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Notice 

The course material includes slides downloaded from:!
http://codex.cs.yale.edu/avi/os-book/!

(slides by Silberschatz, Galvin, and Gagne, associated with 
Operating System Concepts, 9th Edition, Wiley, 2013)!

and!
http://retis.sssup.it/~giorgio/rts-MECS.html!

(slides by Buttazzo, associated with Hard Real-Time Computing 
Systems, 3rd Edition, Springer, 2011)!

which has been edited to suit the needs of this course. !
The slides are authorized for personal use only. !
Any other use, redistribution, and any for profit sale of the slides (in any 
form) requires the consent of the copyright owners.!



9.3! Buttazzo, Hard Real-Time Computing Systems ©2013!

Objectives 

  Study software methodologies to support time critical systems:!
  Study software methodologies and algorithms to increase predictability 

in (embedded) computing system… !
!…consisting of several concurrent activities… !
!…subject to timing constraints!

  Learn how to model and analyze a real-time application to predict 
worst-case response times and verify its feasibility under a set of 
constraints!



9.4! Buttazzo, Hard Real-Time Computing Systems ©2013!

Control and Implementation 

  Often, control and implementation are done by different people that do not 
talk to each other:!

  Control guys typically assume a computer with infinite resources and 
computational power. In some case, computation is modeled by a fixed 
delay Δ.!
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Aim of the course

x Studing software methodologies for supportingx Studing software methodologies for supporting
time critical computing systems.

x We will not consider how to control a system, but
only how to provide a proper software support to
control applications.

Control and implementation

Often, control and implementation are done by
different people that do not talk to each other:

Control guys typically assume a computer with infinite
resources and computational power. In some case,
computation is modeled by a fixed delay '.
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Control and Implementation 

  In reality, a computer:!
  has limited resources!
  finite computational power (non null execution times)!
  executes several concurrent activities!
  introduces variable delays (often unpredictable)!

  Modeling such factors and taking them into account in the design phase 
allows a significant improvement in performance and reliability!



Definitions  
and 

Sample Applications 
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Embedded System 

  A computing system hidden in an object to control its functions, enhance its 
performance, manage the available resources and simplify the interaction 
with the user.!
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They are computing systems hidden in an object to control
its functions, enhance its performance, manage the available
resources and simplify the interaction with the user.

Real-Time Systems LaboratoryEmbedded systems

p y

Environment
actuators

sensors

micro-
processor

Object

communication

user other units

Control system components
In every control application, we can distinguish
3 basic components:

x the system to be controlled
– it may include sensors and actuators

x the controller
it sends signals to the system according to a

3 basic components:

– it sends signals to the system according to a 
predetermined control objective

x the environment in which the system operates
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Control System Components 

  In every control application, we can distinguish 3 basic components:!
  The system to be controlled!

 may include sensors and actuators!
  The controller!

 sends signals to the system according to a predetermined control 
objective!

  The environment in which the system operates!
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A Typical Control System 

  Other activities!
  filtering, classification, data fusion, recognition, planning!
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A typical control system

Environ-
mentSystemController

f db kfeedback

Detailed block diagram
System

Controller actuators

Environ.

Sensory
i

internal state

external statepre-
i

feedback
sensor sensor

Other activities
filtering, classification, data fusion, recognition, planning

processing processing



9.10! Buttazzo, Hard Real-Time Computing Systems ©2013!

Software Vision 
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Software Vision

computer

actuators

A/D

D/A

Environ.

sensorsA/D

Thread (task) Resource

Types of control systems

Depending of the system-environment interactions,
we can distinguish 3 types of control systems:

• Monitoring Systems
– do not modify the environment

• Open-loop control systems
l l dif th i t

we can distinguish 3 types of control systems:

– loosely modify the environment

• Closed-loop control systems
– tight interaction between perception and action
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Types of Control Systems 

  Depending on the system-environment interactions, we can distinguish 
among 3 types of control systems:!
  Monitoring systems!

 do not modify the environment!
  Open-loop control systems!

  loosely modify the environment!
  Closed-loop control systems!

  tight interaction between perception and action!
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Monitoring Systems 

  Do not modify the environment!
  surveillance systems, air traffic control!
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Monitoring Systems

Do not modify the environment

Environ-
ment

Data
processing

sensors

sensors
...

