid shocks. Whilst subjects in the difficult conditions were greatly discouraged 

and inefficacious, subjects in the EFS condition grew more self-efficacious and less 

discouraged as the task progressed. Therefore, perceived lack of control over the 

shocks, and not the number of shocks per se, influenced discouragement and self-

efficacy.  

 

Anxiety and fear have commonly been associated with the threat and actual delivery 

of painful or noxious events (Rhudy & Meagher, 2000; Willer & Albe-Fessard, 

1980a). In accordance with these findings, anxiety was linked to the frequency of 

shocks rather than the difficulty of the math questions. Specifically, subjects in the 

HMS condition reported significantly higher anxiety than subjects in the HFS and 

EFS conditions. No difference was noted between the latter two conditions. The 

number of shocks and task difficulty operated in an additive fashion to heighten 

anger, with subjects in the HMS condition reporting the most anger. 

 

For unknown reasons, electric shocks were perceived as less painful and unpleasant 

in the present study (M = 29.1 – 56.3), than in Study 1 (M = 45.43 – 66.71). 

However, perceptions of the cold pressor pain stimulus in the present study (M = 

39.5 – 48.1) mirrored those in Study 1 (M = 45.58 – 50.02), suggesting that moderate 

PI and UP were experienced. 

 

Naltrexone did not interfere with mood or any other dependent variable at rest, 

making this a useful method by which to study stress-induced opioid activation after 

the math task. 
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3.4.3  Separating pain from stress: Evidence of opioid-mediated stress-induced 

analgesia? 

 

This experiment aimed to investigate whether the shocks delivered during the math 

task, or the math task per se was responsible for triggering analgesia by including an 

additional ‘uncontrollable’ condition with seven instead of the usual three shocks.  

 

Hyperalgesia to brief electrical stimuli in difficult conditions 

 

Shock pain perception was influenced by the difficulty of the task and not the 

number of shocks per se, as subjects in HMS and HFS conditions reported greater PI 

and UP than subjects in the EFS condition. Therefore, in contrast with previous 

research (Flor et al., 2002; Maier, 1986; Seligman et al., 1971), a perceived lack of 

control over the shocks during the math task led to pain facilitation rather than 

inhibition. Furthermore, this relationship was not mediated by endogenous opioids, 

as group differences were evident despite opioid blockade.  

 

As suggested by Rhudy and Meagher (2001b), pain can be facilitated by negative 

emotions that lead to low to moderate levels of arousal. Moreover, the relationship 

between moderately arousing negative emotions and hyperalgesia is adaptive, 

leading to heightened environmental scanning and increased preparedness to deal 

with threat (Mueller & Netter, 2000). Therefore, it is possible that a ‘lack of control’, 

through factors such as low to moderately arousing negative mood, may have 

indirectly been associated with increased shock PI and UP.  

 

Decreased sensitivity to sustained cold pressor stimuli in difficult conditions 

 

Cold pressor pain perception did not differ among the experimental conditions after 

the math task. However, exploratory analyses of the difficult conditions (i.e., HFS, 

HMS) demonstrated an opioid-mediated stress-induced decrease in cold pressor UP 

after the math task that resembled SIA in Study 1.  
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3.4.4  Modulation of pain by negative mood  

 

Sensitisation to electrical pain 

 

The present study revealed a substantial relationship between negative mood and 

electrical pain sensitivity, where anxiety, discouragement and anger were positively 

associated with shock PI and UP during the math task. As mentioned above, pain can 

be facilitated by negative mood of low to moderate arousal through nonopioid-

mediated mechanisms such as autonomic arousal, muscular reactivity to pain and 

hyper-vigilance (Janssen, 2002; Mueller & Netter, 2000; Rhudy & Meagher, 2001b). 

On the other hand, highly arousing negative emotions inhibit pain (Rhudy & 

Meagher, 2001b) through a number of mechanisms including endogenous opioid 

release, baroreceptor stimulation (via increases in BP) and attentional factors 

(Janssen, 2002). In light of this literature, negative mood during the math task may 

have been moderately arousing, increasing shock pain sensitivity and masking the 

inhibitory influences of the endogenous opioid system. In other words, the pain 

induced by brief and intermittent stimuli such as task shocks was more likely to be 

enhanced than inhibited in subjects who were distressed during the math task. 

 

The relationship between perceived self-efficacy and shock sensitivity, although 

trending in the same direction as Study 1, failed to reach significance. For unknown 

reasons the PI and UP of shocks was considerably lower for subjects in the present 

study than in Study 1. Therefore, shocks may not have been aversive enough to be 

affected by perceptions of self-efficacy.  

 

Inhibition of cold pressor pain 

 

At the beginning of the experiment, discouragement was positively associated with 

pain during the CPT. Neither anxiety, nor anger influenced cold pressor pain 

perception at this stage of the experiment. As mentioned above, low to moderate 

levels of discouragement may have been responsible for the facilitation of cold 

pressor pain (Rhudy & Meagher, 2001b).  
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During the second CPT discouragement appeared to sensitise placebo recipients to 

cold pressor PI and, to a lesser degree, UP. Opioid-mediated mood facilitation of 

pain seems to contradict theories discussed earlier (e.g., Janssen, 2002); however, the 

present results could be attributed to paradoxical effects of opioids when released in 

small concentrations (Le Bars et al., 1992). For instance, Le Bars, Willer and De 

Broucker (1992) found that at a low dose, morphine blocked endogenous spinal 

controls usually triggered by heterosegmentally-applied noxious stimuli (see Diffuse 

noxious inhibitory controls, p 34). In animal research, others have demonstrated 

facilitatory effects of low dose systemic morphine on innate pain reflexes such as 

licking and guarding behaviour in response to thermal pain (Vierck, Acosta-Rua, 

Nelligan, Tester, & Mauderli, 2002). Since opioids usually serve as ‘stress markers’ 

(Beutler, Daldrup, Engle, Oro'-Beutler, Meredith, & Boyer, 1987), it is possible that 

only a small release of opioids occurred in response to the cold pressor stimulus 

itself. The cold pressor alone has served as a physical stressor leading to opioid-

mediated increases in pain thresholds (Jungkunz, Engel, King, & Kuss, 1983), but 

only when the CPT lasts longer than one minute (Bullinger, Naber, Pickar, Cohen, 

Kalin, Pert, & Bunney, 1984). At this stage of the experiment, anxiety appeared to 

facilitate cold pressor PI and UP, regardless of opioid blockade.  

 

After the math task, a positive association between discouragement and cold pressor 

UP, and to a lesser extent, PI emerged again. However, correlations indicated that 

this effect reached statistical significance in naltrexone recipients only. Thus, 

discouragement appeared to be associated with opioid release that inhibited further 

increases in cold pressor PI and UP. The present results support human studies 

associating opioid-mediated analgesia with subjective helplessness (which is akin to 

‘discouragement’) after highly arousing (Janssen & Arntz, 2001) or noxious stimuli 

(Willer & Albe-Fessard, 1980a). 

 

Surprisingly, the effects of change in mood on change in cold pressor PI and UP 

failed to mirror results with absolute scores (mentioned above). For instance, changes 

in discouragement were not associated with changes in pain perception after the 

drug, or after the math task. Similarly, changes in anxiety were not associated with 

changes in PI or UP after the drug; however, an opioid-mediated association was 

found between anxiety and UP after the math task. This association indicates that 
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naltrexone antagonised decreases in pain (consistent with SIA) in less anxious 

subjects after the math task. Why this effect is linked to this subgroup is unclear.  

 

Perceived self-efficacy was not associated with cold pressor pain perception at any 

stage of the experiment. Furthermore, outcomes of absolute and change scores were 

identical. The present results are in accordance with other studies finding that the 

effect of self-efficacy on pain ratings is less clear than the effects on pain tolerance. 

Reasons for this finding will be clarified in the following study. 

3.4.5  Cardiovascular–pain relationship 

 

Cardiovascular activity has been associated with acute pain sensitivity in 

hypertensive-prone (Caceres & Burns, 1997; France, 1999) and normotensive 

humans (Bruehl et al., 1992; Randich & Maixner, 1984). Analgesia is thought to 

originate either from stress-induced increases in cardiovascular activity, which in 

turn stimulates baroreceptors that synapse in pain regulatory centres in the brainstem, 

or hyperactive centrally-mediated analgesic mechanisms in subjects with elevated 

resting blood pressure (France, 1999). The effects of cardiovascular activity on 

painful stimuli at rest (CPTs conducted after the drug and the math task) and during 

stress (math task shocks) were assessed in the present study. Since opioid 

involvement in the cardiovascular-pain relationship was also of interest, the 

association between the above-mentioned variables was assessed from drug 

absorption onwards. 

 

Surprisingly, there was no association between cardiovascular activity and pain in 

the present study. The reason for this is unclear. However, the cardiovascular-pain 

relationship will be investigated further in the following study. 
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CHAPTER FOUR 

 4.  STUDY 3 

4.1  INTRODUCTION 

4.1.1  Rationale/Purpose of this study 

Adoption of ‘Hard task-many shocks’ condition only 

 

In the previous study, there was some evidence that a perceived lack of control over 

shocks and discouragement inhibited UP via opioid release after the math task. 

However, these findings were based on correlational and exploratory analyses. The 

effect of negative mood on pain may have been disguised in Study 2 by the inclusion 

of subjects in the EFS condition who reported relatively low levels of 

discouragement and no change in pain perception. Additionally, the numbers in each 

cell (approximately 10) may not have been sufficient to detect differences among 

groups. Thus, to enable a more powerful examination of the effect of ‘no control’ 

and negative mood on pain, only the most stressful condition (HMS) was examined 

in Study 3.  

Multi-dimensional assessment of pain 

 

The opioid system appears to influence pain tolerance after stress (Abraham & 

Joseph, 1986; al'Absi, Wittmers, Ellestad, Nordehn, Kim, Kirschbaum, & Grant, 

2004; Bragdon et al., 2002; Flor et al., 2002; Jungkunz et al., 1983). For instance, 

Bandura et al. (1988; 1987) found that endogenous opioids influenced how long 

subjects tolerated a painful cold pressor stimuli after a timed math stressor. Since 

cold pressor pain in Study 2 was assessed via PI and UP ratings, it is possible that 

analgesic effects of stress may have been overlooked due to the type of pain response 

parameter chosen. Thus, in addition to PI and UP, the present study aimed to 

examine the effect of an uncontrollable stressor and negative mood on pain tolerance. 
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Pain tolerance can be influenced by a number of factors unrelated to pain perception 

per se; therefore, it is uncertain as to whether Bandura’s (1988) results reflect 

tolerance for pain or tolerance to some other factor such as discomfort.  Moreover, 

endogenous opioids may influence mood (e.g., anger in Study 2), which may be the 

important factor governing endurance of pain. To examine the concept of pain 

tolerance, tolerance to non-painful but unpleasant/boring cognitive (Letter Symbol 

Matching Task9, LSMT) and physical stimuli (Valsalva manoeuvre, VM) was 

compared with pain tolerance in the present study. 

Negative mood modulation of pain 

 

The effect of discouragement on pain in Study 2 is consistent with effects noted in 

animals (Maier et al., 1983), but not humans. For instance, Mueller and Netter (2000) 

found that subjective helplessness (akin to discouragement) increased pain 

sensitivity after a stressful reaction time task. Others inducing discouragement via 

Velten (1968) mood statements found a reduction in tolerance to cold pressor pain 

and increased pain catastrophisation (Willoughby, 2000; Willoughby, Hailey, 

Mulkana, & Rowe, 2002). As proposed by Rhudy and Meagher (2000; 2001a), pain 

perception may differ according to the intensity of negative emotion induced in 

subjects, where less intense discouragement may lead to pain sensitisation rather than 

analgesia. In support of their notion, fear (a high threat/high arousal mood) has 

resulted in hypoalgesia in a number of studies (Rhudy & Meagher, 2000; Rhudy & 

Meagher, 2001a; Willer & Albe-Fessard, 1980a; Willer et al., 1981), whilst anxiety 

(a moderately arousing emotion) led to hyperalgesia in Study 2. Anger, on the other 

hand has led to both pain facilitation or inhibition depending on its expression 

(anger-out) or suppression (anger-in), respectively (Janssen et al., 2001). Anger may 

have failed to influence pain perception after the math task in Study 2 because of 

divergent psychological states evoked across the three experimental conditions. 

Therefore, this study aimed to clarify the effects of discouragement, anxiety and 

anger on pain, by adopting one experimental condition known to induce marked 

evidence of each emotion.  

                                                 
9 Adapted from the Naylor-Harwood Adult Intelligence Scale (A.C.E.R., 1972). 
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Nociception flexion reflex (RIII) 

 

The effects of stressor controllability and mood on pain are usually assessed via 

subjective responses (i.e., pain ratings, pain tolerance, pain thresholds). These effects 

are less commonly measured via objective means such as the nociceptive biceps 

femoris flexion reflex, or RIII. The RIII involves spinal and supraspinal pain 

pathways that connect to hypothalamic and limbic structures, thereby providing an 

objective method by which to assess the emotional modulation of pain. Furthermore, 

stress and negative mood are known to alter spinal excitability, activating 

endogenous opioids that in turn exert a depressive effect on the RIII (Willer & Albe-

Fessard, 1980a). Therefore, the RIII would offer a complementary and objective 

method by which to assess opioid involvement in the effects of uncontrollable shocks 

and mood on endogenous pain modulation. 

4.1.2  Aims of Study 3 

 

Primary aims 

 

The first aim was to examine the effect of an uncontrollable stressor (math task) and 

negative mood on endogenous pain inhibition, in relation to PI, UP and pain 

tolerance. 

 

The second aim was to explore the concept of pain tolerance by comparing 

endurance to non-painful (but unpleasant) stimuli with endurance to pain. 

 

The third aim was to clarify the effects of uncontrollable shocks and negative mood 

on pain by adopting an experimental procedure known to induce a strong state of 

stress (i.e., HMS condition in Study 2). 

 

To complement subjective pain parameters, the fourth aim was to assess pain 

objectively via the nociceptive flexion reflex (RIII).  

 

The fifth aim was to determine whether analgesia induced by the math task was 

mediated by opioid or nonopioid substrates. As in Study 2, naltrexone (an opioid 
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antagonist) was administered to one half of the subjects and an identical placebo 

capsule was given to remaining subjects to assess involvement of the opioid system. 

 

Secondary aim 

 

The sixth aim, as in Study 2, was to investigate the cardiovascular-pain relationship 

in normotensive subjects during stress and at rest. Opioid mediation of this 

relationship was explored by comparing responses in the naltrexone group with those 

from the placebo group. 

4.1.3  Hypotheses for Study 3 

 

In light of aims of the third study, it was hypothesised that: 

 

Lack of control over the math task would lead to the release of endogenous opioids. 

Therefore, placebo recipients should show evidence of lower PI, UP and greater 

tolerance of cold pressor pain after the math task, than beforehand. Similarly, the 

placebo group should show evidence of RIII suppression after the task. Conversely, 

subjects under opioid blockade should demonstrate increased sensitivity to the CPT 

in all dimensions of pain and RIII facilitation.  

 

Increases in discouragement induced by an uncontrollable cognitive stressor would 

be associated with reductions in cold pressor PI and UP ratings and increased pain 

tolerance, in placebo recipients after the math task. Conversely, subjects under opioid 

blockade should demonstrate increased sensitivity to the CPT in all dimensions. 

Similar results should be observed with anxiety, assuming that the math task induces 

a high level of arousal. If low to moderate levels of anxiety were evoked, 

hyperalgesic effects would be expected regardless of opioid blockade. As anger can 

facilitate or inhibit pain depending on anger management style (Bruehl et al., 2002), 

and research in this area is limited (Fernandez, 2002), no specific hypotheses with 

regards to the effects of stress-induced anger on pain were generated.  

 

As in Study 2, it was hypothesised that placebo recipients would show an inverse 

relationship between cardiovascular responses and PI/UP ratings, and a positive 
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relationship with pain tolerance, for electrical and cold pressor stimuli. However, 

there should be no evidence of a relationship between cardiovascular activity and 

acute pain sensitivity in the naltrexone group.  

4.2  METHOD 

4.2.1  Subjects  

 

Forty-three subjects aged between 18 and 41 years [21 males: M = 20.86 years, SD = 

3.24; 22 females: M = 20.36 years, SD = 4.84] participated in Study 3. An additional 

subject withdrew prematurely due to the noxious nature of the CPT. Criteria used to 

exclude subjects were identical to criteria described in Study 2. As in previous 

studies, subjects were recruited from Murdoch University undergraduate psychology 

classes and the general university population. Subjects were asked to refrain from 

consuming alcoholic or caffeinated beverages 12 hours before, and food or tobacco 

two hours before the experiment to improve the reliability of cardiovascular 

recordings (Shapiro et al., 1996). Subjects were remunerated $15 for their 

participation. Bryden’s Handedness Questionnaire (1977) was used to confirm that 

all subjects were right-handed (Appendix 2, p 320).  

4.2.2  Experimental design/Overview 

 

As in previous studies, subjects completed mood/self-efficacy ratings, CPTs, 

persistence tasks (LSMT, VM) and had their BP and pulse rate measured before the 

drug, approximately 50-60 minutes after the drug, and after completion of the math 

task (Figure 4.1). Similarly, RIII procedures were completed three times: 10 minutes 

and then 60-70 minutes after drug administration, and after the math task. During the 

math task, subjects rated the PI and UP of each electric shock, rated mood and self-

efficacy at a number of intervals, and had their BP and pulse rate measured 

frequently. Subjects were tested individually. 
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Before starting the experimental session, subjects were randomly assigned to the 

naltrexone or placebo drug condition. Each condition was balanced for age (F (1,41) 

= 3.37; p = .07) and sex (Table 4.1). 

 

 

Table 4.1: Subject age and sex in each drug condition. 

 

 Naltrexone Placebo 

Mean 21.80 19.57 

SD 5.56 1.70 

N 12F, 11M 10F, 10M 
Note. F = females; M = males. 

Figure 4.1: Experimental timeline for Study 3. Note: The drug was 

administered shortly before RIII measurement to maximise time efficiency.
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4.2.3  Procedure/Materials 

 

Once seated inside one of two cubicles maintained at 22 ± 2°C, written consent was 

obtained from each subject (Appendix 8, p 330), and a medical checklist was 

completed (Appendix 6, p 326).  

Mood and self-efficacy ratings 

 

Subjects rated six mood states (anxiety, confusion, discouragement, anger, 

sluggishness and liveliness) and perceived self-efficacy (with regards to avoiding 

electric shocks during the math task) on separate 0-100 point paper and pen VAS, as 

described in the previous studies. Mood and self-efficacy VAS ratings were 

completed pre-drug, post-drug, five times during the math task (using computer-

generated VAS) and after the math task.  

Cardiovascular responses 

 

SBP, DBP and pulse rate were measured before and after the drug, during and after 

the math task. The equipment and procedures used to measure cardiovascular activity 

were identical to those used in Study 210.  

Cold pressor tasks 

 

Subjects completed a CPT in Cubicle A before and after the drug, and immediately 

after the math task. The equipment used for each CPT was identical to that used in 

Study 2. In each CPT, the non-dominant, left hand was immersed up to the wrist-

crease into a 37°C warm water bath for three minutes to standardise hand 

temperature, and then into a 2°C ice water bath until subjects felt that the pain was 

                                                 
10 As in Study 2, the M4 Omron electronic monitor was calibrated with a mercury manometer for five 

subjects. Once again, SBP and DBP obtained from both methods were closely associated  

(SBP: r=.85; p=.006; DBP: r=.87; p=.004).  A high association between electronic and manual 

methods was also detected at the end of the study, when calibrated on six subjects  

(SBP: r=.81, p=.01; DBP: r=.79, p=.01). 
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too unpleasant to continue11. At this point they were asked to say: “Stop!” and pull 

their hand out of the water (Appendix 9, p 331). The experimenter used a stopwatch 

to measure time spent in the ice water. Subjects rated PI and UP every 30 seconds 

until they withdrew their hand from the water using the same 0-100 point M-VAS as 

described in Study 2. A final rating was made when they withdrew their hand from 

the ice water. A ceiling of four minutes was set but not explicitly stated  

to subjects. 

Letter Symbol Matching Task (LSMT) and Valsalva manoeuvre (VM) 

 

Each subject’s ability or willingness to persist with an unattractive cognitive (LSMT) 

and physical task (VM) was assessed before and after the drug, and after the math 

task. The LSMT is a paper and pencil code substitution test where eight letters are 

paired with symbols (e.g., ⊥), and subjects substitute the appropriate symbol for each 

letter. After briefly practicing the task, subjects substituted as many symbols as they 

could on the page of letters for three minutes. A key was printed above the blank 

spaces for referral. A new set of matched symbols and letters was presented at each 

stage of the experiment. During the VM, subjects expelled air into a narrow tube as 

hard, and for as long as they could. To ensure that the task was brief, subjects were 

not permitted to ‘fill’ their lungs with air before beginning.  

Nociceptive flexion reflex (RIII) 

 

The close correlation between RIII and pain thresholds (Hugon, 1973; Sandrini, 

Alfonsi, Bono, Facchinetti, Montalbetti, & Nappi, 1986; Willer, 1977), and the 

reliability of this relationship (Sandrini et al., 1986) supports the notion that the RIII 

reflex can provide a valid, reliable and – most importantly - objective measure of 

spinal nociceptive processes. Also, basic patterns of the RIII are influenced by 

negative mood (Craig, 1989; Willer, Boureau, & Albe-Fessard, 1979) and stress-

induced inhibition of the RIII has proven to be opioid-mediated (Willer et al., 1979; 

                                                 
11 Although temperatures of both baths changed slightly throughout each CPT (warm: -1.90°C;  

cold: +0.10°C), changes were consistent across groups. 
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Willer et al., 1981). For these reasons, the RIII can provide insight into the effects of 

mood on pain, and whether these influences are mediated by endogenous opioids. 

 

General procedure 

 

RIII and pain thresholds, and RIII at empirically established threshold and supra-

thresholds levels were measured shortly after drug administration, an hour later, and 

after the math task. Standard methods of stimulation and recording were used in both 

procedures (see description below).  

  

Stimulation: The RIII was evoked by electro-cutaneously stimulating the right lateral 

sural nerve (behind the lateral malleolus) using silver/silver chloride surface 

electrodes taped 2 cm apart at the ankle. Stimulation consisted of a 6-pulse train (1 

msec pulse duration, 263 Hz pulse frequency, 20 msec train duration) that was 

delivered at random inter-stimulus intervals (ISI) ranging between 20-40 seconds. 

Longer ISI were adopted to prevent habituation of RIII (Chabal, Jacobson, & Little, 

1989; Dimitrijevic, Faganel, Gregoric, Nathan, & Trontelj, 1972). An S88 Grass 

Square Pulse stimulator and constant current unit were used to deliver pulses. The 

intensity of pulses was monitored via a custom-built digital current meter.   

 

Recording: Electromyographic (EMG) data was measured from the ipsilateral biceps 

femoris (capitis longus) muscle because this muscle generates reflex activity earliest 

in the lower limb (Willer, 1977). Bipolar 8 mm shielded silver/silver chloride cup 

electrodes were placed 3 cm apart on the skin, parallel to the belly of the muscle fibre 

close to the tendon. The correct site was identified by a standardised palpitation 

procedure. A disposable pre-gelled, adhesive ground electrode was placed on a right 

lateral bony structure (the outer femural condyle). EMG data was amplified 20,000x 

and low and high pass filtered (active range 20-1000 Hz) using an MP100 Biopac 

amplifier in conjunction with an EMG multi-channel amplifier module. Results were 

sampled at rate of 1000 samples/sec (highest sampling rate permitted by the capacity 

of the computer), digitised and stored for off-line analysis using commercially 

available software (AcqKnowledge® version 3.7.1. ©1992-2001 Biopac Systems, 

Inc.; Goleta, CA).  

 



 161

The same equipment and procedures as described in Study 2 were used to achieve 

skin impedance of less than 10 K ohms [Mean K ohms = ankle - 8.09 ± 1.18 (SEM); 

biceps femoris - 6.53 ± 0.49 (SEM)], as recommended by Fridlund and Cacioppo 

(1986). The right foot was positioned in a foot-rest to achieve a 90° angle at the knee 

(France & Suchowiecki, 1999), and a neck-brace was placed on each subject to avoid 

unrelated vestibular input during assessment (Young, 1973). 

 

RIII and pain thresholds 

 

A staircase limits method was used to assess electro-cutaneous pain threshold. 

Specifically, pulse intensity (starting at 10 mA) was reduced by steps of 1 mA when 

it was painful, and increased in steps of 1 mA when no longer painful. Once six 

ascending and descending steps were completed, the exercise was terminated. RIII 

thresholds were determined from the resulting EMG recordings.  

 

Subjects rated the pain of pulses using a 0-10 point horizontal verbal rating scale 

(VRS) that was taped to the wall in front of them. The VRS consisted of numerical 

markers spaced evenly between anchors 0 = ‘No pain’ and 10 = ‘Pain as bad as it 

could get’. A rating of ‘3’ indicated the point at which the pulse first became painful. 

This type of scale was deemed more practical than a VAS as subjects could not look 

down, and were to remain still throughout these exercises. Although VRS do not 

possess ratio scale characteristics (Price et al., 1994), responses from VRS and VAS 

are highly correlated (Littman, Walker, & Schneider, 1985) and response curves are 

indistinguishable (Duncan, Bushnell, & Lavigne, 1989).  

 

Pain and unpleasantness ratings 

 

To measure RIII at empirically established threshold (10 mA) and supra-threshold 

levels (15 mA) (Willer, 1977), shocks were delivered three times at each intensity in 

a random order. Subjects rated the perceived PI and UP of each shock using the same 

0-10 point VRS used in thresholds detection exercises. 
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Naltrexone intervention 

 

As in Study 2, naltrexone (50 ml) was administered to half of the subjects, and a 

placebo was administered to the other half of the sample to assess activation of the 

endogenous opioid system. Subjects were randomly assigned to either drug condition 

using the same double-blind procedure adopted in Study 2. The capsule was 

administered 10 minutes prior to RIII measurement to maximise time efficiency, as 

the likelihood of naltrexone affecting the results at that stage was deemed to be low. 

Thereafter, testing was suspended for approximately 50-60 minutes to achieve 

maximum drug absorption. Subjects were directed back to Cubicle A, where they sat 

quietly and read until the time had elapsed. Although 13% of subjects taking 

naltrexone reported mild nausea, decreased mental acuity or fatigue, symptoms did 

not prevent subjects from completing the experiment. 

 

Math task  

 

Subjects completed a 25-minute12 computer programmed mental arithmetic task in 

Cubicle B. The math task resembled the HMS condition in Study 2; however, it was 

shortened by 5 minutes to maintain subject-engagement with the task and the 

frequency of mood/self-efficacy ratings was increased to ‘capture’ the subjective 

state of each subject more accurately. As a consequence, the schedule of shocks and 

subjective ratings was different to the schedule Study 2. Nonetheless, all ‘events’ 

were still delivered at irregular intervals to prevent them from becoming predictable. 

As in previous studies, subjects completed the math task in a different cubicle to 

increase the novelty and anticipatory anxiety associated with the task.  

 

Task shocks 

 

Stimulation consisted of seven 15.45 mA ± 0.04 (SEM) rectangular pulses of 25 

milliseconds duration. The pulses were delivered to the ankle via the same electrodes 

used to elicit the RIII. Hence, equipment used to deliver shocks was identical to that 

                                                 
12 The task took approximately 28-30 minutes, including completion of subjective ratings. 
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used during RIII measurement. As described in Study 2, subjects rated the PI and UP 

of each pulse using a computer-generated 0-100 point VAS. 

Debriefing 

 

At the end of the session, the purpose of the experiment was explained and subjects 

were remunerated. Details of the math program were not discussed as this task was to 

be used in Study 4. Subjects were told that the coding system for drug conditions 

would be ‘broken’ if required; however, this was not necessary. Subjects were 

informed (via email) as to which drug they had been given after data collection had 

been finalised. As in Study 2, subjects were reminded not to consume alcohol for at 

least one day after the experiment. 

4.3  RESULTS 

4.3.1  General data outline 

 

Dependent variables were explored at three time points during the experiment: prior 

to the drug, after drug absorption/prior to the math task, and after the math task. This 

helped to disentangle drug effects from effects of the math task. As in Study 2, 

correlations and regression analyses were conducted as correlations provided an 

insight into the relationship between continuous dependent variables, and regression 

analyses help detect significant group differences within these relationships.  

4.3.2  Mood and self-efficacy  

 

Randomisation check 

 

Independent t-test comparisons indicated that groups did not differ in anxiety (t (41) 

= -.34; p = .74), discouragement (t (41) = -.27; p = .79), or anger (t (41) = .71; p = 

.48) at the start of the experiment. However, the placebo group reported higher levels 

of self-efficacy than the naltrexone group (t (41) = -2.55; p = .01) (Table 4.2). Since 

subjects were randomly assigned to each drug condition this difference is difficult to 

explain, but is best dealt with by focusing on upcoming changes in self-efficacy. 
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Table 4.2: Mood and self-efficacy ratings before and after drug absorption. 

 

 Mood 

 Anxiety Discouragement Anger Self-efficacy 

Drug Mean SD Mean SD Mean SD Mean SD 

 Pre-drug 

Placebo  35.77 22.98 16.51 17.36 5.60 7.10 60.69 17.37 

Naltrexone  33.53 19.90 15.00 19.75 8.42 17.29 44.73 23.49 

 Post-drug 

Placebo  22.72 18.17 13.16 15.35 6.75 8.23   

Naltrexone  25.94 29.12 17.09 20.85 5.14 7.91   
Note. Placebo N = 23; Naltrexone N = 20. 

 

 

Effects of the drug on mood and self-efficacy 

 

Separate 2 (Drug: naltrexone, placebo) x 2 (Time: pre-drug, post-drug) repeated 

measures ANOVAs were carried out on each mood (Table 4.2 and 4.3). Aside from 

checking the randomisation of groups, self-efficacy was not assessed prior to the 

math task as ratings related to performance during the task.  

 

 

Table 4.3: F ratios for mood before and after the drug. 

 

Source Anxiety Discouragement Anger 

Time† (T) 8.84** 0.05 0.49 

Drug (D) 0.00 0.06 0.04 

T x D† 0.62 1.00 2.10 
Note: †Pillai’s Trace F ratio; degrees of freedom = 1, 41. 

**p<.01.  
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As shown in Table 4.3, subjects in both conditions experienced a significant drop in 

anxiety (M = 34.65 to 24.33) after having spent over 90 minutes in the experimental 

setting. Presumably anxiety decreased as the novelty of the setting and procedures 

decreased with repetition and time. Discouragement and anger did not change after 

the drug.  

 

Effects of the math task on mood and self-efficacy 

 

Separate 2 (Drug: naltrexone, placebo) x 7 (Time: pre-task, during task at 1:30", 

7:39", 13:20", 19:40", 24:00", post-math task) repeated measures ANOVAs were 

carried out on each mood and self-efficacy rating (Tables 4.4 and 4.5). ‘Pre-task’ 

level of Time referred to post-practice trial ratings in self-efficacy analyses. 

 

 

Low self-efficacy scores after the practice trials and throughout the task suggested 

that subjects found the questions difficult and expected to have little control over 

performance-related shocks. Despite differences in self-efficacy at the outset of the 

experiment, changes in perceived self-efficacy were similar across conditions. 

 

Time main effects were explored with simple pair-wise comparisons, where each 

rating was compared to pre-task ratings. As indicated in Table 4.6, subjects 

experienced a significant increase in anxiety, discouragement, and anger throughout 

the math task. Significant worsening of mood persisted after the task was completed.  

 

Naltrexone did not influence changes in mood or self-efficacy. No interactions 

were noted. 
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Table 4.4: Mood and self-efficacy ratings before, during, and after the math task.  

 

 Anxiety Discouragement Anger Self-efficacy 

Time Mean SD Mean SD Mean SD Mean SD 

 Placebo (N = 22a) 

Pre-task 23.15 18.48 12.84 15.63 6.04 7.67 29.98 23.55 

1 57.41 22.72 47.41 23.67 23.50 22.62 35.73 22.77 

2 61.04 17.83 51.95 23.88 26.50 22.46 39.59 27.33 

3 61.27 23.81 54.86 23.72 28.04 24.18 31.45 24.91 

4 60.78 26.09 58.86 24.36 32.59 27.26 27.68 21.67 

5 59.23 27.77 56.09 25.84 34.45 28.56 25.32 19.93 

Post-task 43.95 26.88 47.7413 28.90 24.75 23.73 24.67 18.89 

 Naltrexone (N = 20) 

Pre-task 25.94 29.12 17.09 20.85 5.14 7.91 15.80 17.79 

1 63.40 24.90 50.60 22.66 24.20 21.26 25.25 21.41 

2 55.00 23.55 54.50 25.97 32.35 25.87 22.80 18.79 

3 61.70 24.90 48.40 29.06 34.30 24.21 23.60 19.64 

4 60.45 29.12 57.80 31.74 38.25 28.53 21.60 24.58 

5 59.35 30.09 60.45 30.79 37.65 30.25 22.60 25.14 

Post-task 48.45 31.96 60.13 31.48 26.64 27.54 19.20 21.95 
Note. a N=1 missing data; Pre = prior to practice trials and math task in mood analyses, and post-

practice trials in self-efficacy analyses; 1-5 = 1:30, 7:39, 13:20, 19:40 and 24:00 minutes into math 

task, respectively; Post = after math task. 

                                                 
13 An exploratory 2 (Drug: naltrexone, placebo) x 2 (Time: last rating during task, post-math task) 

repeated measures ANOVA was carried out to see whether discouragement decreased after the task in 

the placebo group to a greater degree than in the naltrexone group. Group differences failed to reach 

statistical significance. 
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Table 4.5: F ratios for mood and self-efficacy before, during, and after the math task. 

 

Source Anxiety Discouragement Anger Self-efficacy 

Time† (T) 15.20*** 22.14*** 8.60*** 1.86 

Drug (D) 0.03 0.19 0.27 2.70 

T x D† 0.56 1.24 0.35 0.87 
Note: †Pillai’s Trace F ratio; degrees of freedom: T, T x D = 6,35; D = 1,40. 

***p≤ .001. 

 

 

Table 4.6: Simple pair-wise comparisonsa of mood before, during and after the math 

task.  

 

  Math Task  

Mood Pre 1 2 3 4 5 Post 

Anxiety 24 60*** 58*** 61*** 61*** 59*** 46*** 

Discouragement 15 49*** 53*** 52*** 58*** 58*** 54*** 

Anger 6 24*** 29*** 31*** 35*** 36*** 26*** 
Note. a Each rating was compared to pre-practice trials/ math task ratings.  

***p≤.001. 

 

4.3.3  Electro-cutaneous task shocks  

 

Subjects received seven 15 mA shocks during the math task. PI and UP ratings were 

averaged across all shocks. Independent t-tests indicated no difference in shock PI (t 

(41) = -.47; p = .64) or UP (t (41) = -.29; p = .77) between drug conditions. On 

average, subjects perceived the shocks to be moderately to somewhat severely 

painful and unpleasant (M range = 54 – 58) (Table 4.7).  
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Table 4.7: Shock pain intensity and unpleasantness ratings during the math task. 

 

 Placebo (N = 23) Naltrexone (N = 20) 

Shock rating Mean SD Mean SD 

Pain Intensity 57.74 20.54 54.50 24.36 

Unpleasantness 55.76 23.58 53.59 25.93 

 

 

Effects of mood, self-efficacy and the drug on task shock sensitivity 

 

As shown in Pearson product correlations (Table 4.8) and regression analyses (Table 

4.9), anxiety, discouragement, and anger were positively associated with shock PI 

and UP, irrespective of whether naltrexone or placebo was administered. A Drug x 

Self-efficacy effect was found for shock PI. As shown in Figure 4.2, naltrexone 

appeared to antagonise opioid-mediated pain inhibitory influences in  

self-efficacious subjects.  

 

 

Table 4.8: Pearson correlations between mood, self-efficacy and shock pain intensity 

and unpleasantness ratings during the math task. 

 

 Task shock pain index 

 Placebo (N = 23) Naltrexone (N = 20) 

Task mood  PI UP PI UP 

Anxiety .40a .53** .42 .47* 

Discouragement .47* .34 .61** .67*** 

Anger .31 .45* .38 .36 

Self-efficacy -.44* -.27 .22 .14 
Note. PI = pain intensity; UP = unpleasantness. 
a p=.057; *p<.05; **p<01; ***p<.001. 
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Table 4.9: Summary of t-values from hierarchical regression analyses illustrating the 

effects of mood, self-efficacy and drug on shock pain intensity and unpleasantness, 

during the math task. 

 

 Task shock pain index 

 Pain intensity Unpleasantness 

Step Variable Ax. Ds. Ag. Sf. Ax. Ds. Ag. Sf. 

1 Drug (D) 0.51 0.59 0.66 0.60 0.32 0.36 0.51 0.37 

 Mood (M) 2.87** 4.18*** 2.31* -0.62 3.66*** 3.80*** 2.82** -0.41 

2 D x M 0.01 -0.49 -0.42 -2.16* 0.46 -1.06 0.17 -1.30 

Note. Step 1 = main effects model (degrees of freedom = 2,40); Step 2 = full model (df = 3,39); Ax. = 

anxiety; Ds. = discouragement; Ag. = anger; Sf. = self-efficacy. 

*p<.05; **p<.01; *** p≤.001. 
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Figure 4.2: Scatter-plot showing the negative association between mean self-efficacy 

and pain ratings for shocks during the math task in placebo recipients only. 

r = .22; p = .36 

r = -.44; p = .03 
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4.3.4  Cold pressor pain perception 

 

Data considerations 

 

Subjects rated the level of PI and UP during each CPT on a 0-100 point M-VAS at 

30-second intervals, until they could no longer keep their hand in the water. Time in 

the water was averaged for each subject. 

 

The number of subjects reaching the maximum time (i.e., four minutes) did not differ 

between groups at the beginning of the experiment (20% placebo, 20% naltrexone: 

χ2 (1) = 0.05; p= .83), post-drug (10% placebo, 8.7% naltrexone: χ2 (1) = 0.02; 

p=.88), or after the math task (20% placebo, 13% naltrexone: χ2 (1) = 0.38; p=.54). 

Transformation of these outliers was deemed unnecessary due to their small number 

and equal distribution across groups. Pain tolerance in this sample exceeded mean 

tolerance times found in research using similar paradigms (Hirsch & Liebert, 1998). 

Many researchers have found significant sex differences in pain tolerance to 

experimentally induced pain, where males tend to tolerate cold water for longer 

(Berkley, 1997). Hence, the higher-than-average tolerance to cold pressor pain could 

be attributed to the inclusion of males in the group.  

 

PI and UP ratings for each CPT were moderately related (pre-drug r = .37; post-drug 

r = .46; post-maths r = .55), suggesting that each variable was measuring 

qualitatively different aspects of the cold pressor experience. Thus, each rating was 

analysed separately. 

 

Randomisation check 

 

Groups did not differ on any pain parameter during the first CPT (PI: t (41) = -.49; p 

= .62; UP: t (41) = .11; p = .91; pain tolerance: t (41) = -.29; p = .77) (Table 4.10). 

Subjects perceived the initial CPT to be more painful than unpleasant; however, high 

ratings in both dimensions suggested that the CPT was a sufficiently  

noxious stimulus.  
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Table 4.10: Cold pressor pain tolerance, pain intensity and unpleasantness before and 

after the drug, and after the math task. 

 

 Placebo (N = 23) Naltrexone (N = 20) 

Pre-drug Post-drug Post-math Pre-drug Post-drug Post-math Pain 

index M SD M SD M SD M SD M SD M SD 

Tol. 105 79.4 76 67.8 85 76.6 98 80.2 80 74.2 87 84.9

PI 74.6 17.4 72.3 18.9 71.5 17.1 72.1 15.2 71.9 15.6 77.0 15.9

UP 64.1 24.7 74.1 18.3 72.9 15.3 64.9 21.0 65.6 19.5 71.9 20.3
Note. M = mean; SD = standard deviation; Tol. = pain tolerance (seconds); PI = pain intensity;  

UP = unpleasantness.  

 

 

Effects of the drug on cold pressor pain perception 

 

Separate 2 (Drug: naltrexone, placebo) x 2 (Time: pre-drug, post-drug) repeated 

measures ANOVAs were carried out on cold pressor pain tolerance, PI and UP 

ratings (Table 4.10 and 4.11). 

 

 

Table 4.11: F ratios for cold pressor pain tolerance, pain intensity and unpleasantness 

before and after the drug, and after the math task. 

 

 Tolerance Time Pain intensity Unpleasantness 

Source Post drug Post task Post drug Post task Post drug Post task 

Time† (T) 9.26** 1.35 0.27 1.52 5.51* 1.98 

Drug (D) 0.00 0.02 0.10 0.26 0.41 0.81 

T x D† 0.60 0.04 0.17 2.87 4.25* 4.08* 
Note. †Pillai’s Trace F ratio; degrees of freedom = 1,41. 

