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Notice 

The course material includes slides downloaded from:!
http://codex.cs.yale.edu/avi/os-book/!

(slides by Silberschatz, Galvin, and Gagne, associated with 
Operating System Concepts, 9th Edition, Wiley, 2013)!

and!
http://retis.sssup.it/~giorgio/rts-MECS.html!

(slides by Buttazzo, associated with Hard Real-Time Computing 
Systems, 3rd Edition, Springer, 2011)!

which has been edited to suit the needs of this course. !
The slides are authorized for personal use only. !
Any other use, redistribution, and any for profit sale of the slides (in any 
form) requires the consent of the copyright owners.!



11.3! Buttazzo, Hard Real-Time Computing Systems ©2013!

Problem Formulation 

  For each periodic task, guarantee that:!
  Each job τik is activated at rij = (k-1)Ti!

  Each job τik completes within dik = rij + Di!
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Problem  formulation
Wi (Ci, Ti) job Wik 

For each periodic task, guarantee that:

rik dik
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x each job Wik is activated at rik = (k�1)Ti

x each job Wik completes within dik = rik + Di
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A Farm Scheduling Problem 
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A farm scheduling problem
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First algorithm

Alternate pig with cowp g
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First Algorithm 

“Alternate pig with cow”!

  Evaluation:!
  Pig gets hungry!
  Cow gets fat!
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Second Algorithm 

“Feed pig and cow 10 min each”!

  Evaluation:!
  Pig is OK!
  Cow is not happy!
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Third Algorithm 

“Feed pig and cow 5 min each”!

  Evaluation:!
  Pig is OK, Cow is OK!
  Farmer is tired!
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Optimal Algorithm 

“Feed the most starving animal”!

  Evaluation:!
  Everybody is happy!
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Optimal algorithm

Feed the most starving animalg
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What do we learn?
x Reducing the execution time window, we get
closer to a feasible solutioncloser to a feasible solution.

x The time is split proportionally between the
animals.

In the example, each animal required food for 50%
of the time but how can we generalize the solution

8

of the time, but how can we generalize the solution
if the animals requires different fraction of time?
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What Do We Learn? 

  Reducing the execution time window, we get closer to a feasible solution!
  The time is split proportionally between the animals!

  In the example, each animal required food for 50% of the time!
  How can we generalize the solution if the animals require different 

fractions of time?!
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A New Scheduling Problem 

14/11/2012
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A new scheduling problem

Feed cow for
4 min / 16 min

9

Feed pig for
20 min / 40 min

Proportional share algorithm
Basic idea

x Divide the timeline into slots of equal length.

x Within each slot serve each task for a time
proportional to its utilization:

Cow utilization factor =  4/16    = 1/4
Pig utilization factor =  20/40  = 1/2
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Proportional Share 

  Proportional Share algorithm:!
1.  Divide the timeline into slots of equal length!
2.  Within each slot serve each task for a time proportional to its utilization:!

 Cow utilization factor = 4/16 = ¼!
 Pig utilization factor = 20/40 = ½!
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Proportional Share 

  In general:!
  Let: Ui = required feeding fraction!
  Δ = GCD(T1,T2) = 8!

 Execute each task for δi = UiΔ in each slot Δ!

  Note: UiΔ ensures Ci in Ti, in fact: δ(Ti/Δ)=Ci!
  Feasibility test: Σδi ≤ Δ, i.e., ΣUi ≤ 1!
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Timeline Scheduling (Cyclic Executive) 

  It has been used for 30 years in military systems, navigation, and monitoring 
systems.!
  Examples:!

 Air traffic control!
 Space Shuttle!
 Boeing 777!

  Idea:!
  Divide time axis in slots of equal length!
  Design static scheduling (by hand)!