Real-time system

Examples: surveillance systems,  air traffic control

sensors
Display

Open-loop control systems

Sensing and control are loosely coupled

Environ-
ment

SystemController actuators

Examples: assembly robots,  sorting robots

sensors
Data

processingPlanning
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Open-Loop Control Systems 

  Sensing and control are loosely coupled!
  Assembly robots, sorting robots!
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Closed-Loop Control Systems 

  Sensing and control are tightly coupled!
  Flight control systems, military systems, living beings!
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Closed-loop control systems

Sensing and control are tightly coupled

Environ-
ment

SystemController actuators

Examples: flight control systems, military systems,
living beings

sensors
Data

processingPlanning

F3

Multi-level feedback control

S2

S3

A2

A3

F1

F2
Sensing Control

Environment
S1 A1
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Implications 

  The tight interaction with the environment requires the system to react to 
events within precise timing constraints!

  Timing constraints are imposed by the dynamics of the environment!

  The operating system must be able to execute tasks within timing 
constraints!
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A Robot Control Example 

  Consider a robot equipped with:!
  two actuated wheels!
  two proximity (US) sensors!
  a mobile (pan/tilt) camera!
  a wireless transceiver!

  Goal:!
  follow a path based on visual feedback!
  avoid obstacles!
  send complete robot status every 20 ms!
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Implications
x The tight interaction with the environment

i th t t t t t ithirequires the system to react to events within
precise timing constraints.

x Timing constraints are imposed by the
dynamics of the environment.

35

The operating system must be able to
execute tasks within timing constraints.

A robot control example

Consider a mobile robot equipped with:

¾ two actuated wheels;

¾ two proximity (US) sensors;

¾ a mobile (pan/tilt) camera;

¾ a wireless tranceiver.

Goal
¾ Follow a path based on visual feedback;
¾ Avoid obstacles;
¾ Send complete robot status every 20 ms.
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Hierarchical Control 
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Hierarchical control

visualͲbased
navigation

visual
tracking

obstacle
avoidance

vehicle
control

10�ms

100�ms
object

recognition

mot_dx mot_sxpan tiltcamera US2US1

1�ms1�ms

5�ms20�ms
feature

extraction motor
control

motor
control

motor
control

motor
control

Design requirements

¾Modularity: a subsystem must be developed without
knowing the details of other subsystems (team work).

¾ Configurability: software must be adapted to different
situations (through the use of suitable parameters)
without changing the source code.

¾ Portability: minimize code changes when porting the
system to different hardware platforms.y p

¾ Predictability: allow the estimation of maximum delays.

¾ Efficiency: optimize the use of available resources
(computation time, memory, energy).
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Design Requirements 

  Modularity: a subsystem must be developed without knowing the details of 
other subsystems (team work)!

  Configurability: software must be adapted to different situations (through 
the use of suitable parameters) without changing the source code!

  Portability: minimize code changes when porting the system to different 
hardware platforms!

  Predictability: allow the estimation of maximum delays!
  Efficiency: optimize the use of available resources (computation time, 

memory, energy)!
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Operating System Requirements 

  Timeliness: results must be correct not only in their value but also in the 
time domain!
  provide kernel mechanism for time management and for handling tasks 

with explicit timing constraints and different criticality!
  Predictability: system must be analyzable to predict the consequences of 

any scheduling decision!
  if some task cannot be guaranteed within time constraints, system must 

notify this in advance, to handle the exception (plan alternative actions)!
  Efficiency: operating system should optimize the use of available resources 

(computation time, memory, energy)!
  Robustness: must be resilient to peak-load conditions!
  Fault tolerance: single software/hardware failures should not cause the 

system to crash!
  Maintainability: modular architecture to ensure that modifications are easy 

to perform!
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Modularity 

  Modularity can be achieved by:!
  partitioning the system into a set of subsystems, each managed by one 

or more computational tasks!
  the definition of precise interfaces between tasks, each specifying:!

 data exchanged with the other tasks (input and output)!
  functionality of the task (what it has to do)!
 validity assumptions (e.g., admissible ranges)!
 performance requirements (priority, period, deadline, jitter)!