*p≤.05; **p<.01. 
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Pain and unpleasantness 

 

Discussion of the Time main effect in the context of a Time x Drug interaction for 

UP ratings is redundant; hence only the latter is discussed. Paired t-test comparisons 

revealed significantly higher UP ratings following drug absorption in the placebo 

group (t (22) = -2.73; p = .01), but not in the naltrexone group (t (19) = -0.26; p = 

.79) (Figure 4.3). The CPT remained comparatively painful during the second 

occasion, regardless of drug condition.  

 

Pain tolerance  

 

A main effect of Time indicated that subjects tolerated the cold water for 

significantly less time after the drug; however, the decrease in pain tolerance was not 

due to absorption of naltrexone. 

 

Effect of the math task on cold pressor pain perception 

 

Separate 2 (Drug: naltrexone, placebo) x 2 (Time: pre- and post-math task) repeated 

measures ANOVAs were carried out on pain tolerance, PI and UP ratings  

(Table 4.10 and 4.11). 

 

Pain and unpleasantness  

 

A Time x Drug interaction for cold pressor UP was explored with paired t-tests. 

Paired comparisons revealed marginal increases in cold pressor UP for subjects in 

the naltrexone group after the math task (t (19) = -1.89; p = .07), but not in the 

placebo group (t (22) = 0.61; p = .55) (Figure 4.3). 

 

Pain tolerance  

 

Pain tolerance did not change significantly after the math task, and was not affected 

by naltrexone. 
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Effects of mood, self-efficacy and the drug on cold pressor pain perception 

 

Mood and self-efficacy ratings made before each CPT were analysed in regression 

models as they temporally coincided with cold pressor ratings. Self-efficacy prior to 

the math task was not analysed as ratings related to performance on the math task. 

Pearson product correlations provided a context within which regression analyses 

could be interpreted. 

Figure 4.3: Cold pressor unpleasantness for placebo and naltrexone 

recipients throughout the experiment. Note. *p<.05; a p=.07. 
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Absolute scores 

 

To investigate the intensity of mood and self-efficacy on pain in each drug condition, 

absolute ratings were regressed on absolute cold pressor pain indices. Pearson 

correlations illustrated the relationship between these variables  

(Tables 4.12 and 4.13).  

 

Pain intensity and unpleasantness: Regression analyses indicated that anxiety 

sensitised subjects to cold pressor PI after the drug. A similar trend, although non-

significant, was found for discouragement. Regression analyses failed to identify 

differences amongst drug conditions after the math task. However, correlations 

indicated that discouragement was positively associated with cold pressor PI in the 

naltrexone group, but not in the placebo group. Presumably, when drug conditions 

were analysed together individual group effects were weakened via summation. 

Neither mood nor drug affected cold pressor UP. Self-efficacy did not influence  

cold pressor PI or UP. 

 

Pain tolerance: Anger was associated with greater pain tolerance in the placebo 

group before the math task (Figure 4.4). No other mood or self-efficacy rating 

influenced pain tolerance during the experiment. 
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Table 4.12: Pearson product correlations between mood, self-efficacy and cold 

pressor pain intensity, unpleasantness and pain tolerance. 

 

Pain Post-drug/Pre-math Post-math task 

index Ax. Ds. Ag. Ax. Ds. Ag. Sf. 

  Placebo (N = 23) 
Tol. .03 .22 .58** .30 .04 .25 .06 
PI .24 .00 -.12 -.10 .05 .13 -.15 
UP -.00 .00 -.28 .03 .13 .18 .06 
 Naltrexone (N = 20) 
Tol. .06 .15 -.30 .15 -.36 -.35 -.29 
PI .51* .59** -.23 .03 .47* .04 -.16 
UP -.03 .30 .07 -.38 .22 -.29 -.24 
Note. Ax. = anxiety; Ds. = discouragement; Ag. = anger; Sf. = self-efficacy; Tol. = pain tolerance 

(seconds), PI = pain intensity, UP = unpleasantness. 

*p<.05; **p<.01. 

 

 

Table 4.13: Summary of t-values from hierarchical regression analyses illustrating 

effects of mood, self-efficacy, and drug on cold pressor pain intensity, 

unpleasantness and pain tolerance. 

 

  Mood on cold pressor pain perception 

  Post-drug/Pre-math Post-math task 

Step Variable Ax. Ds. Ag. Ax. Ds. Ag. Sf. 

  Pain intensity 
1 Drug (D) 0.27 0.30 0.20 -1.08 -0.78 -1.06 -0.94 
 Mood (M) 2.47* 1.87 -1.05 -0.25 1.60 0.55 -0.97 
2 D x M -0.11 -1.49 0.27 -0.44 -1.26 0.34 -0.08 
  Unpleasantness 
1 Drug (D) 1.45 1.59 1.54 0.11 0.40 0.18 0.28 
 Mood (M) -0.11 1.09 -0.76 -1.35 1.14 -0.54 -0.72 
2 D x M 0.06 -0.83 -1.08 1.41 -0.38 1.54 1.00 
  Pain Tolerance 
1 Drug (D) -0.20 -0.09 -0.32 0.01 -0.28 -0.08 0.02 
 Mood (M) 0.28 1.16 1.03 1.43 -1.06 -0.39 -0.80 
2 D x M -0.04 0.33 3.06** 0.51 1.31 1.96 a 1.07 

Note. Step 1 = main effects model (df = 2, 40); Step 2 = full model (df = 3,39); Ax. = anxiety; Ds. = 

discouragement; Ag. = anger; Sf. = self-efficacy.   
ap=.058; *p<.05; **p<.01. 
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Change scores 

 

As in Study 2, a ‘moving’ baseline (see p 136) was used to calculate change in cold 

pressor pain indices during subsequent CPT. Changes in self-efficacy were only 

calculated after the task (using post-practice trial ratings as a baseline) for reasons 

mentioned previously.  

 

Post-drug: As shown in Tables 4.14 and 4.15, change in mood did not affect changes 

in pain tolerance, PI or UP after the drug.  

Figure 4.4: Scattergram depicting the positive relationship between anger and 

cold pressor pain tolerance after drug absorption in the placebo group, but not in 

the naltrexone group.  

r = .58; p = .003 

r = -.30; p = .19
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Table 4.14: Pearson product correlations between change in mood, self-efficacy and 

cold pressor pain intensity, unpleasantness and pain tolerance after the drug. 

 

 Change in cold pressor pain index 

 Placebo (N = 23) Naltrexone (N = 20) 

Change in mood PI UP Tol. PI UP Tol. 

Anxiety .12 -.15 .05 -.11 -.26 .25 

Discouragement .03 -.07 -.09 .12 -.08 .16 

Anger .07 -.16 -.10 .11 -.08 -.05 
Note. PI = pain intensity; UP = unpleasantness; Tol. = pain tolerance (seconds). 

 

 

Table 4.15: Summary of t-values from hierarchical regression analyses illustrating 

the effects of change in mood and self-efficacy and drug on changes in cold pressor 

pain indices after drug absorption. 

 

  Change in mood on Change in cold pressor index 

  Pain intensity Unpleasantness Pain tolerance 

Step Variable Ax. Ds. Ag. Ax. Ds. Ag. Ax. Ds. Ag. 

1 Drug (D) -0.38 -0.35 -0.50 1.91a 1.95 a 2.15a -0.66 -0.75 -0.65

 Mood (M) 0.22 0.33 0.45 -1.18 -0.46 -0.67 0.89 0.01 -0.42

2 D x M 0.73 -0.11 0.24 -0.14 -0.04 -0.66 -0.37 -0.75 -0.38
Note. Step 1 = main effects model (df = 2,40); Step 2 = full model (df = 3,39); Ax. = anxiety;  

Ds. = discouragement; Ag. = anger. 
a (see Figure 4.3). 

 

 

Post-math task: After the math task, a Discouragement x Drug effect was identified 

for cold pressor PI and UP ratings (Tables 4.16 and 4.17). As shown in Figure 4.5 

and 4.6, increases in discouragement were positively related to increases in cold 

pressor PI and UP in the naltrexone group, but not in the placebo group. No other 

factor influenced cold pressor responses after the math task.   
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Table 4.16: Pearson product correlations between change in mood, self-efficacy and 

cold pressor pain intensity, unpleasantness and pain tolerance after the math task  

 

 Change in cold pressor pain index 

 Placebo (N = 23) Naltrexone (N = 20) 

Change in mood PI UP Tol. PI UP Tol. 

Anxiety -.12 -.11 -.04 -.01 -.08 .29 

Discouragement -.28 -.05 -.02 .53* .50* -.20 

Anger -.25 -.10 -.15 .18 .25 -.12 

Self-efficacy -.25 -.10 .06 .08 .13 -.15 
Note. PI = pain intensity; UP = unpleasantness; Tol. = pain tolerance (seconds). 

*p<.05. 

 

 

Table 4.17: Summary of t-values from hierarchical regression analyses illustrating 

the effects of change in mood and self-efficacy, and drug on changes in cold pressor 

pain indices after the math task. 

 

  ‘Change in mood’ on ‘Change in post-task cold pressor index’ 

  Pain intensity Unpleasantness Pain tolerance 
 Variable Ax Ds Ag Sf Ax Ds Ag Sf Ax Ds Ag Sf 

1 Drug (D) -1.68 -1.52 -1.66 -1.66 2.01a -1.83a -1.97a -1.78 0.19 0.10 0.15 0.06 

 Mood (M) 0.35 1.45 0.17 -0.28 -0.55 1.97 0.81 0.25 0.66 -0.73 -0.85 -0.33 

2 D x M -0.22 -2.91** -1.32 -0.95 0.10 -2.08* -1.10 -0.71 -1.16 0.51 -0.19 0.65 

Note. Step 1 = main effects model (df = 2,40); Step 2 = full model (df = 3,39); Ax = anxiety;  

Ds = discouragement; Ag = anger; Sf = self-efficacy. 
a (see Figure 4.3); *p<.05; **p<.01.  
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Change in discouragement after math task
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a

Figure 4.5: Scattergram depicting the positive relationship between increases in 

discouragement and cold pressor pain after the math task for recipients of naltrexone, 

but not the placebo. a Removal of outliers did not alter the significance of this effect. 

Figure 4.6: Scattergram depicting the positive relationship between increases in 

discouragement and increases in cold pressor unpleasantness after the math task 

for recipients of naltrexone, but not the placebo.  

a

a

r = .53; p = .01 

r = -.28; p = .20 

r = .50; p = .02 

r = -.05; p = .83 



 180

4.3.5  RIII nociceptive flexion reflex 

 

RIII onset latency 

 

Data considerations 

 

Stimuli to elicit the RIII were set at threshold (10 mA) and supra-threshold levels  

(15 mA) (Willer, 1977). As expected, the nociceptive flexion reflex was elicited by 

10 mA shocks on an average of 45.5% of occasions throughout the experiment. One 

explanation for <50% response rates could be the time at which participants were 

tested, and circadian variations in RIII threshold (Sandrini et al., 1986). Most 

participants were tested mid-morning through to the afternoon when RIII thresholds 

are generally on the rise, and 10 mA may not have been intense enough to elicit RIII 

responses 50% of the time. RIII was elicited more reliably by 15 mA shocks, as the 

flexion reflex was present on an average of 64.5% of occasions. RIII became less 

reliable with repeated stimulation, which may once again be due to rising thresholds 

throughout the course of the experiment (Sandrini et al., 1986).  

 

Latency of an RIII response was taken as the point beyond 90 msec post-stimulus 

that could clearly be distinguished from preceding RII responses. Latencies that 

could not clearly be determined were excluded from analyses. For this reason, cell 

sizes were not large enough to proceed with repeated measures analyses. Therefore, 

group differences among RIII latencies were explored at three time points throughout 

the experiment using independent t-tests (Table 4.18).  

 

Although exploratory analyses were conducted on area under the curve of the RIII 

response, no clear or interesting effects were found. Since this parameter is 

considered to be less reliable than onset latencies and requires many repetitions to 

attain reliable values (van Vliet, Vein, le Cessie, Ferrari, & van Dijk, 2002), area 

under the curve is not reported.
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Randomisation/Methodological check 

 

RIII latencies did not differ between groups at the beginning of the experiment in 

response to 10 mA (t (30) = -1.55; p = .13) or 15 mA shocks (t (35) = -0.69; p = .49) 

(Table 4.18). Latency of RIII responses were consistent with those identified 

previously (e.g., Garcia-Larrea, Charles, Sindou, & Mauguiere, 1993 = 80 - 130 

msecs; Hugon, 1973 = 80 - 120 msecs). Furthermore, RIII were long enough to be 

distinct from RII responses, and short enough to avoid contamination by voluntary or 

startle responses occurring beyond 250 msecs (Le Bars et al., 1992). Neither RIII (t 

(19) = -1.3; p = .21) nor pain thresholds (t (41) = -0.36; p = .72) differed significantly 

between groups at the beginning of the experiment (Table 4.18). 

 

 

Table 4.18: RIII onset latencies to 10 mA and 15 mA stimuli. 

 

  Placebo  Naltrexone  

Time mA N Mean SD N Mean SD 

Pre-drug 10 18 103.64 18.77 14 95.28 8.43 

 15 19 100.59 15.75 18 96.99 15.74 

Post-drug 10 10 101.92 12.89 9 94.45 8.56 

 15 15 104.69 15.57 15  102.31 15.33 

Post-task 10 8 96.07 13.25 7 107.90 16.18 

 15 9 93.93 10.65 10 101.97 11.01 
Note. mA = milliamps. 

 

 

Effects of the math task and drug on RIII onset latencies 

 

RIII latencies did not differ between placebo and naltrexone groups after the drug in 

response to 10 mA shocks (t (17) = -1.47; p = .16) or 15 mA shocks (t (28) = -0.42; p 

= .68). Similarly, RIII did not differ between groups at either intensity (10 mA 

shocks: t (13) = 1.56; p = .14; 15 mA shocks: t (17) = 1.62; p = .12) after the 

math task. 
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Effect of mood, self-efficacy and the drug on RIII onset latencies 

 

Exploratory analyses investigating the effects of mood and self-efficacy (absolute 

and change scores) on RIII onset in each drug condition were completed using two-

step, hierarchical linear regression models. No major findings emerged, suggesting 

that these variables did not affect RIII onset. Alternatively, cell sizes may have been 

too small to detect any effects. 

 

RIII and subjective pain thresholds 

 

As found previously (Sandrini et al., 1986; Willer, 1977), subjective pain thresholds 

(detected using the staircase limits method) and RIII thresholds were positively 

related at all time points during the experiment (Table 4.19). An RIII threshold was 

defined as the intensity eliciting a response approximately 75-80% of the time 

(Willer, 1977). A response was polyphasic in shape, with an onset between 90-180 

msec (post-stimulus). 

 

Table 4.19: Pearson product correlations between RIII and subjective pain 

thresholds.  

 

 Mean subjective pain thresholds - mA 

 Pre-drug Post-drug Post-math 

Mean RIII thresholds - mA 3.52 (2.7) 5.69 (3.3) 5.39 (3.0) 

Pre-drug 7.33 (2.1) .56** .61** .41 

Post-drug 8.25 (2.6) .46 .71** .43 

Post-math 8.21 (1.7) .45 .68* .65* 
Note. mA = milliamps; Numbers of subjects demonstrating clear RIII responses varied at each time 

point i.e., pre-drug N = 21, post-drug N = 18, and post-math task N = 12. 

*p<.05; **p <.01. 

 

 

Separate 2 (Drug: naltrexone, placebo) x 2 (Time: pre-drug, post-drug) repeated 

measures ANOVAs were carried out on subjective pain thresholds to explore 

differences after the drug. Similar 2 (Drug: naltrexone, placebo) x 2 (Time: pre- and 
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post-math task) repeated measures ANOVAs were carried out after the math task. As 

shown in Tables 4.20 and 4.21, pain thresholds increased significantly after drug 

absorption; however, this effect occurred regardless of opioid blockade.  Pain 

thresholds did not change significantly after the math task.  

 

Cell numbers were too small to carry out repeated measures analyses on RIII 

thresholds. Therefore, independent t-tests comparisons were computed between 

groups at each time point. RIII thresholds did not differ significantly between groups 

after drug absorption (t (16) = .48; p = .63) or the math task (t (10) = -.84; p = .42). 

 

 

Table 4.20: Subjective pain thresholds for RIII-eliciting stimuli. 

 

 Placebo (N = 23) Naltrexone (N = 20) 

mA Pre-drug Post-drug Post-maths Pre-drug Post-drug Post-maths 

Mean 4.30 4.91 5.54 4.65 5.89 6.35 

SD 3.08 3.14 3.73 3.31 3.27 4.29 
Note. mA = milliamps. 

 

 

Table 4.21: F ratios comparing subjective pain thresholds (for RIII-eliciting stimuli) 

between conditions, after the drug and after the math task. 

 

Source Post-drug Post-math task 

Time† (T) 7.74** 2.25 

Drug (D) 0.53 0.74 

T x D† 0.92 0.06 
Note. †Pillai’s Trace F ratio; degrees of freedom = 1,41. 

**p<.01. 
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4.3.6  Association between painful and non-painful stimuli14 

 

Pearson product correlations were carried out between painful and non-painful 

stimuli i.e., LSMT, VM (Table 4.22). Whilst cold pressor PI and UP were 

moderately related to each other, neither pain rating was related to pain tolerance 

before or after the math task. Instead, pain tolerance was positively related to non-

painful tasks of persistence (i.e., LSMT, VM) - particularly in the placebo group. 

Finally, cold pressor PI was inversely associated with RIII pain thresholds before and 

after the math task. That is, higher reports of cold-induced pain were related to lower 

electrical pain thresholds. 

 

 

Table 4.22: Pearson product correlations between painful and non-painful stimuli 

after the drug and math task. 

 

 Placebo (N = 23) Naltrexone (N = 20) 

 1. 2. 3. 4. 5. 6. 1. 2. 3. 4. 5. 6. 

 Post-drug/Pre-math task 
1. Tol. -      -      
2. PI -.00 -     .21 -     
3. UP -.15 .52* -    .19 .41 -    
4. LSMT .40 .13 -.03 -   -.01 .24 -.27 -   
5. VM .52* .16 .04 .16 -  .34 .08 -.02 -.14 -  
6. PTh. .23 -.57** -.10 .04 .14 - .27 -.40 -.02 -.31 .21 - 
 Post -math task 
1. Tol. -      -      
2. PI -.04 -     -.15 -     
3. UP -.10 .67** -    -.00 .47* -    
4. LSMT .48* -.29 -.30 -   -.21 .13 -.09 -   
5. VM .43* .05 .15 .11 -  .39 .11 -.04 -.26 -  
6. PTh. -.02 -.66** -.29 .39 .28 - .25 -.39 -.04 -.43 .08 - 
Note. Tol. = tolerance time (seconds), PI = pain intensity; UP = unpleasantness; LSMT = Letter 

Symbol Matching Task; VM = Valsalva manoeuvre; PTh. = pain thresholds to RIII-eliciting stimuli.   

*p<.05; **p<.01. 

                                                 
14 Since statistical analyses indicated that neither the LSMT nor the VM were affected by mood, time 

or any other experimental manipulation, these findings were not reported. 
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4.3.7  Cardiovascular activity 

 

SBP, DBP and pulse rate were measured on entering the experimental environment, 

90 minutes later after drug absorption, and during and after the math task. Absolute 

values reflected the relationship between hypertensive responses and endogenous 

opioid release most clearly. Hence, absolute cardiovascular responses were analysed 

rather than change scores.  

 

Randomisation check 

 

Independent t-tests indicated that cardiovascular responses did not differ among 

groups at the start of the experiment (SBP: t (40) = -1.13; p = .27; DBP: t (40) = -.50; 

p = .62; Pulse: t (40) = .13; p = .89) (Table 4.23). Cardiovascular responses were 

within normotensive levels (Lobstein et al., 1989; O'Brien & O'Malley, 1981). 

 

Effects of the drug on cardiovascular activity 

 

Separate 2 (Drug: naltrexone, placebo) x 2 (Time: pre-drug, post-drug) repeated 

measures ANOVAs were carried out on SBP, DBP and pulse rate (Tables 4.23 and 

4.24). Cardiovascular measures decreased regardless of opioid blockade, suggesting 

that sympatho-inhibition was due to an extended period at rest and familiarisation 

with the experimental setting and procedures (Table 4.24). The lack of effect of 

naltrexone on cardiovascular responses at rest supported the use of this opioid 

antagonist when studying cardiovascular responses to the math task  

(McCubbin et al., 1996).  
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Table 4.23: Blood pressure and pulse rate before and after the drug.  

 

 Placebo (N = 22a) Naltrexone (N = 20) 

Pre-drug Post-drug Pre-drug Post-drug Blood 

Pressure Mean SD Mean SD Mean SD Mean SD 

SBP 116.32 15.53 110.65 13.31 110.87 15.79 104.78 15.56 

DBP 70.15 10.35 67.83 8.54 68.72 8.09 66.07 7.61 

Pulse  80.66 13.42 73.04 11.64 81.17 10.72 72.58 9.27 
Note. a N=1 missing data; SBP and DBP = systolic and diastolic blood pressure, respectively (scale = 

mmHg); Pulse = heart beats per minute. 

 

 

Table 4.24: F ratios of blood pressure and pulse rate before and after the drug. 

 

Source SBP DBP Pulse 

Time† (T) 23.54*** 10.15** 42.34*** 

Drug (D) 1.59 0.38 0.00 

T x D† 0.03 0.04 0.15 
Note. †Pillai’s Trace F ratio; degrees of freedom = 1,40; SBP and DBP = systolic and diastolic blood 

pressure, respectively (scale = mmHg); Pulse = heart beats per minute.  

**p<.01; ***p<.001. 

 

 

Effects of the math task on cardiovascular activity 

 

BP and pulse rate were measured at 2-minute intervals during the math task (28 

minutes duration). As in Study 2, measures were averaged across two intervals (of 14 

minutes each). Separate 2 (Drug: naltrexone, placebo) x 4 (Time: pre-task, task 

interval 1-14 minutes and 15-28 minutes, post-task) repeated measures ANOVAs 

were carried out on SBP, DBP and pulse rate (Tables 4.25 and 4.26).  
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Table 4.25: Blood pressure and pulse rate prior to, during and after the math task. 

 

  Placebo (N = 20a) Naltrexone (N = 20) 

  Math task   Math task  Blood 

Pressure  Pre 1 2 Post Pre 1 2 Post 

SBP M 109.46 119.48 115.97 116.66 104.78 114.04 109.64 106.17

 SD 13.26 15.44 14.44 14.51 15.56 14.26 15.02 13.19

DBP M 66.74 77.66 76.73 73.89 66.07 75.36 73.78 69.59

 SD 8.11 11.02 9.02 8.70 7.61 9.68 11.49 6.71

Pulse M 70.90 71.39 71.09 68.84 72.58 72.23 72.59 69.95

 SD 9.59 11.49 10.35 11.64 9.27 11.75 10.16 8.57
Note. a N = 3 missing data; M = mean; SD = standard deviation; Pre = pre-math task; Math task 1 = 1-

14 mins; Math task 2 = 15-28 mins; Post = post-math task; SBP and DBP = systolic and diastolic 

blood pressure, respectively (scale = mmHg); Pulse = heart beats per minute. 

 

 

Table 4.26: F ratios comparing blood pressure and pulse rate prior to, during and 

after the math task. 

 

Source SBP DBP Pulse 

Time† (T) 17.90*** 36.29*** 2.17 

Drug (D) 2.44 0.98 0.18 

T x D† 1.81 1.39 0.05 
Note. †Pillai’s Trace F ratio; degrees of freedom: T, T x D = 2,37; D = 1,38; SBP and DBP = systolic 

and diastolic blood pressure, respectively (scale = mmHg); Pulse = heart beats per minute. 

***p<.001. 

 

Time main effects for SBP and DBP were explored with planned simple contrasts, 

where each rating was compared to pre-task ratings. As shown in Table 4.27, SBP 

and DBP were significantly higher during and after the task, than beforehand. Pulse 

rates remained at pre-task levels during the task, but were marginally lower once the 

task was completed. Naltrexone did not influence BP or pulse rate during or after the 

math task.  
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Table 4.27: Simple pair-wise comparisonsa of blood pressure and pulse rate before, 

during and after the math task. 

 

 Blood pressure across time 

Math task Blood 

Pressure 

 

Pre-task 1-14 mins  15-28 mins 

 

Post-task 

SBP  107.12 116.76*** 112.80*** 111.41** 

DBP  66.40 76.51*** 75.26*** 71.74*** 

Pulse  71.74 71.81 71.84 69.40b 
Note.  a pre-task is the point of comparison; SBP and DBP = systolic and diastolic blood pressure, 

respectively (scale = mmHg); Pulse = heart beats per minute. 
bp=.054; **p<.01; ***p<.001. 

 

Association between cardiovascular activity and task shock sensitivity  

 

Correlational analyses demonstrated an inverse relationship between task shock 

sensitivity and BP in the placebo group, but not in the naltrexone group (Table 4.28). 

There was evidence of a similar relationship in regression analyses, although group 

differences failed to reach significance (Table 4.29). No relationship existed between 

pulse rate and pain perception during task shocks. 

 

 

Table 4.28: Pearson correlations between blood pressure, pulse rate and task shock 

pain intensity and unpleasantness ratings. 

 

 Task shock pain index 

Placebo (N = 21a) Naltrexone (N = 20)  

Task CVR PI UP PI UP 

SBP -.52* -.41 .04 .00 

DBP -.51* -.43b .07 .01 

Pulse -.36 -.12 -.04 .16 
Note.  a N=2 missing data; CVR = cardiovascular response; PI = pain intensity; UP = unpleasantness; 

SBP and DBP = systolic and diastolic blood pressure, respectively (scale = mmHg); Pulse = heart 

beats per minute. 
bp=.052; *p<.05. 
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Table 4.29: Summary of t-values from hierarchical regression analyses illustrating 

the effects of drug, blood pressure and pulse rate on task shock pain and 

unpleasantness during the math task. 

 

 Task shock pain index 

 Pain intensity Unpleasantness 

Step Variable SBP DBP Pulse  SBP DBP Pulse  

1 Drug (D) 0.79 0.75 0.50 0.38 0.36 0.11 

 CVR 0.46 -1.44 -1.23 -1.27 -1.39 0.14 

2 D x CVR -1.70 -1.68 -0.93 -1.26 -1.28 -0.88 
Note. Step 1 = main effects model (df = 2,40); Step 2 = full model (df = 3,39); CVR = cardiovascular 

response; SBP and DBP = systolic and diastolic blood pressure, respectively (scale = mmHg); Pulse = 

heart beats per minute. 

 

 

Association between cardiovascular activity and cold pressor pain perception 

 

Pearson product correlations (Table 4.30) and regression analyses (Table 4.31) were 

carried out between cold pressor PI, UP and pain tolerance and cardiovascular 

activity measured just prior to each CPT. 

 

SBP was positively associated with cold pressor pain tolerance after the math task. 

There was evidence of a similar relationship before the math task, although this did 

not achieve statistical significance. Correlational analyses suggested that this 

relationship was stronger for placebo than naltrexone recipients. However, group 

differences were not detected in regression analyses. 

 

DBP was positively associated with cold pressor UP before the math task in the 

naltrexone group (Figure 4.7). This relationship disappeared after the math task. 

Instead, there was a general inverse association between blood pressure and cold 

pressor UP. This effect was not affected by the drug. Pulse rate was not associated 

with cold pressor pain perception. 
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Table 4.30: Pearson product correlations between cold pressor pain indices, blood 

pressure and pulse rate. 

 

 Placebo (N = 22a) Naltrexone (N = 20) 
 PI UP Tolerance PI UP Tolerance 
 Post-drug/Pre-math task 

SBP -.03 -.14 .42b .25 .26 .18 
DBP -.15 -.35 .30 .34 .46* .03 
Pulse -.06 -.12 .31 .11 .07 .03 

 Post-math task 
SBP -.07 -.29 .51* -.06 -.44c .21 
DBP -.09 -.55** .28 .15 -.16 .06 
Pulse .02 .04 .14 .06 -.11 -.20 
Note. a N=1 missing data; PI = pain intensity, UP = unpleasantness, Tolerance = pain tolerance 

(seconds); SBP and DBP = systolic and diastolic blood pressure, respectively (scale = mmHg);  

Pulse = heart beats per minute. 
bp=.051; cp=.052; *p<.05; **p<.01. 

 

 

Table 4.31: Summary of t-values from hierarchical linear regression analyses 

illustrating the effects of drug, blood pressure and pulse on cold pressor pain, 

unpleasantness and tolerance. 

 

 Pain intensity Unpleasantness Tolerance 

Step Variable SBP DBP Pulse SBP DBP Pulse  SBP DBP Pulse 

  Post-drug/Pre-math task 

1 Drug (D) -0.16 -0.07 -0.04 1.17 1.26 1.29 -0.64 -0.37 -0.28 

 CVR 0.60 0.26 0.01 0.44 0.15 -0.22 1.90 1.13 1.19 

2 D x CVR -0.76 -1.52 -0.53 -1.25 2.76** -0.58 0.88 0.74 0.70 

  Post-math task 

1 Drug (D) -1.00 -1.18 -1.25 0.93 0.63 0.00 -1.03 -0.41 -0.09 

 CVR -0.41 -0.05 0.22 -2.43* -2.29* -0.17 2.46* 1.17 0.03 

2 D x CVR -0.05 -0.62 -0.16 0.98 -0.62 0.56 0.78 0.50 1.10 

Note. Step 1 = main effects model (df = 2,40); Step 2 = full model (df = 3,39); Tolerance = pain 

tolerance (seconds); CVR = cardiovascular response; SBP and DBP = systolic and diastolic blood 

pressure, respectively (scale = mmHg); Pulse = heart beats per minute. 

*p<.05; **p<.01.  
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4.4  DISCUSSION 

4.4.1  Summary of major findings 

 

Two key findings emerged from the present study. First, opioid blockade increased 

the affective component of pain after psychological stress. Second, experimentally 

induced discouragement was associated with increased cold pressor PI and UP in the 

naltrexone group, whilst anxiety and anger failed to modulate pain. Since 

discouragement preceded the CPT, it is likely that discouragement had a direct 

inhibitory effect on pain. Conversely, negative mood was associated with pain 

sensitivity to brief electrical stimulation.  

 

 

Figure 4.7: Scattergram depicting a positive association between cold 

pressor unpleasantness and diastolic blood pressure for naltrexone but not 

placebo recipients after the drug. 

r = .46; p = .04 

r = -.35; p = .11 
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Other findings of interest included: 

• Insensitivity of RIII responses to psychological stress, negative mood, or opioid 

release, despite being related to subjective pain thresholds. 

• Pain tolerance reflected the ability to endure discomfort. 

• An opioid-mediated inverse association between BP and pain during and after 

psychological stress.  

4.4.2  Success of experimental manipulations 

 

Significant increases in anxiety, discouragement, and anger and low self-efficacy 

characterised subjects’ experience during and shortly after the math task. A 

significant decrease in self-efficacy after the practice trials confirmed that task 

controllability was manipulated effectively. Furthermore, the math task provoked 

sizable elevations in BP, presumably due to the constant threat and actual delivery of 

noxious electric shocks - an element not present in other studies (McCubbin et al., 

1996). An increase in BP often leads to a slowing of the heart by reflex signals sent 

from the vasomotor centre (i.e., the 'baroreceptor reflex' - Steptoe, 1980). In 

normotensive individuals this reflex plays an important role in regulating arterial 

pressure and maintaining cardiovascular homeostasis (Andreassi, 1989). Thus, it is 

possible that baroreceptors responded to elevations in arterial pressure by slowing 

heart rate throughout and after the math task.  

 

Naltrexone failed to influence mood or cardiovascular activity at rest, meaning that 

opioidergic effects observed after the math task could be attributed to psychological 

stress and not naltrexone. 

 

Electric shocks during the math task and CPTs were valid pain stimuli as subjects 

reported ‘moderate’ to ‘somewhat severe’ PI and UP during each stimulus. Prior to 

the math task, anxiety was associated with high reports of cold pressor PI, 

particularly in the naltrexone group. Also, anger was positively associated with pain 

tolerance in the placebo group. These results suggest that opioids may have been 

released prior to the math task due to the stress of repeated CPTs. Placebo and 

naltrexone group differences in cold pressor UP before the math task support this 

idea (see 4.4.5 Multi-dimensional pain experience, p 196).  
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4.4.3  Opioid involvement in stress-induced analgesia (SIA) 

 

Sensitivity to brief electrical stimuli 

 

Pain sensitivity to shocks did not differ between the placebo and naltrexone groups 

during the math task. Therefore, the results of the present study diverged from those 

demonstrating opioid-mediated SIA to electric shock stimuli in animals (e.g., Hyson 

et al., 1982) and humans (e.g. Willer & Albe-Fessard, 1980a; Willer et al., 1981). 

Shocks adopted in other studies were typically longer in duration, delivered at a 

higher frequency and were more intense than those delivered during the math task. 

According to Rhudy and Meagher (2001b), the negative affect and high levels of 

arousal resulting from the intensity of these stimuli may have activated the 

endogenous opioid system, leading to pain inhibition. Conversely, lower levels of 

negative arousal tend to facilitate pain in subjects who are exposed to aversive, 

uncontrollable events (Rhudy & Meagher, 2001b). In light of this, it is possible that 

the math task (in conjunction with the brief and intermittent nature of the shocks) led 

to low to moderate levels of negative arousal, which in turn enhanced  

shock PI and UP.  

 

Decreased sensitivity to sustained cold pressor stimuli 

 

Subjects under opioid blockade reported more cold pressor UP after the math task, 

than beforehand. UP remained the same in the placebo group demonstrating a 

‘relative analgesia’ when compared to their counterparts in the naltrexone group. 

Neither PI nor pain tolerance differed in either the placebo or naltrexone group after 

the math task. Therefore, increasing the power of the present study by including only 

one stressful condition did not strengthen the analgesic effect observed in Study 2. It 

is possible that ‘stimulus controllability’ is less directly related to SIA than mediating 

variables such as negative mood. In demonstrating this, Mueller and Netter (2000) 

found a strong independent effect of ‘subjective helplessness’ on pain perception, 

whereas objective stimulus controllability was only indirectly related to perceived PI. 

Alternatively, the intensity of the cold pressor stimulus may have induced ceiling 

effects in perceived PI and UP, so that opioid-mediated SIA was unable to counteract 

nociceptive input in the placebo group.  
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RIII onset 

 

The results of the present study do not support the hypothesis that RIII onset would 

be facilitated in the naltrexone group after the math task. The current findings 

diverge from those of Willer and colleagues (Willer & Albe-Fessard, 1980a; Willer 

et al., 1981), who demonstrated an opioid-mediated effect of anticipatory anxiety on 

RIII thresholds, whereby RIII responses were strongly facilitated (thresholds 

decreased) by naloxone in healthy humans. Opioid inhibition of the RIII at the spinal 

level has also been replicated in animal research (e.g., Goldfarb & Hu, 1976) and in 

patients suffering from chronic back and hip pain (Chabal et al., 1989). Divergent 

results in the present study may be explained by methodological differences such as 

stressor intensity on RIII indices. In comparison to the present study, Willer 

delivered much higher intensity shocks (70-80 mA versus 15 mA shocks) that may 

have led to a stronger opioid-mediated inhibitory effect on RIII responses. 

Alternatively, RIII thresholds may be a more sensitive measure of opioid 

involvement than onset latency. This explanation does not seem adequate as RIII 

thresholds measured in the present study were not influenced by opioid release either 

before or after the math task. In summary, the present findings indicate that the 

opioid system did not influence RIII, possibly owing to the nature of the stressor 

(math task + brief shocks) or other methodological limitations such as small cell 

sizes or limited precision in RIII measurement.  

4.4.4  Negative mood and pain modulation 

 

Facilitation of electrical pain 

 

Negative mood was positively associated with shock PI and UP in both the placebo 

and naltrexone groups. Rhudy and Meagher (2001b) suggested that negative 

emotions can facilitate pain via the same neural circuitry that modulates startle. Thus, 

negative mood may ‘prime’ subjects to experience more PI and UP during each 

shock. The way in which a stimulus is interpreted can also influence the way it is 

perceived. For instance, an interpretation of shock stimuli as ‘harmful’ often leads to 

anxiety and hyper-vigilance to the stimulus that increases autonomic arousal, 
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attention towards pain, muscle tension and pain itself. Similar processes, of which do 

not involve opioids, may be responsible for the present findings.  

 

An inverse association between self-efficacy and shock PI in the placebo group 

indicated that opioids were released in a subgroup of subjects with high self-efficacy. 

These results are at odds with those of Bandura et al. (1988), who found that self-

efficacious subjects differed from their inefficacious counterparts in that they were 

not stressed and there was no evidence of opioid activation during a timed math task. 

However, they did state that in the event that a task exceeded a subject’s capabilities 

it would become highly stressful - especially for self-efficacious subjects - resulting 

in opioid activation (Bandura et al., 1987). Thus, it is possible that the math task 

posed a difficult cognitive challenge even for self-efficacious subjects, who may 

have become stressed by their failure to perform well during the task, which in turn 

led to a release of opioids. 

 

Inhibition of cold pressor pain 

 

As hypothesised, naltrexone recipients who became more discouraged after the math 

task reported greater cold pressor PI and UP. Discouraged subjects in the placebo 

group experienced no change in cold pressor pain perception, suggesting that 

endogenous opioids were only partially effective in mediating pain inhibitory effects 

in discouraged subjects. This may be due to the intensity of the cold pressor stimulus 

and ceiling effects in PI and UP ratings. Although the relationship between 

discouragement and cold pressor pain perception failed to reach statistical 

significance in analyses of absolute scores, data trends agreed with those found with 

change scores. Discouragement in this experiment is akin to LH in animal research, 

which has been associated with opioid activation and endogenous analgesia. 

Therefore, a type of helplessness may have been induced during that math task, 

resulting in opioid activation and a ‘capping’ of pain sensations in the placebo group 

and pain sensitisation in subjects under opioid blockade. 

 

Contrary to expectations, neither anxiety nor anger modulated cold pressor pain 

perception after the math task. Thus, anxiety and anger were not associated with 

opioid activation, or SIA. These results fail to support the results of others who 
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demonstrated pain inhibition by experimentally induced intense anxiety (Willer & 

Albe-Fessard, 1980a). Rhudy and Meagher (2000; 2001a; 2001b; 2003a) postulated 

that fear induced by uncontrollable stressors inhibits pain. Therefore, subjects may 

have experienced anxiety instead of fear during the math task. Very few studies have 

been carried out on the effects of stress-induced anger on pain, hence specific 

hypotheses could not be generated. However, it may be that anger is not related to 

SIA. Alternatively, the math task may have failed to induce anger that was intense 

enough to activate endogenous antinociceptive systems. 

4.4.5  Multi-dimensional pain experience 

 

Pain thresholds to electrical stimuli used to elicit the RIII were inversely associated 

with ratings of cold pressor PI. This convergent association indicates that ratings of 

PI accurately reflected the subject’s pain experience across different stimulus 

modalities.   

 

The lack of opioid involvement in pain tolerance at most stages of the experiment 

suggests that this measure of pain also reflects factors unrelated to nociceptive 

processes. Specifically, a positive association between pain tolerance and non-

painful, unpleasant tasks (LSMT, VM) but not other pain-related measures (PI/UP 

ratings) suggests that pain tolerance reflects the ability to endure an unpleasant task, 

whether painful or not.  

 

Repetition of the CPT influenced both pain UP and pain tolerance whilst the sensory 

domain of pain, or PI remained unaffected. Affective components of the pain 

experience such as UP and tolerance are most influenced by factors such as 

contextual cues, emotions, memory, attention and cognitive expectancies about the 

pain stimulus (Hirsch & Liebert, 1998; Zelman et al., 1991). Therefore, having 

already experienced the noxious nature of the cold water and having to complete 

more than one CPT, negative expectations regarding the experience may have 

increased over the course of the experiment reducing pain tolerance and increasing 

UP. The present results support those of Hirsch and Liebert (1998), who 

demonstrated that contextual factors can powerfully influence affective responses to 

pain, whilst sensory aspects remain relatively unchanged. 
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Interestingly, opioids influenced UP, but not PI or pain tolerance, both before and 

after the math task. Before the task (after drug absorption), greater UP was reported 

in the placebo group, whereas UP remained unchanged with naltrexone. This result is 

difficult to explain because naltrexone, once absorbed, was expected to lead to more 

PI and UP during the CPT. One explanation may be that at low doses endogenous 

opioids may paradoxically increase affective components of pain. In particular, low 

levels of exogenous opiates such as morphine can excite nociceptors and facilitate 

the transmission of pain signals in humans (Le Bars et al., 1992) and animals (Vierck 

et al., 2002). Thus, noxious cold pressor stimuli may have led to minor opioid release 

before the math task. 

 

Endogenous opioids inhibited cold pressor UP after the math task, whereas PI and 

tolerance remained unchanged. This result is in accordance with both animal (e.g., 

Amir & Amit, 1978) and human research (Drolet et al., 2001), which demonstrated 

opioid modulation of affective elements of pain, without any change to pain 

sensation.  

4.4.6  Opioid involvement in the cardiovascular-pain relationship  

 

The widely researched relationship between cardiovascular and pain regulatory 

systems (Randich & Maixner, 1984) was explored in normotensive subjects in the 

present study. Specifically, the association between resting and stress-induced 

cardiovascular activity and pain was assessed prior to, during and after the math task. 

