
Real-Time Operating
Systems M

11. Real-Time: Periodic Task Scheduling

11.2! Torroni, Real-Time Operating Systems M ©2013!

Notice

The course material includes slides downloaded from:!
http://codex.cs.yale.edu/avi/os-book/!

(slides by Silberschatz, Galvin, and Gagne, associated with
Operating System Concepts, 9th Edition, Wiley, 2013)!

and!
http://retis.sssup.it/~giorgio/rts-MECS.html!

(slides by Buttazzo, associated with Hard Real-Time Computing
Systems, 3rd Edition, Springer, 2011)!

which has been edited to suit the needs of this course. !
The slides are authorized for personal use only. !
Any other use, redistribution, and any for profit sale of the slides (in any
form) requires the consent of the copyright owners.!

11.3! Buttazzo, Hard Real-Time Computing Systems ©2013!

Problem Formulation

  For each periodic task, guarantee that:!
  Each job τik is activated at rij = (k-1)Ti!

  Each job τik completes within dik = rij + Di!

14/11/2012

1

Periodic Task
Scheduling

Problem formulation
Wi (Ci, Ti) job Wik

For each periodic task, guarantee that:

rik dik

2

x each job Wik is activated at rik = (k�1)Ti

x each job Wik completes within dik = rik + Di

11.4! Buttazzo, Hard Real-Time Computing Systems ©2013!

A Farm Scheduling Problem

14/11/2012

2

A farm scheduling problem

Feed cow for
25 min / 50 min

3

Feed pig for
10 min / 20 min

First algorithm

Alternate pig with cowp g

0

600 10020 80

Cow
50

Pig
40

100

4

0 50 100

Pig gets hungry

Cow gets fat

Evaluation:

11.5! Buttazzo, Hard Real-Time Computing Systems ©2013!

First Algorithm

“Alternate pig with cow”!

  Evaluation:!
  Pig gets hungry!
  Cow gets fat!

14/11/2012

2

A farm scheduling problem

Feed cow for
25 min / 50 min

3

Feed pig for
10 min / 20 min

First algorithm

Alternate pig with cowp g

0

600 10020 80

Cow
50

Pig
40

100

4

0 50 100

Pig gets hungry

Cow gets fat

Evaluation:

11.6! Buttazzo, Hard Real-Time Computing Systems ©2013!

Second Algorithm

“Feed pig and cow 10 min each”!

  Evaluation:!
  Pig is OK!
  Cow is not happy!

14/11/2012

3

Second algorithm

Feed pig and cow 10 min eachp g

0

600 10020 80

Cow
50

Pig
40

100

5

0 50 100

Pig is OK

Cow is not happy

Evaluation:

Third algorithm

Feed pig and cow 5 min eachp g

0

600 10020 80

Cow
50

Pig
40

100

6

0 50 100

Pig is OK, Cow is OK

but the farmer is tired

Evaluation:

11.7! Buttazzo, Hard Real-Time Computing Systems ©2013!

Third Algorithm

“Feed pig and cow 5 min each”!

  Evaluation:!
  Pig is OK, Cow is OK!
  Farmer is tired!

14/11/2012

3

Second algorithm

Feed pig and cow 10 min eachp g

0

600 10020 80

Cow
50

Pig
40

100

5

0 50 100

Pig is OK

Cow is not happy

Evaluation:

Third algorithm

Feed pig and cow 5 min eachp g

0

600 10020 80

Cow
50

Pig
40

100

6

0 50 100

Pig is OK, Cow is OK

but the farmer is tired

Evaluation:

11.8! Buttazzo, Hard Real-Time Computing Systems ©2013!

Optimal Algorithm

“Feed the most starving animal”!

  Evaluation:!
  Everybody is happy!

14/11/2012

4

Optimal algorithm

Feed the most starving animalg

0

600 10020 80

Cow
50

Pig
40

100

7

0 50 100

Everybody is happyEvaluation:

What do we learn?
x Reducing the execution time window, we get
closer to a feasible solutioncloser to a feasible solution.

x The time is split proportionally between the
animals.

In the example, each animal required food for 50%
of the time but how can we generalize the solution

8

of the time, but how can we generalize the solution
if the animals requires different fraction of time?

11.9! Buttazzo, Hard Real-Time Computing Systems ©2013!

What Do We Learn?

  Reducing the execution time window, we get closer to a feasible solution!
  The time is split proportionally between the animals!

  In the example, each animal required food for 50% of the time!
  How can we generalize the solution if the animals require different

fractions of time?!

11.10! Buttazzo, Hard Real-Time Computing Systems ©2013!

A New Scheduling Problem

14/11/2012

5

A new scheduling problem

Feed cow for
4 min / 16 min

9

Feed pig for
20 min / 40 min

Proportional share algorithm
Basic idea

x Divide the timeline into slots of equal length.

x Within each slot serve each task for a time
proportional to its utilization:

Cow utilization factor = 4/16 = 1/4
Pig utilization factor = 20/40 = 1/2

240 408 32

Cow

Pig

16

4/16

20/40
4 4 4 4 4

2 2 2 2 2 2

11.11! Buttazzo, Hard Real-Time Computing Systems ©2013!

Proportional Share

  Proportional Share algorithm:!
1.  Divide the timeline into slots of equal length!
2.  Within each slot serve each task for a time proportional to its utilization:!

 Cow utilization factor = 4/16 = ¼!
 Pig utilization factor = 20/40 = ½!

14/11/2012

5

A new scheduling problem

Feed cow for
4 min / 16 min

9

Feed pig for
20 min / 40 min

Proportional share algorithm
Basic idea

x Divide the timeline into slots of equal length.

x Within each slot serve each task for a time
proportional to its utilization:

Cow utilization factor = 4/16 = 1/4
Pig utilization factor = 20/40 = 1/2

240 408 32

Cow

Pig

16

4/16

20/40
4 4 4 4 4

2 2 2 2 2 2

11.12! Buttazzo, Hard Real-Time Computing Systems ©2013!

Proportional Share

  In general:!
  Let: Ui = required feeding fraction!
  Δ = GCD(T1,T2) = 8!

 Execute each task for δi = UiΔ in each slot Δ!

  Note: UiΔ ensures Ci in Ti, in fact: δ(Ti/Δ)=Ci!
  Feasibility test: Σδi ≤ Δ, i.e., ΣUi ≤ 1!

14/11/2012

5

A new scheduling problem

Feed cow for
4 min / 16 min

9

Feed pig for
20 min / 40 min

Proportional share algorithm
Basic idea

x Divide the timeline into slots of equal length.

x Within each slot serve each task for a time
proportional to its utilization:

Cow utilization factor = 4/16 = 1/4
Pig utilization factor = 20/40 = 1/2

240 408 32

Cow

Pig

16

4/16

20/40
4 4 4 4 4

2 2 2 2 2 2

11.13! Buttazzo, Hard Real-Time Computing Systems ©2013!