  Asynchronous communication mechanisms!



9.21! Buttazzo, Hard Real-Time Computing Systems ©2013!

Control View 
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Software View 
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Software View
periodic task buffer

visual
tracking

obstacle
avoidance

vehicle
control

visualͲbased
navigation

object
recognition

mot_dx mot_sxpan tiltcamera US2US1

feature
extraction

motor
control

RTOS responsibilities

The RealͲTime Operating Systems (RTOS) is responsible for :

¾managing the concurrent execution of the various¾managing the concurrent execution of the various
activities;

¾ decide the order of execution of the tasks (scheduling),
satisfying the specified requirements;

¾ l i ibl i i fli d i h f¾ solving possible timing conflicts during the access of
shared resources (mutual exclusion);

¾manage the timely execution of asynchronous events
(interrupts).
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RTOS Responsibilities 

  The Real-Time Operating System (RTOS) is responsible for:!
  managing the concurrent execution of the various activities!

 concurrent tasks!
  decide the order of execution of the tasks, satisfying the specified 

requirements!
 scheduling!

  solving possible timing conflicts during the access of shared resources!
 critical sections!

  manage the timely execution of asynchronous events!
  interrupts!
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What is a Real-Time System? 

  A computer system able to respond to events within precise timing 
constraints!

  A system where the correctness depends not only on the output values, 
but also on the time at which results are produced!
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event

Real-time systems

A computing system able to respond to

Real-Time
System

event

action

A computing system able to respond to
events within precise timing constraints is
called a Real-Time System.

What’s a real-time system?

E i t
x (t)

It is a system in which the correctness depends

EnvironmentRT system

y
t

( )

(t+')

It is a system in which the correctness depends
not only on the output values, but also on the
time at which results are produced.
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Typical Objection 

  “It is not worth to invest in Real Time theory, because computer speed is 
increasing exponentially, and all timing constraints can eventually be 
handled.”!

!Answer!
  Given an arbitrary computer speed, we must always guarantee that timing 

constraints can be met. Testing is NOT sufficient!
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Real-Time ≠ Fast 

  A real-time system is not a fast system!
  Speed is always relative to a specific environment!
  Running faster is good, but does not guarantee a correct behaviour.!

  The objective of a real-time system is to guarantee the timing behaviour of 
each individual task!

  The objective of a fast system is to minimize the average response time of a 
task set. But…!
  Don’t trust average when you have to guarantee individual 

performance!
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Sources of Nondeterminism 

  Architecture!
  cache, pipelining, interrupts, DMA!

  Operating System!
  scheduling, synchronization, communication!

  Language!
  lack of explicit support for time!

  Design Methodologies!
  lack of analysis and verification techniques!
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Design Methodologies 

  Traditional approach: empirical techniques!
  assembly programming!
  timing through dedicated timers!
  control through driver programming!
  priority manipulations!

  Many disadvantages!!
  tedious programming, heavily relies on programmer’s ability!
  difficult code understanding (readability × efficiency = k)!
  difficult software maintainability!

 MLOC, understanding takes more than rewriting => bug prone!
  difficult to verify timing constraints without OS & language support!
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Implications 

  Dangerous way of programming real-time applications!
  May work in most situations, but high risk of failure!
  When the system fails, it is very difficult to understand why!
  Low reliability!
  Many famous failures!

  First flight of the Space Shuttle, 1979 (transient overload at initialization)!
 probability of failure ~1.5%!

  Scud missile on Dhahran, 1993 (delay due to interrupt handling) !
 program flow depends on sensory data, cannot be fully replicated!
  testing is not enough!

  Ariane 5, 1996 (integer overflow in inertial reference system routine)!
 Environment!

  Mars Pathfinder, 1997 (priority inversion, see Silberschatz)!
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Take-Home Message 

  Tests, although necessary, allow only a partial verificaiton of system’s 
behaviour!

  Predictability must be improved at the kernel level!
  Overload handling and fault-tolerance!
  Critical systems must be designed by making pessimistic assumptions…!