Mediation of this relationship by endogenous opioids was also of interest. Hence, the 

association between the above-mentioned variables was assessed after absorption of 

naltrexone.  

 

Shock sensitivity and stress-induced cardiovascular activity 

 

As hypothesised, according to correlational data subjects in the placebo group with 

high blood pressure reported less PI and UP for shocks during the math task. This 

relationship appeared to be weakened by naltrexone. Group differences suggest that 

stress-induced increases in BP were associated with opioid-mediated anti-

nociception. Cardiovascular and pain regulatory systems are interrelated whereby 
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primary afferents from the heart and lungs synapse in brainstem structures also 

responsible for anti-nociception (Randich & Maixner, 1984). Therefore, decreased 

shock pain sensitivity could be attributed to baroreceptor activated opioid-mediated 

pain-dampening mechanisms. The present findings are consistent with previous 

normotensive research examining this relationship during laboratory-induced stress 

(Rosa et al., 1988). 

 

Heart rate was not associated with shock pain perception. This may be explained by 

the different roles that BP and heart rate play in evoking baroreceptor-stimulated 

analgesia. BP plays a primary role in the stimulation of this form of analgesia as 

alterations in arterial pressure directly stimulate baroreceptors. Heart rate, on the 

other hand, indirectly influences the cardiovascular-pain relationship by influencing 

BP via a feedback regulatory mechanism known as the ‘baroreceptor reflex’. An 

indirect involvement in this relationship may explain why heart rate failed to 

influence shock pain perception.  

 

Cold pressor sensitivity and resting cardiovascular activity 

 

A positive relationship between DBP and cold pressor UP was found in the 

naltrexone group before the math task. It would appear that baroreceptor-mediated 

analgesia failed to operate in subjects under opioid blockade at this time. These 

results, although only found for DBP, support the idea that the endogenous opioids 

modulate the relationship between resting BP and pain in normotensive subjects 

(McCubbin & Bruehl, 1994). A similar relationship existed between SBP and cold 

pressor UP before the math task. However, no difference was found between the 

placebo and naltrexone groups. It is unclear why opioids appear to have mediated the 

relationship between DBP, but not SBP, and cold pressor UP.  

 

An inverse relationship between blood pressure and cold pressor UP was found in 

both naltrexone and placebo recipients after the math task. This suggested that the 

relationship between cardiovascular activity and pain was mediated (at least in part) 

by nonopioid mechanisms after the math task. It is not surprising that the association 

identified before the task disappeared afterwards because the stress-induced 
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activation of opioids during the math task could independently affect pain and blood 

pressure. 

 

Resting SBP was positively associated with cold pressor pain tolerance after the 

math task. Evidence of this relationship also existed before the task, but failed to 

reach statistical significance. Unlike UP, the relationship between SBP and pain 

tolerance did not appear to be mediated by opioid mechanisms. The reason for this 

discrepancy is uncertain. However, the association between cardiovascular activity 

and pain will be investigated further in the following study. 
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CHAPTER FIVE 

5. DEPRESSION AND PAIN 
 

Negative mood, and discouragement in particular, was found to mediate stress-

induced analgesic responses in healthy subjects in Studies 1-3. Furthermore, the 

inhibitory effect of negative mood on pain appeared to be mediated by endogenous 

opioids in Study 2 and 3. In the context of these and other findings, it has generally 

been accepted that negative mood modulates pain; however, the effects of mood 

disorders on pain are not clearly defined. Therefore, the aim of Study 4 was to 

investigate whether these results could be generalised to a mood disorder, namely 

major depression.  

 

The following two chapters aim to provide an overview of the literature examining 1) 

the link between depression and pain and 2) opioid involvement in depression before 

presenting the rationale for the fourth study. Also, literature regarding the interaction 

of cardiovascular and pain regulatory systems in depression will be reviewed briefly. 

5.1  CHAPTER OVERVIEW 
 

The relationship between depression and pain is well established and has been 

discussed extensively. However, only a few controlled studies have been conducted. 

Furthermore, theoretical models that specify the way the two conditions interact have 

undergone limited refinement (Romano & Turner, 1985). The relationship between 

depression and pain will be examined via a review of recent literature outlining: 

 

• the prevalence of pain in depression and depression in pain. 

• temporal relationships between depression and pain. 

• neurochemical pathways common to both disorders. 

• pain sensitivity in depressed patients compared to non-depressed subjects.  
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Depressive diagnostic criteria: The majority of research in this area assessed patients 

from one diagnostic category, namely major depressive disorder (as diagnosed by 

Diagnostic and Statistics Manual of Mental Disorders criteria, DSM-IV). Major 

depression is characterised by “[one] or more major depressive episodes (i.e., at least 

2 weeks of depressed mood or loss of interest accompanied by at least four additional 

symptoms of depression)” (A.P.A., 1994, p 317). Additional symptoms include 

significant weight loss or gain, decreased or increased appetite, insomnia or 

hypersomnia, psychomotor agitation or retardation, fatigue or loss of energy, feelings 

of worthlessness, excessive or inappropriate guilt, diminished ability to concentrate, 

indecisiveness, recurrent thoughts of death or suicidal ideation with or without a 

plan, or a suicide attempt. Included less often in the research are subjects with minor 

depression (i.e., the equivalent of <five, but >2 depressive symptoms mentioned 

above) (Jain & Russ, 2003).  

5.2  PREVALENCE STUDIES 

5.2.1  Pain in depression  

 

High rates of pain have been found in depressed patients. For instance, in a study of 

1146 patients with major depressive disorder, pain was the primary complaint in 69% 

of the cases (von Korff & Simon, 1996). Similarly, using rigorous Research 

Diagnostic Criteria (RDC), Lindsay and Wyckoff (1981) found that 59% of 

depressed patients complained of pain. Some data has indicated that pain occurs at 

different rates in some subgroups of depression versus others. For example, Von 

Knorring et al. (1983) found that rates of pain in depressed patients varied from 56% 

to 100%, with higher rates evident in patients with reactive depression, or adjustment 

disorder with depressed mood (according to DSM-IV diagnostic criteria). Romano 

and Turner (1985) established that pain complaints were more common in depressed 

patients with anxiety than those without, as anxious depressives tended to experience 

more muscular tension. Although generally high (above 50%), rates of pain in 

depression also vary according to the source of recruitment (newspaper articles 

versus primary care clinics), patient population (out versus inpatients), and the 

method of diagnosis (von Knorring et al., 1983; Ward, Bloom, & Friedel, 1979; 

Worz, 2003).
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5.2.2  Depression in pain 

 

The prevalence of major depression in the general population ranges from 5-17% 

(Banks & Kerns, 1996). In contrast, the prevalence of depression in chronic pain 

patients ranges between 10% and 100%, depending on the type of measure or clinical 

diagnostic criteria adopted (Romano & Turner, 1985). When major depression is 

diagnosed using stringent RDC and DSM-IV diagnostic criteria, the rate of 

depression in chronic pain patients is far higher than in the general population, 

ranging between 30% - 54% (Banks & Kerns, 1996). Consistent with this, Gureje, 

Simon and von Korff (2001) found that patients with persistent pain were four times 

more likely to have an anxiety or depressive disorder than pain free individuals. 

Furthermore, depression is consistently more common in chronic pain patients than 

in any other chronic medical patient subgroup presenting with physical symptoms 

(Banks & Kerns, 1996; Fishbain, Cutler, Rosomoff, & Rosomoff, 1997). 

5.3  TEMPORAL RELATIONSHIPS BETWEEN DEPRESSION AND PAIN  
 

The literature examining temporal relationships between depression and pain 

indicates a two-way interaction between both conditions. Before a brief overview of 

this literature is presented, explanations for each directional relationship (i.e., 

depression causing pain and pain causing depression) will be given. 

 

According to the notion that depression precedes pain, depressed patients are more 

likely to experience pain and report distress due to increases in muscle tension and an 

increased focus on somatic symptoms (Romano & Turner, 1985). For example, 

people who complain of fatigue, headaches, or gastrointestinal problems are more 

likely to have a co-morbid anxiety or depressive disorder, and it seems that the 

presence of these disorders increases the probability of physical complaints reaching 

reportable levels (Gallagher & Cariati, 2002). To illustrate, out of two groups 

experiencing the same symptoms of irritable bowel syndrome, the group 

experiencing more life stress and psychiatric conditions were the ones who sought 

medical assistance (Drossman, 1999). Kroenke and Mangelsdorff (1989) found that 
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the presence of physical complaints increased the probability of a mood disorder 

three-fold, but that physical complaints in these cases were linked to disease-related 

pathology only 16% of the time. Biochemical changes in depression such as the 

reduced release of serotonin and noradrenaline may also explain increased pain in 

depression as these biochemical changes influence nociceptive processing (Romano 

& Turner, 1985; Ward et al., 1979). 

 

Depression that is secondary to pain may reflect a patient’s psychological reaction to 

the physically and emotionally demanding nature of persistent pain. In a cross-

sectional study, Rudy, Kerns and Turk (1988) provided support for this view as pain 

led to negative cognitive and behavioural effects, which eventually resulted in 

depression in their sample. Alternatively, pain may increase the turnover of 

serotonin, thereby causing depression (Fishbain et al., 1997).  

 

Literature review 

 

Fishbain et al. (1997) conducted an extensive search of the literature, assessing 

eighty-three studies that investigated the temporal relationship between depression 

and pain. Only three of thirteen studies supported the view that depression increases 

the risk of chronic pain. Conversely, fifteen studies found evidence of depression 

following the onset of pain. Despite the comprehensive nature of this review, the 

‘vote-counting’ approach failed to account for the quality of findings, nor did it 

address the quality or strength of group differences. 

  

In a number of self-report studies, 38% to 46% of chronic pain patients reported pain 

prior to the onset of major depression, 10% to 12% recounted having depression 

before pain, whilst the remaining patients reported the simultaneous onset of both 

conditions (Bradley, 1963; Lindsay & Wyckoff, 1981; Lipowski, 1990). Atkinson, 

Slater, Patterson, Grant and Garfin (1991) also provided (marginally) more support 

for the view that pain precedes depression as 58% of their sample recalled having 

pain before depression, whilst only 42% recalled that their depression began before 

their pain.  

In a large longitudinal, prospective study, Brown (1990) used covariance structural 

equation modelling to permit causal inferences between pain and depression in 243 
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rheumatoid arthritis patients. Although the onset of depression was not specifically 

assessed, Brown (1990) found that depression was aggravated by pain, providing 

further support for the idea that depression is a consequence of pain. 

 

In a prospective study examining the view that depression precedes pain, Von Korff, 

LeResche and Dworkin (1993) found that over a three year period depression 

increased the risk of onset of some pain conditions (i.e., headache, chest pain, 

temporomandibular disorder). Similarly, in a 10-year follow up study Leino and 

Magni (1993) found that depressive symptoms predicted musculoskeletal pain in 

metal workers, but not the other way around. In another prospective study, Kivioja, 

Sjalin and Lindgren (2004) concluded that depressive morbidity prior to a motor 

vehicle accident influenced the presence of chronic neck pain one year after the 

whiplash injury. Moreover, there was a higher lifetime or pre-accident prevalence of 

depression in chronic neck pain sufferers (58%) than in those who completely 

recovered, suffering no pain (29%). In another line of support for the view that 

depression precedes pain, Keefe, Wilkins, Cook, Crisson and Muhlbaier (1986) 

found that the number of depressive symptoms predicted subsequent pain 

complaints. These results may be explained by the fact that depressed subjects 

demonstrate a lower tolerance of clinical pain (Merskey, 1976), making them more 

susceptible to developing chronic pain than non-depressed subjects..  

 

In the first study to assess depressed, pain-free individuals and non-depressed 

patients with musculoskeletal pain, Magni, Moreschi, Rigatti-Luchini and Merskey 

(1994) found that the temporal relationship in either direction was weak but that the 

odds ratio for pain predicting depression was stronger. However, this study contained 

diagnostic weaknesses as chronic pain was diagnosed as persisting for only 1 month 

and depression was diagnosed using rating scales. Finally, Gureje et al. (2001) found 

that chronic pain at baseline predicted the onset of an affective disorder at the same 

strength as an affective disorder at baseline predicted persistent pain. 
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Methodology 

 

Although the pain-depression temporal debate has drawn much attention, empirical 

approaches have been limited, providing considerable room for further investigation 

(Banks & Kerns, 1996). For example the use of physician reports, rigorous 

diagnostic criteria (DSM-IV or RDC), appropriate control groups, and prospective 

experimental designs may improve the quality of conclusions (Romano & Turner, 

1985). As the literature stands, there appears to be support for both the view that 

depression occurs primarily, and secondarily to pain – with slightly more evidence 

supporting the latter contention.  

5.4  COMMON NEUROCHEMICAL PATHWAYS  
 

Serotonin, noradrenaline and opioids are all implicated in the pathogenesis of 

depression and pain modulation (Jain & Russ, 2003). Considering that opioid 

involvement in pain and depression is the focus of the next chapter, opioids will not 

be discussed in this section. 

 

Serotonin and noradrenaline pathways are present in areas such as the prefrontal 

cortex and limbic system, both of which are implicated in depression. These 

neurotransmitters also regulate peripheral and central pain circuitry running through 

the amygdala, periaqueductal gray, dorsolateral pontine tegmentum and rostroventral 

medulla (Gallagher & Cariati, 2002). Preventing the release of serotonin and 

noradrenaline has led to an increase in depressive symptoms in patients taking 

antidepressants, and to a hyperalgesic response in animals and humans (Biegon & 

Samuel, 1980; Gallagher & Cariati, 2002). Conversely, inhibiting the uptake of both 

neurotransmitters with dual re-uptake inhibiting antidepressants (e.g., duloxetine) 

leads to the reduction in painful and depressive symptoms in patients afflicted with 

both disorders (Detke, Lu, Goldstein, Hayes, & Demitrack, 2002). Thus, this 

evidence and the efficacy of tricyclic antidepressants in pain conditions such as 

peripheral neuropathic pain, headache, migraine, facial pain, fibrositis and rheumatic 

pain, provides support for the contention that pain and depression share 

neurochemical pathways (Ruoff, 1996).  
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Some researchers argue that analgesia related to antidepressants is a secondary effect 

that can be attributed to the alleviation of depression and increased tolerance to pain 

(Onghena & Van Houdenhove, 1992). However, evidence of antidepressant-induced 

analgesia in both organic and psychogenic pain, and in both depressed and non-

depressed subjects fails to support this explanation. Alternatively, antidepressant-

induced analgesia may involve the inhibition of synaptic serotonin and noradrenaline 

re-uptake, both of which appear necessary for analgesia (Onghena & Van 

Houdenhove, 1992).  

 

In summary, disruptions in descending pain inhibitory pathways, or any other brain 

structure mediated by serotonergic or adrenergic mechanisms, could influence pain 

or depression, and in turn influence the other (Manning, 2002). The overlap of 

neurochemical circuitry led Manning (2002) to speculate that these common factors 

could account for high rates of depression in chronic pain, or a depressive 

predisposition increasing an individual’s vulnerability to chronic pain. Whether 

changes in these neurotransmitters precede or follow each disorder, and the extent to 

which these and other neurochemical mediators overlap in depression and pain, is yet 

to be fully investigated (Romano & Turner, 1985). 

5.5  PAIN SENSITIVITY IN DEPRESSION 

5.5.1  Experimental pain 

 

In an extensive number of laboratory studies, depressed subjects have been reported 

to experience less pain than non-depressed subjects. Using a sensory detection 

paradigm, Davis, Buchsbaum and Bunney (1979) randomly delivered 93 shocks 

ranging from 1-31 mA to 76 affectively ill patients. They concluded that depressed 

patients were less sensitive to shocks, and rated fewer stimuli as ‘unpleasant’ and 

‘very unpleasant’, than controls. In the same group of depressed patients, Davis et al. 

(1979) observed lower slope amplitude and intensity in somatosensory evoked 

potentials to four stimulus levels ranging from 2-23 mA indicated, in comparison to 

controls. Although Davis et al. (1979) tested both unipolar and bipolar subjects, pain 

insensitivity was comparable in both groups. In another signal detection paradigm 
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(Dworkin, Clark, & Lipsitz, 1995), patients with major depression were less able to 

discriminate between painful thermal stimuli, and demonstrated a higher response 

criterion (or more stoicism) to painful stimuli, when compared to controls.  In 

contrast, sensory discrimination of thermal stimuli at lower intensities did not differ 

between the groups.  

 

Increased pain thresholds to other pain stimuli such as contact heat have also been 

demonstrated in depressed patients (Bar, Greiner, Letsch, Kobele, & Sauer, 2003; 

Lautenbacher, Roscher, Strian, Fassbender, Krumrey, & Krieg, 1994). For example, 

Launtenbacher et al. (1994) found higher contact heat pain thresholds in 20 patients 

with major depression compared with the same number of healthy controls. 

However, the severity of depressive symptoms was not related to pain thresholds. 

Bar et al. (2003) compared the heat pain thresholds and tolerance of 20 depressed 

patients, who had begun taking antidepressants, with 20 age- and sex-matched 

controls. Increased heat pain thresholds and tolerance were observed in depressed 

patients at the outset of treatment (on or off medication) and during recovery, when 

compared to controls. 

 

In a recent meta-analysis examining the impact of depression on the perception of 

experimental pain stimuli in six methodologically rigorous studies, Dickens, 

McGowan and Dale (2003) reported that pain thresholds were significantly higher in 

depressed subjects compared to non-depressed controls. Experimental pain 

insensitivity in depression was attributed to decreased attention to pain in depressed 

subjects, and not to alterations in pain inhibitory mechanisms. Others such as 

Marazziti, Castrogiovanni, Rossi, Rosa, Ghione, Di Muro, Panattoni and Cassano 

(1998) have related elevated pain thresholds in depressed patients to hyper-

functioning of the endogenous opioid system, which they attribute to the 

dysregulation of neurotransmitters involved in pain transmission (e.g., serotonin). 

However, the lack of effect of naloxone on heat pain insensitivity in depression 

(Lautenbacher et al., 1994) fails to support this view.  

 

Pinerua-Shuhaibar, Prieto-Rincon, Ferrer, Bonilla, Maixner and Suarez-Roca (1999) 

found that PI, UP and pain thresholds in response to sustained ischemic pain 

produced by a maximal effort tourniquet procedure did not differ between 11 patients 
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with minor depression and 32 controls. However, pressure pain led to lower pain 

tolerance in depressed subjects compared to controls. Results of this study were 

difficult to compare with others for a number of reasons. First, the depressed group 

was mostly comprised of females, who often report more pain and display lower 

tolerance to pain than males (Giles & Walker, 2000; Stevens, 1993; Westcott et al., 

1977). Second, depression was diagnosed using the Zung scale rather than rigorous 

DSM-IV diagnostic criteria. Furthermore, the patients had only been diagnosed with 

minor depression. 

5.5.2  Clinical pain  

 

Paradoxically, in the context of decreased sensitivity to experimental pain, a higher 

prevalence and intensity of clinical pain has been found in depressed patients 

(Lautenbacher, Spernal, Schreiber, & Krieg, 1999). Kudoh, Katagai and Takazawa 

(2002) explored post-operative pain and experimental pain thresholds to electrical 

stimuli in 30 patients with major depression (taking antidepressants) and 30 controls 

- all of whom underwent major abdominal surgery. The depressed patients 

complained of significantly more pain following surgery, and clinical pain was 

related to the degree of pre-operative depressive symptomatology (as measured by 

scores on the Hamilton Depression Rating Scale). However, depressed patients did 

not differ from controls in their perception of electrical stimuli.  

 

These results suggest that depressed patients are more distressed by clinical than 

experimental pain, perhaps because of the greater intensity, longer duration, and 

unpredictable/uncontrollable nature of clinical pain. Depressed patients may tolerate 

experimental pain better than control subjects, as it is perceived to be below personal 

distress thresholds or is not intense enough to mobilise/reflect impaired pain 

inhibitory mechanisms (Lautenbacher et al., 1999). Clinical pain, on the other hand, 

may lead to an exaggerated affective response, catastrophic cognitions and fears 

relating to one’s own body, thus increasing the likelihood of clinical pain exceeding 

personal distress thresholds (Kudoh et al., 2002). A similar relationship was 

established in controls by Willoughby (Willoughby, 2000; Willoughby et al., 2002),  
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where experimentally induced depressed mood led to lower pain tolerance and an 

increase in catastrophising about pain.  

 

In other words, the discrepancy between experimental and clinical pain sensitivity in 

individuals with major depression may be due not only to nociceptive processes, but 

also to affective-evaluative responses to pain. This assumption was corroborated by 

Lautenbacher et al. (1999), who failed to find a substantial relationship between 

clinical pain and experimentally induced pain thresholds. Lautenbacher and Krieg 

(1994) also speculate that hyperalgesic reactions to clinical pain in depression can be 

attributed to the insufficient activation of pain inhibitory mechanisms. 

5.6  SUMMARY/CONCLUSIONS 
 

In summary, the prevalence of pain in depression appears to be higher than the 

prevalence of depression in pain. Specifically, when rigorous diagnostic criteria have 

been used, approximately two-thirds of depressed patients complain of (mostly 

muscular, headache and back) pain, whereas approximately one-third to one-half of 

patients with persistent pain also present with depression. With regards to the 

temporal relationship between depression and pain, there seems to be support for 

both the notion that depression precedes pain and that pain precedes depression, with 

slightly more evidence in favour of the latter idea. Neurochemicals such as serotonin, 

noradrenaline and endogenous opioids regulate both mood and pain circuitry, 

suggesting that depression and pain share common neurochemical pathology. 

Depressed patients report higher pain thresholds and lower sensitivity to a variety of 

experimentally induced pain (contact heat, electrical stimuli) than controls. 

Explanations include attentional mediators of mood (i.e., towards negative mood, 

away from pain) and hyper-functioning of the opioid system, neither of which have 

been adequately assessed. Greater sensitivity to clinical pain in depressed subjects 

compared to controls has been attributed to the intensity and meaning attached to 

clinical pain, factors which are aggravated by the degree of depressive 

symptomatology. Others speculate as to the role of impaired pain inhibitory 

mechanisms in clinical pain hypersensitivity experienced by depressed patients. The 

impairment of endogenous pain inhibitory mechanisms in depression will be 

examined in the following chapter. 
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CHAPTER SIX 

6.  OPIOIDS IN DEPRESSION  
 

The effects of exogenous and endogenous opioids on mood, behaviour and pain led 

to speculation regarding a relationship between depression and alterations in the 

endogenous opioid system. Additional lines of evidence connecting abnormal opioid 

activity with depression point specifically to high concentrations of opioid receptors 

in limbic and hypothalamic regions associated with mood (Extein, Pottash, & Gold, 

1982). Furthermore, the involvement of opioids in pain regulation has prompted 

speculation that pain insensitivity and the increased prevalence of clinical pain in 

depression may be mediated by impaired endogenous opioid mechanisms. 

 

The role of opioid peptides in depression has been examined by measuring opioids 

from various biological fluids (i.e., blood plasma, cerebrospinal fluid), and by 

assessing the effects of exogenous opioids and opioid antagonists on mood. More 

recently, physiological systems known to be mediated by opioids i.e., pain and 

cardiovascular regulatory systems and the hypothalamic-pituitary-adrenal (HPA) 

axis, have been compared between depressed and non-depressed subjects (Davis, 

Buchsbaum, & Bunney, 1981). The aim of this chapter is to provide a representative, 

although not comprehensive, summary of this research. Studies examining SIA in 

animal models of depression will also be discussed. 

6.1  OPIOIDS IN BIOLOGICAL FLUIDS 
 

Because of the location of opioid receptors in the brain, alterations in the opioidergic 

system are difficult to measure directly. Therefore, the functioning of the endogenous 

opioid system in depression has been assessed indirectly by measuring opioid levels 

from biological fluids including blood plasma, blood mononuclear cells and 

cerebrospinal fluid (CSF). However, some have criticised the relevance of opioid 

levels to central mechanisms (Agren, Terenius, & Wahlstrom, 1982). One 
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measurement technique termed the radio-receptor assay (RRA) method addressed 

this criticism by measuring stereo-specific binding at opiate receptors as an indicator 

of ‘functioning’ of the opioid system (Pickar, Naber, Post, van Kammen, Kaye, 

Rubinow, Ballenger, & Bunney, 1982b). A second related technique termed the 

radioimmunoassay (RIA) method has a distinct advantage over RRA in that the level 

of each opioid type can be detected. Nonetheless, antibodies that are commonly used 

in this technique cross-react with peptide molecules, masking results with a 

multitude of other substances (Pickar et al., 1982b).  

6.1.1  Blood plasma 

 

Recent results suggest that in depressed and non-depressed subjects concentrations of 

beta-endorphin in blood plasma reflect anxiety, fear and stress, more so than 

depression. For instance, Darko et al. (1992) found that plasma beta-endorphin 

concentrations were related to anxiety sequelae, in particular somatic anxiety, panic 

attacks, and phobias in depressed and control subjects, and with obsessive-

compulsive tendencies in depressed patients only. Beta-endorphin levels were not 

related to measures of anger or depression in patients or controls. Correspondingly, 

Daly, Duggan, Bracken, Doonan and Kelleher (1987) found no difference in the 

plasma beta-endorphin levels of patients with (non-organic) pain and those without 

pain, despite pain patients scoring higher on the Beck Depression Inventory. In 

support of the view above, beta-endorphin levels decreased in the brain and pituitary, 

and increased in the blood plasma of rats in response to acute stress (i.e., 5 mins of 

acute foot-shock - Millan, Przewlocki, Jerlicz, Gramsch, Hollt, & Herz, 1981).  

 

Others found that beta-endorphin levels in blood plasma were positively related to 

the occurrence of a psychosocial stressor in depressed patients (Goodwin et al., 

1993). For example, plasma beta-endorphin levels were lower in patients with what 

used to be termed endogenous depression (i.e., no environmental precipitant) than in 

patients with reactive depression (i.e., obvious stressful precipitant)  

(Galard, Gallart, Arguello, Schwartz, Castellanos, & Catalan, 1988).   

 

Transient increases in plasma concentrations of beta-endorphins have been found 

after a small number (≤ 6) of electroconvulsive therapy sessions in depressed patients 
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(Alexopoulos, Inturrisi, Lipman, Frances, Haycox, Dougherty, & Rossier, 1983; 

Ghadirian, Gianoulakis, & Nair, 1988; Inturrisi, Alexopoulos, Lipman, Foley, & 

Rossier, 1982; Misiaszek, Cork, Hameroff, Finley, & Weiss, 1984; Weizman, Gil-

Ad, Grupper, Tyano, & Laron, 1987). It has been speculated that beta-endorphin 

release represents markers of stress or CNS arousal (Jackson & Nutt, 1990). 

However, others suggest that increases in plasma levels of beta-endorphins are 

associated with the therapeutic effects of electroconvulsive therapy (Cohen, Pickar, 

Dubois, Nurnberger, Roth, Cohen, Gershon, & Bunney, 1982).  

 

In contrast, others have linked beta-endorphin release to depressive symptomatology. 

For instance, Bastuerk, Muhtaroglu, Karaaslan, Oguz, Simsek and Reyhancan (2000) 

found that higher morning concentrations of beta-endorphins in depressed patients, 

than controls, were related to the severity of depressive symptoms. Bastuerk et al. 

(2000) attributed higher plasma beta-endorphin levels to a central limbic disturbance 

characteristic of depressive episodes in patients prone to depression. Similarly, 

Darko et al. (1992) and Goodwin et al. (1993) found higher daytime plasma beta-

endorphin concentrations in depressed versus control subjects. However, beta-

endorphin levels were negatively related to symptom severity (Goodwin et al., 1993), 

suggesting that beta-endorphin release may decrease as depression worsens. Cohen et 

al. (1984) failed to support this view, finding lower plasma beta-endorphin levels in 

minor versus major depression. However, the severity and duration of major 

depression was not stated in either study, making it difficult to compare findings. 

Moreover, these studies failed to measure anxiety or stress. Hence, higher 

concentrations of beta-endorphins in blood plasma may represent a greater stress 

response in depressed patients versus healthy controls.  

 

Together, these results suggest that plasma concentrations of beta-endorphin reflect 

anxiety and stress-related symptoms in depressed and non-depressed subjects, and 

that beta-endorphin levels may be higher in depressed subjects than controls because 

of a greater and more persistent stress response.  
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6.1.2  Blood mononuclear cells 

 

Using the RIA technique, Panerai, Vecchiet, Panzeri, Meroni, Scarone, Pizzigallo, 

Giamberardino and Sacerdote (2002) found significantly higher levels of beta-

endorphin in peripheral blood mononuclear cells in depressed patients than controls. 

However, similar levels of beta -endorphins have been found in older (aged 24-73) 

depressed patients and controls (Brambilla, Maggioni, Panerai, Sacerdote, & 

Cenacchi, 1996). In light of the potential for the beta-endorphin response to be 

reduced over the course of depression (Goodwin et al., 1993), the lack of difference 

between older depressed patients and non-depressed controls could be attributed to 

opioid dysfunction in ageing patients. However, the non-equivalent age of patients 

and duration of depressive illnesses make comparisons across these studies difficult. 

6.1.3  Cerebrospinal fluid (CSF) 

 

In comparison to plasma concentrations, levels of beta-endorphins in CSF give a 

better indication of central activation and metabolism of these opioids. Furthermore, 

CSF levels of beta-endorphins reflect opioids synthesised in the brain, as individuals 

suffering from hypopituitarism (i.e., malfunctioning pituitary) often show traces of 

beta-endorphins in CSF but not in blood plasma (Gerner & Sharp, 1982).  

 

There is some suggestion that CSF opioid activity may be related to central 

noradrenergic systems and the biologic response to stress, rather than the 

pathophysiology of depression (Naber & Pickar, 1983). In support of this notion, 

Pickar et al. (1982b) reported an association between nurses’ ratings of anxiety and 

CSF opioid activity in patients with major depressive disorder. In another study,  

CSF concentrations of beta-endorphins decreased after an extended therapeutic 

course of electroconvulsive therapy (i.e., up to 12 sessions) (Nemeroff, Bissette, 

Akil, & Fink, 1991). Nemeroff et al. (1991) stated that CSF endorphins at the time of 

therapy “represent state markers of depression” (p 62) and that clinical improvement 

was associated with reductions in beta-endorphin levels, providing support for the 

view that levels of beta-endorphins in CSF represent a marker of stress.  
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While some studies have found evidence of abnormal CSF opioid activity in sub-

groups of depression, most research found similar opioid levels in the CSF of 

depressed patients and controls. Using rigorous RIA methodology, Gerner and Sharp 

(1982) failed to find abnormal levels of endorphin the CSF of subjects with unipolar 

or bipolar depression. Moreover, ratings of depression were not associated with 

levels of beta-endorphins in CSF, and no differences between subgroup were noted. 

France and Urban (1991) examined beta-endorphin concentrations in the CSF of 9 

depressed and 19 non-depressed sufferers of chronic neuralgic low back pain. CSF 

concentrations of beta-endorphins were similar in both groups regardless of 

depression, and the decrease in depressive symptomatology following 3 weeks of 

multi-modal inpatient pain treatment failed to influence CSF concentrations of beta-

endorphins. Similarly, Davis, Buchsbaum, Naber, Pickar, Post, van Kammen and 

Bunney (1982), Catlin et al. (1982), and Pickar et al. (1982b) failed to identify 

differences between depressed and normal subjects when using RIA and RRA 

methodology to measure levels of beta-endorphins in CSF.  

 

On the other hand, Agren et al. (1982), via the RRA method, found that unipolar 

patients had higher concentrations of beta-endorphins in CSF than bipolar patients, 

suggesting that unipolar depression may be characterised by beta-endorphin 

dysfunction. Similarly, Terenius, Wahlstroem and Agren (1977) reported elevated 

opiate-binding material in the CSF of a small group (female N = 5) of depressed 

patients. Also, subjects suffering from psychogenic pain syndromes (i.e., pain 

without an obvious somatic lesion) were found to have significantly higher beta-

endorphin levels in CSF than those with organic pain syndromes (Almay et al., 

1978). Nonetheless, the level of depressive symptomatology was related to beta-

endorphin levels in CSF in all pain patients. No relationship was found between 

anxiety and CSF endorphin levels (Almay et al., 1978). Aside from these studies, 

evidence of abnormal CSF opioid activity in depression is limited. 

 

In another line of research, opiate-binding in CSF is associated with urinary free 

cortisol (UFC) in depressed but not control subjects (Pickar et al., 1982b). UFC is 

linked with abnormalities in the HPA axis (see 6.4 Hypothalamic-pituitary-adrenal 

axis dysfunction in depression, p 218). These findings suggest that CSF opioid 
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activity in depression may play a role in the abnormalities of the HPA axis 

commonly identified in depressive disorders. 

 

In light of the data discussed above, it is unlikely that a simple notion of abnormally 

high or low levels of centrally circulating beta-endorphins can explain the underlying 

mechanisms of major depression. These results suggest that in depression there may 

not be an abnormality in the endogenous opioid system per se, but that alterations in 

CSF opioid activity may be related to biological mechanisms of anxiety and stress, 

which in turn may contribute to abnormalities in the HPA axis.  However, as 

mentioned earlier, one fundamental flaw in studies of opioid levels (whether from 

blood plasma, blood mononuclear cells or CSF) is that these levels do not indicate 

opioid system function. Studies in which opioid antagonists have been used do allow 

conclusions to be drawn about opioid activity i.e., the availability of endogenous 

opioid ligands and opioid receptor sensitivity. These studies are presented in the 

following section. 

6.2  EFFECTS OF OPIOID AGONISTS AND ANTAGONISTS IN DEPRESSION 

6.2.1  Opioid agonists 

 

Results are mixed with regards to the effect of beta-endorphins on mood in depressed 

patients, with some finding transient improvements (e.g., Catlin et al., 1982; Kline, 

Li, Lehmann, Lajtha, Laski, & Cooper, 1977), and others reporting no change or a 

worsening of mood (Angst, Autenrieth, Brem, Kovkkov, Meyer, Stassen, & Storck, 

1979). For instance, depressed patients reported notable improvements in psychiatric 

symptoms 2-4 hours after beta-endorphin administration in a double blind, placebo 

controlled study (Gerner, Catlin, Gorelick, Hui, & Li, 1980). Similar results were 

found in other double blind (Catlin et al., 1982) and single blind, low dose (1.5–9 

mg) studies (Kline et al., 1977), suggesting that depressed patients may suffer from a 

deficit in endogenous BE. Contrary to these results, Pickar et al. (1981) found no 

change in behaviour or psychiatric symptoms (as measured by scores on the Brief 

Psychiatric Rating Scale) in the majority of depressed subjects, and a worsening of 

mood in two patients after intravenously administering 4-10 mg of beta-endorphins 
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(using a placebo-controlled, double blind design). Also, in a non-placebo controlled 

study, patients with unipolar and bipolar depression reported a worsening of mood 

(hypomania or mania) (Angst et al., 1979). Similarly, Extein, Pickar, Gold, Gold, 

Pottash, Sweeney, Ross, Rebard, Martin and Goodwin (1981) found no 

antidepressant effect at all when administering exogenous opiates to those  

with depression.  

 

Another group of studies has indirectly measured opioid receptor functioning in 

depression by measuring the release of prolactin, adrenocorticotrophin hormone 

(ACTH) and cortisol in response to an opioid agonist (usually morphine). An 

increase in prolactin is mediated through opioid receptor stimulation (by morphine), 

whereby opioid receptor activation inhibits dopaminergic inhibition of prolactin 

secretion, allowing the release of prolactin. Cortisol, on the other hand, is released in 

response to ACTH. Since ACTH and beta-endorphins derive from the same peptide 

precursor, cortisol release in response to an opioid agonist or antagonist reflects 

alterations in beta-endorphin release in depression (Extein et al., 1982; Rosenzweig 

et al., 1996).  

 

In a controlled study, Extein et al. (1982) found a blunted prolactin response to 

morphine in depressed subjects, suggesting possible deficits in opioid receptor 

functioning or the down-regulation of receptors to compensate for excessive 

endorphin levels. Alternatively, a blunted prolactin response may have been due to 

irregular increases in prolactin, decreased sensitivity of the prolactin system, or 

abnormalities in dopamine, serotonin or other neuroregulatory systems (e.g., thyroid, 

corticosteroid axes) in depressed subjects. Although previously demonstrated to be a 

strategy effective in detecting endorphin deficit (Rosenzweig et al., 1996), the release 

of cortisol did not change in response to naloxone (Extein et al., 1982). These results 

uncover a possible role for the endogenous opioid system in abnormal functioning of 

the HPA axis (see 6.4 HPA axis dysfunction in depression, p 218). 

6.2.2  Opioid antagonists  

 

Evidence of opioid antagonists (i.e., naltrexone) producing dysphoria in a number of 

non-depressed patients (Hollister et al., 1981) has led to speculation as to the role of 
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opioids in the aetiology of depression. Nonetheless, recent data disconfirms the 

relationship between naltrexone and dysphoria since chronic use in non-depressed 

healthy subjects (Malcolm et al., 1987) and addicted patients (Miotto et al., 2002) 

failed to cause serious depressive side-effects. Additionally, recent results suggest 

that the inhibition of opioids may actually benefit some subjects under psychological 

stress. For instance, gradual improvements in mood have been noted in depressed 

patients after the administration of an opioid antagonist (Davis et al., 1981). Also, 

after 1-3 weeks of 3 x daily administration, cessation of the opioid antagonist 

naloxone led to an abrupt worsening of mood in a small number of patients (Terenius 

et al., 1977). Similarly, in a single-blind saline/naloxone cross-over design, morning 

and afternoon dysphoria occurred after cessation of naloxone (Martin del Campo, 

Dowson, Herbert, & Paykel, 2000). Other opioid antagonists (i.e., cyclazocine) have 

demonstrated antidepressant effects in depressed subjects (Fink, Simeon, Itil, & 

Freedman, 1970), providing further support for the hypothesis that endogenous 

opioids may worsen mood in depressed subjects.  

6.2.3  Miscellaneous substrates 

 

Other chemical substrates have been found to have anti-manic and depressive 

properties, for example, the cholinesterase inhibitor physostigmine (Berger & 

Barchas, 1982). In a study with healthy subjects, physostigmine-induced increases in 

depression, hostility and confusion were related to increases in plasma beta-

endorphin levels (Risch, Cohen, Janowsky, Kalin, & Murphy, 1980), suggesting that 

endorphin activity could be mediated cholinergically, and an increase in beta-

endorphin activity could exacerbate depressive symptoms.  

6.3  OPIOIDS AND PAIN SENSITIVITY IN DEPRESSION 
 

Acute pain insensitivity has been demonstrated widely in depressed patients in 

comparison to healthy subjects (Bar et al., 2003; Davis et al., 1979; Dworkin et al., 

1995; Lautenbacher et al., 1994). Amongst other psychobiological explanations, the 

possibility that central or peripheral opioids may be responsible for pain insensitivity 

in depression has been examined. Opioid involvement in pain insensitivity in 
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depression has been investigated with the use of opioid antagonists and by measuring 

opioids from biological fluids (blood plasma, CSF). Evidence pertaining to this 

hypothesis will be discussed. 

 

Levels of beta-endorphins in CSF have been related to pain insensitivity; however, 

this relationship has not been restricted to depressed patients. For instance, higher 

levels of CSF endorphins were associated with greater pain insensitivity in both 

normal and depressed subjects (Davis et al., 1982). Levels of plasma beta-

endorphins, on the other hand, have not as readily been related to the degree of pain 

insensitivity in depression. For example, Daly et al. (1987) failed to find a difference 

in plasma levels of beta-endorphins between depressed patients with and without 

non-organic pain. Furthermore, depressed patients suffering from pain recorded the 

highest outlying values of beta-endorphins in blood plasma.  

 

In searching through this literature, only one study administered an opioid antagonist 

to investigate opioid involvement in pain insensitivity in depression. Lautenbacher et 

al. (1994) demonstrated that decreases in pain sensitivity in 20 depressed patients 

were not mediated by endogenous opioids as naloxone failed to alter elevated contact 

heat pain thresholds. Moreover, increased pain thresholds were not related to any 

particular depressive symptom.  

 

These findings suggest that pain insensitivity in depressed patients may not be 

associated with excessive or abnormal beta-endorphin activity, but may involve the 

normal recruitment of central opioid- or nonopioid-mediated neural mechanisms in 

patients experiencing distress.  

6.4  HYPOTHALAMIC-PITUITARY-ADRENAL (HPA) AXIS DYSFUNCTION 

IN DEPRESSION 
 

The HPA axis is a complex system involving multiple hormones (e.g., beta-

endorphins, ACTH and cortisol) and feedback regulatory loops. Specifically, in 

healthy subjects the release of beta-endorphins and ACTH from the anterior lobe of 

the pituitary gland is regulated by the hypothalamic release of corticotrophin 
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releasing factors (CRF), which are in turn affected by limbic and other brain 

structures. Cortisol released from the adrenal cortex is influenced by beta-endorphin 

and ACTH release (Meador-Woodruff, Haskett, Grunhaus, Akil, Watson, & Greden, 

1987).  

 

Overactivity of the HPA axis has being widely established in major depression 

(Burnett, Scott, Weaver, Medbak, & Dinan, 1999; Zis, Haskett, Albala, Carroll, & 

Lohr, 1985), and stressors early in life have been identified as precipitants of 

depressive symptomatology and subsequent HPA dysfunction (Burnett et al., 1999). 