 Allocate each task in a slot, so as to meet the desired request rate!
  Activate execution of each slot by a timer!
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Example 

  Guarantee is very simple (within each minor cycle):!
  CA+CB ≤ Δ = 25 ms!
  CA+Cc ≤ Δ = 25 ms!
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Timeline Scheduling
Method

x The time axis is divided in intervals of
equal length (time slots).

x Each task is statically allocated in a slot in
order to meet the desired request rate.

13

q

x The execution in each slot is activated by a
timer.

Example

40 Hz 25 ms
f T

A

task

' = GCD (minor cycle)
20 Hz

10 Hz

50 ms

100 ms

B

C

'  GCD (minor cycle)

T = lcm (major cycle)

T'

14

0 25 50 75 100 125 150 175 200

CA + CB d '
CA + CC d '

Guarantee:
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Cyclic Executive: Implementation 

  The task sequence is not decided by a scheduling algorithm in the kernel, 
but it is triggered by calls made by the main program (no context switches)!
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Implementation

A
timer

minorA
B

A
C

timer

timer

minor
cycle

major
cycle

15

A
B

A
timer

Timeline scheduling

Advantages

x Simple implementation (no real-time
operating system is required).

x Low run-time overhead.

Advantages

16

x It allows jitter control.
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Cyclic Executive: PROs and CONs 

  Advantages: lightweightness, regularity!
  Simple implementation (does not require RTOS)!
  Low run-time overhead!
  Allows jitter control!

  Disadvantages: rigidity!
  Fragile during overloads!
  Difficult to expand the schedule!
  Difficult to handle aperiodic activities!
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Problems During Overloads 

  What do we do during task overruns?!
  Let the task continue!

 May have domino effect on all the other tasks (timeline break)!
  Abort the task!

 The system can remain in inconsistent states!
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Expandibility 

  If one or more tasks need to be upgraded, we !
may have to re-design the whole schedule again!

  Example: !
  Situation: B is updated but CA+CB > Δ!

  Action: split B in two subtasks, B1 and B2, and re-build the schedule!
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Expandibility 

  If the frequency of some task is changed, the !
impact can even be more significant:!

  Example: !
  Situation: B’s cycle changes from 50 ms to 40 ms!

  Action: re-build the schedule using different major/minor cycle length!
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Expandibility 
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Priority Scheduling 

  Idea:!
  Assign each task a priority based on its timing constraints!
  Verify the feasibility of the schedule using analysis techniques!
  Execute tasks on a priority-based kernel!

  Priorities could be static or dynamic!

  Examples:!
  RM: assign fixed priority to tasks, proportional to task rate!
  EDF: at all times, assign top priority to job with earliest absolute 

deadline !
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Assumptions 

  The instances of a periodic task are regularly activated at a constant rate 
with period Ti.!
  All tasks are released as soon as they arrive.!

  All instances of a periodic task have:!
  the same worst-case execution time Ci!
  the same relative deadline Di = Ti!

  Independent tasks (no precedence relations, no resource constraints)!
  No task can suspend itself (trap)!
  Negligible kernel overheads!

01/10/2012
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input
CiUi =

Periodic task

Ci

timer

computation time

(period Ti )
sync

output utilization�factor

Ti
Ui

¾ A periodic task Wi generates an infinite sequence ofp i g q
jobs: Wi1, Wi2,  , Wik (same code on different data):

Ti
Ci

Wi

Ti

C

Wi (Ci , Ti , Di ) job Wik

Periodic task

) + (k 1) T

ai,k ai,k+1 t

Ci

ai,1 = )i

task phase

ai,k =  )i + (k�1) Ti

di,k =  ai,k + Di

often
Di = Ti



Static Priority Scheduling 
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How to assign priorities? 

  Typically, task priorities are assigned 
based on the tasks’ relative 
importance!
  Example: Solaris scheduling!

  However, different assignments can 
lead to different utilization bounds!

interrupt threads
169

highest

lowest

!rst

scheduling
order

global
priority

last

160
159

100

60
59

0

99

realtime (RT) threads

system (SYS) threads

fair share (FSS) threads

!xed priority (FX) threads

timeshare (TS) threads

interactive (IA) threads
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Priority ≠ Importance 

  If τ2 is more important than τ1 and is assigned a higher priority…!
!…the schedule may not be feasilble...!