  …Murphy’s laws!
  If something can go wrong, it will go wrong!
  If a system stops working, it will do it at the worst possible time!
  Sooner or later, the worst possible combination of circumstances will 

happen…!
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Achieving predictability 

1.  DMA!
  Cycle stealing!

  Possible solution: time-slice method!
  each memory cycle split into two adjacent time slots!

 one reserved for the CPU, the other for the DMA device!
  more expensive than cycle stealing!

 but more predictable!
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Achieving predictability 

2.  Cache!
  Hit ratio!

  80% of times: hits!
  20% of times: performance degrades!
  Preemptive systems destroy locality!
  Cache-related preemption delay difficult to precisely estimate!
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Achieving predictability 

3.  Interrupts!
  Source: peripheral devices!
  Can introduce unbounded delays !
  Handling routines with static priorities !

  generic OS: I/O have real-time constraints!
  RTOS: a control process could be more urgent than interrupt handling!

  3 different approaches!
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Achieving predictability 

3.  Interrupts!
  Can introduce unbounded delays !
!
A.  Disable all interrupts, except the one from the timer; devices handled by 

application tasks using polling!
  + predictability, kernel-independent; - efficiency!

B.  Disable all interrupts except the one from the timer; manage devices via 
periodic kernel routines!
  + encapsulation; - overhead!

C.  Leave all interrupts enabled; minimize drivers’ size (only activates device 
management task)!
  + no busy waiting; - (small) unbounded overhead due to drivers!
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Achieving predictability 

4.  System Calls!
  Could be difficult to evaluate worst-case execution time of each task!

  All system calls should be characterized by bounded execution time!
  Desirable that system calls be preemptable!
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Achieving predictability 

5.  Semaphores!
  Priority inversion!

  Must be avoided!!
  Several methods:!

  Basic priority inheritance!
  Priority ceiling!
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Achieving predictability 

6.  Memory management!
  Demand paging!

  Solution: static partitioning!
  memory segmentation rule with fixed memory management scheme!

  + predictability, - flexibility in dynamic environments!
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Achieving predictability 

7.  Programming language!
  Dynamic data structures!
  Recursion!
  Cycles!

  High-level languages for programming hard real-time applications!
  Real-Time Euclid!
  Real-Time Concurrent C!



Modeling 
Real-Time Activities 
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Task 

  Sequence of instructions that in the absence of other activities is 
continuously executed by the processor until completion.!

 Note: “activation” =  “arrival” = “request” = “release” time!

01/10/2012

31

¾ Sequence of instructions that in the absence of other
activities is continuously executed by the processor
until completion.

Task

until completion.

Task�Wiactivation�time

start�time
tai si fi

i

Ci

finishing�time

computation
time The�interval fi � ai

is referred to as the�
task�response time Ri

Ri

Ready queue
In a concurrent system, more tasks can be simultaneously
active, but only one can be in execution (running).

¾ An active task that is not in execution is said to be ready.

¾ Ready tasks are kept in a ready queue, managed by a
scheduling policy.

¾ The processor is assigned to the first task in the queue
through a dispatching opearationthrough a dispatching opearation.

Ready�queue

CPU
activation dispatching termination

W1W2W3
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Schedule 

  A particular assignment of tasks to the processor that determines the task 
execution sequence. Formally:!
Given a task set Γ={ τ1, …, τn }, a schedule is a function σ: R+ à N  that 
associates an integer k to each time slice [ti, ti+1) with the meaning:!

 k=0: in [ti, ti+1) the processor is idle!
 k>0: in [ti, ti+1) the processor executes τk!

  At times t1, t2,…: context switch !
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Schedule

W1 W2 W3 idleidle

V(t)
3

2

1

0
tt3 t4t2t1

¾ Each interval [ti, ti+1) is called a time slice.

¾ In time instants t1, t2, t3, t4 the processor is said to
perform a context switch.

Preemptive schedule

W1

priority

W2

W3

V(t)

0 2 4 6 10 12 148 16 18 20

3
2
1
0

0 2 4 6 10 12 148 16 18 20



9.42! Buttazzo, Hard Real-Time Computing Systems ©2013!