Timeline Scheduling (Cyclic Executive)

  It has been used for 30 years in military systems, navigation, and monitoring
systems.!
  Examples:!

 Air traffic control!
 Space Shuttle!
 Boeing 777!

  Idea:!
  Divide time axis in slots of equal length!
  Design static scheduling (by hand)!

 Allocate each task in a slot, so as to meet the desired request rate!
  Activate execution of each slot by a timer!

11.14! Buttazzo, Hard Real-Time Computing Systems ©2013!

Example

  Guarantee is very simple (within each minor cycle):!
  CA+CB ≤ Δ = 25 ms!
  CA+Cc ≤ Δ = 25 ms!

14/11/2012

7

Timeline Scheduling
Method

x The time axis is divided in intervals of
equal length (time slots).

x Each task is statically allocated in a slot in
order to meet the desired request rate.

13

q

x The execution in each slot is activated by a
timer.

Example

40 Hz 25 ms
f T

A

task

' = GCD (minor cycle)
20 Hz

10 Hz

50 ms

100 ms

B

C

' GCD (minor cycle)

T = lcm (major cycle)

T'

14

0 25 50 75 100 125 150 175 200

CA + CB d '
CA + CC d '

Guarantee:

11.15! Buttazzo, Hard Real-Time Computing Systems ©2013!

Cyclic Executive: Implementation

  The task sequence is not decided by a scheduling algorithm in the kernel,
but it is triggered by calls made by the main program (no context switches)!

14/11/2012

8

Implementation

A
timer

minorA
B

A
C

timer

timer

minor
cycle

major
cycle

15

A
B

A
timer

Timeline scheduling

Advantages

x Simple implementation (no real-time
operating system is required).

x Low run-time overhead.

Advantages

16

x It allows jitter control.

11.16! Buttazzo, Hard Real-Time Computing Systems ©2013!

Cyclic Executive: PROs and CONs

  Advantages: lightweightness, regularity!
  Simple implementation (does not require RTOS)!
  Low run-time overhead!
  Allows jitter control!

  Disadvantages: rigidity!
  Fragile during overloads!
  Difficult to expand the schedule!
  Difficult to handle aperiodic activities!

11.17! Buttazzo, Hard Real-Time Computing Systems ©2013!

Problems During Overloads

  What do we do during task overruns?!
  Let the task continue!

 May have domino effect on all the other tasks (timeline break)!
  Abort the task!

 The system can remain in inconsistent states!

11.18! Buttazzo, Hard Real-Time Computing Systems ©2013!

Expandibility

  If one or more tasks need to be upgraded, we !
may have to re-design the whole schedule again!

  Example: !
  Situation: B is updated but CA+CB > Δ!

  Action: split B in two subtasks, B1 and B2, and re-build the schedule!

14/11/2012

10

Expandibility
If one or more tasks need to be upgraded,
we may have to re-design the whole
schedule again.

Example: B is updated but CA + CB > '

'

19

0 25
A B

Expandibility

x We have to split task B in two subtasksp
(B1, B2) and re-build the schedule:

0 25 50 75 100

B1 B1B2 B2A A A AC
• • •

20

CA + CB1 d '
CA + CB2 + CC d '

Guarantee:

14/11/2012

10

Expandibility
If one or more tasks need to be upgraded,
we may have to re-design the whole
schedule again.

Example: B is updated but CA + CB > '

'

19

0 25
A B

Expandibility

x We have to split task B in two subtasksp
(B1, B2) and re-build the schedule:

0 25 50 75 100

B1 B1B2 B2A A A AC
• • •

20

CA + CB1 d '
CA + CB2 + CC d '

Guarantee:

14/11/2012

7

Timeline Scheduling
Method

x The time axis is divided in intervals of
equal length (time slots).

x Each task is statically allocated in a slot in
order to meet the desired request rate.

13

q

x The execution in each slot is activated by a
timer.

Example

40 Hz 25 ms
f T

A

task

' = GCD (minor cycle)
20 Hz

10 Hz

50 ms

100 ms

B

C

' GCD (minor cycle)

T = lcm (major cycle)

T'

14

0 25 50 75 100 125 150 175 200

CA + CB d '
CA + CC d '

Guarantee:
(previous schedule)

11.19! Buttazzo, Hard Real-Time Computing Systems ©2013!

Expandibility

  If the frequency of some task is changed, the !
impact can even be more significant:!

  Example: !
  Situation: B’s cycle changes from 50 ms to 40 ms!

  Action: re-build the schedule using different major/minor cycle length!

14/11/2012

11

Expandibility
If the frequency of some task is changed,
the impact can be even more significant:

25 ms

50 ms

100 ms

25 ms

40 ms

100 ms

T T
A

task

B

C

21

100 ms 100 msC

before after

' = 25 ' = 5
T = 100 T = 200

minor cycle:
major cycle:

40 sync.
per cycle!

Example

T'

0 25 50 75 100 125 150 175 200

'

'

22

0 25 50 75 100 125 150 175 200

T

14/11/2012

7

Timeline Scheduling
Method

x The time axis is divided in intervals of
equal length (time slots).

x Each task is statically allocated in a slot in
order to meet the desired request rate.

13

q

x The execution in each slot is activated by a
timer.

Example

40 Hz 25 ms
f T

A

task

' = GCD (minor cycle)
20 Hz

10 Hz

50 ms

100 ms

B

C

' GCD (minor cycle)

T = lcm (major cycle)

T'

14

0 25 50 75 100 125 150 175 200

CA + CB d '
CA + CC d '

Guarantee:
(previous schedule)

11.20! Buttazzo, Hard Real-Time Computing Systems ©2013!

Expandibility

14/11/2012

11

Expandibility
If the frequency of some task is changed,
the impact can be even more significant:

25 ms

50 ms

100 ms

25 ms

40 ms

100 ms

T T
A

task

B

C

21

100 ms 100 msC

before after

' = 25 ' = 5
T = 100 T = 200

minor cycle:
major cycle:

40 sync.
per cycle!

Example

T'

0 25 50 75 100 125 150 175 200

'

'

22

0 25 50 75 100 125 150 175 200

T

14/11/2012

7

Timeline Scheduling
Method

x The time axis is divided in intervals of
equal length (time slots).

x Each task is statically allocated in a slot in
order to meet the desired request rate.

13

q

x The execution in each slot is activated by a
timer.