14/11/2012
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How to assign priorities?

x Typically, task priorities are assigned
based on the their relative importance.

x However, different priority assignments
can lead to different utilization bounds.

25

Priority vs. importance
If W2 is more important than W1 and is assigned higher
priority, the schedule may not be feasible:

W1

W2
P1 > P2

deadline miss

26

W1

W2
P2 > P1
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Priority ≠ Importance 

!…while the utilization upper bound can be arbitrarily small.!
!
!
!
!
!
!
  U = ε/C1 + C2/∞ ! 0!
  An application can be unfeasible even if the processor is almost empty!!
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Priority vs. importance
But the utilization upper bound can be arbitrarily small:

An application can be unfeasible even
h h i l !

W1

W2
P2 > P1

H

f

when the processor is almost empty!

deadline miss
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W2

U  = 
H

T1
+

f
C2 0

Rate Monotonic is optimal

RM is optimal among all fixed priority
algorithms (if Di = Ti):g ( i i)

If there exists a fixed priority assignment
which leads to a feasible schedule for *, then
the RM assignment is feasible for *.

28

If * is not schedulable by RM, then it cannot
be scheduled by any fixed priority assignment.
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Rate Monotonic (RM) 

!
“Assign each task a fixed priority proportional to its request rate”!

(Liu & Layland ’73)!
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Priority Scheduling
Method

x Each task is assigned a priority based on its
timing constraints.

x We verify the feasibility of the schedule
using analytical techniques.

23

g y q

x Tasks are executed on a priority-based
kernel.

Rate Monotonic (RM)
x Each task is assigned a fixed priority
proportional to its rate [Liu & Layland ‘73]proportional to its rate [Liu & Layland 73].
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Rate Monotonic is Optimal 

  RM is optimal among all fixed priority algorithms (if Di = Ti)!

  RM optimality (in the sense of feasibility):!
  If there exists a fixed priority assignment which leads to a feasilbe 

schedule for Γ, then the RM assignment is feasible for Γ.!
  If Γ is not schedulable by RM, then it cannot be scheduled by any fixed 

priority assignment.!
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An RM-Unfeasible Schedule 
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Identifying the Worst Case 

  Feasibility may depend on the initial activations (phases):!
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Priority Assignments
x Rate Monotonic (RM):

P v 1/T ( t ti )Pi v 1/Ti (static)

x Deadline Monotonic (DM):

Pi v 1/Di (static)

Earliest Deadline First (EDF):x Earliest Deadline First (EDF):

Pi v 1/dik (dynamic) di,k =  ri,k + Di

Identifying the worst case
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Feasibility may depend on the
initial activations (phases):
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Critical Instant 

  The longest response time occurs when a task arrives together with all 
higher priority tasks!

14/11/2012

18

Critical Instant
For any task Wi, the longest response time occurs
when it arrives together with all higher priority tasks.
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Critical Instant
For independent preemptive tasks under fixed priorities, the
critical instant of Wi, occurs when it arrives together with all
higher priority tasks.
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Critical Instant 

  For independent preemptive tasks under fixed priorities, the critical 
instant of τi occurs when it arrives together with all higher priority tasks.!
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How can we verify feasibility? 

  Each task uses the processor for a fraction of time:!

  Hence the total processor utilization is:!

  Up is a measure of the processor load!

14/11/2012
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x Up is a misure of the processor load

A necessary condition

If Up > 1 the processor is overloaded
hence the task set cannot be schedulable.

However there are cases in which U < 1
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However, there are cases in which Up < 1
but the task is not schedulable by RM.
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A Necessary Condition 

  If Up > 1 the processor is overloaded hence the task set cannot be 
schedulable!