Nonetheless, it is still relatively unclear at which level the dysfunction occurs 

(Meador-Woodruff et al., 1987). One mechanism thought to mediate overactivity of 

the HPA axis in depressed patients is an abnormal excitatory drive from the limbic 

system to the hypothalamus. This results in chronic release of ACTH, the reduction 

of cellular corticosteroid receptors and, consequently, faulty feedback regulatory 

loops (Rosenzweig et al., 1996). Another mechanism involves the failure of opioid-

mediated inhibitory influences on the HPA axis. Normally, endogenous opioids 

inhibit the HPA axis by influencing the release of hypothalamic CRF, including 

noradrenergic pathways that control ACTH releasing factors. Naloxone-induced 

increases in ACTH and cortisol provide evidence of opioid inhibition of the HPA 

axis in normal subjects. Therefore, opioid inhibition of the HPA response to stress is 

though to be adaptive, in that the organism is protected from chronic arousal and 

hypersecretion of ACTH.  

 

To examine the role of opioids in the regulation of the HPA axis in depression, Zis et 

al. (1985) administered morphine to 24 depressed inpatients, 18 affectively ill control 

patients and 14 healthy controls. They found an early secretion of cortisol following 

morphine administration in those suffering from depression, suggesting that the HPA 

axis is non-responsive to opioid inhibition in this illness.  

 

To investigate opioid tone in depressed patients and controls, Burnett et al. (1999) 

measured ACTH and cortisol responses to administration of naloxone. Levels of 

cortisol and ACTH released in response to naloxone were smaller in depressed 

patients, than in controls; however, basal levels of cortisol and ACTH didn’t differ 

between groups. Nonetheless, the higher the basal levels in depressed subjects, the 
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smaller the ACTH and cortisol release in response to naloxone. A similar trend 

existed for controls, but did not reach significance. Martin del Campo et al. (2000) 

found higher basal levels of cortisol in the morning and evening, and a smaller 

cortisol release in response to naloxone in the evening in a small group of depressed 

patients compared to healthy controls. In other evidence of opioid dysfunction in 

depression, a positive association was found between CSF opioid activity and UFC 

(linked with HPA axis abnormalities) in depressed but not control subjects  

(Pickar et al., 1982b).  

 

In summary, these results suggested a reduction in opioid tone and the possible 

involvement of the endogenous opioid system in alterations to the HPA axis in 

depression. Others failed to find reduced opioid tone in depressed patients (Extein et 

al., 1982; Judd, Janowsky, Zettner, Huey, & Takahashi, 1981). However, the opioid 

effect could have been masked by an exaggerated ACTH response  

(Burnett et al., 1999). 

 

The Dexamethasone Suppression Test (DST) has been used to demonstrate abnormal 

suppression of BE, plasma cortisol, and ACTH in the HPA axis of depressed 

patients. Dexamethasone is a synthetic corticosteroid that powerfully suppresses the 

rise in ACTH typically observed in the morning. When given late at night in normal 

healthy subjects, dexamethasone artificially conditions the hypothalamus to function 

as if high levels of cortisol are circulating, resulting in the suppression of cortisol 

(Rosenzweig et al., 1996). Depression is most commonly characterised by the non-

suppression of plasma cortisol by dexamethasone (Ball, Howlett, Silverstone, & 

Rees, 1987; Cohen et al., 1984; Meador-Woodruff et al., 1987; Risch, Janowsky, 

Judd, Gillin, & McClure, 1983). This results in high levels of cortisol in patients. 

 

The degree of beta-endorphin non-suppression following the DST has been 

positively related to cortisol non-suppression (Risch et al., 1983; Rupprecht, 

Barocka, Beck, Schrell, & Pichl, 1988), and depressive symptomatology. For 

instance, high scorers on the Hamilton Rating Scale for Depression were likely to 

suppress plasma levels of beta-endorphins to a lesser degree than low scorers 

(Meador-Woodruff et al., 1987). However, others have found cortisol non-

suppression in the presence of low levels of ACTH and beta-endorphins (Ball et al., 
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1987). Ball et al. (1987) attributed these findings to dysregulation at all levels of the 

HPA axis in severe depression. For instance, dysregulation may occur centrally with 

the hypersecretion then hyposecretion of ACTH secondary to chronic high levels of 

CRF, whilst peripheral dysregulation may involve excessive cortisol release in 

response to low ACTH and beta-endorphin levels. Alternatively, the severity of 

depression may lead to the secretion of differing forms of ACTH and BE, resulting in 

abnormal cortisol responses (Ball et al., 1987).  

 

Taken together, these results suggest that overactivity of the HPA axis in depressed 

patients may be, in part, attributed to a reduction in endogenous opioid tone and/or 

the failure of opioid inhibition of the axis. The association of central opioid activity 

with abnormalities in other HPA axis hormones, such as cortisol, provides tentative 

support for the role of the endogenous opioid system in the dysfunction of the HPA 

axis in depression. 

6.5  OPIOID MEDIATION IN ANIMAL MODELS OF DEPRESSION 
 

A large number of animal models of depression have been generated to examine 

psychobiological elements of this illness. Models using stress to induce depression 

make up the largest group. Two that have been extensively studied are Seligman’s 

learned helplessness (LH) model and the chronic mild stress (CMS) model. An 

overview of these models and a discussion of supporting evidence is reviewed below. 

 

Seligman’s LH model of depression boasts high predictive and construct validity 

with major depression in humans (Norman & McGrath, 2000; Tejedor-Real, Mico, 

Maldonado, Roques, & Gibert-Rahola, 1995). Although not modelling all aspects of 

major depression (e.g., guilt, worthlessness), the LH model enables the examination 

of psychobiological elements of depressive disorders (Norman & McGrath, 2000) 

and stress and coping (Maier, 1984). In this model the degree to which an organism 

can control an aversive event, and not the event per se, impacts heavily upon 

behavioural (locomotor activity), motivational (appetite and weight), emotional 

(aggression), cognitive and physiological responses (corticosterone release and 

cholinergic, noradrenergic, dopaminergic and GABAergic activity) (Norman & 
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McGrath, 2000). Most prominently, exposure to uncontrollable aversive events 

impairs the ability to escape from noxious events in the future both in animals and 

humans.  

 

In early studies, the effect of inescapable electric shocks produced opioid-mediated 

performance deficits characteristic of LH during one-way shuttle-box training. 

Inescapable shocks also produced analgesia that could be reversed by opioid 

antagonists such as naloxone and naltrexone (e.g., Hemingway & Reigle, 1987; 

McCubbin et al., 1984; Whitehouse et al., 1983). Paradoxically, subsequent studies 

suggested that endogenous opioids and opioid agonists reduce or reverse these 

behavioural deficits (Besson, Privat, Eschalier, & Fialip, 1996; Natan, Chaillet, 

Lecomte, Marcais, Uchida, & Costentin, 1984; Tejedor-Real, Mico, Maldonado, 

Roques, & Gibert-Rahola, 1993; Tejedor-Real et al., 1995). Besson et al. (1996) 

attributed the benefits of opioids and opioid agonists to motivational and 

antidepressant rather than analgesic effects, as opioids are distributed in brain 

structures associated with emotion and motivation. Specifically, opioids activate 

reinforcement pathways, facilitate learning and memory, and reduce stress-induced 

helplessness by decreasing fear or anxiety (Drolet et al., 2001). Thus, opioid-induced 

reversal of LH may result from direct or indirect activation of these mechanisms. It is 

well known that serotonergic and noradrenergic systems (implicated in depression) 

are located in brain structures with mu-opioid receptors (Tejedor-Real et al., 1995). 

Therefore, an interaction between these systems may also account for these effects.  

 

Another popular animal model of depression is the CMS model, in which animals 

reportedly demonstrate depressive behaviours after being exposed to a series of 

stressors such as change in cage mates, food and water deprivation, and temperature 

changes (Norman & McGrath, 2000). Depressive behaviours include reduced 

responsivity to rewards (e.g., sucrose solutions) reflecting anhedonia, alterations in 

locomotor behaviour, adrenal hypertrophy and corticosterone hypersecretion, and 

reduction in aggressiveness, sexual behaviour, body weight, and rapid eye movement 

(REM) sleep. In a recent study, rats exposed previously to CMS showed a reduction 

in sucrose preference following restraint for 90 minutes, freezing behaviour in 

response to a single shock, and anxious behaviour in a maze task (Zurita, Martijena, 

Cuadra, Brandao, & Molina, 2000). All responses were reversed with naltrexone, 
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whilst a low dose of morphine potentiated locomotor activity (Molina et al., 1994), 

thus demonstrating the complexity of opioid effects on depressive behaviour 

in animals.  

 

In conclusion, the activation of endogenous opioids in animal models of depression 

appears to result in either a recuperative response characterised by LH and/or SIA or 

in paradoxical motivational effects (i.e., decreased immobility and reduced 

escape/avoidance failures). Discordant results, although difficult to reconcile, can be 

attributed to the differing roles of opioids in the stress response and divergent 

methodologies. Nonetheless, evidence of opioid involvement in both LH and CMS 

animal models of depression suggests that pathogenic opioidergic functioning may 

link stress and depression in humans (Algarabel, 1985). Research extending these 

findings to humans is needed. 

6.6  OPIOID MEDIATION OF CARDIOVASCULAR RESPONSES IN 

DEPRESSION  
 

Whilst opioid hyper-function (i.e., the overproduction/excessive responsivity to 

opioids) can lead to immobility, behavioural freezing and other performance deficits 

(e.g., escape failure), opioid hypofunction (i.e., the underproduction/ 

underresponsivity to opioids) can disinhibit the cardiovascular response to stress. 

Autonomic disturbances found in depression, i.e., a decreased blood pressure (BP) 

response to pain in contrast to the increase observed in normal healthy subjects 

(Pickar et al., 1982a), has led to speculation about the role endogenous opioids may 

play in cardiovascular regulation in depression. In a double-blind, placebo-controlled 

study of a small group of depressed subjects, Catlin et al. (1982) found that infusion 

of beta-endorphins led to decreases in SBP and increases in heart rate. These results 

support the notion that endogenous opioids may regulate BP in depression; however, 

this was only achieved with the administration of exogenous opioids. In other 

evidence of pathological cardiovascular events in depression, Pinerua-Shuhaibar et 

al. (1999) found a significant increase in systolic and mean arterial BP in controls in 

response to ischemic pain, compared to no change in patients with minor depression. 
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Administration of an opioid antagonist would help to elucidate the role that 

endogenous opioids play in regulating cardiovascular activity in depression. 

 

Recent research has used animal models of depression to explore the relationship 

between associated behavioural and cardiovascular changes. In a study using the 

CMS model of depression, rats displayed elevated heart rate, reduced heart rate 

variability and increased sympathetic nervous system reactivity (Grippo, Beltz, & 

Johnson, 2003). Although the behavioural responses in rats returned to baseline 

levels, cardiovascular changes persisted four weeks after exposure to the stressors. 

When generalised to humans, the chronicity of these changes could lead to 

deleterious cardiac events and increased mortality in depressed patients. 

 

In an extensive review and meta-analysis, Rugulies (2002) concluded that clinical 

depression was a strong, consistent predictor of coronary heart disease (CHD). 

Physiological factors thought to underlie the association between depression and 

CHD include anomalies in cardiovascular functioning (e.g., reduced heart rate 

variability), the dysregulation of the ANS and HPA axis, and depressed patients 

being at higher risk for hypertension (possibly brought on by environmental 

stressors) (Grippo & Johnson, 2002). Additionally, psychological stressors involving 

the loss of control increase the incidence both of depression and CHD. However, the 

relationship between depression and CHD is independent of more traditional 

coronary risk factors such as poor health behaviours (e.g., smoking, poor diet, lack of 

exercise) and increased body mass (Grippo & Johnson, 2002).  

 

More recently, additional physiological mechanisms have been implicated in the 

relationship between depression and cardiovascular dysregulation (Grippo & 

Johnson, 2002). These factors include impaired baroreflex sensitivity, reduced 

immune function, an exaggerated stress response and co-morbid psychological 

conditions in particular, anxiety. Despite the burgeoning interest, the patho-

physiology underlying this relationship remains unclear (Grippo & Johnson, 2002). 
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6.7  SUMMARY/CONCLUSIONS 
 

The previous review suggested that anxiety, fear, and stressful events are associated 

with higher circulating levels of beta-endorphins in blood plasma and, in some 

instances, in CSF. Although this relationship did not differ between depressed and 

non-depressed subjects there was some suggestion that, after persistent stress, beta-

endorphin release as evidence in blood plasma may decrease throughout the course 

of depression (Darko et al., 1992; Lobstein et al., 1989). In contrast, levels of beta-

endorphins in CSF were not reliably associated with the severity of depressive 

symptomatology. Transient improvement in mood following the inhibition of 

endogenous opioids (using opioid antagonists) suggests that opioids may worsen 

mood in depressed patients. However, the mixed results from opioid agonists failed 

to provide support for this hypothesis. Nonetheless, the use of opioid agonists (e.g., 

morphine) to indirectly investigate receptor functioning suggested possible opioid 

receptor dysfunction or down-regulation in depression.  

 

Helplessness and anhedonic behaviours in animals are facilitated or reversed by 

endogenous opioids depending on the methodology adopted (i.e., species tested, 

dosage of opioid antagonist, experimental conditions). These findings are yet to be 

extended to depressed patients.  

 

Dysregulation of the HPA axis in depression may be attributed, in part, to the failure 

of opioid inhibitory mechanisms in depressed patients. Similarly, disturbed 

cardiovascular responses to pain in depressed individuals suggest that the regulatory 

role opioids can play in autonomic responses to stress and pain, may be impaired. 
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CHAPTER SEVEN 

 7.  STUDY 4 

7.1  INTRODUCTION 

7.1.1  Rationale/Purpose of this study 

Opioid-mediated stress-induced analgesia in depression 

 

The previous study supported a role for opioids in depressed affect, which in turn 

reduced sensitivity to pain. Specifically, opioid blockade increased cold pressor PI 

and UP in discouraged subjects. The influence of discouragement, although only a 

state-like depressive emotion, on opioid-mediated anti-nociception may resemble 

processes occurring in the early stages of major depression. People suffering from an 

ongoing psychiatric illness such as major depression are likely to experience chronic 

stress (Clark et al., 1986). Chronic activation of opioids in major depression in 

response to stress may lead to abnormalities in the opioid system with regards to 

opioid release and/or dysregulated receptor functioning. Moreover, the ability to 

inhibit pain in a persistent negative affective state such as depression may be 

compromised (Beutler, Engle, Oro'-Beutler, Daldrup, & Meredith, 1986). 

Importantly, impaired opioid functioning in depression may contribute to the onset of 

chronic pain (Bruehl et al., 1999). 

 

As evident from the literature review presented in the previous two chapters, the 

endogenous opioid system may be impaired in major depression. While no study has 

directly addressed this issue, empirical evidence indirectly supports this hypothesis. 

For instance, an inverse relationship between the severity of depressive 

symptomatology and plasma levels of beta-endorphins suggests that the response to 

opioids may initially be increased, but then down-regulated throughout the course of 

depression (Goodwin et al., 1993). Moreover, studies examining the functioning of 
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the HPA axis in depression have found a reduction in opioid tone (Burnett et al., 

1999; Martin del Campo et al., 2000) and ineffective opioid inhibitory mechanisms 

in depressed patients consistent with endogenous opioid dysfunction (Zis et al., 

1985). High rates of pain complaints (Gallagher & Cariati, 2002) and higher 

demands of opiates for post-operative pain relief in major depression (Kudoh et al., 

2002; Lautenbacher et al., 1999) also concurs with the notion that the endogenous 

opioid system may be compromised in depression. Other studies have demonstrated 

higher resting concentrations of beta-endorphins in plasma and CSF in depressed 

subjects, presumably due to increased perceptions of stress (Cohen et al., 1984; 

Darko et al., 1992; Galard et al., 1988). Despite this data, there has been no empirical 

test of the relationship between major depression and opioid activation in the context 

of experimentally induced pain and stress. 

The role of opioids in cardiovascular-pain regulatory systems in depression 

 

Cardiovascular and pain regulatory systems are interrelated in healthy normotensive 

subjects due to the convergence of primary cardiac and pain afferents in the 

brainstem (Randich & Maixner, 1984). It has been suggested recently that this 

interaction can be opioid-mediated in healthy subjects (Bragdon et al., 2002; 

McCubbin & Bruehl, 1994) and that opioid hypofunction can result in the 

disinhibition of the cardiovascular response to stress increasing the risk of 

cardiovascular-related diseases (McCubbin, 1993). In depressive disorders, 

autonomic disturbances in response to pain (Pickar et al., 1982a; Pinerua-Shuhaibar 

et al., 1999), cardiovascular regulation with exogenous opiate agonists (Catlin et al., 

1982), chronic cardiovascular changes following persistent stress (Grippo et al., 

2003), increased risk of hypertension (Rugulies, 2002) and increased incidence of 

CHD (Grippo & Johnson, 2002) may be attributed to the failure of opioid regulatory 

mechanisms. However, no study has specifically addressed the relationship between 

cardiovascular and pain regulatory systems in major depression. 
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7.1.2  Aims of Study 4 

Primary aims 

 

The first aim of Study 4 was to investigate the role of endogenous opioids in major 

depression in the context of an uncontrollable cognitive stressor (math task). 

Functioning of the opioid system was assessed indirectly by measuring the reaction 

of depressed subjects to acute pain stimulation (i.e., electrical stimulation, CPT) 

whilst under opioid blockade. All responses were compared with those of 

psychiatrically and medically healthy age- and sex-matched controls. 

 

The second aim of Study 4 was to examine opioid involvement in another 

endogenous pain inhibitory mechanism, termed diffuse noxious inhibitory controls 

(DNIC), in depressed and non-depressed subjects. This mechanism involves the 

powerful inhibition of wide dynamic range neurones by heterosegmentally-applied 

noxious stimuli within the spinal cord and trigeminal system (Ellrich & Treede, 

1998). In this study, the impact of a noxious CPT applied to the hand was observed 

on the nociceptive, or R2, component of the blink reflex. A number of studies in 

healthy controls have demonstrated the inhibition of R2 by the remote application of 

painful stimuli such as heat, ice water and electrical pulses (Ellrich & Treede, 1998; 

Willer et al., 1982a; Willer et al., 1982b). Furthermore, suppression of the R2 by a 

remotely applied noxious stimulus has been reversed by opioid blockade in several 

investigations (Boureau, Willer, & Dauthier, 1978; Boureau, Willer, & Yamaguchi, 

1979; Pomeranz & Warma, 1988; Willer et al., 1982b). These results suggest that in 

healthy controls the mechanism involved in DNIC is opioid-mediated. Thus, the role 

of opioids in DNIC was investigated indirectly by observing the response of the blink 

reflex to naltrexone. 

Secondary aim 

 

The third aim of Study 4 was to examine the relationship between cardiovascular 

activity and endogenous opioid-mediated analgesia to electrical and cold pressor 

stimulation in depressed and non-depressed subjects. 
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7.1.3  Hypotheses of Study 4 

 

Due to limited research in this area, no clear predictions could be generated. Instead 

hypotheses were exploratory and generalised from Study 3: 

 

Based on Study 3, it was hypothesised that discouraged controls administered 

naltrexone would show evidence of increased cold pressor pain sensitivity after the 

math task. Similarly, controls would show evidence of decreased cold pressor-

induced R2 suppression (DNIC) following opioid blockade. If the opioid system is 

compromised in depression, then opioid blockade should have little impact on cold 

pressor pain or R2 in depressed subjects.  

 

Based on previous research with normotensive subjects and the findings of Study 3, 

it was hypothesised that cardiovascular responses would vary inversely with PI and 

UP ratings to electrical and cold pressor stimuli, and directly with cold pressor pain 

tolerance in controls taking the placebo. However, there should be no evidence of a 

relationship between cardiovascular response and pain following opioid blockade. 

Finally, it was hypothesised that there would be no relationship between 

cardiovascular response and pain sensitivity in depressed subjects, regardless of 

opioid blockade.  

7.2  METHOD 

7.2.1  Subjects 

General overview 

 

Sixty-one subjects (28 = depressed; 33 = non-depressed) aged between 17 and 57 

years [29 males: M = 35.77 years, SD = 11.19; 32 females: M = 35.36 years, SD = 

13.79] participated in Study 4. Exclusion criteria were identical to those described in 

Study 2. All participants were deemed medically healthy by participant self-reports. 

Two depressed subjects withdrew from the experiment prematurely due to the 

noxious nature of the math task or blink reflex procedure. One control subject did not 
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complete the experiment due to an adverse reaction to naltrexone. Data from one 

subject was discarded due to equipment malfunction.  

 

Subjects were asked not to consume alcoholic or caffeinated beverages 12 hours 

before, and not to eat or smoke for two hours before the experiment to improve the 

reliability of cardiovascular recordings (Shapiro et al., 1996). A longer period of 

abstinence was required for subjects who consumed any of these substances 

moderately on a daily basis (see Psychiatric Diagnoses, p 230). Subjects were 

remunerated $20 for their participation, and were given a chocolate bar at the end of 

the experimental session. According to Bryden’s Handedness Questionnaire (1977) 

(Appendix 2, p 320), 59 subjects were right-handed whilst two subjects were  

left-handed.  

Recruitment 

 

Non-depressed and depressed subjects were recruited through advertisements in local 

community and metropolitan newspapers and advertisements on community radio. 

Depressed participants were recruited via advertisements and flyers placed in the 

waiting rooms of general practitioners, privately practicing psychologists and 

psychiatrists, and articles in newsletters produced by local divisions of General 

Practice in Western Australia and mental health oriented non-governmental 

organizations (Appendix 10, p 336).  

Psychiatric Diagnoses 

 

All depressed participants were given a primary diagnosis of Major Depressive 

Disorder (recurrent episode) using the Structured Clinical Interview for DSM-IV 

Axis I Disorders – Clinician Version (First, Spitzer, Gibbon, & Williams, 1997) 

(Appendix 11, p 338). However, 71% of this group were also given a secondary 

diagnosis, consisting of Axis I anxiety or other mood disorders such as dysthymia 

(Figure 7.1). Controls had no personal or familial history of psychiatric illness. 
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Psychiatric exclusion criteria included psychotic disorders, alcohol and/or other 

substance use disorders, and DSM-IV Axis II disorders (i.e., personality disorders, 

mental retardation). Two depressed participants who used marijuana and alcohol 

moderately on a daily basis agreed to abstain from both substances for one week 

before, and two days after testing. Two depressed and one control participant who 

used tobacco moderately on a daily basis (i.e., 10-20 cigarettes per day) also agreed 

to abstain for one day before testing. 

Pre-existing anxiety, stress and depression 

 

While waiting for the drug to be absorbed, subjects completed the Depression, 

Anxiety, Stress Scales (DASS - Lovibond & Lovibond, 1995b), State-Trait Anxiety 

Inventory, Form Y (STAI - Spielberger, 1983) and the Beck Depression Inventory – 

Second Edition (BDI-II - Beck, Steer, & Brown, 1996) (see 7.2.2 Psychometric tests, 

p 234). 

 

Figure 7.1: Psychiatric diagnoses for depressed participants. Note: Secondary 

anxiety disorders included post-traumatic stress disorder (11%), generalised 

anxiety disorder (7%), obsessive-compulsive disorder (7%), panic disorder 

without agoraphobia (7%), and social phobia (3%). 
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As indicated by independent t-test comparisons in Table 7.1, depressed subjects 

reported significantly higher levels of anxiety (STAI- State/Trait Anxiety, DASS 

Anxiety scale), stress (DASS Stress scale) and depression (DASS Depression scale, 

BDI-II) than non-depressed controls. In comparison to the general population of 

adults aged 19-39 years, controls reported lower than average levels of state anxiety 

(percentile ranks, PR: females-39%, males-44%) and trait anxiety (PR: females-42%, 

males-43%). In comparison to normal adults (Spielberger, 1983), depressed subjects 

reported state and trait anxiety commensurate with the top 2%-5% of this population. 

In comparison to psychiatric samples (Spielberger, 1983), depressed participants 

reported state anxiety commensurate with the top 18%(male)-25%(female) of this 

population. Reports of trait anxiety were similar (i.e., top 17% male-19% female of 

the psychiatric group). Controls fell within normal ranges of depression, anxiety and 

stress on the DASS. Not surprisingly, depressed subjects gained a ‘severe’ rating for 

depression, and a ‘moderate to severe’ rating for anxiety and stress on the DASS.  

According to assessment categories for the BDI-II, controls fell within the 

minimal/normal range and depressed subjects fell between moderate to severe ranges 

of depression. 

 

In summary, when compared to the general population, depressed subjects reported 

high levels of anxiety, and moderate to severe levels of depression and stress. 

Controls on the other hand appeared to be less anxious than the general population, 

and reported almost negligible levels of depression and stress. 
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Table 7.1: Pre-existing anxiety, depression and stress in depressed and non-depressed 

subjects. 

 

 Experimental group  

 Depressed (N = 28) Controls (N = 33)  

Measure Mean SD Mean SD t 

STAI      

State anxiety 57.89 12.77 32.15 7.95 9.60** 

Trait anxiety 58.61 10.31 32.06 8.26 11.16** 

DASS      

Depression scale 24.89 10.93 3.24 4.78 10.29** 

Anxiety scale 14.00 10.60 2.00 2.37 6.33** 

Stress scale 25.43 10.13 6.55 5.21 9.35** 

BDI-II 28.57 12.38 3.88 3.66 10.92** 
Note. **p<.01 

Medication 

 

Six of the 28 depressed participants who had taken anti-depressant medication in the 

past had ceased at least five weeks prior to testing. The use of hypericum perforatum 

(St John’s Wort) was also prohibited, as randomised controlled studies indicated 

drug-efficacy comparable to prescription anti-depressants (Whiskey, Werneke, & 

Taylor, 2001). Two depressed participants used benzodiazepine medication (e.g., 

temazepam) approximately once a week, but agreed to abstain for one week prior to 

testing. Two controls regularly took pseudoephedrine hydrochloride for ongoing 

sinus problems but agreed to abstain for a week before testing. Three controls and 

four depressed participants were taking daily dietary supplements (e.g., vitamin C, B, 

iron, zinc, magnesium), and two participants in each group were taking a 

contraceptive pill at the time of testing.  

 

Two controls and five depressed participants had used codeine (30 ml) and/or 

paracetamol (500 ml) at least one week prior to testing to manage temporary pain 

(e.g., tension headache, fever). However, no subject used opiates regularly or had 

taken naltrexone in the past. All participants were opiate-free at the time of testing.  
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Demographics 

 

As indicated in Table 7.2, minor demographic differences existed between groups. 

For instance, controls were able to achieve higher levels of education than depressed 

participants. Differences in educational attainment may be attributed to motivation, 

energy levels, self-confidence/efficacy, and the ability to concentrate – 

characteristics that are depleted in depression. Occupationally, controls were drawn 

to similar types of jobs as depressed participants. Approximately 18% of depressed 

subjects were unable to work and received a disability pension. Conversely, no 

controls were prevented from working due to disability. Equivalent numbers of 

control and depressed subjects were living as single, divorced, separated and in de-

facto relationships. However, controls sustained marital relationships at a higher rate 

than depressed participants (controls – 30.3%; depressed – 7.1%). These 

demographic differences may have been contributing factors or outcomes of 

depression. Considering that subjects within the clinical group rated themselves as 

moderately to severely depressed, these demographic differences are not surprising.  

7.2.2  Psychometric tests 

Structured Clinical Interview for DSM-IV Axis I Disorders – Clinician Version 

(SCID-CV) 

 

Prior to the experiment, participants were interviewed by a psychologist 

(experimenter) using the SCID-CV (First et al., 1997). Each interview was conducted 

over the phone, taking approximately 45-90 minutes to complete. Information was 

transcribed into an interview booklet (Appendix 11, p 338) and participants were 

each assigned a code for confidentiality purposes. A structured interview was used to 

increase diagnostic reliability (Segal, Hersen, & Van Hasselt, 1994). Additionally, 

the use of DSM-IV diagnostic criteria (now used widely to describe participants in 

psychological research) increased the validity of diagnoses made in this experiment. 

The Clinician Version was used instead of the Research Version, as this was shorter 

(no subtypes/specifiers) and more convenient to use.  
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Table 7.2: Demographic variables for depressed and control subjects. 

 

 Proportion (% within group)  

Demographic Variable Depressed (N=28) Controls (N=33) χ2 

Education    

≤ 10 years 8 (28.6%) 3 (9.1%) 3.89* 

≤ 12 years 5 (17.9%) 2 (6.1%) 2.08 

Adv. diploma (12+ years) 9 (32.1%) 6 (18.2%) 1.59 

Undergraduate (12-15 years) 6 (21.4%) 20 (60.6%) 9.51** 

Postgraduate (15-17+ years) 0 (0%) 2 (6.1%) 1.75 

Occupation    

Unemployed 8 (28.6%) 5 (15.2%) 1.63 

Pension 5 (17.9%) 0 (0%) 6.42* 

Retired 0 (0%) 1 (3%) 0.86 

Student 0 (0%)  4 (12.1%)  3.63 

Homemaker 0 (0%) 2 (6.1%) 1.75 

Un/Semi-skilled  11 (39.3%) 9 (27.3%) 0.99 

Skilled  2 (7.1%) 6 (18.2%) 1.62 

Professional 2 (7.1%) 6 (18.2%) 1.62 

Marital Status    

Single 14 (50%) 14 (42.4%) 0.35 

Married 2 (7.1%) 10 (30.3%) 5.14* 

Defacto 1 (3.6%) 3 (9.1%) 0.75 

Divorced 9 (32.1%) 6 (18.2%)  1.59 

Separated 2 (7.1%) 0 (0%) 2.44 
Note. ‘Education-Adv. diploma (12+ years)’ includes equivalent qualifications such as an advanced 

certificate attained at college/TAFE; ‘Occupation-Un/semi-skilled’ refers to service staff, labourers, 

administrative support personnel etc; ‘Occupation-Skilled’ refers to trades people. 

 *p<.05 **p<.01. 

 

 



 236

Beck Depression Inventory – Second Edition (BDI-II) 

 

The BDI-II (Beck et al., 1996) is a 21-item self-report questionnaire that measures 

symptoms that correspond with DSM-IV criteria. Moreover, the BDI-II was 

developed and normed using a clinical population (Beck et al., 1996), deeming it 

appropriate to use with this research group. Importantly, the BDI-II complimented 

SCID-CV-assisted diagnoses by quantifying the severity of depression in each 

participant. However, as instructed by Beck et al. (1996), the BDI-II was not used as 

a diagnostic instrument. The time period of ‘the past 2 weeks, including today’ that 

subjects were asked to reflect upon assessed a subject’s recent past and not trait 

depressive characteristics. Participants rated each item on a 4-point scale  

(0-3 in terms of severity). 

 

The psychometric properties of the BDI-II will not be discussed here as this 

questionnaire has been widely used and is well validated amongst adult psychiatric 

(Beck et al., 1996; Kumar, Steer, Teitelman, & Villacis, 2002) and normal groups in 

western and eastern cultures (Al-Musawi, 2001; Arnau, Meagher, Norris, & 

Bramson, 2001; Beck et al., 1996; Dozois, Dobson, & Ahnberg, 1998; Kojima, 

Furukawa, Takahashi, Kawai, Nagaya, & Tokudome, 2002).  

State-Trait Anxiety Inventory (STAI) 

 

The self-report STAI (Spielberger, 1983) was chosen to quantify subject anxiety in 

their recent past (STAI-State: 20 ‘state’ items) and in general (STAI-Trait: 20 ‘trait’ 

items). The STAI is a brief, convenient instrument whose manual provides normative 

data for clinical groups of both sexes. Participants rated each item on a 4-point scale 

(‘not at all’ to ‘very much so’). Psychometric properties of the STAI have been well-

documented in studies of psychiatric (Kabacoff, Segal, Hersen, & Van Hasselt, 1997; 

Spielberger, 1983) and normal groups (Spielberger, 1983), and will not be  

reported here.  
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Recent criticisms of the STAI have emerged highlighting that, when compared to 

other measures of psychiatric disorders (such as depression), the STAI (especially 

the STAI-State) does not adequately differentiate between those suffering from 

anxiety and depressive disorders (Andrade, Gorenstein, Vieira Filho, Tung, & Artes, 

2001; Kabacoff et al., 1997; Kennedy, Schwab, Morris, & Beldia, 2001). Spielberger 

(1983) admitted there needed to be more research into the ability of the STAI to 

distinguish anxiety from depression, but pointed out that most depressed individuals 

suffer from high levels of anxiety making it difficult to separate the two. In 

recognition of this, Kennedy et al. (2001) suggested using multiple tests to evaluate 

the two disorders, which is the approach adopted in this study. 

Depression, Anxiety, Stress Scales (DASS) 

 

The 42-item DASS (Lovibond & Lovibond, 1995b) was chosen to compliment 

results from the BDI-II and STAI-State. Lovibond et al. (1995b) view depression as 

not primarily being characterised by sadness of mood (as in BDI-II), but by the loss 

of self-esteem and the perception that personal goals will not be attained in the 

future. Also, the DASS Anxiety scale measures symptoms of autonomic arousal, 

skeletal muscle effects, and situational anxiety – none of which are measured in the 

primarily cognitive STAI-State. Participants rated each item on a 4-point (0-3) scale 

of severity. Since the DASS is less utilised than the previous instruments, 

psychometric properties will be briefly described. 

 

Correlational data confirms the unique contributions that the DASS makes to this 

battery of tests (Lovibond & Lovibond, 1995a). For instance, scores from 

psychology students on the DASS Depression scale correlated highly, but not 

spuriously with the BDI-II (r = .74). Additionally, factor analyses and correlations 

established that all three scales were moderately related but distinct from one another  

(DASS Depression and Anxiety r = .54; DASS Depression and Stress r = .56; DASS 

Anxiety and Stress r = .65). Separation between the three scales has been 

corroborated by other researchers (e.g., Antony, Bieling, Cox, Enns, & Swinson, 

1998). 
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When comparing DASS Depression scale symptoms with items in well validated 

self-report measures of depression (as compiled by Levitt & Lubin, 1975), the 

content validity of the DASS has been firmly established  (i.e., an average of 67% of 

DASS items were represented in these other measures). Moreover, outstanding items 

i.e., items not found in the DASS, were not confined to individuals diagnosed with 

depression. The DASS Anxiety and Stress scales overlap less with other scales. 

However, Lovibond et al. (1995b) found that most other anxiety scales contained 

items narrow in content, and no scale was strictly comparable to the DASS  

Stress scale. 

 

Alpha values quoted in the manual suggest excellent internal reliability of items 

within each scale (DASS Depression r = .91; DASS Anxiety r = .84; DASS Stress r = 

.90). No test-retest reliability data was provided in the manual; however, Lovibond 

(1998) provided compelling evidence, reporting strong test-retest statistics for each 

scale 3-8 years later.  

 

One limitation of the DASS is that it was developed using normal, non-clinical 

respondents. The authors justified this by stating that clinical and non-clinical 

samples do not differ qualitatively, just in the severity of their symptoms (Lovibond 

& Lovibond, 1995b). Despite this, other research has confirmed the concurrent 

validity of the DASS, in that this instrument can effectively distinguish between 

depressed and anxious psychiatric groups in English and non-English speaking 

cultures (Antony et al., 1998; Brown, Chorpita, Korotitsch, & Barlow, 1997; Daza, 

Novy, Stanley, & Averill, 2002).   

 

To be consistent across all tests, subjects were required to rate DASS and STAI-S 

items in accordance with how they felt over the past 2 weeks, instead of the time 

periods specified on each of these tests. This alteration meant that scores reflected 

how a participant felt in their recent past, not the past week. Spielberger (1983) 

stated that in a research context, altering instructions for the STAI-S is acceptable. 
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7.2.3  Experimental design/Overview 

 

Mood/self-efficacy ratings, and BP/pulse rate measurements were completed before, 

and approximately 50-60 minutes after drug administration, and after the math task 

was completed. The blink reflex was elicited alone and simultaneously with a 

noxious hand cold pressor stimulus shortly after drug administration and after drug 

absorption, and then alone after the math task. Finally, a foot cold pressor task 

(fCPT) was completed before and after the math task. As in previous studies, 

subjects rated their perceived mood, self-efficacy, PI and UP for each electric shock, 

and experienced frequent BP and pulse rate measurements throughout the math task 

(Figure 7.2). Subjects were tested individually. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Depressed and non-depressed subjects were randomly assigned to either the 

naltrexone or placebo condition, which were balanced by sex and age (F (1,57) = 

0.09; p = 0.77) (Table 7.3).  

 

 

 

Figure 7.2: Experimental timeline for Study 4. Note: The drug was 

administered shortly before BR measurement to maximise time efficiency. 
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Table 7.3: Subject age and sex in each experimental condition. 

 

 Depressed (N = 28) Controls (N = 33) 

 Naltrexone Placebo Naltrexone Placebo 

Mean 36.68 35.05 35.17 35.49 

SD 11.51 12.36 14.31 12.68 

N 7F, 6M 8F, 7M 8F, 8M 9F, 8M 
Note. F = females; M = males. 

 

7.2.4  Procedure/Materials 

 

Two cubicles maintained at 22 ± 2° Celsius were used to test subjects in Study 4. 

Subjects were seated in a communal area where they were given a consent form 

(Appendix 12, p 344) to read and sign and a medical checklist to complete 

(Appendix 6, p 326).  

Mood/ self-efficacy and cardiovascular measures 

 

Subjects began the experiment by completing mood and self-efficacy ratings and 

having their BP and pulse rate measured. The instruments, procedures and schedule 

of mood/self-efficacy ratings and cardiovascular measures15 were the same as those 

described in Study 3 (Appendix 13, p 346).    

                                                 
15 The M4 Omron electronic monitor was calibrated with a mercury manometer on five subjects. 

Measures from both methods were strongly related at the beginning (SBP: r=.88, p=.05;  

DBP: r=.87; p=.053) and end of the current study (SBP: r =.98, p=.002; DBP: r=.98; p=.003). 
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Blink reflex – R2 component 

 

General procedure 

 

R2 and R3 have been identified as the nociceptive components of the blink reflex 

(BR); however, since the neural circuitry for the R3 is currently still under debate, 

the R2 provided a model of pain transmission and inhibition in this study. 

 

Test stimuli: To date, electrical stimuli have provided the most reliable and 

convenient way by which to elicit the R2 component of the blink reflex (Sarno, 

Blumenthal, & Boelhouwer, 1997), because unlike mechanical stimuli, electrical 

stimuli bypass receptors to directly excite afferent nerve endings (Ferracuti, Leardi, 

Cruccu, Fabbri, & Itil, 1994a). The supraorbital nerve on the non-dominant side was 

stimulated directly over the supraorbital notch using silver/silver chloride surface 

electrodes taped 2 cm apart (cathode over notch; anode above cathode). Stimulation 

consisted of single square wave pulses (0.3 msec duration - Kaube, Katsarava, 

Kaufer, Diener, & Ellrich, 2000) delivered by an SD9 Grass Square Pulse stimulator 

in series with a constant current unit. To minimise modulation of R2 by anticipatory 

behaviour (Cruccu, Ferracuti, Leardi, Fabbri, & Manfredi, 1991), habituation 

(Esteban, 1999) and an R3 component (Ellrich & Treede, 1998), pulses were 

delivered manually using random inter-stimulus intervals ranging between 10-20 

seconds. Current intensity was monitored via a custom-built digital current meter. A 

disposable pre-gelled, adhesive ground electrode was placed directly in the middle of 

the forehead.  

 

Recording: Electromyographic (EMG) signals from the ipsilateral and contralateral 

orbicularis oculi muscles were recorded by means of 8 mm shielded silver/silver 

chloride cup electrodes placed over the muscle below (mid-lower lid) and lateral to 

the eye (on the outer portion of the eyelid). EMG data was amplified and low and 

high pass filtered (active range 10 to 2,500 Hz) using a Biopac MP100 and EMG 

multi-channel amplifier modules. Responses were digitally sampled by the Biopac 

MP100 interface at a rate of 1000 samples/sec (highest sampling rate permitted by 

computer capacity) for the duration of the task. Data was stored for off-line analysis 
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using commercially available software (AcqKnowledge® version 3.7.1. ©1992-2001 

Biopac Systems, Inc.; Goleta, CA).  

 

The skin at each electrode site was slightly scratched with abrasive paste and 

degreased with an alcohol swab. Electrodes were coated with saline conductance gel 

to achieve skin impedance of less than 10 K ohms [supraorbital notch = 7.09 ± 0.69 

(SEM); below non-dominant eye = 8. 62 ± 0.84 (SEM); below dominant eye = 9.42 

± 1.03 (SEM)]. See Appendix 13 (p 346) for standardised instructions and a diagram 

of electrode placement. 

 

Hetero-segmental pain inhibition 

 

The status of descending pain inhibitory influences (Esteban, 1999) was explored in 

depressed and non-depressed subjects via activation of DNIC, whereby wide 

dynamic range neurones within the spinal cord and trigeminal system (responsible 

for the R2) are powerfully inhibited by hetero-segmentally-applied noxious stimuli. 