Example

40 Hz 25 ms
f T

A

task

' = GCD (minor cycle)
20 Hz

10 Hz

50 ms

100 ms

B

C

' GCD (minor cycle)

T = lcm (major cycle)

T'

14

0 25 50 75 100 125 150 175 200

CA + CB d '
CA + CC d '

Guarantee:
(previous schedule)

14/11/2012

11

Expandibility
If the frequency of some task is changed,
the impact can be even more significant:

25 ms

50 ms

100 ms

25 ms

40 ms

100 ms

T T
A

task

B

C

21

100 ms 100 msC

before after

' = 25 ' = 5
T = 100 T = 200

minor cycle:
major cycle:

40 sync.
per cycle!

Example

T'

0 25 50 75 100 125 150 175 200

'

'

22

0 25 50 75 100 125 150 175 200

T

11.21! Buttazzo, Hard Real-Time Computing Systems ©2013!

Priority Scheduling

  Idea:!
  Assign each task a priority based on its timing constraints!
  Verify the feasibility of the schedule using analysis techniques!
  Execute tasks on a priority-based kernel!

  Priorities could be static or dynamic!

  Examples:!
  RM: assign fixed priority to tasks, proportional to task rate!
  EDF: at all times, assign top priority to job with earliest absolute

deadline !

11.22! Buttazzo, Hard Real-Time Computing Systems ©2013!

Assumptions

  The instances of a periodic task are regularly activated at a constant rate
with period Ti.!
  All tasks are released as soon as they arrive.!

  All instances of a periodic task have:!
  the same worst-case execution time Ci!
  the same relative deadline Di = Ti!

  Independent tasks (no precedence relations, no resource constraints)!
  No task can suspend itself (trap)!
  Negligible kernel overheads!

01/10/2012

37

input
CiUi =

Periodic task

Ci

timer

computation time

(period Ti)
sync

output utilization�factor

Ti
Ui

¾ A periodic task Wi generates an infinite sequence ofp i g q
jobs: Wi1, Wi2, , Wik (same code on different data):

Ti
Ci

Wi

Ti

C

Wi (Ci , Ti , Di) job Wik

Periodic task

) + (k 1) T

ai,k ai,k+1 t

Ci

ai,1 =)i

task phase

ai,k =)i + (k�1) Ti

di,k = ai,k + Di

often
Di = Ti

Static Priority Scheduling

11.24! Buttazzo, Hard Real-Time Computing Systems ©2013!

How to assign priorities?

  Typically, task priorities are assigned
based on the tasks’ relative
importance!
  Example: Solaris scheduling!

  However, different assignments can
lead to different utilization bounds!

interrupt threads
169

highest

lowest

!rst

scheduling
order

global
priority

last

160
159

100

60
59

0

99

realtime (RT) threads

system (SYS) threads

fair share (FSS) threads

!xed priority (FX) threads

timeshare (TS) threads

interactive (IA) threads

11.25! Buttazzo, Hard Real-Time Computing Systems ©2013!

Priority ≠ Importance

  If τ2 is more important than τ1 and is assigned a higher priority…!
!…the schedule may not be feasilble...!

14/11/2012

13

How to assign priorities?

x Typically, task priorities are assigned
based on the their relative importance.

x However, different priority assignments
can lead to different utilization bounds.

25

Priority vs. importance
If W2 is more important than W1 and is assigned higher
priority, the schedule may not be feasible:

W1

W2
P1 > P2

deadline miss

26

W1

W2
P2 > P1

11.26! Buttazzo, Hard Real-Time Computing Systems ©2013!

Priority ≠ Importance

!…while the utilization upper bound can be arbitrarily small.!
!
!
!
!
!
!
  U = ε/C1 + C2/∞ ! 0!
  An application can be unfeasible even if the processor is almost empty!!

14/11/2012

14

Priority vs. importance
But the utilization upper bound can be arbitrarily small:

An application can be unfeasible even
h h i l !

W1

W2
P2 > P1

H

f

when the processor is almost empty!

deadline miss

27

W2

U =
H

T1
+

f
C2 0

Rate Monotonic is optimal

RM is optimal among all fixed priority
algorithms (if Di = Ti):g (i i)

If there exists a fixed priority assignment
which leads to a feasible schedule for *, then
the RM assignment is feasible for *.

28

If * is not schedulable by RM, then it cannot
be scheduled by any fixed priority assignment.

11.27! Buttazzo, Hard Real-Time Computing Systems ©2013!

Rate Monotonic (RM)

!
“Assign each task a fixed priority proportional to its request rate”!

(Liu & Layland ’73)!

14/11/2012

12

Priority Scheduling
Method

x Each task is assigned a priority based on its
timing constraints.

x We verify the feasibility of the schedule
using analytical techniques.

23

g y q

x Tasks are executed on a priority-based
kernel.

Rate Monotonic (RM)
x Each task is assigned a fixed priority
proportional to its rate [Liu & Layland ‘73]proportional to its rate [Liu & Layland 73].

0

500 10025 75
WA

WB
40

24

0

0
WC

40 80

100

11.28! Buttazzo, Hard Real-Time Computing Systems ©2013!

Rate Monotonic is Optimal

  RM is optimal among all fixed priority algorithms (if Di = Ti)!

  RM optimality (in the sense of feasibility):!
  If there exists a fixed priority assignment which leads to a feasilbe

schedule for Γ, then the RM assignment is feasible for Γ.!
  If Γ is not schedulable by RM, then it cannot be scheduled by any fixed

priority assignment.!

11.29! Buttazzo, Hard Real-Time Computing Systems ©2013!

An RM-Unfeasible Schedule

14/11/2012

16

EDF Example

43

6 120 183 9 15
W1

94.0
9
4

6
3

 � pU
Di = Ti

31

0 9 183 6 12 15
W2

The RM unfesible schedule

43

6 120 183 9 15
W1

944.0
9
4

6
3

 � pU

32

0 9 183 6 12 15

deadline miss

W2

14/11/2012

16

EDF Example

43

6 120 183 9 15
W1

94.0
9
4

6
3

 � pU
Di = Ti

31

0 9 183 6 12 15
W2

The RM unfesible schedule

43

6 120 183 9 15
W1

944.0
9
4

6
3

 � pU

32

0 9 183 6 12 15

deadline miss

W2

11.30! Buttazzo, Hard Real-Time Computing Systems ©2013!

Identifying the Worst Case

  Feasibility may depend on the initial activations (phases):!