  However, there are cases where:!
  Up < 1 !
  but the task set is not schedulable by RM!

  Utilization upper bound: if C1 or C2 is increased, τ2 will miss its deadline!!

14/11/2012
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An unfeasible RM schedule
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W2 will miss its deadline!
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…and a Different Upper Bound… 

  The upper bound Uub depends on the specific task set.!
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A different upper bound
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…and Yet Another One 

  The upper bound Uub depends on the specific task set.!
  In these examples: Uub = 0.833, 0.9, 1, ….!
  Is there anything more we can tell about Uub?!
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The Least Upper Bound 

14/11/2012

22

The least upper bound
Uub

1

Ulub

43

*

. . .

A sufficient condition

If Up d Ulub the task set is certainly
schedulable with the RM algorithm.

NOTE

44

If Ulub < Up d 1 we cannot say anything
about the feasibility of that task set.

NOTE
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A Sufficient Condition 

  Given a task set Γ:!
  If Up ≤ Ulub, Γ is certainly schedulable with RM!
  If Ulub < Up ≤ 1, we cannot say anything about Γ’s feasibility!
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Least Upper Bound for RM 

  Liu & Layland, 1973!
  Given a set of n periodic tasks:!

  Used for RM guarantee test:!
  Compute processor utilization!
  Verify that it does not exceed the least upper bound!
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Ulub for  RM

x In 1973, Liu and Layland proved that for a
set of n periodic tasks:

� �12 /1
lub � nRM nU

45

for  n of Ulub o ln 2

RM Schedulability
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RM Schedulability 

  Ulub
RM for n tasks!

14/11/2012

23

Ulub for  RM

x In 1973, Liu and Layland proved that for a
set of n periodic tasks:

� �12 /1
lub � nRM nU

45

for  n of Ulub o ln 2

RM Schedulability
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0
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1 2 3 4 5 6 7 8 9 10 n

n! n(21/n-1)!
1! 1!
2! 0.828!
3! 0.780!
4! 0.757!
5! 0.743!

10! 0.718!
20! 0.705!
50! 0.698!

100! 0.696!
1000! 0.693!
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RM Schedulability 

  Uub
RM

 for 2 tasks is a function of!

F U* 

1! 0.828!
2! 0.899!
3! 0.928!
4! 0.944!
5! 0.954!

10! 0.976!
20! 0.988!
50! 0.995!

100! 1.000!
1000! 1.000!

n! n(21/n-1)!
1! 1!
2! 0.828!
3! 0.780!
4! 0.757!
5! 0.743!

10! 0.718!
20! 0.705!
50! 0.698!

100! 0.696!
1000! 0.693!

U* = 2 F(F +1) −F( )

F = T2 T1!" #$



11.42! Buttazzo, Hard Real-Time Computing Systems ©2013!

A Tighter Least Upper Bound for RM 

  Bini & Buttazzo2, 2000!
  Hyperbolic Bound!
  A set of n periodic tasks is schedulable with RM if:!

  It is a “tight” bound: given any set of utilizations that violate the HB, it is 
always possible to produce an unfeasible task set with those utilization.!
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The Hyperbolic Bound

x In 2000, Bini et al. proved that a set of n
periodic tasks is schedulable with RM if:
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Comparison 

  The hyperbolic bound can be compared with the Liu-Layland bound in the 
“task utilization space” (U-space)!

  The gain achieved by HB over LL increases with n (it tends to √2)!
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Exercise 4.1 
Ci! Ti!

τ1! 2! 6!
τ2! 2! 8!
τ3! 2! 12!

Verify the schedulability and construct the RM schedule.!
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Exercise 4.2 
Ci! Ti!

τ1! 3! 5!
τ2! 1! 8!
τ3! 1! 10!

Verify the schedulability and construct the RM schedule.!
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Extension to Tasks with D < T 

  More modeling possibilities. For instance:!
  Tasks with jitter constraints;!
  Activities with shorter response time with respect to their period.!