Preemptive Scheduling 

  A running tasks may be suspended and placed in the ready queue!
  + Exception handling: timely response to issues!
  + Different levels of criticality: preemption executes most critical tasks!
  + Higher efficiency (CPU utilization)!
  - Destroys program locality!
  - Introduces runtime overhead!

01/10/2012

33

Schedule

W1 W2 W3 idleidle

V(t)
3

2

1

0
tt3 t4t2t1

¾ Each interval [ti, ti+1) is called a time slice.

¾ In time instants t1, t2, t3, t4 the processor is said to
perform a context switch.

Preemptive schedule

W1

priority

W2

W3

V(t)

0 2 4 6 10 12 148 16 18 20

3
2
1
0

0 2 4 6 10 12 148 16 18 20



9.43! Buttazzo, Hard Real-Time Computing Systems ©2013!

Definitions 

  Definition: feasible schedule!
  A schedule σ is said to be feasible if all the tasks can complete 

according to a set of specified constraints. !

  Definition: schedulable set of tasks!
  A set of tasks Γ is said to be schedulable if there exists at least one 

algorithm that can produce a feasible schedule for it. !
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Real-Time Task 

  It is a task characterized by a timing constraint on its response time, called 
deadline:!

  “Completion time” = fi - si = Ri – (si- ai)!

  Definition: feasible task!
  A real-time task τi is said to be feasible if it completes within its absolute 

deadline, that is, if fi ≤ di, or, equivalently, if Ri ≤ Di. !
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¾ It is a task characterized by a timing constraint on its
response time, called deadline:

Real-Time Task

tai si fi

response time Ri

di
absolute�deadline

(d a + R )

relative�deadline�Di

Wi

response�time��Ri (di =�ai +�Ri)

A realͲtime task Wi is said to be feasible if it
completes within its absolute deadline, that
is, if fi d di, o equivalently, if Ri d Di

Slack  and  Lateness

Di

tai si fi

Ri

di

Wi

slacki = di - fi

Di lateness Li = fi - di

tai si fi

Ri

di

Wi
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Slack and Lateness 

  “Slack” if lateness is negative (task completes before deadline)!
  “Laxity” or “slack time” Xi = di – ai – Ci!

  “Tardiness” or “exceeding time” Ei = max( 0, Li )!
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Tasks and Jobs 

  A task running several times on different input data generates a sequence 
of instances (jobs): !

!
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Tasks  and  jobs

A task running several times on different input
data generates a sequence of instances (jobs):data generates a sequence of instances (jobs):

Job 1

Wi,1 Wi,2 Wi,3

Job 2 Job 3

ai,k ai,k+1
t

Wi
Ci

ai,1

Activation mode

• Time driven: (periodic tasks)
The task is automatically activated by theThe task is automatically activated by the
operating system at predefined time instants.

• Event driven: (aperiodic tasks)
The task is activated at an event arrival or by
explicitly invocating a system call.
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Activation Mode 

  Time-driven !
  Periodic tasks (τi)!
  The task is automatically activated by the operating system at 

predefined time instants. !

  Event-driven !
  Aperiodic tasks: “jobs” (Ji) !
  The task is activated at an event arrival or by explicitly invocating a 

system call. !
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Periodic Task 

  A periodic task τi generates an infinite sequence of instances or jobs 
(same code on different data): τi,1, τi,2, …, τi,k, …!
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input
CiUi =

Periodic task

Ci

timer

computation time

(period Ti )
sync

output utilization�factor

Ti
Ui

¾ A periodic task Wi generates an infinite sequence ofp i g q
jobs: Wi1, Wi2,  , Wik (same code on different data):

Ti
Ci

Wi

Ti

C

Wi (Ci , Ti , Di ) job Wik

Periodic task

) + (k 1) T

ai,k ai,k+1 t

Ci

ai,1 = )i

task phase

ai,k =  )i + (k�1) Ti

di,k =  ai,k + Di

often
Di = Ti
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The IDLE State 
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Support for periodic tasks

task Wi

while (condition) {

wait_for_next_period();

while (condition) {

}

ready

running

idle

activeactive

idle idle

The IDLE state

dispatching

i

signal wait

RUNNINGREADY

terminateactivate

BLOCKED

Timer

wait_for_next_periodwake_up
IDLE

preemption
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Periodic Task 
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Exercise 

  Consider a periodic task τ1(C1,T1,D1) with phase Φ1, where:!
  C1 = 10 ms, T1 = 50 ms, D1 = 25 ms, and Φ1 = 100 ms!