14/11/2012

16

EDF Example

43

6 120 183 9 15
W1

94.0
9
4

6
3

 � pU
Di = Ti

31

0 9 183 6 12 15
W2

The RM unfesible schedule

43

6 120 183 9 15
W1

944.0
9
4

6
3

 � pU

32

0 9 183 6 12 15

deadline miss

W2

14/11/2012

17

Priority Assignments
x Rate Monotonic (RM):

P v 1/T (t ti)Pi v 1/Ti (static)

x Deadline Monotonic (DM):

Pi v 1/Di (static)

Earliest Deadline First (EDF):x Earliest Deadline First (EDF):

Pi v 1/dik (dynamic) di,k = ri,k + Di

Identifying the worst case

944.0
9
4

6
3

 � pU
Feasibility may depend on the
initial activations (phases):

0 9 18

6 120 183

3 6 12

9

15

15

deadline miss

W1

W2

340 9 18

6 120 183

3 6 12

9

15

15
W1

W2

11.31! Buttazzo, Hard Real-Time Computing Systems ©2013!

Critical Instant

  The longest response time occurs when a task arrives together with all
higher priority tasks!

14/11/2012

18

Critical Instant
For any task Wi, the longest response time occurs
when it arrives together with all higher priority tasks.

W1

W2

R2

35

W1

W2

R2

Critical Instant
For independent preemptive tasks under fixed priorities, the
critical instant of Wi, occurs when it arrives together with all
higher priority tasks.

W1

W2

W3

1/6

2/8

2/12

Idle time

Wi 2/14

11.32! Buttazzo, Hard Real-Time Computing Systems ©2013!

Critical Instant

  For independent preemptive tasks under fixed priorities, the critical
instant of τi occurs when it arrives together with all higher priority tasks.!

14/11/2012

18

Critical Instant
For any task Wi, the longest response time occurs
when it arrives together with all higher priority tasks.

W1

W2

R2

35

W1

W2

R2

Critical Instant
For independent preemptive tasks under fixed priorities, the
critical instant of Wi, occurs when it arrives together with all
higher priority tasks.

W1

W2

W3

1/6

2/8

2/12

Idle time

Wi 2/14

11.33! Buttazzo, Hard Real-Time Computing Systems ©2013!

How can we verify feasibility?

  Each task uses the processor for a fraction of time:!

  Hence the total processor utilization is:!

  Up is a measure of the processor load!

14/11/2012

19

How can we verify feasibility?
x Each task uses the processor for a fraction
of time:

i

i
i T
CU

x Hence the total processor utilization is:

¦
n

iCU

37

¦

i i

i
p T

U
1

x Up is a misure of the processor load

A necessary condition

If Up > 1 the processor is overloaded
hence the task set cannot be schedulable.

However there are cases in which U < 1

38

However, there are cases in which Up < 1
but the task is not schedulable by RM.

14/11/2012

19

How can we verify feasibility?
x Each task uses the processor for a fraction
of time:

i

i
i T
CU

x Hence the total processor utilization is:

¦
n

iCU

37

¦

i i

i
p T

U
1

x Up is a misure of the processor load

A necessary condition

If Up > 1 the processor is overloaded
hence the task set cannot be schedulable.

However there are cases in which U < 1

38

However, there are cases in which Up < 1
but the task is not schedulable by RM.

11.34! Buttazzo, Hard Real-Time Computing Systems ©2013!

A Necessary Condition

  If Up > 1 the processor is overloaded hence the task set cannot be
schedulable!

  However, there are cases where:!
  Up < 1 !
  but the task set is not schedulable by RM!

  Utilization upper bound: if C1 or C2 is increased, τ2 will miss its deadline!!

14/11/2012

20

An unfeasible RM schedule

944043
 � U

6 120 183 9 15
W1

944.0
96
 � pU

39

0 9 183 6 12 15

deadline miss

W2

Utilization upper bound

833.033
 � U 833.0

96
�pU

6 120 183 9 15
W1

W2

40

0 9 183 6 12 15
2

NOTE: If C1 or C2 is increased,
W2 will miss its deadline!

14/11/2012

20

An unfeasible RM schedule

944043
 � U

6 120 183 9 15
W1

944.0
96
 � pU

39

0 9 183 6 12 15

deadline miss

W2

Utilization upper bound

833.033
 � U 833.0

96
�pU

6 120 183 9 15
W1

W2

40

0 9 183 6 12 15
2

NOTE: If C1 or C2 is increased,
W2 will miss its deadline!

11.35! Buttazzo, Hard Real-Time Computing Systems ©2013!

…and a Different Upper Bound…

  The upper bound Uub depends on the specific task set.!

14/11/2012

21

A different upper bound

9.042
 � bU 9.0

104
�ubU

4 120 8 16
W1

W2

41

The upper bound Uub depends on the
specific task set.

0
2

4 108 1662 12 14 18 20

A different upper bound

142
 � U 1

84
�pU

4 120 8 16
W1

W2

42

The upper bound Uub depends on the
specific task set.

0
2

4 128 16

11.36! Buttazzo, Hard Real-Time Computing Systems ©2013!

…and Yet Another One

  The upper bound Uub depends on the specific task set.!
  In these examples: Uub = 0.833, 0.9, 1, ….!
  Is there anything more we can tell about Uub?!

14/11/2012

21

A different upper bound

9.042
 � bU 9.0

104
�ubU

4 120 8 16
W1

W2

41

The upper bound Uub depends on the
specific task set.

0
2

4 108 1662 12 14 18 20

A different upper bound

142
 � U 1

84
�pU

4 120 8 16
W1

W2

42

The upper bound Uub depends on the
specific task set.

0
2

4 128 16

11.37! Buttazzo, Hard Real-Time Computing Systems ©2013!

The Least Upper Bound

14/11/2012

22

The least upper bound
Uub

1

Ulub

43

*

. . .

A sufficient condition

If Up d Ulub the task set is certainly
schedulable with the RM algorithm.

NOTE

44

If Ulub < Up d 1 we cannot say anything
about the feasibility of that task set.

NOTE

11.38! Buttazzo, Hard Real-Time Computing Systems ©2013!

A Sufficient Condition

  Given a task set Γ:!
  If Up ≤ Ulub, Γ is certainly schedulable with RM!
  If Ulub < Up ≤ 1, we cannot say anything about Γ’s feasibility!

11.39! Buttazzo, Hard Real-Time Computing Systems ©2013!

Least Upper Bound for RM

  Liu & Layland, 1973!
  Given a set of n periodic tasks:!

  Used for RM guarantee test:!
  Compute processor utilization!
  Verify that it does not exceed the least upper bound!

14/11/2012

23

Ulub for RM

x In 1973, Liu and Layland proved that for a
set of n periodic tasks:

� �12 /1
lub � nRM nU

45

for n of Ulub o ln 2

RM Schedulability

100

CPU%

30
40
50
60
70
80
90

100

69%

46

0
10
20
30

1 2 3 4 5 6 7 8 9 10 n

11.40! Buttazzo, Hard Real-Time Computing Systems ©2013!