  Deadline Monotonic (DM): !
  Pi ∝ 1/Di (static) !

  Earliest Deadline First (EDF):!
  Pi ∝ 1/di,k (dynamic) !
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Extension to tasks with D < T

Di

Ti

ri,k di,k

Ci

t
Wi

Di

ri,k+1

Scheduling algorithms

63

x Deadline Monotonic: pi v 1/Di (static)

x Earliest Deadline First: pi v 1/di (dynamic)

Scheduling algorithms

Deadline Monotonic
W1

W2
0 4 8 12 16 20 24 28

Problem with the Utilization Bound
32n C
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6
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3
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but the task set is schedulable.
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Deadline Monotonic 

!
“Assign each task a fixed priority inversely proportional to its relative deadline”!

(Leung & Whitehead 1982)!

!
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Deadline Monotonic is Optimal 

  If Di < Ti, if a task set is schedulable by some fixed priority assignment, then 
it is also schedulable by DM.!

14/11/2012

15

Deadline Monotonic is optimal
If Di d Ti then the optimal priority assignment is
given by Deadline Monotonic (DM):g y ( )

W1

W2
P2 > P1

DM

29

W1

W2
P1 > P2

RM

EDF Optimality

EDF is optimal among all algorithms:

If there exists a feasible schedule for *, then
EDF will generate a feasible schedule.

30

If * is not schedulable by EDF, then it cannot
be scheduled by any algorithm.
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Good News, Bad News 

  Good news ! DM gives optimal priority assignment.!
  Bad news ! problem with the utilization bound:!

   !

  but the task set is schedulable!
 CPU workload overestimated!
 RM guarantee test too pessimistic for DM!
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Seen so far… 

  Problem definiton (periodic task scheduling)!
  Concepts (processor utilization, critical instant, upper bound)!
  Scheduling Algorithms!

  Theoretical (Proportional Share)!
  Paper & pencil (Timeline Scheduling)!
  Fixed Priority (optimal)!

 Rate Monotonic if D=T!
 Deadline Monotonic if D<T!

  Shedulability Analysis!
  Least Upper Bound!

 Liu-Layland!
 Hyperbolic Bound!

  Next?!
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Response Time Analysis 

  A sufficient and necessary schedulability test for DM (Audsley et al., 1990)!

  For each task τi, compute the interference (preemption) due to higher 
priority tasks:!

!
  Compute its response time as:!

   Ri = Ci + Ii!
  Verify whether! Ri ≤ Di 

14/11/2012
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Response Time Analysis
[Audsley ‘90]

x For each task W compute the interferencex For each task Wi compute the interference
due to higher priority tasks:

x compute its response time as

¦
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x compute its response time as
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x verify if Ri d Di
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Computing the Interference 

  Assume tasks are ordered by increasing relative deadlines!
  i < j if and only if Di ≤ Dj!

14/11/2012
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Response Time Analysis
[Audsley ‘90]

x For each task W compute the interferencex For each task Wi compute the interference
due to higher priority tasks:

x compute its response time as
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Computing the Response Time 

14/11/2012
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Exercise 4.7 
Ci! Di! Ti!

τ1! 2! 5! 6!
τ2! 2! 4! 8!
τ3! 4! 8! 12!

Verify the schedulability and construct the DM schedule.!
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Exercise 4.3 
Ci! Ti!

τ1! 1! 4!
τ2! 2! 6!
τ3! 3! 10!

Verify the schedulability and construct the RM schedule.!
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Exercise 4.4 
Ci! Ti!

τ1! 1! 4!
τ2! 2! 6!
τ3! 3! 8!

Verify the schedulability and construct the RM schedule.!



Dynamic Priority Scheduling 
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EDF 

  Di = Ti!

  No constraints!

  RM: unfeasible.!

  EDF: feasible!!
  With EDF, any task 

set can utilize the 
processor up to 100%!