  What is τ1’s utilization factor?!
  Is τ1 feasible?!
  What is τ1,1’s absolute deadline?!
  What is τ1,1’s laxity?!
  What is τ1,2’s release time?!
  Can τ1,1 and τ1,2 have different laxity?!
  Can τ1,1 and τ1,2 have different slack?!
  If τ1,2’s slack is 10ms, what is τ1,s’s finishing time?!
  What is τ1,2’s response time?!
  With a 2-CPU machine, can τ1,2 and τ1,3 have the same release time?!
  Can τ1,2 and τ1,3 have the same finishing time?!
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Aperiodic Task 
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Estimating Ci is not easy

?
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¾ Even for the same data computation time
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Estimating Ci is Not Easy 
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Predictability vs. Efficiency 
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Predictability vs. Efficiency 
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Criticality and Value 

  It is a parameter related to the consequences of missing the deadline!
  Hard: missing deadline may have catastrophic consequences!
  Hard Real-Time System if it can handle hard tasks!

 sensory acquisition!
  low-level control!
 sensory-motor planning !

  Soft: missing a deadline causes performance degradation!
  reading data from the keyboard—user command interpretation!
 message displaying!
 graphical activities !

  Value, vi = the relative importance of a task wrt other tasks!
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Jitter 

  It is a measure of the time variation of a periodic event:!
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Types of Jitter 
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Task Constraints 
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Types of Constraints 

  Timing constraints!
  Activation, completion, jitter. !

  Precedence constraints!
  They impose an ordering in the execution. !

  Resource constraints !
  They enforce a synchronization in the access of mutually exclusive 

resources. !
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Explicit Timing Constraints 

  Timing constraints can be explicit or implicit. !

  Explicit timing constraints!
  Directly included in the system specifications. !

  Example:!
  open the valve in 10 seconds!
  send the position within 40 ms!
  read the altimeter every 200 ms!
  acquire the camera every 20 ms !
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Implicit Timing Constraints 

  They do not appear in the system specifications…!
  but need to be met in order to satisfy the performance requirements!

  Example!
  What is the validity of a sensory data?!

01/10/2012

45

Implicit timing constraints

They do not appear in the system specification,
but they need to be met to satisfy the

Example

What�is�the�time�validity�of�a�sensory�data?

but they need to be met to satisfy the
performance requirements.

t0 ?

Computing the yellow duration

D  t Td + Tr + Tb

T d i i

STOP

90

Td =  detection time
Tr =  reaction time
Tb =  braking time



9.63! Buttazzo, Hard Real-Time Computing Systems ©2013!

Computing the Yellow Duration 

  D ≥ Td + Tr + Tb!

  Td = Detection time!
  Tr = Reaction time!
  Tb = Braking time ~ v / .5 g!

  Td = .8s, Tr = .8s, v = 50 km/h (14 m/s) à D ≥ ???!
  vmax???!
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Precedence Constraints 

  Sometimes tasks must be executed with specific precedence relations, 
specified by a Directed Acyclic Graph (Precedence Graph):!

  Immediate predecessor !
  Predecessor!
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Sample Application 

  Tasks: !
  Acquisition (acq1, acq2)!
  Edge detection (edge1, edge2)!
  Shape detection (shape), pixel disparities (disp)!
  Height determination (height), recognition (rec)!

  Precedence graph?!
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Precedence Graph 
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Resource Constraints 

  To preserve data consistency, shared resources must be accessed in 
mutual exclusion: !
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• Timing constraints

– activation, completion, jitter.

• Precedence constraints
– they impose an ordering in the execution.