RM Schedulability

  Ulub
RM for n tasks!

14/11/2012

23

Ulub for RM

x In 1973, Liu and Layland proved that for a
set of n periodic tasks:

� �12 /1
lub � nRM nU

45

for n of Ulub o ln 2

RM Schedulability

100

CPU%

30
40
50
60
70
80
90

100

69%

46

0
10
20
30

1 2 3 4 5 6 7 8 9 10 n

n! n(21/n-1)!
1! 1!
2! 0.828!
3! 0.780!
4! 0.757!
5! 0.743!

10! 0.718!
20! 0.705!
50! 0.698!

100! 0.696!
1000! 0.693!

11.41! Buttazzo, Hard Real-Time Computing Systems ©2013!

RM Schedulability

  Uub
RM

 for 2 tasks is a function of!

F U*

1! 0.828!
2! 0.899!
3! 0.928!
4! 0.944!
5! 0.954!

10! 0.976!
20! 0.988!
50! 0.995!

100! 1.000!
1000! 1.000!

n! n(21/n-1)!
1! 1!
2! 0.828!
3! 0.780!
4! 0.757!
5! 0.743!

10! 0.718!
20! 0.705!
50! 0.698!

100! 0.696!
1000! 0.693!

U* = 2 F(F +1) −F()

F = T2 T1!" #$

11.42! Buttazzo, Hard Real-Time Computing Systems ©2013!

A Tighter Least Upper Bound for RM

  Bini & Buttazzo2, 2000!
  Hyperbolic Bound!
  A set of n periodic tasks is schedulable with RM if:!

  It is a “tight” bound: given any set of utilizations that violate the HB, it is
always possible to produce an unfeasible task set with those utilization.!

14/11/2012

30

The Hyperbolic Bound

x In 2000, Bini et al. proved that a set of n
periodic tasks is schedulable with RM if:

2)1(d��
n

iU

59

)(

1

�
 i

i

Proof sketch
T

1
< T

i
< 2T

1

C
1

= T
2

– T
1W1

C
1

C
1

W2

C
2

T
1 2T

1

W3

C
3

C

T
2

T
3•

•
•

C
2

= T
3

– T
2

C
3

= T
4

– T
3

60

Wn-1

0

C
n–1

Wn

C
n

T
n–1

T
n

C
n–1

= T
n

– T
n–1

T
1

¦
�

�
1n

1k

k1n
CTC

11.43! Buttazzo, Hard Real-Time Computing Systems ©2013!

Comparison

  The hyperbolic bound can be compared with the Liu-Layland bound in the
“task utilization space” (U-space)!

  The gain achieved by HB over LL increases with n (it tends to √2)!

14/11/2012

31

Proof sketch
Ci = Ti+1 – Ti Ui = Ri – 1 Ri = Ui + 1

1
1

TC
n

k
k d¦

12TTC nn d�

21
1

d�)(U
T
T

n
n

1

1

1
TCC

n

k
kn d�¦

�

61

��
�

�

�
1

1

1

11
)1(

n

i
i

n

i
i

n UR
T
T 2)1(

1

d��

n

i
iU

HB vs. LL

1

U1

LL)12(/1 �d¦ n
n

i nU

0.83
HB 2)1(

1

d��

n

i
iU

1
¦
 i

62

U2
10.83

11.44! Buttazzo, Hard Real-Time Computing Systems ©2013!

Exercise 4.1
Ci! Ti!

τ1! 2! 6!
τ2! 2! 8!
τ3! 2! 12!

Verify the schedulability and construct the RM schedule.!

11.45! Buttazzo, Hard Real-Time Computing Systems ©2013!

Exercise 4.2
Ci! Ti!

τ1! 3! 5!
τ2! 1! 8!
τ3! 1! 10!

Verify the schedulability and construct the RM schedule.!

11.46! Buttazzo, Hard Real-Time Computing Systems ©2013!

Extension to Tasks with D < T

  More modeling possibilities. For instance:!
  Tasks with jitter constraints;!
  Activities with shorter response time with respect to their period.!

  Deadline Monotonic (DM): !
  Pi ∝ 1/Di (static) !

  Earliest Deadline First (EDF):!
  Pi ∝ 1/di,k (dynamic) !

14/11/2012

32

Extension to tasks with D < T

Di

Ti

ri,k di,k

Ci

t
Wi

Di

ri,k+1

Scheduling algorithms

63

x Deadline Monotonic: pi v 1/Di (static)

x Earliest Deadline First: pi v 1/di (dynamic)

Scheduling algorithms

Deadline Monotonic
W1

W2
0 4 8 12 16 20 24 28

Problem with the Utilization Bound
32n C

64

116.1
6
3

3
2

1
! � ¦

n

i i

i
p D

CU

but the task set is schedulable.

11.47! Buttazzo, Hard Real-Time Computing Systems ©2013!

Deadline Monotonic

!
“Assign each task a fixed priority inversely proportional to its relative deadline”!

(Leung & Whitehead 1982)!

!

14/11/2012

32

Extension to tasks with D < T

Di

Ti

ri,k di,k

Ci

t
Wi

Di

ri,k+1

Scheduling algorithms

63

x Deadline Monotonic: pi v 1/Di (static)

x Earliest Deadline First: pi v 1/di (dynamic)

Scheduling algorithms

Deadline Monotonic
W1

W2
0 4 8 12 16 20 24 28

Problem with the Utilization Bound
32n C

64

116.1
6
3

3
2

1
! � ¦

n

i i

i
p D

CU

but the task set is schedulable.

11.48! Buttazzo, Hard Real-Time Computing Systems ©2013!

Deadline Monotonic is Optimal

  If Di < Ti, if a task set is schedulable by some fixed priority assignment, then
it is also schedulable by DM.!

14/11/2012

15

Deadline Monotonic is optimal
If Di d Ti then the optimal priority assignment is
given by Deadline Monotonic (DM):g y ()

W1

W2
P2 > P1

DM

29

W1

W2
P1 > P2

RM

EDF Optimality

EDF is optimal among all algorithms:

If there exists a feasible schedule for *, then
EDF will generate a feasible schedule.

30

If * is not schedulable by EDF, then it cannot
be scheduled by any algorithm.

11.49! Buttazzo, Hard Real-Time Computing Systems ©2013!

Good News, Bad News

  Good news ! DM gives optimal priority assignment.!
  Bad news ! problem with the utilization bound:!

  !

  but the task set is schedulable!
 CPU workload overestimated!
 RM guarantee test too pessimistic for DM!