As inhibition of the R2 via DNIC is mediated by endogenous opioids (Boureau et al., 

1978; Boureau et al., 1979; Pomeranz & Warma, 1988; Willer et al., 1982b), noxious 

stimuli were applied hetero-segmentally both before and after absorption of the drug. 

On each occasion subjects were seated in Cubicle A, and fitted with a two-way 

headset system. During stimulation, subjects’ eyes remained open and focussed on a 

cross in front of them which led to a slightly downward gaze (Esteban, 1999).  

 

In a random sequence, three 2 mA, 6 mA, and 10 mA test stimuli (TS) were 

delivered alone, and then during a noxious hand CPT (or conditioning stimulus, CS). 

Intensities of 2 mA, 6 mA and 10 mA were chosen to investigate the effects of low 

intensity stimuli, stimuli at pain threshold16, and high intensity stimuli (respectively) 

on the nociceptive component of the blink reflex (R2).  

 

During each CS the non-dominant hand was immersed up to the wrist-crease into a 

37°C warm water bath for 3 minutes to standardise hand temperature, and then into a 

                                                 
16 6mA was identified as the pain threshold (i.e., point at which the stimulus has just begun to get 

painful) in an informal pilot (N=10) completed by a colleague. 
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noxious 7°C cold-water bath for the time it took to deliver nine TS (approximately 2 

minutes). However, delivery of TS commenced after 30 seconds of cold-water 

immersion - the point at which cold pressor pain often peaks17. To check that the 

cold water remained noxious, subjects were required to rate perceived PI and UP 

after 30 seconds and then upon termination of the CS, using two 0-9 point verbal 

rating scales (VRS) described in Study 3. Small fluctuations occurred in water 

temperature; however, changes were consistent across groups. The cold pressor 

apparatus was identical to that used in Study 3. 

 

Subjects use the same 0-9 point VRS to rate the TS (CS or no CS) As expected, 2 

mA shocks were rated within the non-nociceptive range (0), and 6 mA and 10 mA 

shocks were rated within nociceptive ranges (above 2 and 3).  

 

Stress-induced analgesia 

 

In brief, subjects rated perceived PI and UP of nine TS (2 mA, 6 mA, 10 mA) before 

and after the math task, using two 0-9 point VRS as described in Study 3. 

Representation of the nociceptive blink reflex in the brainstem highlights the utility 

of this reflex when investigating suprasegmental influences on pain transmission and 

inhibition. Therefore, R2 responses were compared before and after the math task to 

assess the impact of a stressful task on an objective pain reflex.  

 

R2 data notes:  

• Although R2 occurs bilaterally and was measured from both sides, contralateral 

responses did not differ significantly from those measured ipsilaterally to the 

stimulation. For the sake of brevity, contralateral results were not reported. 

• With regards to TS, subjects appeared to have difficulty assigning a rating to 

such a brief stimulus; therefore this data was not considered to be an adequate 

representation of the pain experience and was not explored in detail. 

 

 

                                                 
17 As established in previous pilot studies conducted by the experimenter. 
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Naltrexone intervention 

 

Using the same double-blind procedure as described in Study 3, depressed and non-

depressed subjects were randomly assigned to either the naltrexone (50 mg) or 

placebo condition. As in Study 3, to maximise time efficiency the capsule was 

administered 10 minutes prior to initial blink reflex procedures. During the time set 

aside for drug absorption, subjects completed a battery of psychometric tests (see 

7.2.2 Psychometric tests, p 234) and read light material provided by the experimenter 

until testing resumed. A slightly smaller percentage of subjects than in previous 

studies (6-10% versus 13-14%) complained of naltrexone-induced symptoms such as 

nausea, decreased mental acuity and fatigue. However, one subject reacted adversely 

to naltrexone and could not complete the experiment.  

Foot cold pressor task (fCPT) 

 

Subjects completed a fCPT in Cubicle A immediately before and after the math task. 

Subjects immersed their non-dominant foot to the top of the lateral malleolus (ankle) 

firstly into a 37°C warm water bath for 3 minutes (to standardise foot temperature), 

and then into a 2°C ice water bath. Each bath measured 21 cm (height) x 19 cm 

(width) x 34 cm (depth), and was insulated to minimise changes in water 

temperature. Also, a small aquarium pump was submerged in the ice water bath to 

prevent warm pockets of water from developing around the foot. Although water 

temperatures altered slightly throughout each task, temperature fluctuations were 

equivalent across groups. The foot was used instead of the hand to avoid carry-over 

effects from previous cold-water tasks. Given that lateral dominance has been 

observed for pain perception in the foot (Weinstein & Sersen, 1961), the non-

dominant foot was deemed more sensitive and chosen for immersion.   

 

Subjects were instructed to say, “Stop!” and withdraw their foot from the water when 

they felt that the pain was too unpleasant to continue (Appendix 13, p 346 for 

standardised instructions). At 30-second intervals, and after pain tolerance was 

reached, subjects rated the PI and UP of the ice water using two 0-9 point VRS 

described in Study 3. A ceiling of 4 minutes was set but not divulged to subjects.  
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Math task  

 

The math task was identical to that used in Study 3. As in Study 3, subjects 

completed the math task in Cubicle B to heighten the novelty and anticipatory 

anxiety with regards to the task. 

 

Task shocks 

 

As in Study 3, stimulation consisted of seven 15 ± 1 mA (SEM) rectangular pulses of 

25 milliseconds duration. Mean skin impedance (as measured by a PA300 impedance 

meter) at the site of electrodes was 3.38 K ohms ± 0.68 (SEM). Apart from an SD9 

Grass Square Pulse stimulator used to deliver shocks, equipment and procedures 

were identical to those used in Study 3. 

Debriefing 

 

At the end of the study, the purpose of the experiment was explained and subjects 

were given a chocolate bar and remunerated $20. Furthermore, subjects were 

promised written notification of the results. Information about counselling services 

was given to depressed subjects on request. If concerned by unusual symptoms after 

testing, subjects were told that the drug code could be ‘broken’ and they would be 

informed of which drug they were administered. The code was broken for one 

anxious subject, who had actually been given the placebo. Due to the potential for 

naltrexone to interact with alcohol, at least one alcohol-free day was recommended 

after the experiment.   
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7.3  RESULTS 

7.3.1  Mood and self-efficacy 

 

Data considerations 

 

For reasons mentioned in Study 1, anxiety, discouragement, and anger were the only 

moods analysed. As in previous studies, apart from being examined in an initial 

randomisation check, self-efficacy was not assessed before the math task since this 

variable related to performance during the task.  

 

Randomisation check 

 

Separate 2 (Group: depressed, controls) x 2 (Drug: naltrexone, placebo) univariate 

ANOVAs were calculated on pre-drug mood and self-efficacy ratings (Tables 7.4 

and 7.5). As expected, at the beginning of the experiment depressed subjects reported 

significantly higher anxiety (M = 38.07 versus M = 22.93), discouragement  

(M = 24.75 versus M = 4.49) and anger (M = 13.05 versus M = 2.68) than non-

depressed subjects. Difficult to explain was the Drug x Group interaction found for 

self-efficacy. Independent t-tests indicated that depressed subjects in the naltrexone 

condition reported significantly lower levels of self-efficacy than controls in the 

same condition (M = 31.27 versus M = 52.66; t (27) = -2.46; p = .02). No other 

interactions were found. 
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Table 7.4: Mood and self-efficacy ratings at the beginning of the experiment. 

 

 Controls  Depressed  

 Naltrexone 

(N = 16) 

Placebo 

(N = 17) 

Naltrexone  

(N = 13)  

Placebo  

(N = 15) 

Mood Mean SD Mean SD Mean SD Mean  SD 

Anxiety 23.62 13.56 22.23 19.24 40.00 22.24 36.13 27.87 

Discouragement 5.22 6.69 3.75 5.68 29.76 22.69 19.73 22.81 

Anger 2.06 3.22 3.29 5.30 9.81 16.47 16.30 20.34 

Self-efficacy 52.66 21.89 42.32 21.34 31.27 24.65 45.07 16.55 

 

 

Table 7.5: F ratios for mood and self-efficacy ratings at the start of the experiment.   

 

Source Anxiety Discouragement Anger Self-efficacy 

Group (G) 7.74* 24.12*** 9.60** 2.91 

Drug (D) 0.23 1.94 1.33 0.10 

G x D 0.05 1.08 0.62 4.87* 
Note. Degrees of freedom = 1,57. 

*p<.05; **p<.01; ***p<.001. 

 

Effects of the drug on mood and self-efficacy 

 

Separate 2 (Group: depressed, controls) x 2 (Drug: naltrexone, placebo) x 2 (Time: 

pre-drug, post-drug) repeated measures ANOVAs were calculated on each mood 

rating (Tables 7.4, 7.6 and 7.7).  

 

Subjects reported significantly less anxiety (M = 30.50 versus 22.03) after being in 

the experimental environment for over 90 minutes. All other moods remained stable 

over time and were not affected by naltrexone. As expected, when collapsed over 

pre- and post-drug measures depressed subjects reported significantly higher anxiety 

(M = 33.88 versus M = 18.65), discouragement (M = 24.05 versus M = 5.46), and 

anger (M = 13.84 versus M = 3.34) than non-depressed subjects. 
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Table 7.6: F ratios for mood ratings before and after drug absorption. 

 

Source Anxiety Discouragement Anger 

 Between Subjects 

Group (G) 9.97** 19.60*** 10.60*** 

Drug (D) 1.13 1.41 0.42 

G x D 0.31 0.55 0.22 

 Within Subjects 

Time† (T) 10.53** 0.02 0.79 

T x G† 0.00 0.92 0.01 

T x D† 0.92 0.19 1.17 

T x D x G† 0.31 0.45 0.47 
Note. †Pillai’s Trace F ratio; degrees of freedom = 1,57. 

*p<.05; **p<.01; ***p<.001. 

 

Effects of the math task on mood and self-efficacy 

 

The effect of the math task on mood was explored with separate 2 (Group: depressed, 

controls) x 2 (Drug: naltrexone, placebo) x 7 (Time: pre-task, during task at 1:30", 

7:39", 13:20", 19:40", 24:00", post-math task) repeated measures ANOVAs (Tables 

7.7 and 7.8). As described in previous studies, similar analyses were carried out on 

self-efficacy ratings, except that ratings made after the practice trials were deemed a 

more relevant point of comparison than those made prior to the practice trials  

(Tables 7.7 and 7.8).  

 

As expected, depressed subjects reported significantly higher levels of 

discouragement (M = 50.80 versus M = 29.79), and anger (M = 40.66 versus M = 

20.30) and marginally higher levels of anxiety (M = 52.20 versus M = 41.23) than 

controls before, during and after the math task. Furthermore, depressed subjects 

reported significantly lower self-efficacy ratings (M = 18.77 versus M = 30.78) 

throughout this time. 

 

Exploration of Time main effects with planned simple pair-wise comparisons (where 

each point was compared to pre-task ratings) suggested that subjects experienced a 



 249

significant increase in anxiety, discouragement, and anger during the math task 

(Table 7.9). Self-efficacy ratings did not differ after the practice trials and during the 

task; however, low ratings (20-28 on a 0-100 point scale) suggested that the math 

items were difficult and that subjects perceived themselves to have little control over 

the shocks. Finally, the deterioration in mood and low self-efficacy persisted even 

after the task had been completed.  

 

A Time x Drug effect for anxiety suggested that changes in anxiety were not 

equivalent in subjects taking either the placebo or naltrexone. When explored with 

repeated pair-wise comparisons, the Time x Drug effect indicated that mid-way 

through the task anxiety began to decrease in placebo recipients (F (1,29) = 10.36; p 

= .003), but persisted at a high level in naltrexone recipients to the end of the task  

(F (1,26) = 14.75; p = .001) (Figure 7.3).  
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Table 7.7: Mood and self-efficacy ratings before, during, and after the math task.  

 

  Controls Depressed 

  Naltrexone 

(N = 16) 

Placebo 

(N = 17) 

Naltrexone 

(N = 12) 

Placebo 

(N = 14) 

Mood Time Mean SD  Mean SD Mean SD Mean SD 

 
Ax. 

 
Pre 

 
16.12 

 
16.88 

 
12.62 

 
15.10 

 
35.25 

 
30.68 

 
23.14 

 
24.62 

 1 54.63 25.12 52.29 23.23 51.92 23.72 57.86 23.86 
 2 54.44 25.25 45.00 26.69 56.75 20.25 67.14 21.89 
 3 50.37 24.89 49.41 22.82 54.08 19.66 64.57 29.01 
 4 54.50 26.10 37.82 27.67 61.67 16.52 53.29 33.35 
 5 53.25 28.05 36.29 28.82 57.08 29.18 57.50 34.51 
 Post 35.97 26.14 24.47 32.55 47.25 33.40 43.36 36.47 
 
Ds. 

 
Pre 

 
8.02 

 
9.44 

 
5.29 

 
9.03 

 
27.64 

 
29.73 

 
21.00 

 
25.24 

 1 43.53 20.94 32.76 24.89 54.92 25.50 52.07 27.11 
 2 42.13 28.46 33.29 29.74 58.33 25.74 52.57 36.86 
 3 32.73 24.82 30.24 25.17 62.50 26.43 51.71 40.63 
 4 36.40 27.67 26.35 28.95 62.75 24.84 52.21 38.68 
 5 38.60 27.36 32.35 33.08 64.33 29.95 52.00 41.52 
 Post 34.10 26.83 21.28 30.11 45.69 34.68 53.44 41.65 
 
Ag. 

 
Pre 

 
4.03 

 
6.78 

 
3.97 

 
5.67 

 
15.46 

 
21.88 

 
6.07 

 
21.43 

 1 22.33 21.19 22.35 26.49 41.50 32.84 33.64 23.92 
 2 22.27 20.76 26.59 28.15 51.08 30.05 44.21 32.78 
 3 24.47 28.22 25.53 29.80 49.08 35.76 51.00 34.25 
 4 28.87 26.61 23.53 29.92 45.67 38.92 49.29 33.43 
 5 27.00 28.92 21.41 30.69 45.58 38.13 47.50 38.51 
 Post 16.53 24.55 15.03 26.80 36.52 36.22 42.57 36.06 
 
Sf. 

 
Prac 

 
23.10 

 
26.98 

 
28.59 

 
23.14 

 
10.65 

 
9.68 

 
19.06 

 
26.44 

 1 37.00 33.07 30.65 23.99 16.45 14.92 27.71 23.09 
 2 34.38 32.68 30.00 20.45 23.36 15.82 25.43 22.99 
 3 31.44 32.69 28.41 22.46 20.27 19.88 24.64 27.02 
 4 32.75 32.12 29.41 24.47 17.64 20.65 16.71 19.97 
 5 34.25 33.30 29.65 25.80 21.55 22.42 18.21 23.41 
 Post 32.31 33.78 29.03 24.61 12.36 19.84 18.93 18.35 
Note. Ax. = anxiety; Ds. = discouragement; Ag. = Anger; Sf. = self-efficacy; Pre = prior to math task 

and practice trials; Prac = after practice trials, prior to math task; 1-5 = 1:30, 7:39, 13:20, 19:40 and 

24:00 minutes into math task, respectively; Post = after math task. 
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Table 7.8: F ratios for mood and self-efficacy ratings before, during and after the 

math task. 

 

Source Anxiety Discouragement Anger Self-efficacy 

 Between Subjects 

Group (G) 3.84a 10.69** 9.89** 4.38* 

Drug (D) 0.56 1.12 0.01 0.06 

G x D 0.67 0.02 0.01 0.52 

 Within Subjects 

Time† (T) 21.32*** 13.4*** 8.69*** 1.75 

T x G† 1.17 1.12 0.61 0.89 

T x D† 4.02** 0.25 0.27 1.11 

T x D x G† 0.94 1.41 0.90 1.01 
Note. † Pillai’s Trace F ratio; degrees of freedom: within S’s = 6,49; between S’s = 1, 54. 
a p=.055; *p<.05; **p<.01; ***p<.001. 

 

 

Table 7.9: Simple pair-wise comparisonsa of mood before, during and after the math 

task.  

 

  Math Task  

Mood Pre 1 2 3 4 5 Post 

Anxiety 22 54*** 56*** 55*** 52*** 51*** 38*** 

Discouragement 15 46*** 46*** 44*** 44*** 47*** 39*** 

Anger 10 28*** 36*** 37*** 37*** 35*** 28*** 
Note. aEach rating was compared to pre-math task ratings. 

***p≤.001 
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7.3.2  Electro-cutaneous task shocks  

 

Subjects rated the PI and UP of each shock using a computer-generated 0-100 point 

VAS. Ratings were averaged across shocks (N = 7). Separate 2 (Group: depressed, 

controls) x 2 (Drug: naltrexone, placebo) univariate analyses were carried out on 

mean PI and UP ratings (Tables 7.10 and 7.11). 

Figure 7.3: Anxiety before, during and after the math task in placebo and naltrexone 

conditions. Note. **p<.01, ***p≤.001 within group repeated pair-wise comparisons; 
ap=.08 independent t-test comparison. 



 253

Table 7.10: Pain and unpleasantness ratings for task shocks. 

 

 Depressed Controls 

  PI UP  PI UP 

Drug N M SD M SD N M SD M SD 

Naltrexone 12 57.68 25.31 61.86 25.44 16 54.19 21.85 51.53 23.10 

Placebo 15 62.31 19.75 63.14 18.10 16 54.73 16.62 52.67 19.18 
Note. M=mean; SD=standard deviation; PI=pain intensity; UP=unpleasantness. 

 

 

Table 7.11: F ratios of pain and unpleasantness ratings for task shocks. 

 

Source Pain intensity Unpleasantness 

Group (G) 1.07 3.43 

Drug (D) 0.24 0.05 

G x D 0.16 0.00 
Note. Degrees of freedom = 1,57. 

 

 

Shocks were perceived as moderately to somewhat severely painful and unpleasant 

(i.e., M = 56.89 - 57.16).  Depressed subjects gave higher ratings, although group 

differences failed to reach significance (PI: p = .31; UP: p = .07). Despite being fully 

absorbed during the math task, naltrexone did not alter how subjects perceived the 

shocks in comparison to the placebo. No interactions were found. 

 

Effect of mood, self-efficacy and the drug on task shock sensitivity 

 

Pearson correlations and hierarchical linear multiple regression models were used to 

explore the effects of depression, drug, mood and self-efficacy on PI and UP ratings 

for task shocks during the math task (Tables 7.12 and 7.13). Absolute mood and self-

efficacy ratings were analysed as the intensity of these factors in relation to pain  

was of interest.  
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As indicated in Table 7.13 and Figures 7.4-7.6, greater anxiety and discouragement 

was associated with more PI and UP for each shock in naltrexone, but not placebo 

recipients. However, the opioid mediation of shock UP in highly anxious subjects 

was only detected in those with depression. Angrier subjects reported more PI (r = 

.31; p =.01) and UP (r = .38; p =.003) during the shocks irrespective of  

opioid blockade.  

 

A marginally significant negative association was identified between shock UP and 

self-efficacy for naltrexone recipients (Table 7.13, Figure 7.7). The opioid release 

found in inefficacious stressed subjects reiterates the findings of Bandura et al. 

(1988), who found that perceived control over noxious stimuli inhibits the release  

of opioids.  

 

 

Table 7.12: Pearson correlations between task shock pain and unpleasantness, and 

mood during the math task. 

 

 Depressed  Controls  

 Placebo  

(N = 15) 

Naltrexone  

(N = 12) 

Placebo  

(N = 16) 

Naltrexone  

(N = 17) 

Task mood PI UP PI UP PI UP PI UP 

Anxiety .12 .21 .76** .84** .46a .58* .78*** .52* 

Discouragement .02 .18 .64* .79** .14 .30 .63** .64** 

Anger .14 .25 .41 .59** .34 .39 .30 .03 

Self-efficacy -.38 -.18 -.18 -.29 .10 .07 -.43 -.60* 
Note. PI = pain intensity; UP = unpleasantness. 
ap = .06; *p<.05; **p<.01; ***p ≤.001;  
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Table 7.13: Summary of t-values from hierarchical regression analyses illustrating 

effects of mood, self-efficacy, drug and depression on pain intensity and 

unpleasantness of shocks during the math task. 

 

  Mood on task shock pain 

  Pain intensity Unpleasantness 

Step Variable Ax. Ds. Ag. Sf. Ax. Ds. Ag. Sf. 

1 Group (G) -0.21 -0.06 -0.35 -0.76 -1.25 -0.59 -1.13 -1.61 

 Drug (D) 0.78 0.78 0.53 0.45 0.35 0.55 0.17 0.09 

 Mood (M) 4.69** 2.59* 2.23* -1.81 4.55** 3.67** 2.56* -2.12* 

2 G x D -0.35 -1.73 -0.81 -1.01 0.20 -1.45 0.41 -0.91 

 G x M -0.01 0.10 0.32 0.98 -0.27 0.08 -0.44 0.55 

 D x M -2.81** -3.04** -0.93 1.15 -1.58 -3.02** -0.45 1.94a 

3 G x D x M 1.33 0.41 0.34 0.73 2.18* 0.85 1.42 0.31 

Note. Step 1 = main effects model (df = 3,56); Step 2 = two-way model (df = 6,53); Step 3 = full 

model (df = 7,52); Ax. = anxiety; Ds. = discouragement; Ag. = anger; Sf. = self-efficacy. 
ap=.057; *p<.05; **p<.01. 
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Figure 7.4: Scattergram depicting a positive relationship between anxiety and 

shock pain intensity for naltrexone recipients, and less so for placebo subjects. 

r = .76; p <.001  

r = .34; p =.053  
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Depressed subjects:
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Control subjects:
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Figure 7.5: Scattergrams depicting the positive relationship between anxiety and 

shock unpleasantness for depressed naltrexone recipients and non-depressed subjects 

in taking either the placebo or naltrexone.

r = .21; p =.45  

r = .84; p =.001  

r = .52; p =.04  

r = .58; p =.01  
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Mean task discouragement
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Mean task discouragement

100806040200

M
ea

n 
un

pl
ea

sa
nt

ne
ss

 fo
r t

as
k 

sh
oc

ks

100

80

60

40

20

0

Drug

Placebo

Naltrexone

 
 

 

 

 

Figure 7.6: Scattergram depicting the positive relationship between 

discouragement and a) pain intensity b) unpleasantness of task shocks for 

naltrexone, but not for placebo recipients. 

a) 

b) 

r = .71; p <.001  

r = .32; p =.07  

r = .15; p =.41  

r = .60; p =.001  
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Mean task self efficacy
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7.3.3  Foot cold pressor task (fCPT)  

 

Effect of the math task on foot cold pressor pain perception 

 

Pain tolerance 

 

A total of 23 subjects (37.7% of total sample) endured the water for the maximum 

time before and after the math task. The number of subjects reaching the maximum 

time did not differ between the groups (pre-maths: 35.7% depressed, 39.4% controls, 

χ2 (1) = 0.09; p>.05; post-maths: 32.1% depressed, 42.4% controls, χ2 (1) = 0.68; 

p>.05). Similarly, drug failed to influence whether subjects tolerated the cold water 

for the maximum time or not, either before or after the math task (pre-maths: 37.9% 

naltrexone, 37.5% placebo, χ2 (1) = 0.00; p>.05; post-maths: 31% naltrexone, 43.8% 

placebo, χ2 (1) = 1.05; p>.05). A log transformation was carried out on tolerance time 

to minimise the effect of these outliers on further analyses.  

 

Figure 7.7: Scattergram depicting the negative relationship between self-efficacy and 

unpleasantness of task shocks for naltrexone, but not for placebo recipients. 

r = -.07; p =.70 

r = -.51; p =.005  
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A 2 (Time: Pre- and post-math task) x 2 (Group: depressed, controls) x 2 (Drug: 

naltrexone, placebo) repeated measures ANOVA was carried out on transformed 

tolerance times (Tables 7.14 and 7.15). The math task did not affect tolerance to the 

ice water, as participants maintained their foot in the water for a similar duration 

before versus after the task. Neither depression nor naltrexone influenced  

pain tolerance.  

 

Pain and unpleasantness ratings  

 

Separate 2 (Time: Pre- and post-math task) x 2 (Group: depressed, controls) x 2 

(Drug: naltrexone, placebo) repeated measures ANOVAs were carried out on mean 

PI and UP ratings (Tables 7.14 and 7.15). The ice water was significantly less painful 

(pre-maths M = 6.62 versus post -maths M = 6.40) and unpleasant (pre-maths M = 

6.91 versus post-maths M= 6.66) after the math task. Although the drug main effect 

(PI: p = .13; UP: p = .25) and time x drug interaction did not reach significance (PI: p 

= .08; UP: p = .10), placebo recipients reported significantly less PI and UP 

following the math task (PI: t (31) = 3.17; p = .003; UP: t (31) = 2.56; p = .01). 

Conversely, their naltrexone counterparts reported no change (PI: t (28) = 0.39; p = 

.70; UP: t (31) = 0.45; p = .65). Depression, alone or with any other factor, did not 

affect foot cold pressor pain perception. 
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Table 7.14: Foot cold pressor pain tolerancea, pain intensity and unpleasantness 

ratings before and after the math task. 

 

Naltrexone  Placebo   

Tol. PI UP Tol. PI UP 

fCPT M SD M SD M SD M SD M SD M SD 

 Depressed (N = 28) 

Pre 126 97 7.16 1.10 7.63 1.32 142 85 6.46 2.50 6.88 2.57

Post 126 90 7.30 1.27 7.81 1.32 132 100 6.02 2.98 6.27 2.79

 Controls (N = 33)  

Pre 130 93 6.71 1.59 6.62 1.99 154 86 6.12 2.36 6.49 2.39

Post 131 91 6.48 1.99 6.34 2.01 152 87 5.74 2.46 6.18 2.61
Note. a untransformed data is presented for ease of interpretation; M = mean; SD = standard deviation; 

Tol. = pain tolerance (seconds); PI = pain intensity; UP = unpleasantness; fCPT = foot cold pressor; 

Pre and Post = fCPT before and after the math task, respectively. 

 

 

Table 7.15: F ratios for foot cold pressor pain tolerance, pain intensity and 

unpleasantness ratings before and after the math task. 

 

Source Tolerance PI UP 

 Between subjects 

Group (G) 0.66 0.76 1.74 

Drug (D) 0.47 2.30 1.33 

G x D 0.11 0.09 0.80 

 Within subjects 

Time† (T) 1.01 4.96* 4.44* 

T x G† 1.31 0.61 0.11 

T x D† 0.56 3.27 2.83 

T x G x D† 0.13 1.08 2.31 
Note. † Pillai’s Trace F ratio; degrees of freedom = 1,57.  

*p<.05. 
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Effect of mood, self-efficacy and the drug on foot cold pressor pain perception 

 

Pearson product correlations (Table 7.16) and hierarchical multiple linear regression 

analyses (Table 7.17) were used to explore the effects of mood, drug and depression 

on foot cold pressor PI, UP and tolerance before and after the math task. For reasons 

mentioned earlier, effects of self-efficacy were only examined after the math task. 

Absolute scores were preferred over change scores, as change scores would not 

accurately represent substantial pre-existing differences in mood between  

each group.  

 

Pre-math task 

 

When groups were analysed together in regression analyses, drug interacted with 

discouragement, and to a lesser extent anger and anxiety, to influence cold pressor 

pain perception prior to the math task (Table 7.16 and 7.17, Figure 7.8). However, 

inspection of Table 7.17 indicates that these effects were present only in the 

depressed group. Presumably, the group x mood x drug effect failed to reach 

significance due to an averaging effect, when both groups were combined. Therefore, 

a decision was made to analyse each group separately to explore differences between 

placebo and naltrexone conditions noted in the correlations (Table 7.18). Inhibitory 

effects of discouragement, anxiety and (less so) anger on cold pressor PI and UP 

were antagonised by naltrexone in depressed subjects (Figures 7.9 and 7.10). Results 

for pain tolerance were trending in the same direction, but failed to reach 

significance. However, neither mood nor drug influenced cold pressor PI or UP in 

controls before the math task.  
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Table 7.16: Pearson product correlations between mood and cold pressor pain 

tolerance, pain intensity and unpleasantness ratings before the math task. 

 

 Depressed (N = 28) Controls (N = 33) 

Mood Naltrexone Placebo Naltrexone Placebo 

 Pain intensity 
Anxiety .62* -.41 -.12 .06 

Discouragement .57* -.42 -.03 .06 
Anger .54a -.35 -.01 .06 

 Unpleasantness 
Anxiety .55* -.42 -.09 .04 

Discouragement .50 -.42 .07 .04 
Anger .44 -.36 -.07 .04 

 Pain tolerance 
Anxiety -.49 .03 .24 -.03 

Discouragement -.58* .08 -.21 .31 
Anger -.55* .04 -.19 .31 

Note. ap=.055; *p≤.05. 

 

 

Table 7.17: Summary of t-values from hierarchical regression analyses illustrating 

effects of mood, drug and depression on cold pressor pain intensity, unpleasantness 

and pain tolerance before the math task. 

 

  Mood on foot cold pressor pain  

  Pain intensity Unpleasantness Pain tolerance 
 Variable Ax. Ds. Ag. Ax. Ds. Ag. Ax. Ds. Ag. 

1 Group (G) -0.83 -0.88 -0.86 -1.26 -1.25 -1.34 0.10 -0.16 -0.07 

 Drug (D) -1.29 -1.29 -1.24 -0.79 -0.78 -0.74 0.73 0.74 0.89 

 Mood (M) -0.34 -0.46 -0.42 -0.30 -0.32 -0.54 -0.71 -1.21 -1.20 

2 G x D -0.36 -0.64 -0.48 0.04 -0.23 -0.02 0.61 1.16 0.82 

 G x M 0.20 0.36 0.21 0.15 0.53 -0.01 1.21 0.70 0.75 

 D x M -1.60 -1.98a -1.72 -1.63 -2.02* -1.62 0.66 2.15* 2.00b 

3 G x D x M 1.65 1.02 0.81 1.51 0.70 0.83 -1.33 0.77 0.87 
Note. Step 1 = main effects model (df = 3,57); Step 2 = two-way model (df = 6,54); Step 3 = full 

model (df = 7,53); Ax. = anxiety; Ds. = discouragement; Ag. = anger.   
ap=.053; bp=.051; *p<.05. 
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Pre-math task discouragement
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Table 7.18: Summary of t-values from separate group hierarchical regression 

analyses illustrating effects of mood and drug on cold pressor pain intensity, 

unpleasantness and pain tolerance before the math task. 

 

  Mood on foot cold pressor pain  

  Pain intensity Unpleasantness Pain tolerance 
 Variable Ax. Ds. Ag. Ax. Ds. Ag. Ax. Ds. Ag. 

  Depressed subjects 

1 Drug (D) -0.99 -0.99 -0.92 -1.00 -1.00 -0.93 0.17 0.30 0.49 
 Mood (M) -0.39 -0.54 -0.49 -0.37 -0.50 -0.54 -1.29 -1.40 -1.32
2 D x M -2.43* -2.38* -1.99a -2.43* -2.33* -1.92b -1.30 1.77 1.66 
  Control subjects 

1 Drug (D) -0.81 -0.79 -0.81 -0.17 -0.12 -0.16 0.81 0.77 0.74 
 Mood (M) -0.06 0.12 0.16 -0.10 0.30 -0.08 0.63 0.27 0.22 
2 D x M 0.46 0.24 0.24 0.33 -0.50 -0.29 -0.74 1.45 1.42 
Note. Step 1 = main effects model (df =2,30); Step 2 = full model (df = 3,29); Ax. = anxiety; Ds. = 

discouragement; Ag. = anger.   
ap=.06; bp=.07; *p<.05. 

r = -.39; p =.03

r =.01; p =.59 

Figure 7.8: Scattergram depicting a negative relationship between discouragement 

and cold pressor pain tolerance in naltrexone recipients before the math task. 
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Pre-math task anxiety
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Figure 7.9: Scattergrams depicting a direct relationship between anxiety and cold 

pressor a) pain intensity and b) unpleasantness in depressed subjects taking naltrexone, 

before the math task. 

r =.62; p =.02 

r = -.41; p =.12 

r =.55; p =.05 

r =-.42; p =.12 

a) 

b) 
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Pre-math task discouragement
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Figure 7.10: Scattergrams depicting a direct relationship between discouragement and 

cold pressor a) pain intensity and b) unpleasantness in depressed subjects taking 

naltrexone, before the math task. 

b) 

r =.57; p =.04 

r =-.42; p =.11 

r =.50; p =.08 

r =-.42; p =.12 

a) 
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Post-math task  

 

The interactions involving Drug before the math task were no longer present after the 

math task (Tables 7.19 and 7.20). Greater levels of anxiety (r = -.31; p = .01), 

discouragement (r = -.28; p = .03), and anger (r = -.35; p = .006) were associated 

with lower cold pressor pain tolerance. Conversely, greater levels of self-efficacy 

were associated with extended cold pressor persistence after the math task (r = .27; p 

= .04). Neither drug nor depression influenced cold pressor pain tolerance after the 

math task. No interactions were found. 

 

No main effects or interactions between mood, drug and/or depression were found 

for cold pressor PI and UP ratings. A Self-efficacy x Drug x Group effect qualified 

the main effect for UP ratings, indicating that naltrexone antagonised the inverse 

association between self-efficacy and cold pressor UP for controls, but not depressed 

subjects18 (Figure 7.11).   

 

Table 7.19: Pearson product correlations between mood, self-efficacy and cold 

pressor pain intensity, unpleasantness and pain tolerance after the math task. 

 

 Depressed (N = 28) Controls (N = 33) 
Mood Naltrexone Placebo Naltrexone Placebo 

 Pain intensity 
Anxiety .14 .04 .38 .04 

Discouragement .25 .06 .34 -.08 
Anger .40 .16 .21 -.16 

Self-efficacy -.69** -.23 .18 -.52* 
 Unpleasantness 

Anxiety .25 -.03 .36 .17 
Discouragement .37 -.03 .32 .10 

Anger .48 .00 .25 .02 
Self-efficacy -.82** -.18 -.05 -.68** 

 Pain tolerance 
Anxiety -.42 -.44 -.11 -.21 

Discouragement -.29 -.37 -.25 -.16 
Anger -.74** -.41 -.08 -.11 

Self-efficacy .33 .03 .18 .55* 
Note. *p<.05;**p<.01. 

                                                 
18 The inverse relationship between UP and self-efficacy in depressed naltrexone recipients was due to 

an outlying value (see Figure 7.11, p 268).  
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Table 7.20: Summary of t-values from hierarchical regression analyses illustrating 

the effects of mood, drug and depression on cold pressor pain intensity, 

unpleasantness, and pain tolerance after the math task. 

 

  Mood on foot cold pressor pain  

  Pain intensity Unpleasantness 

Step Variable Ax. Ds. Ag. Sf. Ax. Ds. Ag. Sf. 

1 Group (G) -0.70 -0.65 -0.59 -0.44 -0.99 -0.93 -0.89 -0.53 

 Drug (D) -1.60 -1.67 -1.71 -1.59 -1.25 -1.33 -1.37 -1.22 

 Mood (M) 0.82 0.62 0.80 -1.73 0.96 0.72 0.84 -2.80**

2 G x D 0.42 0.27 0.27 0.55 1.15 0.98 0.82 1.22 

 G x M 0.49 -0.00 -0.68 0.61 0.88 0.55 0.12 -0.03 

 D x M -0.66 -0.86 -0.64 -1.68 -0.68 -0.84 -0.90 -1.68 

3 G x D x M -0.61 -0.68 -0.74 -1.49 -0.04 -0.03 -0.02 -2.11* 

   

Pain tolerance 

Step Variable Ax. Ds. Ag. Sf. 

1 Group (G) -0.03 -0.22 -0.44 -0.00 

 Drug (D) 0.40 0.59 0.74 0.47 

 Mood (M) -2.39* -2.18* -2.80** 1.98a 

2 G x D 0.12 -0.00 0.32 0.32 

 G x M 0.92 0.32 1.41 0.47 

 D x M -0.18 0.11 0.60 0.66 

3 G x D x M -0.08 0.34 -0.51 1.41 
Note. Step 1 = main effects model (df = 3,57); Step 2 = two-way model (df = 6,54); Step 3 = full 

model (df = 7,53); Ax. = anxiety; Ds. = discouragement; Ag. = anger; Sf. = self-efficacy. 
ap=.053; *p<.05; **p<.01. 
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Figure 7.11: Scattergram depicting a negative relationship between self-efficacy and cold 

pressor unpleasantness for controls taking the placebo after the math task. a removal of 

this outlier eliminates the relationship in depressed subjects (r = .00; p = .99). 

r = -.68; p = .003 

r = -.05; p = .86 

r = -.18; p = .52 

r = -.82; p = .001 a
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7.3.4  Blink reflex – R2 onset latency 

 

Data considerations 

 

Onset latency was identified as the first peak of EMG activity (after rectification) 

within a 27-87 msec window (Ellrich & Treede, 1998). Analyses were carried out on 

mean onset latencies for R2 responses ipsilateral to TS. R2 onset at the time of the 

first and the second CS was analysed separately to simplify interpretation of  

the results. 

 

First conditioning stimulus 

 

R2 onset was investigated in separate 2 (Group: depressed, controls) x 2 (Condition: 

TS, TS + CS) repeated measures ANOVAs for 2 mA, 6 mA and 10 mA shocks. Drug 

was not included as a factor as it was not expected to be fully absorbed at the time of 

the first CS. As demonstrated in Tables 7.21 and 7.22, R2 onset was delayed during 

the CS for shocks of all intensities. Depression did not affect R2onset at any  

stimulus intensity.  

 

 

Table 7.21: R2 onset (msecs) during the first test and conditioning stimuli.    

 

  Controls (N = 30a) Depressed (N = 27a) 

Condition  2mAb 6mA 10mA 2mAb 6mA 10mA 

TS M 43.02 35.19 34.36 41.90 36.50 34.46 

 SD 7.22 5.24 4.71 6.08 4.73 3.82 

TS +CS M 45.76 36.90 35.06 44.66 38.06 36.35 

 SD 7.85 6.37 5.37 4.87 7.60 6.59 
Note. M = mean; SD = standard deviation; a missing data; b The R2 component was less evident at 2 

mA, hence cell numbers were smaller i.e., Controls N = 27; Depressed N = 24; TS = test stimuli (i.e, 

electric shocks to elicit blink reflex); CS = conditioning stimulus (i.e., hand cold pressor task). 
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Table 7.22: F ratios for R2 onset during the first test and conditioning stimuli.    

 

 Test stimulus 

Source 2mA 6mA 10mA 

Group (G) 0.48 0.67 0.29 

Condition (C)  8.37** 8.49** 7.65** 

C x G 0.00 0.02 1.59 
Note. Degrees of freedom: 2 mA = 1,47; 6 mA and 10 mA = 1,53. 

**p<.01. 

 

 

Second conditioning stimulus 

 

Separate 2 (Group: depressed, controls) x 2 (Drug: naltrexone, placebo) x 2 

(Condition: TS, TS + CS) repeated measures ANOVAs were calculated on mean 

onset latencies for 2 mA, 6 mA and 10 mA shocks. As indicated in Tables 7.23 and 

7.24, inhibitory effects of the CS on R2 onset were greatly weakened at the time of 

the second CS. Neither group nor drug influenced R2 onset. A marginal Condition x 

Group x Drug effect for 6 mA shocks was explored with paired and independent t-

tests (Table 7.25, Figure 7.12). R2 onset during the TS condition was significantly 

faster for non-depressed controls taking the placebo compared with depressed 

subjects taking the placebo.  
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Table 7.23: R2 onset during the second test and conditioning stimuli. 

 

 Controls Depressed 

Naltrexone 

(N = 16) 

Placebo 

(N = 17) 

Naltrexone 

(N = 13) 

Placebo 

(N = 15) 

 

 

Condition Mean SD Mean SD Mean SD Mean SD 

 2mA 

TS 43.64 8.14 40.75 8.39 41.71 5.70 41.11 6.41 

TS +CS 43.73 8.81 42.96 9.86 42.19 6.65 43.55 7.61 

 6mA 

TS 37.00  5.27 34.87 3.65 36.85 4.75 38.70  6.02 

TS +CS 36.86  5.53 36.89 6.44 38.15 7.40 37.57  6.24 

 10mA 

TS 34.91  5.48 35.02 5.09 35.68 4.45 35.24  4.29 

TS +CS 35.05  5.02 35.31 5.84 35.63 7.20 35.77  3.98 
Note. The R2 component was less evident at 2 mA, hence cell numbers were smaller i.e., Controls: 

naltrexone N = 13, placebo N = 16; Depressed: naltrexone N = 12, placebo N = 14; TS = test stimuli 

(i.e., electric shocks to elicit blink reflex); CS = conditioning stimulus (i.e., hand cold pressor task). 

 

Table 7.24: F ratios for R2 onset during the second test and conditioning stimuli.    

 

 Test stimulus 

Source 2mA 6mA 10mA 

 Between subjects 

Group (G) 0.11 1.08 0.16 

Drug (D) 0.14 0.02 0.00 

G x D 0.33 0.39 0.02 

 Within subjects 

Condition (C) 1.85 0.80 0.25 

C x G 0.03 0.55 0.00 

C x D 1.12 0.01 0.16 

C x G x D  0.00 3.96a 0.05 
Note. Degrees of freedom: 2 mA = 1,51; 6 mA = 1,57; 10 mA = 1,56. 
ap=.051.  
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Table 7.25: T-test comparisons of R2 onset for 6 mA shocks in experimental 

conditions during the second test and conditioning stimuli.  