14/11/2012

35

Earliest Deadline First (EDF)

x Each job receives an absolute deadline:

di,k = ri,k + Di

x At any time, the processor is assigned to the
job with the earliest absolute deadline.

69

x Under EDF, any task set can utilize the
processor up to 100%.

EDF Example

43

6 120 183 9 15
W1

94.0
9
4

6
3

 � pU
Di = Ti

70

0 9 183 6 12 15
W2

14/11/2012
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An unfeasible RM schedule

944043
 � U

6 120 183 9 15
W1

944.0
96
 � pU

39

0 9 183 6 12 15

deadline miss

W2

Utilization upper bound

833.033
 � U 833.0

96
�pU

6 120 183 9 15
W1

W2

40

0 9 183 6 12 15
2

NOTE: If C1 or C2 is increased,
W2 will miss its deadline!
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EDF Optimality & Schedulability 

  Optimality. EDF is optimal among all algorithms (Dertouzos 1974)!
  If there exists a feasible schedule for Γ, then EDF will find a feasible 

schedule!
  If Γ is not schedulable by EDF, then it cannot be scheduled by any 

algorithm!
(result independent of periodicity)!

  Schedulability. For a set of n periodic tasks,!

!(Liu & Layland 1973)!

  In other words, a task set Γ is EDF-schedulable if and only if Up ≤ 1!

14/11/2012
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EDF Optimality [Dertouzos ‘74]

WE

V

tEt fE dE dk

Wk

Transforming V in V’

73

V’(t) = V(tE)

V’(tE) = V(t) fk’  =  fE d dE d dk

Feasibility is preserved

EDF schedulability
x In 1973, Liu and Layland proved that for a

t f i di t kset of n periodic tasks:

1lub  EDFU

Thi th t t k t * i h d l bl

74

x This means that a task set * is schedulable
by EDF if and only if

Up d 1
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EDF Schedulability 

  Necessity:  schedulable ! Up ≤ 1 is trivial!
  To prove sufficiency:  Up ≤ 1 ! schedulable!

1.  We find any algorithm for which the above condition holds!
2.  Then, for the EDF optimality, we can say that the above condition also 

holds for EDF.!

  Consider the algorithm which schedules in every interval of length Δ a 
fraction of task: δi = Ut Δ!
  Proportional Share Algorithm!
  Feasibility is ensured if                   , that is, if Up ≤ 1.!

14/11/2012

38

Proving  sufficiency

U d 1 * schedulableUp d 1 * schedulable

x We find any algorithm for which the above

condition holds;

75

x Then, for the EDF optimality, we can say

that the above condition also holds for EDF.

Proving  sufficiency

Consider the algorithm which schedules in 

Gi =  Ui '

every interval of length '�a fraction of task: 

G G G G G G G G G
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Proving  sufficiency
With this algorithm, a task executes in each 
period for: TTperiod for:

iiii
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i
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77

Feasibility is ensured if 'dG¦
 i

i
1

that is if

'd'¦
 

n

i
iU

1
Up d
1

Dynamic Priority

EDF with D d T
Schedule based on absolute deadlines

Processor Demand Criterion [Baruah ‘90]

Schedulability Analysis

78

In any interval, the computation demanded by the
task set must be no greater than the available time.
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Exercise 4.5 
Ci! Ti!

τ1! 1! 4!
τ2! 2! 6!
τ3! 3! 8!

Verify the schedulability and construct the EDF schedule.!
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Schedulability with Dynamic Priority 

  What if D ≤ T ?!
  Processor Demand Criterion!

“in any interval, the computation demanded by the task !
must be no greater than the available time”!

(Baruah, Rosier & Howell 1990)!

  Demand of a task τi in [t1,t2]: amount of processing time gi(t1,t2) of all 
instances of τi that are activated in [t1,t2] and must be completed in [t1,t2].!