14/11/2012

32

Extension to tasks with D < T

Di

Ti

ri,k di,k

Ci

t
Wi

Di

ri,k+1

Scheduling algorithms

63

x Deadline Monotonic: pi v 1/Di (static)

x Earliest Deadline First: pi v 1/di (dynamic)

Scheduling algorithms

Deadline Monotonic
W1

W2
0 4 8 12 16 20 24 28

Problem with the Utilization Bound
32n C

64

116.1
6
3

3
2

1
! � ¦

n

i i

i
p D

CU

but the task set is schedulable.

14/11/2012

32

Extension to tasks with D < T

Di

Ti

ri,k di,k

Ci

t
Wi

Di

ri,k+1

Scheduling algorithms

63

x Deadline Monotonic: pi v 1/Di (static)

x Earliest Deadline First: pi v 1/di (dynamic)

Scheduling algorithms

Deadline Monotonic
W1

W2
0 4 8 12 16 20 24 28

Problem with the Utilization Bound
32n C

64

116.1
6
3

3
2

1
! � ¦

n

i i

i
p D

CU

but the task set is schedulable.

11.50! Torroni, Real-Time Operating Systems M ©2013!

Seen so far…

  Problem definiton (periodic task scheduling)!
  Concepts (processor utilization, critical instant, upper bound)!
  Scheduling Algorithms!

  Theoretical (Proportional Share)!
  Paper & pencil (Timeline Scheduling)!
  Fixed Priority (optimal)!

 Rate Monotonic if D=T!
 Deadline Monotonic if D<T!

  Shedulability Analysis!
  Least Upper Bound!

 Liu-Layland!
 Hyperbolic Bound!

  Next?!

11.51! Buttazzo, Hard Real-Time Computing Systems ©2013!

Response Time Analysis

  A sufficient and necessary schedulability test for DM (Audsley et al., 1990)!

  For each task τi, compute the interference (preemption) due to higher
priority tasks:!

!
  Compute its response time as:!

 Ri = Ci + Ii!
  Verify whether! Ri ≤ Di

14/11/2012

33

Response Time Analysis
[Audsley ‘90]

x For each task W compute the interferencex For each task Wi compute the interference
due to higher priority tasks:

x compute its response time as

¦
�

ik DD
ki CI

65

x compute its response time as
Ri = Ci + Ii

x verify if Ri d Di

Computing Interference
Wk

0 Ri

Wi

Interference of Wk on Wi
in the interval [0, Ri]: k

i
ik C

T
RI

66

[, i]
kT

Interference of high
priority tasks on Wi: k

k

i
i

k
i C

T
RI ¦

�

1

1

11.52! Buttazzo, Hard Real-Time Computing Systems ©2013!

Computing the Interference

  Assume tasks are ordered by increasing relative deadlines!
  i < j if and only if Di ≤ Dj!

14/11/2012

33

Response Time Analysis
[Audsley ‘90]

x For each task W compute the interferencex For each task Wi compute the interference
due to higher priority tasks:

x compute its response time as

¦
�

ik DD
ki CI

65

x compute its response time as
Ri = Ci + Ii

x verify if Ri d Di

Computing Interference
Wk

0 Ri

Wi

Interference of Wk on Wi
in the interval [0, Ri]: k

i
ik C

T
RI

66

[, i]
kT

Interference of high
priority tasks on Wi: k

k

i
i

k
i C

T
RI ¦

�

1

1

11.53! Buttazzo, Hard Real-Time Computing Systems ©2013!

Computing the Response Time

14/11/2012

34

Computing Response Time

i
i

CRCR ¦
�

�
1

k
kk

ii C
T

CR ¦

�
1

Iterative solution:

CR0

67

k
k

s
i

i

k
i

s
i C

T
RCR

)1(1

1

��

¦�

ii CR
iterate while

)1(�! s
i

s
i RR

Dynamic Priority
Scheduling

14/11/2012

34

Computing Response Time

i
i

CRCR ¦
�

�
1

k
kk

ii C
T

CR ¦

�
1

Iterative solution:

CR0

67

k
k

s
i

i

k
i

s
i C

T
RCR

)1(1

1

��

¦�

ii CR
iterate while

)1(�! s
i

s
i RR

Dynamic Priority
Scheduling

14/11/2012

34

Computing Response Time

i
i

CRCR ¦
�

�
1

k
kk

ii C
T

CR ¦

�
1

Iterative solution:

CR0

67

k
k

s
i

i

k
i

s
i C

T
RCR

)1(1

1

��

¦�

ii CR
iterate while

)1(�! s
i

s
i RR

Dynamic Priority
Scheduling

14/11/2012

34

Computing Response Time

i
i

CRCR ¦
�

�
1

k
kk

ii C
T

CR ¦

�
1

Iterative solution:

CR0

67

k
k

s
i

i

k
i

s
i C

T
RCR

)1(1

1

��

¦�

ii CR
iterate while

)1(�! s
i

s
i RR

Dynamic Priority
Scheduling

14/11/2012

34

Computing Response Time

i
i

CRCR ¦
�

�
1

k
kk

ii C
T

CR ¦

�
1

Iterative solution:

CR0

67

k
k

s
i

i

k
i

s
i C

T
RCR

)1(1

1

��

¦�

ii CR
iterate while

)1(�! s
i

s
i RR

Dynamic Priority
Scheduling

14/11/2012

34

Computing Response Time

i
i

CRCR ¦
�

�
1

k
kk

ii C
T

CR ¦

�
1

Iterative solution:

CR0

67

k
k

s
i

i

k
i

s
i C

T
RCR

)1(1

1

��

¦�

ii CR
iterate while

)1(�! s
i

s
i RR

Dynamic Priority
Scheduling

14/11/2012

34

Computing Response Time

i
i

CRCR ¦
�

�
1

k
kk

ii C
T

CR ¦

�
1

Iterative solution:

CR0

67

k
k

s
i

i

k
i

s
i C

T
RCR

)1(1

1

��

¦�

ii CR
iterate while

)1(�! s
i

s
i RR

Dynamic Priority
Scheduling

11.54! Buttazzo, Hard Real-Time Computing Systems ©2013!

Exercise 4.7
Ci! Di! Ti!

τ1! 2! 5! 6!
τ2! 2! 4! 8!
τ3! 4! 8! 12!

Verify the schedulability and construct the DM schedule.!

11.55! Buttazzo, Hard Real-Time Computing Systems ©2013!

Exercise 4.3
Ci! Ti!

τ1! 1! 4!
τ2! 2! 6!
τ3! 3! 10!

Verify the schedulability and construct the RM schedule.!

11.56! Buttazzo, Hard Real-Time Computing Systems ©2013!