 

 Depressed Controls Both 

Drug TS  TS + CS t TS  TS + CS t tTS tTS+CS 

N 36.85 38.15 -0.91 37.00 36.86 0.16 -0.08 0.53 

P 38.70 37.57 0.94 34.87 36.89 -1.77 2.20* 0.30 

t -0.89 0.22  1.35 -0.01    
Note. TS = test stimuli (i.e., electric shocks used to elicit the blink reflex); CS = conditioning stimulus 

(i.e., hand cold pressor task); N = naltrexone; P = placebo; tTS  and tTS+CS refers to between drug/group 

comparisons for the TS and TS + CS conditions, respectively. 

*p<.05. 
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Figure 7.12: R2 onset latencies to 6mA shocks during the post-drug test and 

conditioning stimuli. Note. *p<.05, between group comparison. 
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Effect of the math task on R2 onset latencies 

 

Separate 2 (Group: depressed, controls) x 2 (Drug: naltrexone, placebo) x 2 (Time: 

TS conditions before and after math task) repeated measures ANOVAs were 

calculated for 2 mA, 6 mA and 10 mA shocks (Table 7.26 and 7.27). The onset of R2 

to 10 mA shocks was facilitated after the math task (pre-maths M = 35.38 versus 

post-maths M = 34.56 msec), and trended in the same direction for 6 mA shocks. 

Neither drug nor depression influenced R2 onset.  

 

 

Table 7.26: R2 onset before and after the math task.   

 

 Controls Depressed 

Naltrexone 

(N = 16) 

Placebo 

(N = 17) 

Naltrexone 

(N = 13) 

Placebo 

(N = 15) 

 

TS 

condition Mean SD Mean SD Mean SD Mean SD 

 2mA 

Pre-maths 44.81 8.96 40.75 8.39 41.65 5.46 40.61 6.39 

Post-maths 44.24 7.48 42.10 6.45 42.55 8.95 42.13 7.31 

 6mA 

Pre-maths 37.00  5.27 34.87 3.65 36.85 4.75 38.70  6.02 

Post-maths 36.32 6.16 35.43 4.65 36.84 6.54 35.93 6.50 

 10mA 

Pre-maths 34.91  5.48 35.02 5.09 36.35 4.89 35.24  4.29 

Post-maths 34.44 5.55 34.66 4.28 34.32 5.46 34.83 4.72 
Note. The R2 component was less evident at 2 mA, hence cell numbers were smaller i.e., Controls: 

naltrexone N = 14, placebo N = 16; Depressed: naltrexone/placebo N = 13; TS = test stimuli (i.e., 

electric shocks to elicit blink reflex). 
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Table 7.27: F ratios for R2 onset before and after the math task.   

  

 Test stimulus 

Source 2mA 6mA 10mA 

 Between subjects 

Group (G) 0.45 0.78 0.12 

Drug (D) 1.07 0.15 0.00 

G x D 0.41 0.56 0.03 

 Within subjects 

Time† (T) 0.97 2.29 5.26* 

T x G† 0.25 1.93 1.28 

T x D† 0.61 0.63 1.47 

T x G x D† 0.16 4.37* 1.12 
Note. † Pillai’s Trace F ratio; degrees of freedom: 2 mA = 1,52;  6 mA and 10 mA = 1,57.  

*p<.05. 

 

Once again, a Time x Group x Drug interaction was found for 6 mA shocks (Figure 

7.13). Paired t-test comparisons indicated that R2 onset was facilitated in depressed 

placebo recipients after the math task, whereas R2 onset remained the same in all 

other groups (Table 7.28). The faster pre-task onset of R2 in controls taking the 

placebo, in comparison to their depressed counterparts, replicated the finding 

established in the previous section (see Second conditioning stimulus, p 270).  

No other interactions were detected. 

 

Table 7.28: T-test comparisons of R2 onset for 6 mA shocks in experimental 

conditions before and after the math task.  

 

 Condition 

 Depressed Controls Both 

Drug Pre  Post t Pre  Post t tPre TPost 

N 36.85 36.84 0.00 37.00 36.32 0.86 -0.08 0.22 

P 38.70 35.93 2.96* 34.87 35.43 -0.65 2.20* 0.25 

t -0.89 0.37  1.35 0.47    
Note. N = naltrexone; P = placebo; Pre = before math task; Post = after math task;  tPre  and tPost refers 

to between group/drug comparisons for R2 onset before and after the math task. 

*p<.05. 
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7.3.5  Cardiovascular activity 

 

Data considerations 

 

Cardiovascular responses were measured using the same equipment and procedures 

at the same stage of the experiment as in Studies 2 and 3. Absolute rather than 

change scores were analysed for reasons mentioned in previous studies. 

 

Randomisation check 

 

Separate 2 (Group: depressed, controls) x 2 (Drug: naltrexone, placebo) univariate 

ANOVAs established that equivalent SBP, DBP and pulse rates were recorded from 

groups at the beginning of the experiment (Table 7.29 and 7.30). Resting blood 

pressure and pulse rate were within normotensive ranges (Lobstein et al., 1989; 

McCubbin & Bruehl, 1994; O'Brien & O'Malley, 1981). 

Figure 7.13: Drug and depression effects on R2 onset to 6mA shocks before and 

after the math task. Note. *p<.05.
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Table 7.29: Blood pressure and pulse rate before and after the drug.  

 

 Depressed (N = 28) Controls (N = 31) 

Pre-drug Post-drug Pre-drug Post-drug  

CVR Mean SD Mean SD Mean SD Mean SD 

 Naltrexone 

SBP 116.86  14.97 112.82 13.45 118.33 13.19 111.81  10.12

DBP 75.40  10.80 73.87 7.89 75.02 11.50 72.80  9.59

Pulse 63.83  11.61 63.18 7.81 68.36 9.18 67.94  8.51

 Placebo 

SBP 116.40  19.28 115.53 21.22 118.60 11.25 115.24 12.48

DBP 73.60  13.62 72.64 13.84 76.30 8.64 73.65 9.08

Pulse  68.26  9.33 65.18 7.86 70.42 9.92 66.45 9.05
Note. CVR = cardiovascular responses; SBP and DBP = systolic and diastolic blood pressure, 

respectively (scale = mmHg); Pulse = heart beats per minute. 

 

 

Table 7.30: F ratios for pre-drug blood pressure and pulse rate. 

 

Source SBP DBP Pulse 

Group (G) 0.22 0.16 1.64 

Drug (D) 0.00 0.01 1.54 

G x D 0.01 0.27 0.20 
Note. Degrees of freedom = 1,55; SBP and DBP = systolic and diastolic blood pressure, respectively 

(scale = mmHg); Pulse = heart beats per minute. 

 

Effect of the drug on cardiovascular activity 

 

Separate 2 (Group: depressed, controls) x 2 (Drug: naltrexone, placebo) x 2 (Time: 

pre- and post-drug) repeated measures ANOVAs were carried out on SBP, DBP and 

pulse rate (Table 7.29 and 7.31). BP and pulse rate had dropped significantly after 90 

minutes in the experimental environment, as subjects relaxed and became more 

familiar with the setting and experimental procedures (SBP: pre-drug M = 117.55 

versus post-drug M = 113.51; DBP: M = 75.08 versus M = 73.20; Pulse M = 67.72 
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versus M = 65.51). No main effect was found for drug, indicating that naltrexone did 

not influence cardiovascular activity at rest (McCubbin et al., 1996). 

 

Table 7.31: F ratios for blood pressure and pulse rate before and after the drug. 

 

Source SBP DBP Pulse 

 Between subjects 

Group (G) 0.01 0.04 1.78 

Drug (D) 0.12 0.01 0.54 

G x D 0.00 0.20 0.48 

 Within subjects 

Time† (T) 19.42** 6.00* 6.34* 

T x G† 2.99 0.70 0.15 

T x D† 2.35 0.00 3.29 

T x G x D† 0.04 0.18 0.18 
Note. † Pillai’s Trace F ratio; degrees of freedom = 1,55; SBP and DBP = systolic and diastolic blood 

pressure, respectively (scale = mmHg); Pulse = heart beats per minute. 

*p<.05; ** p<.01. 

 

Effect of the math task on cardiovascular activity 

 

BP and pulse rate were measured at 2-minute intervals throughout the length of the 

task (28 minutes). To simplify interpretation, measures were averaged across two 

intervals (of 14 minutes each). Separate 2 (Group: depressed, controls) x 2 (Drug: 

naltrexone, placebo) x 4 (Time: pre-task, task interval 1-14 minutes and 15-28 

minutes, post-task) repeated measures ANOVAs were carried out on SBP, DBP and 

pulse rate (Tables 7.32 and 7.33).  

 

Planned simple contrasts were used to explore Time effects for blood pressure and 

pulse rate (Table 7.34). When compared to pre-task levels, SBP and DBP remained 

significantly higher during and after the task. Pulse rate increased significantly 

during the first 14 minutes of the math task, but returned to pre-task rates towards the 

end of the math task and after it was completed. Cardiovascular reactivity did not 

differ between groups. 
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Table 7.32: Blood pressure and pulse rate before, during and after the math task. 

 

 Depressed (N = 27a) Controls (N = 33) 

Blood   Maths task   Maths task  

pressure Pre 1 2 Post Pre 1 2 Post 

 Naltrexone (N = 29) 

SBP Mean 112.82  121.57 121.11 119.96 113.67 122.57 121.30 117.38 

 SD 13.4 15.6 16.5 17.2 8.2 16.0 15.0 15.2

DBP Mean 73.87 81.02 80.61 78.96 74.17 79.96 77.60 75.66 

 SD 7.9 10.4 10.2 9.7 6.8 12.8 10.8 10.8

Pulse Mean 63.18 64.04 64.24 63.00 68.79 70.39 66.01 68.71

 SD 7.8 7.0 5.9 8.5 9.1 8.5 12.4 10.27

 Placebo (N = 31) 

SBP Mean 118.33 122.51 122.34 115.78 116.35 128.78 125.47 120.53 

 SD 21.4 16.8 16.4 19.4 12.0 13.0 14.9 12.21

DBP Mean 73.74 80.73 77.57 73.51 73.85 83.15 82.06 78.27

 SD 14.6 12.9 13.9 13.95 9.3 7.0 8.9 10.72

Pulse Mean 65.29 67.10 66.80 66.30 66.23 70.88 68.21 67.57

 SD 7.8 7.6 5.2 8.87 9.3 11.5 13.7 7.85
Note. aN=1 missing data; Math task 1 and 2 = 1-14 minutes and 15-28 minutes, respectively;  

SBP and DBP = systolic and diastolic blood pressure, respectively (scale = mmHg); Pulse = heart 

beats per minute. 



 279

Table 7.33: F ratios comparing blood pressure and pulse rate before, during and after 

the math task.  

 

Source SBP DBP Pulse 

 Between subjects 

Group (G) 0.07 0.02 2.35 

Drug (D) 0.50 0.01 0.44 

G x M 0.18 0.87 0.43 

 Within subjects 

Time† (T) 20.86*** 26.15*** 2.84* 

T x G† 1.84 0.10 1.73 

T x D† 1.03 0.78 0.29 

T x G x D† 0.94 1.23 0.43 
Note. † Pillai’s Trace F ratio; degrees of freedom: within S’s = 3,54; between S’s = 1,56;  

SBP and DBP = systolic and diastolic blood pressure, respectively (scale = mmHg); Pulse = heart 

beats per minute.  

*p<.05; ***p<.001. 

 

 

Table 7.34: Simple contrastsa of blood pressure and pulse rate before, during and 

after the math task. 

 

Maths task  

Blood Pressure 

 

Pre-task 1 2 

 

Post-task 

SBP 114.24 123.85*** 122.55***  118.92*** 

DBP 73.32 81.22*** 79.50*** 76.85*** 

Pulse 65.71 68.10* 66.31 66.43 
Note. a pre-task measure is the point of comparison; Math task 1 and 2 = 1-14 and 15-28 minutes, 

respectively; SBP and DBP = systolic and diastolic blood pressure, respectively (scale = mmHg); 

Pulse = heart beats per minute; 

*p<.05; ***p<.001. 
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Association between cardiovascular activity and task shock sensitivity  

 

Pearson product correlations (Table 7.35) and hierarchical multiple linear regression 

analyses (Table 7.36) were used to explore the association between cardiovascular 

response and task shock sensitivity.  

 

DBP was negatively associated with shock PI (r = -.34; p = .008) and UP (r = -.40; p 

= .002), where higher DBP was related to lower shock sensitivity. The association 

between SBP and task shock sensitivity trended in the same direction, but did not 

reach statistical significance (PI: r = -.19, p = .15; UP: r = -.24, p = .07). A Drug x 

Pulse effect was found for task shock UP. Although these relationships were not 

significant (Figure 7.14), naltrexone appeared to antagonise an opioid-mediated 

inhibition of shock UP in subjects experiencing higher pulse rates during  

the math task.  

 

Depressed subjects experienced the shocks as significantly more unpleasant than 

non-depressed subjects (M = 62.57 versus 51.26; t (58) = -2.06; p =.04). The 

difference between depressed and non-depressed subjects reached significance in this 

t-test analysis and not in the univariate ANOVA (Table 7.11) as a degree of freedom 

associated with the Drug factor was lost in the ANOVA. 

 

 

Table 7.35: Pearson correlations between pulse rate, systolic and diastolic blood 

pressure and pain and unpleasantness ratings for task shocks. 

 

 Depressed Controls 

Naltrexone 

(N = 12) 

Placebo 

(N = 15) 

Naltrexone 

(N = 16) 

Placebo 

(N = 17) 

 

 

CVR PI UP PI UP PI UP PI UP 

SBP .00 .00 -.38 -.53* -.24 -.18 -.07 -.19 
DBP -.14 -.15 -.42 -.60* -.48 -.48 -.22 -.35 
Pulse .29 .36 -.23 -.35 .22 .37 -.12 -.17 
Note.  PI = pain intensity; UP = unpleasantness; CVR = cardiovascular response; SBP and DBP = 

systolic and diastolic blood pressure, respectively (scale = mmHg); Pulse = heart beats per minute. 

*p<.05. 
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Table 7.36: Summary of t-values from hierarchical linear regression analyses 

illustrating the effects of depression, drug, blood pressure and pulse rate on task 

shock pain and unpleasantness ratings. 

 

  Math task shocks 

  Pain intensity Unpleasantness 

Step Variable SBP DBP Pulse SBP DBP Pulse 

1 Group (G) -0.97 -1.06 -1.15 -1.84 -2.03* -2.05* 

 Drug (D) 0.56 0.65 0.39 0.22 0.31 0.03 

 CVR -1.37 -2.72** 0.21 -1.66 -3.26** 0.35 

2 G x D -0.32 -0.14 -0.14 0.04 0.26 0.30 

 G x CVR 0.08 -0.43 0.07 0.07 -0.68 0.21 

 D x CVR -0.27 0.01 -1.46 -0.80 -0.53 -2.28* 

3 G x D x CVR 0.98 0.64 0.87 0.77 0.45 0.91 
Note. Step 1 = main effects model (df = 3,56); Step 2 = two-way model (df = 6,53); Step 3 = full 

model (df = 7,52); CVR = cardiovascular response; SBP and DBP = systolic and diastolic blood 

pressure, respectively (scale = mmHg); Pulse = heart beats per minute.  

*p<.05; **p<.01. 
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Figure 7.14: Scattergram depicting the relationship between diastolic blood 

pressure and task shock unpleasantness ratings for naltrexone and placebo 

recipients during the math task.  
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Association between cardiovascular activity and foot cold pressor pain perception 

 

The association between resting cardiovascular activity and cold pressor pain 

perception (assessed immediately after cardiovascular measures) was explored with 

correlational and hierarchical regression analyses (Table 7.37 and 7.38). Before the 

math task, high SBP was associated with high pain tolerance and low pain sensitivity 

during the fCPT in controls taking the placebo (Figures 7.15 – 7.17). Endogenous 

opioids apparently inhibited pain in controls with high SBP, but not in depressed 

participants. A similar effect was detected for pain tolerance after the math task 

(Figure 7.18). 

 

 

Table 7.37: Pearson correlations between pulse rate, systolic and diastolic blood 

pressure and foot cold pressor pain indices before and after the math task. 

 

 Depressed Controls 

 Naltrexone 

(N = 13) 

Placebo 

(N = 15) 

Naltrexone 

(N = 16) 

Placebo 

(N = 17) 

fCPT SBP DBP Pulse SBP DBP Pulse SBP DBP Pulse SBP DBP Pulse

 Pre-math task 

Tol. .41 .20 -.44 .29 .17 .07 -.18 .29 -.13 .53* .27 -.17 

PI -.61* -.15 -.18 -.19 -.09 .06 .32 -.03 .17 -.51* -.21 .07 

UP -.63* -.18 -.05 -.17 -.08 .10 .35 -.20 .25 -.35 -.04 .25 

 Post-math task 

Tol. .52 .39 -.34 -.01 -.09 .09 .15 .27 .06 .68* .32 -.09 

PI -.40 -.45 -.05 -.16 -.02 .08 -.03 -.15 .05 -.57* -.22 .12 

UP -.50 -.59* .11 -.08 -.02 .10 .05 -.21 .10 -.47 .00 .24 

Note. SBP and DBP = systolic and diastolic blood pressure, respectively (scale = mmHg); Pulse = 

heart beats per minute; fCPT = foot cold pressor task; Tol. = pain tolerance (seconds); PI = pain 

intensity; UP = unpleasantness. 

*p<.05. 
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Table 7.38: Summary of t-values from hierarchical linear regression analyses 

illustrating the effects of depression, drug, blood pressure and pulse rate on foot cold 

pressor pain indices before and after the math task. 

 

 Foot cold pressor pain index 

Pain tolerance Pain intensity  Unpleasantness  

Step 

 

Variable SBP DBP Pulse SBP DBP Pulse SBP DBP Pulse 

 Pre-math task 

1 Group (G) 0.42 0.37 0.58 -0.83 -0.77 -0.83 -1.28 -1.23 -1.44 

 Drug (D) 0.66 0.89  0.88 -1.07 -1.26 -1.25 -0.61 -0.76 -0.77 

 CVR 2.13* 1.72 -1.25 -1.89 -0.87 0.43 -1.36 -0.77 1.21 

2 G x D 0.14 0.07 -0.14 0.16 0.15 0.12 0.52 0.60 0.60 

 G x CVR 0.07 0.46 0.19 -0.42 -0.36 0.40 0.32 -0.03 0.68 

 D x CVR 0.48 -0.31 0.82 -0.96 -0.42 0.16 -0.57 0.39 0.29 

3 G x D x CVR 2.02* 0.23 -1.09 -2.24* -0.47 -0.42 -2.05* 0.12 -0.25 

 Post-math task 

1 Group (G) 0.45 0.47 0.59 -0.86 -0.88 -0.98 -1.21 -1.22 -1.39 

 Drug (D) 0.63 0.67  0.61 -1.74 -1.74 -1.70 -1.36 -1.37 -1.38 

 CVR 2.30* 1.46 -0.39 -1.85 -1.02 0.42 -1.36 -0.64 0.86 

2 G x D 0.04 0.08 0.13 0.73 0.63 0.40 1.35 1.31 1.10 

 G x CVR 0.97 0.71 0.39 -0.79 -0.28 0.21 -0.49 0.32 0.36 

 D x CVR -0.02 -0.79 0.42 -1.08 0.23 0.43 -0.69 1.01 0.55 

3 G x D x CVR 2.28* 1.02 -1.07 -1.51 -0.68 -0.03 -1.71 -0.33 0.33 

Note. Step 1 = main effects model (df = 3,56); Step 2 = two-way model (df = 6,53); Step 3 = full 

model (df = 7,52); CVR = cardiovascular response; SBP and DBP = systolic and diastolic blood 

pressure, respectively (scale = mmHg); Pulse = heart beats per minute. 

*p<.05. 
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Depressed subjects:

Control subjects:

Figure 7.15: Scattergrams depicting a positive relationship between systolic blood 

pressure and cold pressor pain tolerance in non-depressed controls taking the 

placebo before the math task. 

r = .53; p = .03 
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Pre-math task systolic blood pressure
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Depressed subjects: 

Control subjects:

Figure 7.16: Scattergrams depicting a negative relationship between systolic blood 

pressure and cold pressor pain intensity in non-depressed controls taking the 

placebo and depressed naltrexone recipients before the math task. 
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Pre-math task systolic blood pressure
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Mean pre-math task systolic blood pressure
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Control subjects:

Depressed subjects: 

Figure 7.17: Scattergrams depicting a negative relationship between systolic blood 

pressure and cold pressor unpleasantness in depressed naltrexone recipients before 

the math task 
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Post-math task systolic blood pressure 
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Post-math task systolic blood pressure 
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Depressed subjects: 

Control subjects:

Figure 7.18: Scattergrams depicting a positive relationship between systolic blood 

pressure and cold pressor pain tolerance in non-depressed controls taking the placebo 

after the math task. 
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7.4  DISCUSSION 

7.4.1  Summary of major findings 

 

Salient points to emerge from the present study were: 

• Acute pain sensitivity, opioid-mediated stress induced analgesia, and inhibition 

of the nociceptive component of the blink reflex (R2) were similar in depressed 

and non-depressed subjects.  

• Opioidergic mechanisms mediated inhibitory effects of discouragement and 

anxiety on electrical and, to a lesser extent, cold-induced pain in both groups. 

• High self-efficacy was associated with opioid release in both groups. 

• A regulatory relationship between cardiovascular activity (during stress and at 

rest) and pain, appeared to be mediated by opioids more consistently in non-

depressed than depressed subjects.  

7.4.2  Subject selection 

 

The process by which depressed and non-depressed control subjects were selected 

was effective in that depressed subjects reported significantly higher levels of (pre-

experimental) anxiety, depression and stress than non-depressed controls on well-

established psychological scales (State-Trait Anxiety Inventory, Depression, 

Anxiety, Stress Scales, BDI-II). In comparison to the general adult population, 

controls reported psychological symptomatology that reflected normal, and in some 

cases (i.e., state/trait anxiety), lower than normal levels of distress. Diagnoses of 

major depression (according to the SCID-CV - First et al., 1997) concurred with 

self–reported psychopathology.  Responses to questionnaires demonstrated the 

presence of a severe depressive syndrome with co-morbid moderate to severe levels 

of anxiety and stress in depressed subjects. Groups were matched successfully for 

age and demographics. Similar numbers of males and females were included  

in each cell. 



 289

7.4.3  Success of experimental manipulations 

 

The math task was a powerful cognitive stressor that led to significant increases in 

negative mood in both groups. Increases in anxiety were opposed by endogenous 

opioids mid-way through the task and, as mood was not affected by naltrexone per 

se, increasing anxiety in the naltrexone condition could be attributed to the math task. 

Moreover, the math task led to double the stress-induced cardiovascular reactivity of 

similar tasks used, despite being three times the duration (30 mins versus 10 mins in 

McCubbin et al., 1996). Sizable elevations in BP could have been due to the constant 

threat and actual delivery of noxious electric shocks, an element not present in the 

task employed by McCubbin et al. (1996). Pulse rate increased significantly during 

the first 14 minutes of the math task, but returned to pre-task rates towards the end of 

the task and experiment. Increases in heart rate represent mental effort or mental 

load, whereas increases in BP reflect both effort and lack of control (Ettema & 

Zielhuis, 1971; Peters, Godaert, Ballieux, van Vliet, Willemsen, Sweep, & Heijnen, 

1998). Therefore, after 14 minutes the novelty of the math task may have worn off, 

and subjects may not have been expending as much effort. Alternatively, an increase 

in BP leads to a slowing of the heart by reflex signals from the vasomotor centre (i.e., 

the 'baroreceptor reflex' - Steptoe, 1980). This reflex plays an important role in the 

regulation of arterial pressure and maintenance of cardiovascular homeostasis 

(Andreassi, 1989). Therefore, in this task, baroreceptors may have responded to 

prolonged elevations in arterial pressure by slowing the heart during the second part 

of the task to prevent further increases in BP. Finally, increases in negative mood and 

blood pressure were strong enough to persist several minutes beyond the task. 

 

A lack of control over aversive events was successfully manipulated during the math 

task, as perceived self-efficacy (to control shocks) decreased significantly after the 

practice trials. All methods of pain induction (CS i.e., hand CPT, task shocks, fCPT) 

proved to be valid, as they induced a ‘moderate’ to ‘somewhat severe’ level of PI  

and UP. 
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7.4.4  Pain sensitivity in depression  

 

Depression is associated with higher pain thresholds (Adler & Gattaz, 1993; Bar et 

al., 2003; Lautenbacher et al., 1994; Marazziti et al., 1998), higher pain tolerance 

(Bar et al., 2003), lower acute pain sensitivity (Dworkin et al., 1995) and reduced 

somatosensory evoked potentials to painful stimuli (Davis et al., 1979). However, in 

the present study similar numbers of depressed and non-depressed subjects endured 

pre- and post-maths fCPT for the maximum time. Also, the average time in the water 

did not differ across these groups. Although seemingly divergent, the findings of the 

current study support those of others who have found that pain thresholds for 

ischemic (Pinerua-Shuhaibar et al., 1999) and electrical pain (Kudoh et al., 2002) do 

not differ between depressed and psychiatrically healthy participants.  

 

A lack of difference in pain sensitivity in depressed and non-depressed subjects 

failed to support the notion of opioid hyperactivity in depression (Marazziti et al., 

1998). Furthermore, the present results do not support the hypotheses that depressed 

individuals adopt a stoical approach to pain (Dworkin et al., 1995), or that depression 

lowers pain sensitivity through attentional mechanisms (Dickens et al., 2003). 

Perhaps the selection of control subjects (i.e., self-selection from the community) 

contributed to the lack of differences in PI between the groups. That is, controls may 

have been emotionally more robust than subjects in Studies 1-3, and thus more likely 

to display a similar level of stoicism to pain as depressed subjects.  

 

Although depressed subjects responded similarly to controls to sensory aspects of 

pain, they reported marginally more UP during both types of pain stimuli (ANOVA 

results: task shocks p = .07; fCPT p = .19). Despite higher thresholds to 

experimentally induced pain, the unpleasantness of pain stimuli (Lautenbacher et al., 

1999) and post-operative pain complaints (Kudoh et al., 2002) are often higher in 

depressed than non-depressed subjects. Similarly, in non-depressed subjects 

experimentally induced depressed mood can increase catastrophising about pain, 

whilst not influencing pain sensitivity or intensity (Willoughby, 2000; Willoughby et 

al., 2002). These findings have been attributed to the impact of depressed mood on 

affective components of pain appreciation (Jain & Russ, 2003). In accordance with 
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these findings, major depression may have affected the emotional response, and not 

sensitivity to or intensity of experimentally induced pain. 

7.4.5  Opioid-mediated stress-induced analgesia (SIA) in depression 

 

The mediation of SIA by endogenous opioids under certain circumstances, and the 

notion that the endogenous opioid system may be compromised in depression due to 

chronic activation (Besson, Privat, Eschalier, & Fialip, 1999) suggests that opioid-

mediated pain inhibitory mechanisms may be weakened in depressed individuals. A 

similar hypothesis has been proposed and empirically assessed for chronic pain 

patients (Bruehl et al., 1999), but not in subjects with major depression. The current 

study aimed to investigate the role of endogenous opioids in major depression by 

subjecting depressed and non-depressed participants to an uncontrollable cognitive 

stressor that provoked opioid-mediated SIA. The first hypothesis that this study 

sought to test was that after psychological stress naltrexone would increase pain 

sensitivity in non-depressed subjects, but not in depressed subjects. Assessment of 

pain sensitivity to two types of noxious stimuli, i.e., electrical shocks during the math 

task and cold pressor stimuli before and after the math task, enabled measurement of 

an immediate and delayed analgesic response.  

 

Electric shock sensitivity 

 

In general, pain sensitivity to task shocks was not affected by opioid blockade in 

either non-depressed or depressed subjects. However, an exception to this general 

rule was detected in a subgroup of discouraged and anxious subjects (see 7.4.7 

Modulation of pain by negative mood, p 294). 

 

Decreased sensitivity to sustained cold pressor stimuli 

 

Although a drug x time interaction failed to reach significance, pair-wise 

comparisons indicated decreased cold pressor PI and UP after the math task in 

depressed and control subjects taking the placebo. No change was found in the 

naltrexone group. This finding did not support the hypothesis that effects of 

naltrexone would be greater in non-depressed than depressed subjects, implying that 
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the involvement of opioid mechanisms in SIA was not compromised in depression. 

Generally speaking, evidence of opioid-mediated SIA after an uncontrollable stressor 

in the current study is consistent with previous findings from animals (Maier, 1986; 

Maier et al., 1982; Watkins & Mayer, 1986) and psychiatrically-healthy humans 

(Flor et al., 2002; Janssen & Arntz, 2001).  

 

Cold pressor pain tolerance was not affected by the math task, depression or opioid 

blockade. As previously established (Blitz & Dinnerstein, 1968; Gelfand, 1964; 

Wolff et al., 1965), non-permissive instructions and other methodological factors 

such as benign labelling of cold pressor sensations (Hirsch & Liebert, 1998) can 

significantly influence pain tolerance in healthy subjects (Neumann et al., 1997). 

Thus, the lack of change in pain tolerance across time may be attributed to 

methodological influences such as non-permissive instructions and demand 

characteristics during the fCPT. Furthermore, methodological elements may have 

overridden the influence of any other factor on endogenous analgesia. Therefore, 

when compared with subjective pain ratings, pain tolerance may have been 

influenced by methodological factors making this a less sensitive measure of pain 

transmission and inhibition. 

7.4.6  Inhibition of the nociceptive blink reflex in depression 

 

The R2 component of the blink reflex is mediated by wide dynamic range neurones, 

which are activated by both innocuous and noxious stimuli, and which are inhibited 

by remote noxious stimuli (Ellrich & Treede, 1998; Hu, 1990; Le Bars et al., 1979b). 

This pain inhibitory mechanism, termed DNIC, is believed to operate by suppressing 

the activity of wide dynamic range neurones located in the medial section of the 

dorsal horn, trigeminal nucleus in cervical spinal segments, and spinoreticular and 

spinothalamic tracts in the spinal cord (Le Bars et al., 1979a; Le Bars et al., 1979b). 

Since R2 inhibition is believed to be mediated by opioids (Boureau et al., 1978; 

Boureau et al., 1979; Pomeranz & Warma, 1988; Willer et al., 1982b), it was 

hypothesised that R2 onset would be facilitated under opioid blockade in non-

depressed subjects, but not in depressed subjects due to deficits in the opioid system 

(Beutler et al., 1986). 
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R2 onset to innocuous (2 mA) and noxious intensities (6 mA, 10 mA) was delayed 

by the application of the first CS prior to drug administration. These effects were 

consistent with DNIC. Unexpectedly, however, this occurred in all subjects. Since 

the suppression of R2 occurs via brainstem reticular nuclei, and DNIC reveal the 

status of descending reticular brainstem pathways (Esteban, 1999), these results 

suggest that descending pain inhibitory mechanisms are fully functional in depressed 

subjects.  

 

During the second CS after drug absorption, inhibition of R2 failed to reach 

significance at any intensity. Non-painful heterotopically applied stimuli have no 

effect on the R2; therefore, the second CS may have been perceived to be less 

noxious. This hypothesis seems unlikely since PI and UP ratings suggest that the 

second task was just as noxious as the first. The involvement of the cerebral cortex 

and medullary structures (i.e., lateral reticular formation) in R2 responses makes this 

component highly susceptible to suprasegmental influences. For example, Cruccu et 

al. (1991) found marked reductions in R2 with diazepam (an anti-anxiety drug), 

whilst Esteban (1999) found that the R2 was modulated when subjects were 

distracted with a cognitive task (e.g., mental arithmetic). Therefore, facilitatory 

effects of suprasegmental influences such as negative mood may have masked 

inhibitory influences such as DNIC on the R2. 

 

Before the math task, R2 onset during the second round of TS (without the CS) was 

significantly delayed in depressed subjects taking the placebo, compared to their 

non-depressed counterparts. R2 in depressed subjects may have been inhibited by an 

early activation of the endogenous opioid system observed during other experimental 

stressors such as the pre-math task fCPT (see 7.4.7 Modulation of pain by negative 

mood, p 294).  

 

After the math task, R2 was facilitated during nociceptive shocks (10 mA; trending 

for 6mA). As mentioned, R2 is highly susceptible to suprasegmental influences such 

as anxiety (Cruccu et al., 1991). Hence, increases in negative affect induced by the 

math task could have facilitated R2. Finally, R2 onset to 6 mA shocks was facilitated 

in depressed subjects taking the placebo after the math task. Although opioid 

activation was expected to inhibit R2 after the math task, strong facilitatory effects of 
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negative affect on this nociceptive reflex appear to have overpowered the inhibitory 

action of opioids in depressed subjects. Nonetheless, this finding is curious and 

requires replication. Larger numbers in each cell may help to clarify this effect. 

7.4.7  Modulation of pain by negative mood  

 

Absolute mood scores were regressed onto cold pressor and task shock PI and UP 

ratings to investigate whether mood modulated experimentally induced pain in 

depressed and non-depressed subjects. Absolute mood was analysed (rather than 

change in mood) to accurately represent the substantial differences in negative mood 

between depressed and non-depressed subjects. For instance, a similar degree of 

change would not result in equivalent mood states between groups, making change 

scores difficult to interpret. 

 

Electrical pain inhibition 

 

In contrast to Studies 2 and 3, anxiety and discouragement was positively associated 

with shock PI in subjects taking naltrexone, but not the placebo. At a glance, this 

finding appears contradictory as similar mood ratings were found between Studies 2, 

3 and 4. However, subjectively rated mood using VAS offers an approximation of 

how a subject is feeling, and may not accurately reflect their total experience. 

Moreover, similar VAS mood scores may not represent similar experiences across 

studies and subjects. Drawing subjects from different populations may have resulted 

in considerably different testing experiences. For instance, university students in 

Studies 2 and 3 would have been familiar with the university environment, and 

perhaps more confident with experimental procedures than subjects selected from the 

community. In contrast, subjects selected from the community may have been fearful 

about the novel setting and procedures, and more discouraged by their failure during 

the math task. Finally, opioid activation may be explained by considerably more 

noxious procedures in the final study, including three (not two) CPTs prior to the 

math task.  

 

As found with PI ratings, discouragement was positively associated with shock UP in 

both groups receiving naltrexone. Anxiety, on the other hand, was associated with 
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higher shock UP in depressed, but not control, subjects under opioid blockade. In 

contrast, anxiety was positively associated with shock UP in controls regardless of 

naltrexone. Different interpretations of the meaning of ‘anxiety’ may account for 

group differences. For instance, anxiety, a moderately arousing emotion, facilitates 

pain UP (Ahles et al., 1983; Gracely et al., 1978; Rhudy & Meagher, 2000; Rhudy & 

Meagher, 2001a; Rhudy & Meagher, 2001b); whereas fear, although on the same 

continuum only more arousing, inhibits pain (Rhudy & Meagher, 2000; Rhudy & 

Meagher, 2001a; Willer et al., 1981). Hence, it is possible that depressed subjects 

were reporting fear and fearful expectations of shocks at the higher end of the 

‘anxiety’ scale, which in turn resulted in an opioid-mediated reduction in shock UP. 

Controls, on the other hand, may have been rating anxiety, which heightened the UP 

of each shock. Alternatively, anxiety may lead to, or be associated with opioid 

release in depressed subjects but not controls. This explanation is consistent with the 

findings of Darko et al. (1992), who reported  an association between symptoms of 

anxiety and plasma levels of beta-endorphins in depressed patients but not controls.  

 

In accordance with Studies 2 and 3, anger was associated with higher electrical PI 

and UP despite naltrexone administration. These results support a number of other 

studies demonstrating a positive relationship between anger and a variety of pain 

induction measures (Gelkopf, 1997; Janssen et al., 2001). Bruehl et al. (2002) 

extended these findings to chronic pain patients, where a positive anger-pressure pain 

association was found both in patients and controls inclined to express their anger. 

This relationship was not influenced by naloxone administration (Bruehl et al., 

2002). 

 

In the current study, an inverse association was found between perceived self-

efficacy and shock UP, where naltrexone antagonised the effect of opioids in subjects 

with low self-efficacy. These results resemble those of Bandura et al. (1988), who 

found that perceived self-inefficacy to exert control over an aversive event led to 

high levels of stress and autonomic arousal, and mobilisation of the endogenous 

opioid system. Conversely, there was no evidence of opioid release in their self-

efficacious, non-stressed subjects (Bandura et al., 1988). 
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Cold pressor sensitivity 

 

Prior to the math task, discouragement was associated with increased cold pressor PI 

and UP in depressed subjects under opioid blockade. A similar trend appeared for 

anxiety and anger. In contrast, negative mood was not associated with cold pressor 

sensitivity in controls before the math task, suggesting that pre-existing 

psychopathology in depressed subjects contributed to an early release of endogenous 

opioids not experienced by the psychologically healthy controls. 

 

No association was found between negative mood and cold pressor pain perception 

after the math task. Perhaps the novelty of the fCPT contributed to negative mood 

and opioid release in depressed subjects during the first task, whereas the mood-pain 

relationship did not develop as strongly when the task was repeated some time later. 

Alternatively, lower statistical power in this study may account for the failure to 

replicate the pain inhibitory effect of negative mood on cold pressor pain found in 

Studies 1-3. For instance, the non-depressed sample was considerably smaller than in 

the previous three studies. 

 

In self-efficacious controls, cold pressor UP was inhibited by opioids after the math 

task. Similar trends, although not significant, were found for the sensory aspect of 

cold pressor pain in both groups. These results support Bandura’s (1987) notion that 

highly efficacious subjects, when experiencing failing control over an aversive event, 

will become distressed which in turn would lead to the release of opioids. Opioid 

activation in controls suggested that they responded with more distress to their lack 

of control over the task than depressed subjects. In their hopeless state, depressed 

subjects may have expected, or were familiar with their lack of control. Although 

these results seem to contradict findings with shocks, where naltrexone antagonised 

the effects of opioids in subjects low in self-efficacy, the prolonged cold pressor 

stimulus (over which subjects had no control) presented a particularly stressful 

experience to which self-efficacious subjects may have reacted adversely.  

 

Prior to the math task, the most discouraged and (and to a lesser extent) angry 

subjects treated with naltrexone tolerated the fCPT for the least amount of time. Even 

though this relationship appeared strongest in depressed subjects, group differences 
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failed to reach significance. Nonetheless, these results show trends in depressed 

subjects that are consistent with subjective reports of cold pressor PI and UP. As 

mentioned above, small cell sizes may have contributed to these negative findings.  

 

After the task, the most discouraged, anxious, angry and inefficacious subjects 

tolerated the foot cold pressor for the least amount of time. These findings may 

simply reflect waning levels of motivation and willingness to persist with a noxious 

stimulus after a gruelling experimental session, instead of pain modulatory 

mechanisms per se. As in many other studies (e.g., Vallis & Bucher, 1986), 

perceived self-efficacy predicted persistence with the fCPT.  

7.4.8  Cardiovascular and pain regulatory systems in depression 

 

The dysregulation of the normal relationship between cardiovascular and pain 

responses in depressed subjects (Pickar et al., 1982a; Pinerua-Shuhaibar et al., 1999) 

may be due to dysfunction of the opioid system in depression (Catlin et al., 1982). 

After an extensive review of the literature, it appeared that this hypothesis had not 

yet been empirically assessed. Therefore, the current study aimed to evaluate the role 

of opioids in the cardiovascular-pain relationship in depressed subjects, compared 

with non-depressed controls. 

 

Task shock sensitivity 

 

Diastolic blood pressure (DBP) was inversely associated with shock PI and UP 

during the math task. A similar trend, although non-significant, was found for SBP. 

Unexpectedly, this relationship was not mediated by endogenous opioids in either 

group. The present findings suggest that nonopioid mechanisms may mediate the 

BP–pain relationship both in depressed and non-depressed subjects, (see also 

Maixner & Randich, 1984; McCubbin & Bruehl, 1994). In contrast, the inverse 

association between heart rate and shock UP was mediated by opioids in both 

groups. The discrepancy between heart rate and BP emphasises the complexity of the 

cardiovascular-pain relationship.  
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In conclusion, the present findings demonstrate an association between pain 

suppression and cardiovascular activity both in depressed subjects and controls. 

Thus, the findings provide no support for the view that this mechanism is 

compromised in depression. 

  

Cold pressor sensitivity 

 

As hypothesised, prior to the math task an inverse relationship was found between 

resting SBP and cold pressor PI and UP in controls taking the placebo. Naltrexone 

eliminated this relationship. This study appears to be the first to provide strong 

evidence of an opioid-mediated inverse relationship between cold pressor pain 

sensitivity and resting SBP (Bragdon et al., 2002; McCubbin & Bruehl, 1994).   

 

An inverse relationship was also found between SBP and cold pressor PI and UP in 

depressed subjects before the math task; however, this relationship existed for those 

under opioid blockade only. These results suggest that a nonopioid mechanism may 

mediate the relationship between acute cold pain sensitivity and SBP in depression. 