  For the whole task set: g(t1,t2)!
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Processor Demand

t1 t2
The demand in [t1, t2] is the computation time of those
tasks started at or after t1 with deadline less than or
equal to t :
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Processor Demand Test 

  Processor Demand in [0,L] aka Demand Bound Function, dbf(L)!

  Demand Test!

  How can we bound the number of intervals in which the test has to be 
performed?!
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Processor Demand
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Processor Demand Test

LLgL d!� ),0(,0

Question

81

How can we bound the number of intervals
in which the test has to be performed?

Question

Example
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Example 

14/11/2012
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Processor Demand Test
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Bounding Complexity 

  Some considerations:!
  Since g(0,L) is a step function, it suffices to check feasibility only at 

deadline points (dk)!
  If tasks are synchronous and Up < 1, it suffices to check feasibility only 

up to the hyperperiod H = lcm(T1, …, Tn)!
  g(0,L) ≤ G(0,L) and, if U < 1, there exists an L* for which G(0,L*) = L*.!
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Bounding complexity

x Since g(0 L) is a step function we canx Since g(0,L) is a step function, we can

check feasibility only at deadline points.

x If tasks are synchronous and Up < 1, we can

check feasiblity up to the hyperperiod H:
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H  =  lcm(T1, … , Tn)

Bounding complexity

x Moreover we note that: g(0, L) d G(0, L)
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for L > L*

g(0,L) d G(0,L) < L

Processor Demand Test
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Computing Response Time
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Processor Demand Test 

  A set of synchronous periodic tasks with relative deadlines less than or 
equal to periods can be scheduled by EDF if and only if !
  U < 1, and!

   !
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Processor Demand

t1 t2
The demand in [t1, t2] is the computation time of those
tasks started at or after t1 with deadline less than or
equal to t :
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Exercise 4.6 
Ci! Di! Ti!

τ1! 2! 5! 6!
τ2! 2! 4! 8!
τ3! 4! 8! 12!

Verify the schedulability and 
construct the EDF schedule.!
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Quizzes 

  True or False?!
  If a task set is DM-schedulable, it is EDF-schedulable!
  If a task set is EDF-schedulable, its processor utilization Up is below the 

HB!
  If a task set’s processor utilization Up is below the Liu-Layand bound, 

then Up is also below the HB!
  A task set consisting of two tasks, τ1 and τ2, with Di=Ti and T1=2T2, is 

RM-feasible if and only if the total processor utilization is at most 1!
  Response Time Analysis can be used to study schedulability, even if 

relative deadline and pediod coincide (for all τi, Di=Ti)!
  The Processor Demand Test can be used to study schedulability, even 

if relative deadline and pediod coincide !
  If for all τi, Di=Ti, the Processor Demand Test and Response Time 

Analysis of a given task set give the same schedulability result!
!



Summary 
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Periodic Task Scheduling 

  Three scheduling approaches!
  Off-line construction (timeline)!
  Fixed priority (RM, DM)!

 Pi ∝1/Ti"

 Pi ∝ 1/Di!
  Dynamic priority (EDF)!

 Pi ∝ 1/di,k, di,k = ri,k + Di!

  Three analysis techniques:!
  Processor Utilization Bound ! !U ≤ Ulub ! ! !O(n)!
  Response Time Analysis ! !for all i, Ri ≤ Di ! !*!
  Process Demand Criterion ! !for all L, g(0,L) ≤ L !*!

!* pseudo-polynomial complexity!
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RM vs. EDF 

  RM!
  Simpler to implement in commercial operating systems !

 fixed priorities!
  More predictable during !
     overloads !

 highest priority tasks are !
!   known!

  EDF!
  More efficient!
  Reduces context switches!
  Better responsiveness in handling aperiodic tasks!
  Period rescaling during permanent overloads!
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RM vs. EDF
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RM vs. EDF
EDF
x It’s more efficient
x It reduces context switches

It i i l t i l t
RM
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x It is simpler to implement on
commercial operating systems

x More predictable during overloads