Exercise 4.4
Ci! Ti!

τ1! 1! 4!
τ2! 2! 6!
τ3! 3! 8!

Verify the schedulability and construct the RM schedule.!

Dynamic Priority Scheduling

11.58! Buttazzo, Hard Real-Time Computing Systems ©2013!

EDF

  Di = Ti!

  No constraints!

  RM: unfeasible.!

  EDF: feasible!!
  With EDF, any task

set can utilize the
processor up to 100%!

14/11/2012

35

Earliest Deadline First (EDF)

x Each job receives an absolute deadline:

di,k = ri,k + Di

x At any time, the processor is assigned to the
job with the earliest absolute deadline.

69

x Under EDF, any task set can utilize the
processor up to 100%.

EDF Example

43

6 120 183 9 15
W1

94.0
9
4

6
3

 � pU
Di = Ti

70

0 9 183 6 12 15
W2

14/11/2012

20

An unfeasible RM schedule

944043
 � U

6 120 183 9 15
W1

944.0
96
 � pU

39

0 9 183 6 12 15

deadline miss

W2

Utilization upper bound

833.033
 � U 833.0

96
�pU

6 120 183 9 15
W1

W2

40

0 9 183 6 12 15
2

NOTE: If C1 or C2 is increased,
W2 will miss its deadline!

11.59! Buttazzo, Hard Real-Time Computing Systems ©2013!

EDF Optimality & Schedulability

  Optimality. EDF is optimal among all algorithms (Dertouzos 1974)!
  If there exists a feasible schedule for Γ, then EDF will find a feasible

schedule!
  If Γ is not schedulable by EDF, then it cannot be scheduled by any

algorithm!
(result independent of periodicity)!

  Schedulability. For a set of n periodic tasks,!

!(Liu & Layland 1973)!

  In other words, a task set Γ is EDF-schedulable if and only if Up ≤ 1!

14/11/2012

37

EDF Optimality [Dertouzos ‘74]

WE

V

tEt fE dE dk

Wk

Transforming V in V’

73

V’(t) = V(tE)

V’(tE) = V(t) fk’ = fE d dE d dk

Feasibility is preserved

EDF schedulability
x In 1973, Liu and Layland proved that for a

t f i di t kset of n periodic tasks:

1lub EDFU

Thi th t t k t * i h d l bl

74

x This means that a task set * is schedulable
by EDF if and only if

Up d 1

11.60! Buttazzo, Hard Real-Time Computing Systems ©2013!

EDF Schedulability

  Necessity: schedulable ! Up ≤ 1 is trivial!
  To prove sufficiency: Up ≤ 1 ! schedulable!

1.  We find any algorithm for which the above condition holds!
2.  Then, for the EDF optimality, we can say that the above condition also

holds for EDF.!

  Consider the algorithm which schedules in every interval of length Δ a
fraction of task: δi = Ut Δ!
  Proportional Share Algorithm!
  Feasibility is ensured if , that is, if Up ≤ 1.!

14/11/2012

38

Proving sufficiency

U d 1 * schedulableUp d 1 * schedulable

x We find any algorithm for which the above

condition holds;

75

x Then, for the EDF optimality, we can say

that the above condition also holds for EDF.

Proving sufficiency

Consider the algorithm which schedules in

Gi = Ui '

every interval of length '�a fraction of task:

G G G G G G G G G

76

' ' '

G
1

G
2
G

3
G

1
G

2
G

3
G

1
G

2
G

3

t

14/11/2012

39

Proving sufficiency
With this algorithm, a task executes in each
period for: TTperiod for:

iiii
i

i
i CUTUTT

 '
'

 G
'

n
'

Gi

t'

Gi

' '

Gi Gi

Ti

77

Feasibility is ensured if 'dG¦
 i

i
1

that is if

'd'¦

n

i
iU

1
Up d
1

Dynamic Priority

EDF with D d T
Schedule based on absolute deadlines

Processor Demand Criterion [Baruah ‘90]

Schedulability Analysis

78

In any interval, the computation demanded by the
task set must be no greater than the available time.

11.61! Buttazzo, Hard Real-Time Computing Systems ©2013!

Exercise 4.5
Ci! Ti!

τ1! 1! 4!
τ2! 2! 6!
τ3! 3! 8!

Verify the schedulability and construct the EDF schedule.!

11.62! Buttazzo, Hard Real-Time Computing Systems ©2013!

Schedulability with Dynamic Priority

  What if D ≤ T ?!
  Processor Demand Criterion!

“in any interval, the computation demanded by the task !
must be no greater than the available time”!

(Baruah, Rosier & Howell 1990)!

  Demand of a task τi in [t1,t2]: amount of processing time gi(t1,t2) of all
instances of τi that are activated in [t1,t2] and must be completed in [t1,t2].!

  For the whole task set: g(t1,t2)!

14/11/2012

40

Processor Demand

t1 t2
The demand in [t1, t2] is the computation time of those
tasks started at or after t1 with deadline less than or
equal to t :

79

¦
d

t

2

1

),(21

td

tr
i

i

i

Cttg

equal to t2:

Processor Demand

0 L

Processor Demand in [0, L]

80

¦

��

n

i
i

i

ii C
T

TDLLg
1

),0(

14/11/2012

40

Processor Demand

t1 t2
The demand in [t1, t2] is the computation time of those
tasks started at or after t1 with deadline less than or
equal to t :

79

¦
d

t

2

1

),(21

td

tr
i

i

i

Cttg

equal to t2:

Processor Demand

0 L

Processor Demand in [0, L]

80

¦

��

n

i
i

i

ii C
T

TDLLg
1

),0(

11.63! Buttazzo, Hard Real-Time Computing Systems ©2013!

Processor Demand Test

  Processor Demand in [0,L] aka Demand Bound Function, dbf(L)!

  Demand Test!

  How can we bound the number of intervals in which the test has to be
performed?!

14/11/2012

40

Processor Demand

t1 t2
The demand in [t1, t2] is the computation time of those
tasks started at or after t1 with deadline less than or
equal to t :

79

¦
d

t

2

1

),(21

td

tr
i

i

i

Cttg

equal to t2:

Processor Demand

0 L

Processor Demand in [0, L]

80

¦

��

n

i
i

i

ii C
T

TDLLg
1

),0(

14/11/2012

41

Processor Demand Test

LLgL d!�),0(,0

Question

81

How can we bound the number of intervals
in which the test has to be performed?