The fact that the BP-pain relationship was weakened or eliminated in the placebo 

condition suggests that erratic effects of opioids may mask nonopioid influences on 

BP. Therefore, a nonopioid baroreceptor-mediated analgesia appears to be more 

active in depressed, than in non-depressed, subjects. 

 

After the math task, the relationship between resting BP and cold pressor PI and UP 

was weakened considerably in both groups. Opioid-mediated SIA after the task may 

have weakened traces of blood pressure-related analgesia via opposing influences on 

autonomic activity. To explain, stress-induced stimulation of the ventrolateral 

periaqueductal gray results in autonomic adjustments such as hypotension (reduced 

BP), and bradycardia (slowed rate of heart contractions) (Bandler & Shipley, 1994). 

Baroreceptor-mediated analgesia, on the other hand, is induced via an increase in 

venous and arterial pressure, which in turn activate baroreceptor afferents that 

terminate in brainstem structures responsible for anti-nociception (Randich & 

Maixner, 1984). Therefore, these two analgesic mechanisms may have resulted in 

opposing influences on the BP-pain relationship, eliminating effects observed prior 

to the stressor.  
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Prior to the math task, regression analyses revealed a positive relationship between 

SBP and cold pressor pain tolerance in controls taking the placebo. Unlike subjective 

ratings, this relationship persisted after the task in this group of subjects. As 

mentioned earlier, pain tolerance did not appear to be influenced by the math task in 

the current study. Therefore, it is possible that SIA did not mask baroreceptor-

mediated analgesic influences on pain tolerance. A positive association between cold 

pressor pain tolerance and SBP approached significance in depressed subjects taking 

naltrexone before the math task. This link was strengthened after the math task in 

those under opioid blockade, suggesting once again that nonopioid baroreceptor-

mediated analgesia were functioning more actively in depressed than control 

subjects. 

 

Resting pulse rate was not associated with cold pressor PI, UP or pain tolerance 

before or after the math task. As already mentioned, BP directly stimulates 

baroreceptors, playing an important role in baroreceptor-mediated analgesia. Heart 

rate, however, is influenced by changes in BP and the baroreceptor reflex, thereby 

indirectly influencing the cardiovascular-pain relationship. 

 

In summary, high resting SBP was associated with low cold pressor PI and UP and 

increased pain tolerance in controls not under opioid blockade. The existence of 

similar SBP-pain relationships in depressed subjects under opioid blockade suggests 

that dysregulation of the endogenous opioid system in depression may directly or 

indirectly interfere with the normal BP-pain relationship (McCubbin, 1993). 

Moreover, the current findings suggest that nonopioid substrates mediate a 

compensatory mechanism through which cardiovascular activity is regulated in 

depression. Other cardiovascular anomalies demonstrated in clinically depressed 

patients such as the dysregulation of the autonomic nervous system (ANS), 

baroreceptor insensitivity (Grippo & Johnson, 2002), and increased risk for CHD 

(Rugulies, 2002) may provide support for this view. Although seemingly 

contradictory, opioid mediation of the heart rate–shock UP relationship in depression 

suggests that opioid involvement in cardiovascular mechanisms other than 

baroreceptor-mediated analgesia may not be impaired. At this stage the mechanisms 

by which opioids interfere with the normal link between cardiovascular activity and 

pain are unclear. 
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Finally, the BP-pain relationship appeared to be determined by the type of noxious 

stimuli in the present study. This complexity has an adaptive purpose, as the 

organism can respond appropriately to all types of environmental stimuli (Randich & 

Maixner, 1984). However, it must be noted that cardiovascular responses were 

measured under different circumstances in the case of each pain stimulus (i.e., fCPT  

= resting BP/Pulse; shocks = BP/Pulse during the math task), which also may explain 

the different outcomes observed with each pain stimulus.  

7.4.9  General summary/Conclusions 

 

Experimental pain sensitivity failed to differ between depressed and non-depressed 

subjects. However, depressed subjects demonstrated a tendency to report marginally 

higher pain UP. Neither stress-induced opioid inhibition of pain after the math task, 

nor DNIC (as measured by R2 inhibition) were systematically compromised in 

depressed subjects. Negative mood (in particular discouragement, anxiety) and self-

efficacy were associated with the release of endogenous opioids, which in turn led to 

lowered pain sensitivity both in depressed and non-depressed subjects. One notable 

group difference was that during the math task anxiety was associated with increased 

pain UP in depressed subjects taking naltrexone, but not the placebo. In contrast, 

anxiety was positively associated with pain UP in controls regardless of opioid 

blockade. A strong opioid-mediated SBP–cold pressor pain relationship existed for 

controls, whilst nonopioid mechanisms appeared to mediate the same relationship in 

depression. Generally speaking, in comparison to controls, pain transmission and 

inhibition, and opioid-mediated mood modulation of pain was not compromised in 

depressed subjects. However, opioid mediation of systems unrelated to mood (i.e., 

cardiovascular system) appears to operate differently in depressed, than in non-

depressed, subjects. 
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CHAPTER EIGHT 

8.  GENERAL DISCUSSION 

8.1  SUMMARY OF MAJOR FINDINGS 
 

The key points to emerge from the four studies were: 

• Dysphoric mood arising from an uncontrollable aversive event activated 

endogenous opioid-mediated antinociceptive mechanisms in depressed and non-

depressed subjects. Conversely, anxiety and anger sensitised some subjects to 

pain. A strong belief that one can control an aversive event (i.e., high self-

efficacy) in a context where control is not possible also activated the endogenous 

opioid system, perhaps via emotional responses (e.g., helplessness).  

• The predictability of noxious events had little influence on negative mood or 

analgesia. However, this variable may not have been tested adequately. 

• In university subjects, opioid-mediated SIA was more likely to be triggered 

during a sustained cold pain stimulus than brief electrical pain. Conversely, in the 

community sample negative mood was associated with opioid-mediated 

decreases in electrical shock-induced pain and, to a much lesser extent, cold-

induced pain. This may be due to higher arousal (i.e., fear rather than anxiety) 

experienced by the community sample during the math task. In general, 

endogenous opioids blunted the UP, or affective component, of pain more 

consistently than the intensity of the sensation.  

• Objective measures of pain such as nociceptive reflexes (RIII, R2 component of 

the blink reflex) were not altered by stress-induced opioid activation.  

• Pain tolerance reflected a subject’s ability to endure, not only pain, but also 

unpleasantness in general. 

• High BP inhibited pain via opioid release in non-depressed subjects. However, 

opioid release masked the association between BP and pain in depressed subjects. 

Dysregulation of the opioid system may contribute to cardiovascular disturbances 

in major depression. 
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In this chapter, the effects of stressor controllability/predictability, negative mood 

and self-efficacy on SIA are examined in depressed and non-depressed subjects. This 

is followed by a discussion of the role of endogenous opioids in stress regulation and 

pain inhibition. Opioid involvement is then compared across various measures of 

pain, including subjective pain ratings, pain tolerance and nociceptive reflexes (RIII, 

R2 of the blink reflex). Following this, endogenous pain modulatory mechanisms in 

major depression, and the interaction between cardiovascular activity and pain is 

examined. Finally, conclusions and directions for future research are presented. 

8.2  PSYCHOLOGICAL ACTIVATION OF STRESS-INDUCED ANALGESIA 

(SIA) 

8.2.1  Stressor controllability  

 

In the present series of experiments, an aversive event (so-called ‘performance-

contingent’ shocks during a difficult math task) perceived to be uncontrollable led to 

inhibition of cold pressor pain sensitivity after the math task. In fact, the perception 

of controllability was critical because shock delivery was preset and identical for 

subjects in controllable and uncontrollable conditions. Exploratory analyses in Study 

2 highlighted the fact that the difficulty of math questions and perceived ‘lack of 

control’ over the shocks led to the activation of antinociceptive mechanisms, and not 

the shocks themselves. Thus, findings from animal laboratory research have been 

extended to humans in this project where the inescapable nature of an aversive event, 

and not the event itself, led to analgesia.  

 

Pain was expected to decrease after stress in placebo recipients but to increase after 

stress in naltrexone recipients. This pattern of effects was found in Study 2 (using 

exploratory analyses), and evidence of relative analgesia was found in Studies 3 and 

4. After psychological stress in Study 3, the placebo group showed no change in pain 

sensitivity whilst pain increased in naltrexone recipients. Conversely, in Study 4 

hypoalgesia occurred in the placebo group whilst naltrexone recipients showed no 

change in pain. These results are in accordance with Pitman et al. (1990), who found 

that pain decreased in placebo-receiving traumatised Vietnam veterans after they had 
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a watched a combat-related videotaped segment. In contrast, veterans in the naloxone 

condition showed no change in PI after watching the video.  

 

Opioid-mediated hypoalgesia and opioid antagonist-induced hyperalgesia have been 

noted in studies in which extremely aversive (Rhudy & Meagher, 2001a) or painful 

stressors (Rhudy & Meagher, 2000; Willer et al., 1981; Willer & Ernst, 1986) were 

used to induce fear and analgesia in humans. Therefore, it is possible that cognitive 

stressors (e.g., math task + shocks; Pitman’s videotaped stressor) were not intense 

enough to induce fear and consistent hypoalgesic/hyperalgesic effects in the placebo 

and naltrexone groups, respectively. Since fear was not rated, this explanation is 

difficult to assess. Alternatively, nociceptive activity evoked by the cold-water 

stimulus may have been too intense, creating ceiling effects in the placebo group. A 

less intense (warmer, shorter) CPT may be useful to evaluate the role of endogenous 

opioids in SIA. Finally, SIA may have been weaker in this research than in other 

human studies because ‘stressor controllability’ is only indirectly related to pain 

perception. Using a path analysis, Mueller and Netter (2000) found that subjective 

helplessness (arising from stressor uncontrollability) was directly related, whereas 

control over the stressor was indirectly related, to the perception of electrical pain. 

Thus, the use of a path analysis may help to determine the relative contribution of 

stressor controllability, and other variables such as negative mood, in pain 

perception.   

 

Although the shocks were included during the task primarily to induce stress, the 

effect of stress, negative mood/self-efficacy and opioid blockade on the pain induced 

by shocks was examined nonetheless. Interestingly, in Study 2 a perceived lack of 

control over the shocks was associated with heightened shock PI and UP, and in 

Study 1 shock pain sensitivity increased as the task progressed. Importantly, shock PI 

and UP was not influenced by opioid activation in Studies 2 or 3. The results of these 

studies diverge from those of previous research, where immediate opioid-mediated 

analgesia has been demonstrated in response to electrical stimuli (Rhudy & Meagher, 

2000; Willer & Albe-Fessard, 1980a; Willer et al., 1981; Willer & Ernst, 1986). One 

crucial difference between these studies and the present research is that the electrical 

stimuli delivered during the math task were brief, less frequent and less intense than 

in other studies. In summary, university students may not have found the electrical 
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stimuli or the math task noxious enough to induce high levels of arousal or trigger 

analgesic mechanisms (see 8.2.3 Affective and cognitive mediators of pain, p 304). 

Nonetheless, if the temporal factors of shocks were to be changed so that they were 

noxious, pain would be confounded with stress during the math task –  

a problem that was minimised in this research.  

8.2.2  Stressor predictability  

 

As discussed in Study 1, stressor predictability (on its own) failed to influence pain 

perception after the math task. These results suggest that stressor certainty plays no 

clear role in the activation of endogenous pain inhibitory systems (see also Miller, 

1981). However, similar levels of anxiety in predictable and unpredictable conditions 

suggested that the manipulation of predictability might have been  

methodologically flawed.   

 

In future, a number of methodological aspects should be addressed to assess the 

relative contribution of stressor certainty on opioid activation. First, anxiety and 

cardiovascular activity should be measured during the warning period (i.e., blue 

screen) to assess whether this manipulation impacted upon subjects as intended. 

Second, periods signalling no aversive event (i.e., black, normal screen) should have 

been times during which subjects could relax and not have to continue with the 

stressful math task. As it stood, the stress of having to perform well for the entire 

duration of the math task seemed to outweigh the benefits of warning periods for 

subjects in predictable conditions.  Finally, shocks should have been delivered during 

every warning period to strengthen the manipulation of predictability in this study. 

8.2.3  Affective and cognitive mediators of pain 

 

After completion of the math task, the mood experienced by subjects that was most 

consistently associated with endogenous analgesia was discouragement. Feeling 

discouraged could be likened to subjective helplessness in animals (Maier, 1986) and 

humans (Mueller & Netter, 2000). These findings concur with Maier (e.g., Maier, 

1986; Maier et al., 1982; Maier et al., 1983) and many other authors who have 

demonstrated analgesia in animals behaving helplessly after being exposed to 
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inescapable or uncontrollable aversive events. Conversely, helplessness in humans 

appears to facilitate pain sensitivity (Mueller & Netter, 2000). Although seemingly 

contradictory, various methodological differences in Mueller and Netter’s (2000) 

study, such as the use of lower intensity, non-noxious shocks (1 mA, 100 ms versus 

15 mA, 25 ms during the math task), and the familiarisation of subjects with shocks 

during a training session prior to the actual task, may account for the differences 

between their study and the present research.  

 

Inhibitory effects of negative mood on cold pressor PI and UP after the math task, 

although mirroring effects noted Studies 1-3, failed to reach significance in Study 4. 

These results suggest that negative mood inhibited pain in some subjects but not 

others. The inclusion of non-depressed and depressed subjects in the same sample 

may have diluted effects seen in previous studies. For instance, the notably smaller 

non-depressed sample in Study 4 may have contributed to these negative findings. 

Alternatively, negative mood induced by the math task may have decreased more 

rapidly once the task was completed in community subjects, than in university 

students. According to Rhudy and Meagher (2001b), moderately arousing negative 

mood tends to facilitate pain and reduce pain coping. Rhudy and Meagher’s notion 

that emotional valence and arousal interact to modulate pain, and the fact that 

negative mood was negatively associated with pain tolerance in the community 

sample, supports the idea that negative mood in community participants may have 

been associated with only moderate levels of arousal after the task. 

 

Whilst discouragement was positively associated with PI and UP in the placebo 

group before the math task in Study 2, greater discouragement was associated with 

less pain in depressed subjects not under opioid blockade before the math task in 

Study 4. Both results suggest that a certain level of discouragement was experienced 

during experimental procedures prior to the math task, and that opioid release in 

psychiatrically healthy subjects led to a paradoxical increase in pain whereas opioid 

activation led to pain inhibition in depressed subjects.  It is possible that the intensity 

of distress experienced, hence level of opioid release differed between these groups – 

resulting in differing outcomes for pain.  
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Anxiety and anger did not consistently influence pain perception after the math task 

in Studies 2-4. The evidence that did exist (i.e., Study 2 - anxiety leading to greater 

cold pressor UP in placebo recipients; Study 4 – anxiety/anger decreasing cold 

pressor pain tolerance), suggests a pain facilitatory effect for both of these emotions 

after psychological stress. Therefore, it seems that discouragement or helplessness 

induced during the math task was associated with analgesia, whilst anxiety and anger 

were associated with hyperalgesia. The pain facilitatory effect found for anxiety 

(Rhudy & Meagher, 2000; Rhudy & Meagher, 2001a; Willer & Albe-Fessard, 1980a; 

Willer et al., 1981) and anger (Bruehl et al., 2002; Burns et al., 2004; Janssen et al., 

2001; Stevens et al., 1989) concurs with previous research.  

 

The association between anxiety and shock pain inhibition in Study 4 may indicate 

that participants experienced fear during the math task (see discussion below), as this 

emotion is associated with analgesia (Rhudy & Meagher, 2000; Willer & Albe-

Fessard, 1980a; Willer et al., 1981). Increasing the frequency, intensity and duration 

of shocks so that fear is induced in an additional experimental condition may help 

elucidate the effects of fear versus anxiety on pain.  

 

In Studies 3 and 4, anger before the math task was associated with opioid-mediated 

increases in cold pressor pain tolerance, whereas facilitatory effects of anger 

appeared to mask the inhibitory effects of opioids after the task. Janssen (2001) has 

suggested that anger increases motivation to withstand pain. The intervening steps 

between increases in anger and pain tolerance are unknown; however, opioids appear 

to be involved in this process. It is unclear why this mechanism no longer influenced 

pain tolerance after the math task.  

 

Self-efficacy relating to control over shocks during the math task was associated with 

opioid-mediated reductions in cold pressor PI and UP after the task in Studies 2 and 

4. Perceived self-efficacy was also related to less shock PI and UP. This effect 

appeared to be mediated by endogenous opioids in some subjects but not in others. 

As stated by Bandura et al. (1987), perceived self-efficacy can result in considerable 

stress and opioid activation if the demands of the task exceed the coping capacity of 

the subject. The math task (although involving only subtraction/addition mental 

arithmetic questions) was designed to be challenging, and in some conditions near to 
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impossible to master. However, it was the time limit for each question that made this 

task difficult, not the questions themselves – which may explain why subjects who 

perceived themselves to be proficient at mental arithmetic may have become 

particularly distressed and discouraged, thus mobilising the opioid system.  

 

In university samples (Studies 1-3), negative mood was associated with higher 

ratings of PI and UP to electrical stimuli during the math task. In Study 4 the 

association between negative emotions and sensitivity to electric shocks was 

generally detected in naltrexone but not placebo recipients, indicating that opioids 

antagonised the PI and UP of shocks in distressed subjects. Even though mood 

ratings during the math task were not notably different between studies, the 

community sample in Study 4 may have experienced more intense discouragement 

and anxiety (or even fear) regarding the novel experimental setting and procedures. 

Attributing these divergent results to the intensity of negative emotions is in line with 

Rhudy and Meagher’s (2001b) notion that negative mood that is highly arousing 

serves to inhibit pain, whilst moderately arousing negative mood facilitates pain.  

 

It is interesting to note that whilst anger was associated with shock PI in university 

students, anger did not affect electrical pain sensitivity in the community 

participants. Once again, the intensity of anger did not appear different, but perhaps 

the quality of the anger (i.e., suppressed/expressed, towards self or experimenter) 

differed between groups. A tendency to express anger (anger-out) is typically 

associated with increased pain sensitivity (Bruehl et al., 2002; Janssen et al., 2001), 

whilst the suppression of anger (anger-in) is sometimes associated with endogenous 

analgesia (Bruehl et al., 2002). Thus, divergent modes of anger management may 

have led to differing pain outcomes in both groups. As noted by Fernandez (2002), 

the effect of anger on pain requires further investigation. 

 

Finally, as each negative mood was assessed with a single item scale, it would have 

been interesting to explore the effects of a multi-item assessment of each mood on 

results. For example, if anger had been assessed with more socially acceptable labels 

such as ‘irritation’ the above-mentioned results may have been different.   
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8.2.4  Summing up: Psychological activation of the endogenous opioid system 

 

In the current project, the endogenous opioid system apparently was activated by a 

discouraged and possibly fearful response to a situation in which control over a 

threatening event was unavailable. A number of studies implicate the endogenous 

opioid system in stress regulation (Drolet et al., 2001), including modulation of 

endocrine activity (in the HPA axis), sympatho-inhibition (hypotension and 

bradycardia involving the ANS) and decreased behavioural responsivity to the 

environment (immobility, quiescence) (Bandler & Shipley, 1994). Endogenous 

opioids are also known to reduce distress associated with pain (Drolet et al., 2001). 

These effects facilitate ‘passive coping’, an adaptive emotional mode of coping with 

inescapable, threatening or stressful situations (Bandler, Price, & Keay, 2000). 

Passive coping is adaptive in that further injury is avoided through immobility (e.g., 

to reduce blood loss), the psychological impact of the threat is minimised (via 

opioids), and healing and recovery is facilitated once the threat has decreased.  

 

Learned helplessness (LH), or passive emotional coping in animals has been widely 

linked to opioid analgesia; however, few studies have explicitly associated emotional 

concomitants with endogenous pain inhibition in humans. In the current project, 

discouragement, which is akin to LH in animals, activated the endogenous opioid 

system and apparently facilitated passive coping in humans. Moreover, opioid 

activation was observed in self-efficacious subjects perhaps due to the emotional 

consequences of their diminishing capacity to cope. Secondary opioid-mediated 

antinociceptive effects were noted with painful stimuli following psychological 

stress. These points serve to identify the endogenous opioid system as not just 

responsible for pain inhibition but as an important contributor to the regulation of 

emotional processing of stressful, threatening inescapable stimuli. In fact, the 

endogenous opioid system may primarily serve to regulate stress and secondarily 

pain which, if not regulated, can intensify distress.  

 

Responses to stressors from which escape is possible are usually active, involving 

confrontation (fight) with, or flight from, the threat (Bandler et al., 2000). ‘Active 

coping’ is typically associated with sympatho-excitation (hypertension/tachycardia 

involving the ANS), increased environmental scanning, fear and nonopioid-mediated 
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analgesia. Pain inhibition is adaptive in that the dulling of distracting pain signals 

enables defensive reactions such as fleeing the scene or fighting. Fear has also been 

associated with opioid release, but opioid activation appears to occur in the face of 

inescapable stressors (Janssen & Arntz, 2001; Pitman et al., 1990; Willer & Albe-

Fessard, 1980a). Therefore, fear arising from different classes of stressors may 

determine whether opioid (inescapable stress) or nonopioid (escapable stress) 

analgesia develops.  

 

Apart from in Study 419, anxiety and anger did not activate the endogenous opioid 

system in response to psychological stress. Rhudy and Meagher (2000) differentiated 

anxiety from fear, stating that anxiety represents apprehension about a future, rather 

than an actual threat and that this emotion facilitates sensory processing, increasing 

attention towards and amplifying the intensity of pain. It is possible that anxiety only 

sensitised subjects to pain during the math task (when shocks were delivered) and not 

after the math task (during the CPT) as the threat of shock had ceased. A drop in 

anxiety as measured by the mood ratings after the task supports this explanation.  

Anger has generally been associated with pain sensitisation (Bruehl et al., 2002; 

Janssen et al., 2001); however, the fact that anger can motivate some subjects to 

withstand pain (Janssen, Spinhoven, & Arntz, 2004) confirms that more research into 

the modulation of pain by anger is required.  

 

Among an emerging body of animal research, Bandler and colleagues (Bandler et al., 

2000; Bandler & Shipley, 1994) have recently identified neural substrates in the 

periaqueductal gray (PAG) region of the midbrain that are responsible for 

coordinating distinctly different emotional responses to stress. Specifically, the 

longitudinal columns of neurones located ventrolaterally and laterally to the aqueduct 

play a role in passive and active coping, respectively. Although it is difficult to 

confirm that such circuitry exists in humans, the results from the present and other 

research suggests that emotional coping strategies and associated neural circuitry are 

as diverse and complex as the stimuli that trigger them.  

                                                 
19 In Study 4, insensitivity to shock pain/unpleasantness was mediated by opioids in anxious subjects. 
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8.3  PAIN RESPONSE PARAMETERS 
 

Another point of interest is the effect of endogenous pain modulatory mechanisms on 

different pain response parameters. Pain perception was assessed with subjective  

PI and UP ratings in all studies, whereas pain tolerance was measured in Study 3 

and 4 only. Notably, the analgesic effects of endogenous opioids blunted pain UP 

most consistently across all four studies, whereas PI either showed similar (Study 1 

and 4) or non-significant trends (Study 2), or was not affected by the math task at all 

(Study 3). Pain tolerance, on the other hand appeared to be influenced by 

motivational processes unrelated to nociception. Pain ratings will be discussed, 

followed by an analysis of pain tolerance.  

 

Affective (UP) and sensory (PI) components of pain are encoded in different 

structures of the brain, and represent very different aspects of the pain experience 

(Melzack, 1986; Rainville et al., 1997). Although involving distinct emotions, pain-

associated distress and the stress response involve overlapping neurophysiological 

pathways, of which are mediated by similar neurochemical substrates, including 

endogenous opioids. For instance, endogenous opioids help regulate the stress 

response by diminishing stress-related neuroendocrine and autonomic responses, in 

addition to possessing analgesic characteristics (Drolet et al., 2001). The large 

number of enkephalin receptor sites in the limbic system of the brain (implicated in 

emotional responses) is consistent with the notion that opioids mediate both the 

stress and distress associated with pain (Drolet et al., 2001). In relation to the 

analgesic properties of opioids, Drolet et al. (2001) suggested that a primary feature 

was to reduce the distress, but not the sensation, associated with pain. Therefore, 

endogenous opioids may have inhibited pain-related distress in the present research, 

explaining why, after the math task, pain UP was more consistently blunted than PI. 

 

Conversely, SIA was not demonstrated with pain tolerance - an outcome measure 

that is heavily influenced by affective-motivational dimensions of the pain 

experience (Hirsch & Liebert, 1998). Pain tolerance was associated with endurance 

of non-painful but unpleasant tasks such as the Valsalva manoeuvre and the Letter 

Symbol Matching Task, but was not associated with PI or UP ratings in Study 3. 
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These observations suggest that pain tolerance measures resilience, not nociceptive 

processes per se. Furthermore, the relationship between endurance of painful and 

non-painful tasks reached significance in the placebo but not the naltrexone group in 

Study 3. In addition to providing relief from pain, endogenous opioids play an 

important role in promoting positive reinforcement or reward for instrumental 

behaviour (Kalat, 1995). Therefore, the demand characteristics in the tasks of 

endurance in Study 3 and 4 may have influenced the behaviour of subjects, 

particularly those who benefited from opioid release, as opioids may mediate the 

drive to endure unpleasantness and experience rewards (e.g., intrinsic satisfaction, 

experimenter approval).  

 

The present findings differ from those of Bandura et al. (1988), who demonstrated a 

significant increase in pain tolerance in stressed and mathematically inefficacious 

subjects taking a placebo, in comparison to their naloxone counterparts who showed 

no change in tolerance to pain. No difference was found between drug conditions in 

non-stressed, self-efficacious subjects. In the context of the previous discussion, 

opioid-mediated SIA in Bandura’s (1988) study may in fact represent a greater 

willingness to endure unpleasantness in the subjects who had performed poorly 

during their mathematical task and who were not under opioid blockade. In support 

of this notion, pain tolerance was strongly related to self-efficacy to endure pain but 

not to reduce pain in Bandura’s (1988) study. Furthermore, the greater the reduction 

in mathematical self-efficacy, the greater the tolerance of pain during the CPTs. 

8.4  NOCICEPTIVE REFLEXES (RIII-FLEXION REFLEX, R2-BLINK 

REFLEX) 

8.4.1  Stress-induced analgesia 

 

The effects of stressor controllability on objective measures of pain such as the RIII 

and R2 component of the blink reflex were examined in Study 3 and Study 4, 

respectively. Onset latencies of each reflex were quantified in favour of other 

measures such as area under the curve or amplitude, since latencies are reliable with 

repeated measurement, do not require extremely high intensity stimuli to produce 
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stable responses, and are not influenced by extraneous factors such as muscle 

potentials or stimulus artefacts (Esteban, 1999; van Vliet et al., 2002).  

 

Supraspinal influences including chronic or acute states of fear, stress, anxiety or 

depression that are unrelated to pain were expected to influence nociceptive reflexes 

after the math task (Craig, 1989). Mood is known to change the excitability of spinal 

inter- and motor-neurones, hence altering basic patterns of the RIII (Willer, 1977) 

and the R2 component of the blink reflex  (Kimura, 1973). Specifically, Willer and 

colleagues postulated that the arousal of limbic structures via negative emotion has 

an excitatory effect on nociceptive reflexes (Willer et al., 1979). In support of this, 

Willer et al. (1979) found that the anticipatory anxiety associated with an intensely 

noxious stimulus (70mA) to the sural nerve facilitated the RIII.  

 

Facilitation of the onset of R2 but not RIII after the math task may be attributed to 

methodological limitations in Study 3. First, RIII was detected in an insufficient 

number of subjects to adequately assess the effect of the math task on this reflex. 

Even though RIII-eliciting stimuli were set to threshold and supra-threshold 

intensities established elsewhere (Willer, 1977), the current level may not have been 

strong enough to reliably evoke RIII. In hindsight, personal thresholds should have 

been determined to ensure reliable evidence of RIII in each subject. Second, fewer 

trials were delivered in Study 3 (N = 3 at each intensity) than in other studies (N = 

10-50 at each intensity), which may have reduced the reliability of results. Although 

a similar number of trials were used to detect the blink reflex, this reflex appeared to 

be considerably more consistent amongst subjects. The methodology used by other 

authors, such as recruiting subjects who were relaxed and familiar with RIII-inducing 

procedures whilst excluding others showing no evidence of this reflex, implies that 

detection of RIII can be elusive and possible only in certain subjects. 

 

RIII thresholds and subjective pain thresholds to RIII-eliciting stimuli were not 

significantly influenced by the math task. These findings diverge from those of 

Willer and colleagues (1980a; 1981), who found that intermittent and repetitive 

stress resulting from the anticipation and delivery of a noxious event (e.g., 70-80 mA 

foot-shock) led to increases in RIII thresholds. In Willer’s studies stress-induced 

inhibition of RIII proved to be opioid-mediated, as naloxone led to dramatic 
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decreases in RIII thresholds (Willer & Albe-Fessard, 1980a; Willer et al., 1981). 

Neither RIII nor R2 responses after the math task were influenced consistently by 

endogenous opioids in the present research. Although the role of endogenous opioids 

in the blink reflex has not yet been supported in the literature (Cruccu et al., 1991; 

Ferracuti et al., 1994a), the involvement of the opioid system in RIII parameters has 

been widely demonstrated in humans (Willer & Albe-Fessard, 1980a; Willer et al., 

1981). Therefore, the lack of differences between placebo and naltrexone groups in 

RIII responses may have been due to the difficulty in consistently eliciting the RIII 

response in either group.  

8.4.2  Diffuse noxious inhibitory controls (DNIC) 

 

In Study 4, a second endogenous pain modulatory mechanism termed DNIC was 

examined in depressed and non-depressed subjects. This was achieved by 

investigating the effects of a heterosegmentally-applied noxious CS on the R2 

component of the blink reflex. The first CS (i.e., hand CPT) significantly inhibited 

R2 responses, demonstrating evidence of DNIC in all subjects. However, the 

disappearance of these effects during the second CPT suggested that the inhibitory 

effects (noted at the outset of the experiment) were perhaps masked by pain 

facilitatory effects of negative mood. Alternatively, effects observed at the beginning 

of the experiment might have been due to SIA brought about by the extremely 

noxious nature of cold pressor CS. Most subjects were extremely distressed by the 

aversive nature of the cold water as they had no previous experience of the CPT and 

underestimated how noxious it would be. Measures of BP and heart rate during the 

CS would have been useful in determining whether R2 inhibition was stress-induced.  

 

Endogenous opioids have been shown to mediate the effects of DNIC on the R2 

component of the blink reflex (Boureau et al., 1979; Lozza, Schoenen, & Delwaide, 

1997; Willer et al., 1982b). However, in Study 4 strong nociceptive signals from the 

cold water may have overridden opioid-mediated inhibitory effects, creating ceiling 

effects. Therefore, a less aversive CS would help clarify the effect of mood and 

opioids on DNIC. Alternatively, opioid effects may have become apparent if larger 

numbers had been included in each cell. 
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Despite the lack of evidence in the current research of opioid involvement in either 

RIII or R2 nociceptive reflexes after stress or heterotopically-applied noxious 

stimuli, there is substantial documentation of these effects in the literature for RIII 

(Willer & Albe-Fessard, 1980a; Willer et al., 1979; Willer et al., 1981; Willer & 

Ernst, 1986; Willer et al., 1990), and to a lesser extent, the R2 component of the 

blink reflex (Boureau et al., 1979; Lozza et al., 1997; Willer et al., 1982b). 

Methodological limitations (e.g., shocks not noxious enough; CS too noxious, small 

cell sizes) may explain why stress induced by the math task failed to modify RIII in 

Study 3, and CS failed to inhibit R2 in Study 4, and why opioids did not influence 

either reflex. 

8.5  ENDOGENOUS PAIN MODULATION IN MAJOR DEPRESSION 
 

The aim of Study 4 was to investigate whether the link between chronic pain and 

depression could be attributed to impairment of endogenous pain modulatory 

mechanisms, in particular the opioid system. Opioid functioning in depression was 

examined under conditions known to activate endogenous opioids (i.e., 

psychological stress, heterotopically-applied noxious CS, and stress-induced 

increases in cardiovascular activity).  

 

As highlighted in the summary, major depression was not associated with pain 

insensitivity or impaired opioid functioning. In fact, aside from a marginally stronger 

affective response to painful stimuli in depression, stress-induced analgesic and 

DNIC effects did not differ between subjects with or without depression. However, 

the opioid system was more readily activated in depressed than control subjects in 

response to painful stimuli before the math task. These findings concur with the 

notion that opioid activation represents a normal, adaptive reaction to stress and 

anxiety, and that pain insensitivity in depression may be indirectly related to 

increased levels of acute stress, but not opioid dysregulation.  

 

Even though more frequent activation of endogenous opioids in depression does not 

seem to impair the ability of this system to respond to stress, chronic opioid release 

may impact negatively on other systems. For instance, opioids hindered the 
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regulatory relationship between cardiovascular activity and pain in depression (see 

8.6 Interrelationships between cardiovascular and pain modulatory systems, p 315). 

The abnormal effect of opioids on cardiovascular activity may increase the risk of 

cardiovascular disorders in depression, suggesting an important reason to target 

coping inefficacy and stress in depression. Chronic activation of endogenous opioids 

also compromises immune function. Therefore, treatment of depression should 

address ‘stressful thinking’, by encouraging patients to appraise life events as non-

stressful, controllable, or non-threatening, and instilling in them that they are not 

helpless or powerless to control aversive events.  

 

Furthermore, opioid release in depression has been related to abnormalities in the 

HPA axis – a regulatory system responsible for the control of hormones released 

during the stress response. Although not assessed in this research, functioning of the 

HPA axis appears, in part, to be reliant on normal responsivity to opioids. If released 

regularly in response to stress, a tolerance to opioids can develop, which could in 

turn contribute to pathogenic functioning of the HPA axis in depression – 

highlighting another reason to improve the coping capacity of depressed patients.  

8.6  INTERRELATIONSHIPS BETWEEN CARDIOVASCULAR AND PAIN 

MODULATORY SYSTEMS 
 

The interaction between cardiovascular and pain regulatory systems was assessed 

during stress and at rest in Studies 2, 3 and 4.  

 

During the math task, elevated BP was related to decreased shock PI and UP in 

Study 3 and 4, but not in Study 2. Also, heart rate was inversely associated with 

shock UP in Study 4, but not in Study 2 or 3. Considering that subjects in Study 2 

demonstrated the least autonomic arousal during the math task and gave lower than 

average PI/UP ratings for shocks, it is possible that stress levels were not high 

enough to activate baroreceptor-mediated analgesic mechanisms. Conversely, 

subjects in Study 4 demonstrated the greatest autonomic arousal during the math task 

and the highest PI/UP ratings for shocks, which may explain why heart rate in 

addition to BP influenced pain perception. Heart rate, being indirectly associated 
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with baroreceptor-stimulation mediated analgesia, is not as readily related to pain 

inhibition as BP (Caceres & Burns, 1997; Rosa et al., 1988), but is related 

nonetheless (de Jong, Petty, & Sitsen, 1983; McCubbin, 1993).  

 

The relationship between BP and shock pain sensitivity in Study 3 and heart rate and 

shock UP in Study 4 were both mediated by endogenous opioids, concurring with 

recent evidence in normotensive (Rosa et al., 1988) and hypertensive humans 

(McCubbin et al., 1985). A similar opioid-mediated inverse relationship existed 

between resting BP and cold pressor sensitivity before the math task in Study 3, and 

in non-depressed subjects in Study 4. In the context of previous research, these 

results provide possibly the strongest evidence of an opioid link between 

cardiovascular and pain responses in normotensive humans (Bragdon et al., 2002; 

McCubbin & Bruehl, 1994). Interestingly, this relationship only existed under opioid 

blockade in subjects with depression, as endogenous opioids masked a nonopioid 

modulatory mechanism. Although the inverse (resting) BP-cold pressor pain 

relationship was maintained to some extent after the math task20, the antagonistic 

effects of naltrexone were weakened in Study 3 and 4. Furthermore, the nonopioid-

mediated relationship did not appear to be as strong in depressed subjects after the 

math task. Opioid analgesia induced by the math task may have reduced 

cardiovascular activity, thereby diluting baroreceptor- or centrally-mediated 

analgesic effects on cold pressor sensitivity, whether they are mediated by opioid or 

nonopioid substrates.  

 

Resting SBP was positively related to cold pressor pain tolerance in Study 3 and 4, 

both before21 and after the math task. Moreover, this relationship was mediated by 

endogenous opioids in non-depressed subjects22, but not in those suffering from 

depression. In depressed subjects, endogenous opioids failed to modulate the pre-

math task SBP-pain tolerance relationship, whilst completely masking a nonopioid-

                                                 
20 Group x Drug x BP effects no longer reached significance after the math task in Study 4  

(PI: p=.14; UP: p=.09); however, results trended in the same direction as before the math task. 
21 This result was marginal in Study 3 (p=.06). 
22 Evidence of opioid-mediation came from correlations in Study 3 (see Table 4.30, p 190) and 

multiple regression analyses in Study 4 (see Tables 7.37 and 7.38, p 282-3). 
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mediated modulatory mechanism after the math task. Therefore, in these two studies 

opioids apparently played a pivotal role in the relationship between BP and pain 

sensitivity in non-depressed normotensive subjects; however, opioid activation 

appears to mask this relationship in major depression.   

8.7  FUTURE DIRECTIONS 
 

This research provides interesting insights into the psychological factors and stimuli 

leading to endogenous opioid activation and pain inhibition. Further investigation as 

to how other negative mood states such as fear impact upon the endogenous opioid 

system and other pain modulatory mechanisms would help clarify the role of 

negative emotion in pain modulation. For instance, fear could be induced during the 

math task by introducing extremely noxious shocks resembling those used in Willer 

(1980a; 1981) and Rhudy and Meagher (2000). The effects of subjective helplessness 

could be compared with discouragement to determine whether these emotional states 

lie on the same continuum. Furthermore, research examining the effects of anger 

management style (anger-out versus anger-in) on the mobilisation of endogenous 

opioids and other pain modulatory systems could also prove fruitful, as very little is 

known regarding the effects of stress-induced anger on pain.  

 

To determine whether these results generalise across all types of pain, this 

methodology should be replicated using pain stimuli other than CPTs (e.g., heat, 

prolonged/intense electrical stimuli). Moreover, developing more reliable methods to 

elicit the RIII flexion reflex and the R2 component of the blink reflex could help 

determine whether the regulatory role of the endogenous opioid system extends to 

nociceptive reflexes.  

 

The opioid-mediated cardiovascular-pain relationship observed in healthy 

normotensive subjects in this project was not detected in subjects with major 

depression. Since these findings were exploratory, further research examining the 

role of opioid impairment in the cardiovascular-pain relationship in major depression 

is required.  
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8.8  CONCLUDING COMMENTS 
 

In the current project, an uncontrollable stressor and discouragement activated 

endogenous pain inhibitory mechanisms in humans, whether they were suffering 

from depression or not. Furthermore, the endogenous opioid system appeared to play 

a modulatory role in the stress response, modifying negative emotional responses, 

inhibiting prolonged strong pain (in particular affective responses to pain), and 

regulating autonomic (sympatho-excitatory) responses. Hence, the current results 

suggest that in order to regulate stress and/or pain and restore homeostasis, the 

endogenous opioid system mediates the ‘passive coping’ response that is triggered by 

negative (primarily dysphoric) affect.  

 

The integrity of the opioid-mediated pain inhibitory system was not compromised in 

depressed subjects, when compared with healthy controls in the present research. 

Nonetheless, opioid activation in depression appeared to adversely influence other 

important homeostatic functions, such as the interaction between cardiovascular and 

pain regulatory systems. Therefore, it is possible that regular activation of the 

endogenous opioid system may not impair pain inhibitory processes, but may 

contribute to other pathogenic mechanisms such as cardiovascular disease and 

compromised immunity. 
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APPENDICES 

Appendix 1: Pearson product correlations between mood and self-efficacy. 

 

 Pre-math task During math task Post-math task 

Mood Ax. Ds. Ag. Ax. Ds. Ag. Ax. Ds. Ag. 

Study 1:         

Ax. -   -   -   

Ds. .30 a -  .38 b -  .36 b -  

Ag. .13 .59 c - .18 .51 c - .33 a  .68 c - 

Sf. -.29 a -.28 a -.02 -.23 -.51 c -.18 -.35 b -.75 c -.47 c 

 

 Pre-drug Post-drug During task Post-math task 

Mood Ax. Ds. Ag. Ax. Ds. Ag. Ax. Ds. Ag. Ax. Ds. Ag. 