Question

Example

W1

8

g(0, L)

W2
0 2 6 124 8 10 14 16

L

82
0

2

4

6

L

14/11/2012

40

Processor Demand

t1 t2
The demand in [t1, t2] is the computation time of those
tasks started at or after t1 with deadline less than or
equal to t :

79

¦
d

t

2

1

),(21

td

tr
i

i

i

Cttg

equal to t2:

Processor Demand

0 L

Processor Demand in [0, L]

80

¦

��

n

i
i

i

ii C
T

TDLLg
1

),0(

11.64! Buttazzo, Hard Real-Time Computing Systems ©2013!

Example

14/11/2012

41

Processor Demand Test

LLgL d!�),0(,0

Question

81

How can we bound the number of intervals
in which the test has to be performed?

Question

Example

W1

8

g(0, L)

W2
0 2 6 124 8 10 14 16

L

82
0

2

4

6

L

11.65! Buttazzo, Hard Real-Time Computing Systems ©2013!

Bounding Complexity

  Some considerations:!
  Since g(0,L) is a step function, it suffices to check feasibility only at

deadline points (dk)!
  If tasks are synchronous and Up < 1, it suffices to check feasibility only

up to the hyperperiod H = lcm(T1, …, Tn)!
  g(0,L) ≤ G(0,L) and, if U < 1, there exists an L* for which G(0,L*) = L*.!

14/11/2012

42

Bounding complexity

x Since g(0 L) is a step function we canx Since g(0,L) is a step function, we can

check feasibility only at deadline points.

x If tasks are synchronous and Up < 1, we can

check feasiblity up to the hyperperiod H:

83

H = lcm(T1, … , Tn)

Bounding complexity

x Moreover we note that: g(0, L) d G(0, L)

¦

¸̧
¹

·
¨̈
©

§ ��

n

i
i

i

ii C
T
DTLLG

1

),0(

i
n

ii

n
i CDTCL ¦¦ ��)(

84

ii
ii

i i T
DT

T
L ¦¦

�
11

)(

¦

��
n

i
iii UDTLU

1

)(

14/11/2012

43

Limiting L

¦

��
n

i
iii UDTLULG

1

)(),0(L

g(0, L)

G(0, L)
 i 1

f L > L*

U

UDT
L

n

i
iii

�

�

¦

1

)(
1*

85

L
L*

for L > L*

g(0,L) d G(0,L) < L

Processor Demand Test

LLgDL d��)0(LLgDL d��),0(,

D = {dk | dk d min (H, L*)}

H = lcm(T1, … , Tn)

86

(1, , n)

U

UDT
L

n

i
iii

�

�

¦

1

)(
1*

14/11/2012

34

Computing Response Time

i
i

CRCR ¦
�

�
1

k
kk

ii C
T

CR ¦

�
1

Iterative solution:

CR0

67

k
k

s
i

i

k
i

s
i C

T
RCR

)1(1

1

��

¦�

ii CR
iterate while

)1(�! s
i

s
i RR

Dynamic Priority
Scheduling

11.66! Buttazzo, Hard Real-Time Computing Systems ©2013!

Processor Demand Test

  A set of synchronous periodic tasks with relative deadlines less than or
equal to periods can be scheduled by EDF if and only if !
  U < 1, and!

  !

14/11/2012

43

Limiting L

¦

��
n

i
iii UDTLULG

1

)(),0(L

g(0, L)

G(0, L)
 i 1

f L > L*

U

UDT
L

n

i
iii

�

�

¦

1

)(
1*

85

L
L*

for L > L*

g(0,L) d G(0,L) < L

Processor Demand Test

LLgDL d��)0(LLgDL d��),0(,

D = {dk | dk d min (H, L*)}

H = lcm(T1, … , Tn)

86

(1, , n)

U

UDT
L

n

i
iii

�

�

¦

1

)(
1*

14/11/2012

40

Processor Demand

t1 t2
The demand in [t1, t2] is the computation time of those
tasks started at or after t1 with deadline less than or
equal to t :

79

¦
d

t

2

1

),(21

td

tr
i

i

i

Cttg

equal to t2:

Processor Demand

0 L

Processor Demand in [0, L]

80

¦

��

n

i
i

i

ii C
T

TDLLg
1

),0(

11.67! Buttazzo, Hard Real-Time Computing Systems ©2013!

Exercise 4.6
Ci! Di! Ti!

τ1! 2! 5! 6!
τ2! 2! 4! 8!
τ3! 4! 8! 12!

Verify the schedulability and
construct the EDF schedule.!

11.68! Torroni, Real-Time Operating Systems M ©2013!

Quizzes

  True or False?!
  If a task set is DM-schedulable, it is EDF-schedulable!
  If a task set is EDF-schedulable, its processor utilization Up is below the

HB!
  If a task set’s processor utilization Up is below the Liu-Layand bound,

then Up is also below the HB!
  A task set consisting of two tasks, τ1 and τ2, with Di=Ti and T1=2T2, is

RM-feasible if and only if the total processor utilization is at most 1!
  Response Time Analysis can be used to study schedulability, even if

relative deadline and pediod coincide (for all τi, Di=Ti)!
  The Processor Demand Test can be used to study schedulability, even

if relative deadline and pediod coincide !
  If for all τi, Di=Ti, the Processor Demand Test and Response Time

Analysis of a given task set give the same schedulability result!
!

Summary

11.70! Buttazzo, Hard Real-Time Computing Systems ©2013!

Periodic Task Scheduling

  Three scheduling approaches!
  Off-line construction (timeline)!
  Fixed priority (RM, DM)!

 Pi ∝1/Ti"

 Pi ∝ 1/Di!
  Dynamic priority (EDF)!

 Pi ∝ 1/di,k, di,k = ri,k + Di!

  Three analysis techniques:!
  Processor Utilization Bound ! !U ≤ Ulub ! ! !O(n)!
  Response Time Analysis ! !for all i, Ri ≤ Di ! !*!
  Process Demand Criterion ! !for all L, g(0,L) ≤ L !*!

!* pseudo-polynomial complexity!

11.71! Buttazzo, Hard Real-Time Computing Systems ©2013!

RM vs. EDF

  RM!
  Simpler to implement in commercial operating systems !

 fixed priorities!
  More predictable during !
 overloads !

 highest priority tasks are !
! known!

  EDF!
  More efficient!
  Reduces context switches!
  Better responsiveness in handling aperiodic tasks!
  Period rescaling during permanent overloads!

14/11/2012

45

RM vs. EDF

W1
100 205 15 25 30 35

RM

W2
0

100 205 15 25

217 14

30

28 35

35

W1

EDF
deadline miss

89

1

W2
0

100 205 15 25

217 14

30

28 35

35

RM vs. EDF
EDF
x It’s more efficient
x It reduces context switches

It i i l t i l t
RM

90

x It is simpler to implement on
commercial operating systems

x More predictable during overloads