Study 2:            

Ax. -    -    -    

Ds. .42 c -  .57 c -  .70 c -  .62 c -  

Ag. .35 b .60 c - .36 b .56 c - .47 c .61 c - .34 b .54 c - 

Sf. -.17 -.08 -.12 -.21 -.13 -.09 -.44c -.44c -.31b -.27a  -.47c -.34b 

Study 3:            

Ax. -    -    -    

Ds. .63 c -  .47 c -  .76 c -  .43 b -  

Ag. .24 .40 b - .07 .35 a - .59 c .45 b - .34 a .52 c - 

Sf. -.02 -.14 -.14 -.30 -.23 .04 -.35a -.53c -.20 -.38a -.66c -.30b 

Study 4:            

Ax. -    -    -    

Ds. .58c -  .75c -  .68c -  .72c -  

Ag. .50c .69c - .72c .86c - .62c .67c - .64c .68c - 

Sf. -.20 -.15 .01 -.12 -.10 -.02 -.19a -.44c -.20 -.17 -.37b -.22 

Note Ax. = anxiety; Ds. = discouragement; Ag. = anger; Sf. = self-efficacy. 
a p<.05; b p<.01; c p<.001. 
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Appendix 2: Bryden’s Handedness Questionnaire. 
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Appendix 3: Consent form, Study 1. 
 

 
 
 
 
 
 
 
 
 
 
 
 
You are invited to participate in a study exploring the effects of stress on pain. Previous research has 
found that stress can alter how painful some experiences actually are. Therefore, the purpose of this 
study is to investigate the effects of psychological distress on natural pain modulatory mechanisms. 
Importantly, the results of this study will facilitate the development of treatment for depression and 
chronic pain. 
 
We will attempt to induce psychological stress during a math task. You will be required to solve 
mental arithmetic problems while under a time constraint. Your performance on the task may 
influence the frequency of electrical shocks administered via electrodes attached to your forearm. 
These shocks are mildly painful, but are harmless. Intermittently throughout the math task you will be 
asked to rate the pain intensity and unpleasantness of the shocks, and rate how your mood. You will 
also be asked to rate your mood before and after the math task. 
 
Prior to, and following the math task I will ask you to place your hand in cold water and rate the 
intensity of pain and unpleasantness experienced. Most people experience a moderate amount of pain 
during this experience. Our aim is to find out whether the math stressor alters your experience of the 
cold water.  
 
 
Your decision to participate will be greatly valued, however withdrawal of your consent and the desire 
to discontinue is acceptable at any time. Any questions regarding this study can be directed to Ashley 
Frew (Ph: 9361 0071) or Peter Drummond (Ph: 9360 2415). 
 
Participant’s Consent 
 
I_____________________________________ have read the information above and have had any 
questions I have asked answered satisfactorily. I have agreed to participate in this study recognizing 
that I can withdraw my consent at any time without prejudicing my relationship with Murdoch 
University. 
 
I agree that results from this research may be published, provided that my identifying information is 
withheld. 
 
 
_____________________________________                  ___________________________ 
Participant      Date 
 
 
_____________________________________  ___________________________ 
Primary Investigator     Date 
 
 
_____________________________________  ___________________________ 
Supervisor      Date 

CONSENT FORM 
 
The effect of stress on pain

Division of Social Sciences, Humanities and Education
School of Psychology 
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Appendix 4: Instructions for subjects, Study 1. 

 

INSTRUCTIONS FOR SUBJECTS 

(Experiment 1) 

General Instructions 

 

Action: Give consent form to read and explain further what will be done. 
 
“Firstly, I will get you to rate how you feel according to a number of mood 
descriptors. Secondly, you will complete a cold pressor task that involves placing 
your hand into a warm water bath, then into a cold-water bath. I will explain this task 
in more detail later on. Once the cold pressor test is completed, you will begin the 
computer-generated math task. On completion of the math task, you will repeat the 
mood ratings and cold pressor task”. 
 
Action: Ask subject (S) to sign consent form (countersign form). S begins 
experiment by completing mood ratings. 
 

Cold Pressor Instructions 

 

“The first task that we will begin with is a commonly used pain induction measure 
called a cold pressor task. This involves you immersing your hand into warm water 
above your wrist crease to standardise your hand temperature, then placing it into 
cold water. By doing this before the math task, I can gain a baseline measure of your 
perception of pain. 
 
Specifically, I am going to ask you to place your left hand up to your wrist crease 
(demonstrate) into cold water for 4 minutes, but please let me know if you want to 
remove it sooner. I would prefer that you left your hand in the water until I tell you to 
take it out, but tell me if you have kept it in there for as long as you can possibly 
stand and want to remove it. 
 
During the time that you have your hand in the cold water, I want you to do 2 things: 
 
1. Rate pain intensity - or how strong the pain feels… 
2. Rate unpleasantness - or how disturbing the pain is for you… 
 
Although the cold water can feel equally as intense as it can feel unpleasant, it is 
important to rate these two aspects independently. One way of distinguishing 
between these two aspects of pain is to compare pain to sound. Imagine that you are 
listening to a radio – the volume is being turned up – you could probably rate how 
loud it is and how unpleasant it is to listen to. Pain intensity is like loudness – is the 
pain getting louder or softer? Unpleasantness doesn’t only depend on intensity – it 
depends on other things that may affect you (e.g., the same pain intensity may be less 
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unpleasant for a deep sea diving instructor than for someone who has not had a lot of 
experience with cold water). Any questions? (answer questions). 
 
In terms of making these ratings – I will ask you to move this pointer along this 
scale, where left side = ‘No pain’/ ‘Not unpleasant at all’ and right side = ‘Pain as 
bad as it could get’/ ‘As unpleasant as it could get’ (demonstrate). So I will say 
‘pain’ and ‘unpleasantness’ every 30 seconds, and you are to respond by moving the 
pointer to a spot on this scale that reflects your experience. Any questions? (answer 
questions). 
 
Ok, lets start. Please place your left hand into the esky of warm water to standardise 
the temperature of your hand – I will tell you when the time is up. Then place your 
hand immediately into the esky filled with cold water and I will begin recording your 
pain and unpleasantness ratings”. 
 

Math Task 

 

Action: Move S into Cubicle B to complete math task. Attach headset and electrodes 
to S’s forearm and leave cubicle. 
 
“Can you hear me clearly? Good. You may have noticed a camera in the corner of 
the room – it will be switched on during the math task to help me communicate with 
you, but none of this session will be recorded. Do you have any objections to that? 
 
Action: If S objects - ask what the objection is about and deal with it.  
 
“The math task is 20 minutes long – during which time you will be required to 
answer addition and subtraction type questions. Each question will appear in the 
middle of the screen, and you will use your left hand only to type in the answer 
using the number keys at the top of the keyboard. You will get feedback after each 
question that will either be ‘Correct’, ‘Incorrect’ or ‘Too Slow’. Both ‘Incorrect’ and 
‘Too Slow’ are considered wrong and you will hear a high pitch beep at the same 
time. At various intervals you will be asked to rate your mood. You will see a scale 
like the one above the keyboard (refer to self-efficacy scale on sheet next to the 
computer) with a blinking cursor in the middle – you are to shift the cursor left or 
right (according to how you feel at the time) with either of the arrow keys at the 
bottom of the keyboard. Press enter – this will move you onto the next mood rating. 
You will get a chance to practice – there will be no shocks delivered during the 
practice trials. After finishing these I would like you to rate your perceived ability to 
avoid the shocks during the task on the sheet of paper in front of you. Press a key and 
this will then take you onto the real task. When you are finished just knock on the 
door and I will come and get you. Any questions?” 
 
Action: If not…turn headset off. 
 
Action: Once math task is complete, direct S back to Cubicle A to repeat mood 
ratings and cold pressor task. 
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Debriefing/Finishing Up 

“Any questions about the experiment that you have just participated in?”. 
 
Action: Answer any queries regarding the experiment. Explain that the math task is 
designed to be difficult, but do not disclose design. Prompt each S not to disclose 
details of experiment to prospective S’s. Remunerate S for participation.  



 325

Appendix 5: Consent form, Study 2. 
 
 
 

 
 
 
 
 
 
 
 
You are invited to participate in a study exploring the effects of stress on pain. Previous research has 
found that stress can lead to the release of naturally occurring substances in the body, which reduce 
how painful some experiences actually are. These substances are called opioids, and are released from 
the opioid system. Importantly, the results of this study will facilitate the development of treatment for 
depression and chronic pain. 
 
We will attempt to induce psychological stress during a math task. You will be required to solve 
mental arithmetic problems while under a time constraint and your performance on the task may 
influence the frequency of electrical shocks administered via electrodes attached to your forearm. 
These shocks are mildly painful, but are harmless. Intermittently throughout the math task you will be 
asked to rate how painful and unpleasant the shocks are, and rate your mood. You will also be asked 
to rate your mood at various other stages during the experiment 
 
We aim to investigate how the opioid system affects your responses and will do this by giving you 
either naltrexone or a placebo pill prior to the math task. Naltrexone blocks the effect of natural 
opioids and opiates (e.g., heroin, morphine, pethidine, codeine), and will produce withdrawal 
symptoms if narcotic substances are taken on a regular basis. The effects remain invisible for a large 
percentage of people although naltrexone can lead to mild side effects such as lethargy, nausea and 
headache in a few people.  
 
In order to investigate any changes in your perception of pain before and after the math task, you will 
be asked to place your hand in cold water and rate the intensity of pain and unpleasantness 
experienced. Most people experience moderate amount of pain during this task. 
 
Finally, you will have your blood pressure taken frequently throughout this study. 
 
Your decision to participate will be greatly valued, however withdrawal of your consent and the desire 
to continue is acceptable at any time. Any questions regarding this study can be directed to Ashley 
Frew (Ph: 9368 0558) or Peter Drummond (Ph: 9360 2415). 
 
Participant’s Consent 
 
I_____________________________________ have read the information above and have had any 
questions I have asked answered satisfactorily. I have agreed to participate in this study recognizing 
that I can withdraw my consent at any time without prejudicing my relationship with Murdoch 
University or with my doctor. 
 
I agree that results from this research may be published, provided that my identifying information is 
withheld. 
 
 
______________________________________________  ______________________ 
Participant       Date 
 
______________________  /_______________________  ______________________ 
Primary Investigator   Supervisor   Date 

CONSENT FORM  
 
The effect of stress on pain 

Division of Social Sciences, Humanities and Education 

School of Psychology 
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Appendix 6: Medical checklist. 

 

MEDICAL CHECKLIST 

 
Please read the questions below and respond to each by placing a tick in the 
appropriate box indicating either Yes, No or that you are Unsure. 
 
       Yes No Unsure 
 
Have you ever taken naltrexone (Revia®)? 

 

 
 

 
 

 
If you have taken naltrexone, have you 
experienced any adverse reactions? 
(Leave blank if you have not taken naltrexone before). 
 

 

 
 

 
 

 
Do you use opiates regularly? 
(e.g., heroin, morphine, codeine, pethidine) 
 

   
Have you used opiates in the past 2 weeks?    
 
Are you in an acute stage of withdrawal from 
opiates? 

 

 
 

 
 

 
 
Do you need to use opiate analgesics in the 
next 24 hours? 

 

 
 

 
 

 
 
Do you plan to consume alcohol during the 
next 24 hours? 

 

 
 

 
 

 
 
Do you suffer from cardiac problems? 
(e.g., angina, dys-rhythmia, heart attacks) 
 

 

 
 

 
 

 
Do you have renal implants? 
  

 
  

Do you suffer from kidney problems?  
 

  

Have you ever experienced liver failure?  
 

  
Do you suffer from any type of diabetes? 
  

 
  

Are you suffering from acute hepatitis? 
    
Thank you 
Ashley Frew. 
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Appendix 7: Instructions for subjects, Study 2. 

 

INSTRUCTIONS FOR SUBJECTS 

(Experiment 2) 

Introduction 

 
Action: Give subject (S) consent form to read and explain what will be done. 
 
“Firstly, I want you to rate how you feel according to a number of mood descriptors. 
Secondly, you will have your blood pressure taken, and complete a cold pressor task 
that involves placing your hand into a warm water bath, then into a cold-water bath. I 
will explain this task in more detail later on. I will give you the drug, and you will 
wait approximately an hour before repeating these exercises. Once the exercises are 
completed, you will begin the computer-generated math task. On completion of the 
math task, you will repeat the mood ratings, cold pressor task and blood pressure 
measures. Any questions?”. 
 
Action: Ask S to sign consent form (countersign form). Begin experiment – S 
completes mood ratings. 
 

Cold Pressor/Blood Pressure 

 
“The first task that we will begin with is a commonly used pain induction measure 
called a cold pressor task. This involves you immersing your hand into warm water 
above your wrist crease to standardise your hand temperature, then placing it into the 
cold water.  
 
Before we begin let’s get you used to the BP unit by taking some measures. I will 
take your blood pressure (from the other arm) now and during the warm water to 
save some time. Please keep this arm still whilst the cuff is inflating, as the BP unit is 
very sensitive to movement. Whilst the cuff is inflating I will explain in more detail 
what I would like you to do during the cold pressor task…. 
 
Specifically, I am going to ask you to place your left hand up to your wrist crease 
(demonstrate) into cold water for 4 minutes, but please let me know if you want to 
remove it sooner. I would prefer that you left your hand in the water until I tell you to 
take it out, but tell me if you have kept it in there for as long as you can possibly 
stand and want to remove it. 
 
During the time that you have your hand in the cold water, I want you to do 2 things: 
 
1. Rate pain intensity - or how strong the pain feels… 
2. Rate unpleasantness - or how disturbing the pain is for you… 
 



 328

Although the ice water can feel equally as intense as it can feel unpleasant, it is 
important to rate these two aspects independently. One way of distinguishing 
between these two aspects of pain is to compare pain to sound. Imagine that you are 
listening to a radio – the volume is being turned up – you could probably rate how 
loud it is and how unpleasant it is to listen to. Pain intensity is like loudness – is the 
pain getting louder or softer? Unpleasantness doesn’t only depend on intensity – it 
depends on other things that may affect you (e.g., the same pain intensity may be less 
unpleasant for a deep sea diving instructor than for someone who has not had a lot of 
experience with cold water). Any questions? (answer questions). 
 
In terms of making these ratings – I will ask you to move this pointer along this 
scale, where left side = ‘No pain’/ ‘Not unpleasant at all’ and right side = ‘Pain as 
bad as it could get’/ ‘As unpleasant as it could get’ (demonstrate). So I will say 
‘pain’ and ‘unpleasantness’ every 30 seconds, and you are to respond by moving the 
pointer to a spot on this scale that reflects your experience. Any questions? (answer 
questions). 
 
Please place your left hand into the esky of warm water to standardise the 
temperature of your hand – I will tell you when the time is up. Then place your hand 
immediately into the esky filled with cold water and I will begin recording your pain 
and unpleasantness ratings”. 
 
Action: Once cold pressor task is completed, give S the drug. Instruct S’s to read 
quietly for an hour whilst the drug is absorbed. 
 

Math Task 

 

Action: Move S into Cubicle B to complete math task. Attach headset and electrodes 
to S’s forearm and leave cubicle. 
 
“Can you hear me clearly? Good. You may have noticed a camera in the corner of 
the room – it will be switched on during the math task to help me communicate with 
you, but none of this session will be recorded. Do you have any objections to that?” 
 
Action: If S objects - ask what the objection is about and deal with it. 
 
“The math task is 30 minutes long – during which time you will be required to 
answer addition and subtraction type questions. Each question will appear in the 
middle of the screen, and you will use your left hand only to type in the answer 
using the number keys at the top of the keyboard. I would like you to keep your right 
arm as still as possible because I will be measuring your blood pressure at regular 
intervals from this arm, throughout the entire task. Please place the sock on your 
right hand…this sock will act as a reminder that you can’t use this hand. You will get 
feedback after each question that will either be ‘Correct’, ‘Incorrect’ or ‘Too Slow’. 
Both ‘Incorrect’ and ‘Too Slow’ are considered wrong and you will hear a high pitch 
beep at the same time. At various intervals you will be asked to rate your mood. You 
will see a scale like the one above the keyboard (refer to self-efficacy scale on sheet 
next to the computer) with a blinking cursor in the middle – you are to shift the 
cursor left or right (according to how you feel at the time) with either of the arrow 
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keys at the bottom of the keyboard. Press enter – this will move you onto the next 
mood rating. You will get a chance to practice – there will be no shocks delivered 
during the practice trials. After finishing these I would like you to rate your 
perceived ability to avoid the shocks during the task on the sheet of paper in front of 
you. Press a key and this will then take you onto the real task. When you are finished 
just knock on the door and I will come and get you. Any questions?”. 
 
Action: If not…turn headset off. 
 
Action: Once math task is complete, direct S back to Cubicle A to repeat mood 
ratings, cold pressor task and blood pressure measures. 
 

Debriefing/Finishing Up 

 

“Any questions about the experiment that you have just participated in?” 
 
Action: Answer any queries regarding the experiment. Explain that the math task is 
designed to be difficult, but do not disclose design. Prompt each S not to disclose 
details of experiment to prospective S’s. Remunerate S for participation.  
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Appendix 8: Consent form, Study 3. 
 

 
 
 
 
You are invited to participate in a study exploring the effects of negative mood and stress on pain. 
Previous research has found that negative mood and stress can lead to the release of naturally 
occurring substances called opioids in the body, which reduce how painful some experiences actually 
are. Importantly, the results of this study will facilitate the development of treatment for depression 
and chronic pain. 
 
We will attempt to induce psychological stress during a math task. You will be required to solve 
mental arithmetic problems while under a time constraint. Your performance on the task may 
influence the frequency of electrical shocks administered via electrodes attached to your ankle. These 
shocks are moderately painful, but are harmless. Intermittently throughout the math task you will be 
asked to rate how painful and unpleasant the shocks are, and rate your mood.  
 
In order to investigate any changes in your perception of pain and discomfort before and after the 
math task, I will ask you to complete the following exercises: 
• Place your hand into cold water for as long as you can and rate the intensity of pain and 

unpleasantness experienced (most people report a moderate amount of pain). 
• Exhale forcefully into a tube for as long as possible. 
• Complete a number of Letter Symbol Matching Tasks. 
• Rate the pain intensity and unpleasantness of ankle shocks designed to elicit a pain reflex. 
• Rate your mood. 
 
We aim to investigate how the opioid system affects your responses and will do this by giving you 
either naltrexone or a placebo pill prior to the math task. Naltrexone has a very specific effect on the 
body, in that it blocks the action of natural opioids and opiates (e.g., heroin, morphine, pethidine, 
codeine) and will produce withdrawal symptoms if narcotic substances are taken on a regular basis. 
The effects remain invisible for a large percentage of non-opiate dependent people although it can 
lead to mild side-effects in some such as lethargy, nausea and headache.  
 
You will also have your blood pressure taken frequently throughout this study. 
 
Your decision to participate will be greatly valued, however withdrawal of your consent and the desire 
to discontinue is acceptable at any time. Any questions regarding this study can be directed to Ashley 
Frew (Ph: 9360 6735) or Peter Drummond (Ph: 9360 2415). 
 
Participant’s Consent 
 
I_____________________________________ have read the information above and have had any 
questions I have asked answered satisfactorily. I have agreed to participate in this study recognizing 
that I can withdraw my consent at any time without prejudicing my relationship with Murdoch 
University. 
 
I agree that results from this research may be published, provided that my identifying information is 
withheld. 
 
 
______________________________________________          ______________________ 
Participant       Date 
 
 
______________________  /_______________________  ______________________ 
Primary Investigator   Supervisor   Date 

CONSENT FORM 
 
The effect of mood on pain perception
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Appendix 9: Instructions for subjects, Study 3. 

 

INSTRUCTIONS FOR SUBJECTS 

(Experiment 3) 
 

Introduction 

 
“As you have read in the consent form, I am interested in exploring the effects of 
stress on pain perception. This experiment will take approximately 3 ¼ hours. I will 
ask you to complete the list of exercises and take the pill mentioned on the consent 
form at very the beginning of this experiment. You will have a 50-60 min break then 
we will complete the list of exercises again. Following this, you will do the math task 
and complete the list of exercises for the third and final time. 
 
I will explain each exercise as we go but do you have any questions about the 
experiment before we begin?”.  
 
Action: If not… subject (S) completes the medical checklist and signs the consent 
form (countersign form); S begins experiment by completing mood ratings in 
Cubicle A. 
 

Cold Pressor/Blood Pressure 

 
 “The first task that we will begin with is a commonly used pain induction measure 
called a cold pressor task. This involves you immersing your hand into warm water 
above your wrist (for 3 minutes) to standardise your hand temperature, then placing 
it into cold water. I will be taking your blood pressure from the other arm during this 
task, and I would like you to keep this arm still whilst the cuff is inflating, as the BP 
unit is very sensitive to movement. 
 
Before we begin let’s get you used to the BP unit by taking some measures. Whilst 
the cuff is inflating I will explain in more detail what I would like you to do during 
the cold pressor task…. 
 
After removing your hand from the warm water (at the end of 3 minutes), I want you 
to put your hand into the cold water and leave it there for as long as you possibly can, 
until you feel that the pain is too unpleasant to continue. While your arm is in the 
cold water I will ask you to rate two aspects of pain:  
 
Pain intensity - or how strong the pain feels… 
Unpleasantness - or how disturbing the pain is for you… 
 
…at 30 second intervals on this scale (hold up M-VAS). Although the cold water can 
feel equally as intense as it can feel unpleasant, it is important to rate these two 
aspects independently. One way of distinguishing between these two aspects of pain 
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is to compare pain to sound. Imagine that you are listening to a radio – the volume is 
being turned up – you could probably rate how loud it is and how unpleasant it is to 
listen to. Pain intensity is like loudness – is the pain getting louder or softer? 
Unpleasantness doesn’t only depend on intensity – it depends on other things that 
may affect you (e.g., the same pain intensity may be less unpleasant for a deep sea 
diving instructor than for someone who has not had a lot of experience with cold 
water). Any questions? (answer questions). 
 
To rate pain intensity you will use the anchor points ‘No pain’/‘Pain as bad as it 
could get’, and for unpleasantness ratings ‘Not unpleasant at all’/‘As unpleasant as it 
could get’ to guide your ratings. You will slide the indicator with your right hand to a 
point reflecting each aspect of pain, one at a time (demonstrate).    
 
Any questions? (answer questions). 
 
I would like you now to place your hand into the warm water up to your wrist crease 
(demonstrate) for 3 minutes…” 
 
(OR get them to do this during the instructions if the time taken to measure the first 
three BP readings has elapsed) 
 
“The three minutes has elapsed. Could you now please place your hand into the cold 
water and leave it there for as long as you possibly can, until you feel that the pain is 
too unpleasant to continue. Please say ‘Stop’ when you want to remove your hand”. 
 

RIII Measurement 

 

Attaching electrodes 

“The next exercise involves the measurement of a pain reflex which leads to a 
movement of the leg resembling that of the knee-jerk when tapping the knee-cap – 
except the leg is pulled backwards. This reflex is elicited by electrical pulses 
delivered to the ankle, and is measured by recording muscle movement at the back of 
the thigh. 
 
Come outside and I will get you to lie stomach-down on the mat so that I can place 
the electrodes on your thigh and ankle. 
 
To help me locate the right muscle I want you to lift your right heel back towards 
your bottom. I would now like you to push your heel into the palm of my hand as if 
you are trying to touch your bottom with your heel. I will now have to get rid of the 
dead skin cells and hairs to ensure a good contact between your skin and the 
electrodes. 
 
Now if you could roll onto your left side – so that you are facing the door of the lab, 
then I can attach the ground and the ankle electrodes”. 
 
Action: Move back into Cubicle A. 
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Measuring Skin Impedance 

“Take a seat and I will now measure how much skin resistance there is at the thigh 
and ankle. If it is too high I may have to pumice and clean the skin a second time” 
 
Action: If OK, attach electrodes to Biopac and S88 – if not, re-abrade the skin etc 
 

Postural Position 

“It is important that you remain as still and relaxed as possible when I am measuring 
this pain reflex so I want you to get into a comfortable position in the chair. I want 
you to now place your foot in this footrest (demonstrate). This will keep your leg 
still. In a moment I will place a neck-brace on you to keep the position of your head 
steady…but before we begin I want you to complete some other tasks. I would now 
like to place a headset on you and I will explain what I would like you to do”. 
 
Action: Attach headset to S and leave Cubicle A. Deliver instructions and complete 
Letter-Symbol Matching Task/Valsalva manoeuvre. 
 
Action: Get subject to take capsule and THEN proceed with RIII measurement. 
 

Measuring Pain Threshold 

“When you turn the page over in your booklet you will see a scale ranging from 0-10 
where 0 = No pain and 10 = Pain as bad as it could get. In a moment I will begin to 
deliver electric shocks to your ankle, one at a time. I would like you to rate the 
intensity of pain of each shock using this scale by calling out a number from 0-10. I 
want you to use ‘3’ as the point at which the shock first becomes painful – this may 
feel like a pinprick. Thus you would reserve ratings of 1 or 2 for shocks that feel like 
a small tap or touch, and anything at ‘4’ or above for shocks which become 
progressively more painful (e.g., stronger pinprick, sharp needle). 
 
Shocks will be delivered relatively quickly so try to make your ratings fairly rapidly. 
Ok I want you to relax and remain as still as possible from now on… the first one 
will be delivered soon….” 
 

Experimental Shocks (1.5 threshold) 

“Now I will be giving you a small number of shocks of a higher intensity. I would 
like you to rate these shocks according to 0-10 pain intensity and unpleasantness 
scales over the page (Explain that S is to differentiate their ratings like they did 
during the cold pressor task).  
 
Please stay as relaxed and still as you can…” 
 
Action: Direct S to read quietly (whilst they wait for drug absorption). 
 
Letter Symbol Matching Task 
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“Can you hear me clearly? Good. You may have noticed a camera in the corner of 
the room – it will be switched on for the following exercises to help me communicate 
with you, but none of this session will be recorded. Do you have any objections to 
that?”. 
 
Action: If S objects - ask what the objection is about and deal with it.  
 
“In front of you is a booklet. Do not turn to the next page until I tell you to do so. 
 
The front page includes instructions for the Letter Symbol Matching Task. There 
should be a row of boxes at the top of the page. In the upper part there is a letter, and 
beneath it is a symbol. Each letter has it’s own symbol. Now look further down the 
page  - there is another row of boxes. This time they have letters in the top but the 
boxes below are empty. I want you to practice filling these boxes in with the symbol 
that corresponds to each letter…go ahead. Tell me when you have finished. 
 
In the first box you should have put a ‘+’ to match the letter ‘B’, then a forward slash 
to match the letter ‘A’, then a circle with a line through it’s center to match the letter 
‘I’, and so on (match these instructions whichever form is used). Did you get them 
right – do you have any questions? 
 
When I tell you to turn over the page I want you to fill in as many boxes as you can 
until I tell you to stop. Complete the boxes from left to right (across the page) and 
don’t skip any as you do them. Work as fast and as accurately as you can. Ready? 
Turn the page now…” 
 
Action: After 3 mins – “Stop”. 
 

Valsalva Manoeuvre 

 
“Taped to the desk in front of you is a clear piece of tubing – unhook it from the tape 
and hold it to your mouth. I want you to blow into this tube as hard and for as long as 
you can when I tell you to start, but do not ‘fill’ your lungs with air before beginning. 
When you don’t think you can continue any longer say: “STOP!” Any questions? Ok 
start now!  
 
When they stop say:  Thanks. Now I will come in and put the neck-brace on so that 
we can measure the pain reflex….” 
 

Math Task 

 
Action: Ask S to move into Cubicle B. 
 
“The math task is 25 minutes long – during which time you will be required to 
answer addition and subtraction type questions. Each question will appear in the 
middle of the screen, and you will use your left hand only to type in the answer using 
the number keys at the top of the keyboard. I would like you to keep your right arm 
as still as possible because I will be measuring your blood pressure at regular 
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intervals from this arm, throughout the entire task. Please place the sock on your 
right hand…this sock will act as a reminder that you can’t use this hand. You will get 
feedback after each question that will either be ‘Correct’, ‘Incorrect’ or ‘Too Slow’. 
Both ‘Incorrect’ and ‘Too Slow’ are considered wrong and you will hear a high pitch 
beep at the same time. At various intervals you will be asked to rate your mood. You 
will see a scale like the one next to the keyboard (refer to self-efficacy scale on sheet 
next to the computer) with a blinking cursor in the middle – you are to shift the 
cursor left or right (according to how you feel at the time) with either of the arrow 
keys at the bottom of the keyboard. Press enter – this will move you onto the next 
mood rating. You will get a chance to practice – there will be no shocks delivered 
during the practice trials. After finishing these I would like you to rate your 
perceived ability to avoid the shocks during the task on the sheet of paper in front of 
you. Press a key and this will then take you onto the real task. When you are finished 
just knock on the door and I will come and get you. Any questions?” 
 
Action: If not…turn headset off. 
 
Debriefing/Finishing Up 

 
“Any questions about the experiment that you have just participated in?” 
 
Action: Answer any queries regarding the experiment. Explain that the math task is 
designed to be difficult, but do not disclose design. Prompt each S not to disclose 
details of experiment to prospective S’s. Remunerate S for participation.  
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Appendix 10: Example of recruitment articles, Study 4. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Community newspaper articles: 
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GP newsletter: 

WISH newsletter (non-governmental organization): 
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Appendix 11: Structured Clinical Interview for DSM-IV Axis I Disorders. 
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Appendix 12: Consent form, Study 4. 

 

 

 

 

 

 

 
 
 
You are invited to participate in a study exploring the effects of mood on pain 
perception. Previous research has found that negative mood and stress can lead to the 
release of naturally occurring substances in the body, which reduce how painful 
some experiences actually are. These substances are called opioids, and are released 
from the opioid system. It is suspected that depression may affect the release of 
opioids. The purpose of this study is to investigate how negative mood and 
depression affects natural pain inhibitory mechanisms. Importantly, these results will 
facilitate the development of treatment for depression and chronic pain. 
  
We aim to investigate how the opioid system functions and will do this by giving you 
either naltrexone or a placebo pill. Naltrexone has a very specific effect on the body, 
that is it blocks the action of natural opioids, such as endorphins. The effects remain 
invisible for a large percentage of people although it can lead to mild side-effects 
such as lethargy, nausea and headache in a few people. Naltrexone should not be 
taken if you are currently using opiates such as heroin, morphine, codeine, or have 
problems with your liver or any other serious medical condition. 
 
We will attempt to induce psychological stress during a math task. You will be 
required to solve mental arithmetic problems while under a time constraint. Your 
performance on the task may influence the frequency of electrical shocks 
administered via electrodes attached to your forearm. These shocks are moderately 
painful, but are harmless.  
 
In order to investigate any changes in your perception of pain before and after the 
math task, the blink reflex, which is a physiological measure of pain, will be 
measured. Mild electrical pulses will be sent through electrodes attached to your 
forehead. These pulses are very brief and harmless, and are described by most to feel 
like a mild pin-prick.  
 
It has been found that the application of a more intense pain tends to alter the 
experience of the less intense pain. We will investigate this phenomenon by asking 
you to place your hand in iced water whilst we measure the blink reflex. Most people 
report moderate burning or stinging during the cold-water task. However, these 
effects are temporary.  
 

Division of Social Sciences, Humanities and Education
School of Psychology 

CONSENT FORM 
 

The link between depression, pain 
and the opioid system.
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We will also ask you to place your foot in cold water for as long as you can tolerate 
just prior to, and after the math task. Our aim is to find out whether the math stressor 
alters your tolerance to pain. 
 
You will have your blood pressure taken frequently and will be asked to rate your 
mood at various stages. 
 
Your decision to participate will be greatly valued, however withdrawal of your 
consent and the desire to discontinue is acceptable at any time. Any questions 
regarding this study can be directed to Ashley Frew (Ph: 9360 6735; mob: 0407 476 
441) or Peter Drummond (Ph: 9360 2415). 
 
Participant’s Consent 
 
I_____________________________________ have read the information above and 
have had any questions I have asked answered satisfactorily. I have agreed to 
participate in this study recognizing that I can withdraw my consent at any time 
without prejudicing my relationship with Murdoch University. 
 
I agree that results from this research may be published, provided that my identifying 
information is withheld. 
 
 
_________________________________________  ___________________ 
Participant       Date 
      
 
_________________________________________  ___________________ 
Primary Investigator     Date 
 
 
_________________________________________  ___________________ 
Supervisor       Date 
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Appendix 13: Instructions for subjects, Study 4. 

 

INSTRUCTIONS FOR SUBJECTS 

(Experiment 4) 

Introduction 

 
Action: Seat subject (S) in the communal area and get them to read through the 
consent form when they initially arrive; Sit on stool and begin instructions…  
 
“As you have read in the consent form, I am interested in investigating how mood 
(e.g., depression) and stress affects pain perception. This experiment will take 
approximately 2 1/2 hours. In order to gain a baseline reading of your perception of 
pain I will be using a physiological measure of pain called the blink reflex. I will 
deliver very brief mild electrical pulses just under your left eyebrow (demonstrate), 
and measure the muscle movement (or blink) from under both eyes. I will ask you to 
take a capsule containing either naltrexone or glucose (placebo), after which we will 
repeat the blink reflex procedure when your hand is immersed in cold water. You 
will have approximately 50-60 minutes break, during which I would like you to 
complete some questionnaires enquiring about your mood over the past 2 weeks. 
Finally, we will repeat the blink reflex procedure and a different cold-water task 
before and after you complete the math task. I will explain each exercise as we go 
but do you have any questions about the experiment before we begin?”. 
 
Action: If not… S completes consent form (countersign form), medical checklist and 
mood ratings. Begin experiment. 
 
Blood Pressure 

 
“In order to get an accurate picture of your resting blood pressure I will measure it a 
few times using this automatic device. I would like you to remain quiet, still and 
calm whilst the cuff is inflating as the BP unit is very sensitive to muscle tension and 
any movement”. 
 
Blink Reflex 

 
“I would like you to move onto this stool so that I can attach the electrodes for the 
blink reflex procedure”.  
 
Action: After S is seated, place the head-band on… 
 
“Firstly I will have to remove any dead skin from a number of places on your face 
with paste that that has an exfoliating effect.  I’d like you to close your eyes while I 
do this…now I am going to clean the skin with alcohol. This should sting a little if I 
have gotten rid of the dead skin layer. It is really important that you keep your eyes 
shut during this and for a little while after until the stinging has stopped” 
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Action: Place the electrodes on (“Could you please look up, thanks”). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Action: Measure skin impedance for each set of electrodes…if sufficiently low, ask 
S to move into Cubicle A. Connect EMG electrodes, ground and stimulating 
electrodes.  
 
Action: Place the headset/intercom on and leave Cubicle A. 
 
“Can you hear me clearly? Good. You may have noticed a camera in the corner of 
the room – it will be switched on for the following exercises to help me communicate 
with you, but none of this session will be recorded. Do you have any objections to 
that?”. 
 
Action: If S objects - ask what the objection is about and deal with it.  
 
 “Beside you in the small foam esky is warm water. I would like you to place your 
left hand in up to your wrist crease whilst we complete the blink reflex procedure. 
This is to standardise your hand temperature before placing your hand into the cold 
water. 
 
In a moment I will begin to deliver one brief shock at a time to elicit the blink reflex. 
I would like you to rate two aspects of pain after each shock: 
 
Pain intensity - or how strong the pain feels… 
Unpleasantness - or how disturbing the pain is for you…  
 

R L

SN L______ (K ohms)

BR L_____ BR R_____  
E 

E E

E

E 

GND 

E

Figure 1: Diagrammatical depiction of electrode (E) placement during measurement of 
the blink reflex, and recording of skin impedance at each site. GND = ground 
electrode; SN = supraorbital notch; BR = blink reflex; R = right eye, L = left eye. 
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I would like you to make these ratings using the scales taped to the wall in front of 
you by calling out a number from 0-9, where 0 = ‘No pain’ or ‘Not unpleasant at all’ 
and 9 = ‘Pain as bad as it could get’ or ‘As unpleasant as it could get’.  
 
Although the shocks can feel equally as intense as unpleasant, it is important to rate 
these two aspects independently. A way of distinguishing between these two aspects 
is to compare the electric shocks to sound. Imagine that you are listening to a radio – 
the volume is being turned up – you could probably rate how loud it is and how 
unpleasant it is to listen to. Pain intensity is like loudness – is the pain getting louder 
or softer? Unpleasantness doesn’t only depend on intensity – it depends on other 
things that may affect you (e.g., the same pain intensity may be less unpleasant for an 
electrician than for someone who has not had a lot of experience with electric 
shocks). Any questions? 
 
When making your ratings, I want you to use: 
0 - when you feel no sensation.   
1 - for shocks that are mildly painful and unpleasant 
2 or 3  - for shocks that are moderately painful and unpleasant 
4, 5 or 6 - for shocks that are somewhat severely painful and unpleasant 
7 or 8  - for shocks that are severely painful and unpleasant 
9  - for those that are the worst pain imaginable, or as unpleasant as they could get. 
 
Each shock will be presented close together – so please make your ratings quickly. I 
want you to relax and remain as still as possible from now on and keep your eyes 
focussed on the cross positioned between both scales... the first shock will be 
delivered soon”. 
 
Action: Administer capsule to S. 
 

Blink Reflex & Cold Pressor 

 
“In a moment I would like you to remove your hand from the warm water and place 
it into the cold whilst we measure the blink reflex again. However, I would like you 
to keep your hand in the cold water for 30 seconds just before we start to measure the 
blink reflex, and keep it in there until we have finished. Are you ready? Please place 
your hand into the cold water now”. 
 

Psychometric Tests  

 
“There will be approximately 50-60 minutes before we begin testing again. During 
that time I would like you to complete each of these questionnaires. They should take 
between 5-10 minutes each. Please read the instructions before completing them. 
Once these are done there are some magazines that you can read. I will inform you 
when it is time to begin testing again”. 
 
Action: Turn headset off and enter Cubicle A to deliver questionnaires. 
 

Blood Pressure/Mood ratings 
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“It is time to start testing again, but before we begin I would like to measure your 
blood pressure again. I also want you to complete another set of mood ratings 
according to how you feel now”. 
 

Blink Reflex – Repeated 

 
Action: Turn headset on. 
 
“In a moment we will repeat the blink reflex procedure where you will rate each 
shock again. I would like you to place your left hand into the warm water bath as you 
did before. Now, I would like you to remain as relaxed and still as you can - in a 
moment I will deliver the first shock”. 
 

Blink Reflex & Cold Pressor – Repeated 

 
“When I tell you to, I want you to place your left hand into the cold water for 30 
seconds, prior to beginning the blink reflex procedure again, and then keep it there 
until we finish - just like you did before”. 
 

Foot Cold Pressor (2°C) 

 
“ OK now I would like you to complete a cold water task on it’s own. This time the 
task will be a little different…I want you to place your left foot into the cold water 
and leave it there for as long as you possibly can, until you feel that the pain is too 
unpleasant to continue. While your foot is in the cold water I will ask you to rate 
pain intensity (how strong the pain feels) and unpleasantness (how disturbing the 
pain is for you) - at 30-second intervals using the scales that you used during the 
blink reflex procedure. Although the cold water can feel equally as intense as it is 
unpleasant, it is important to rate these two aspects independently. Just like you did 
with the blink reflex shocks”.    
 

Math Task 

 
Action: Ask S to move into Cubicle B. Place headset on S. 
 
“The math task is 25 minutes long – during which time you will be required to 
answer addition and subtraction type questions. Each question will appear in the 
middle of the screen, and you will use your left hand only to type in the answer 
using the number keys at the top of the keyboard. I would like you to keep your right 
arm as still as possible because I will be measuring your blood pressure at regular 
intervals from this arm, throughout the entire task. Please place the sock on your 
right hand…this sock will act as a reminder that you can’t use this hand. You will get 
feedback after each question that will either be ‘Correct’, ‘Incorrect’ or ‘Too Slow’. 
Both ‘Incorrect’ and ‘Too Slow’ are considered wrong and you will hear a high pitch 
beep at the same time. At various intervals you will be asked to rate your mood. You 
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will see a scale like the one in front of you (indicating the self-efficacy scale on sheet 
next to the computer) with a blinking cursor in the middle – you are to shift the 
cursor left or right (according to how you feel at the time) with either of the arrow 
keys at the bottom of the keyboard. Then press enter – this will move you onto the 
next mood rating. You will get a chance to practice – there will be no shocks 
delivered during the practice trials. After finishing these I would like you to rate your 
perceived ability to avoid the shocks during the task on the sheet of paper in front of 
you. Press a key and this will then take you onto the real task. When you are finished 
just knock on the door and I will come and get you. Any questions?” 
 
Action: If not…turn headset off. 
 

Mood Ratings  

 
Action: Return to Cubicle A and place headset on. 
 
“Now that the math task is finished, I would like you to complete another set of 
mood ratings according to how you feel now”. 
 

Blink Reflex – Repeated 

 
“In a moment we will repeat the blink reflex procedure for the final time. Please 
remain as relaxed and still as you can - the first shock will be delivered soon”. 
 

Foot Cold Pressor & Blood Pressure 

 
“The cold-water task is the final task to be completed. As before, I would like you to 
place your foot into the cold water and leave it there for as long as you possibly can, 
until you feel that the pain is too unpleasant to continue. Like before, I want you to 
rate pain intensity and unpleasantness of the cold water at 30-second intervals using 
the scales taped to the wall in front of you. 
 
First off though, we must standardise the temperature of your foot in warm water. 
While we are doing this I will take one final set of BP measures”. 
 

Debriefing/Finishing Up 

“Any questions about the experiment that you have just participated in?” 
 
Action: Answer any queries regarding the experiment and explain what this 
experiment was investigating. Explain that the math task is designed to be difficult 
and induce stress. Note address details of each S, explaining that a letter regarding 
the findings will be sent when the study is completed. Remunerate S for their 
participation.  
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