• Resource constraints
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– they enforce a synchronization in the
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Mutual Exclusion 

  However, mutual exclusion introduces extra delays: !
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General Scheduling Problem 

  Given:!
  a set of n tasks, Γ = {τ1, τ2, …, τn}!

 a precedence graph!
 a set of timing constraints associated with each task!

  a set of m processors, P = {P1, P2, …, Pm}!
  a set of s types of resources, R = {R1, R2, …, Rs}!

!
      find an assignment of P and R to Γ which produces a feasible schedule.!
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The general
scheduling problem

Given a set * of n tasks, a set P of m processors, and
a set R of r resources, find an assignment of P and R
to * which produces a feasible schedule.

*

3

Scheduling
algorithm

*

R
P V

feasible

Complexity

x In 1975 Garey and Johnson showed thatx In 1975, Garey and Johnson showed that
the general scheduling problem is NP hard.

x However, polynomial time algorithms can be
found under particular conditions.

4
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Scheduling Complexity 

  In 1975, Garey and Johnson showed that the general scheduling problem is 
NP hard. !
  There is no known polinomial time algorithm!
  Meaning:!

 Consider n = 30 tasks; elementary step = 1μs !
 Alg. 1: O(n) !
 Alg. 2: O(n6) !
 Alg. 3: O(6n)!
 Computation time?!

  However, polynomial time algorithms can be found under particular 
conditions !
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Simplifying Assumptions 

  Simplify architecture!
  Single processor!

  Homogeneous task sets!
  Only periodic / only aperiodic!

  Fully preemptive tasks!
  Simultaneous activations!
  No precedence constraints!
  No resource constraints !
  …!

  Different classes of algorithms!
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Algorithm Tassonomy 

  Preemptive vs. Non Preemptive !
  Static vs. Dynamic!
  On-line vs. Off-line!
  Optimal vs. Heuristic !
  Guaranteed vs. Best-effort!

  Clairvoyant algorithm!
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Static vs Dynamic 

  Static scheduling algorithms!
  scheduling decisions are taken based on fixed parameters, statically 

assigned to tasks before activation. !

  Dynamic scheduling algorithms!
  scheduling decisions are taken based on parameters that can change 

with time. !
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Off-line vs. On-line 

  Off-line scheduling algorithms!
  all scheduling decisions are taken before task activation: the schedule is 

stored in a table and later executed by a dispatcher !
 “table-driven scheduling”!

  On-line scheduling algorithms!
  scheduling decisions are taken at run-time on the set of active tasks!

 When?!
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Optimal vs. Heuristic 

  Optimal scheduling algorithms!
  They generate a schedule that minimizes a cost function, defined based 

on an optimality criterion. !

  Heuristic scheduling algorithms!
  They generate a schedule according to a heuristic function that tries to 

satisfy an optimality criterion, but there is no guarantee of success. !
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Guaranteed vs. Best Effort 

  Guaranteed scheduling algorithms!
  They generate a feasible schedule if there exists one !
  Needed is hard real-time!
  Pessimistic assumptions!

  Best effort scheduling algorithms!
  No guarantee of a feasible schedule.!
  Useful if soft real-time !
  Optimize average performance!
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Guarantee-Based Algorithms 

  In hard real-time applications, the feasibility of the schedule must be 
guaranteed before task execution!
  Give the system time to try and avoid catastrophic consequences!
  Look-ahead and worst-case reasoning!

  Static real-time systems: guarantee off-line; table-based scheduling!
  + Run-time overhead does not depend on complexity of scheduling 

algorihtm!
  - Flexibility!

  Dynamic real-time systems: task can be created at run-time!
  Guarantee online every time a new task is created!
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Guarantee Mechanism 

  Worst-case assumption: a task could unnecessarily be rejected!
  - Efficiency!

  Early detection of potential overload situation!
  + Avoid negative effects (possible catastrophe, domino effect)!
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Domino Effect 
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Metrics for Performance Evaluation 

  Classical operating systems!
  Optimality: min cost function!

  Average response time!
  Total completion time!
  Weighted sum of completion times!
  Maximum lateness!
  Maximum number of late tasks!
  …!

  Real-Time Operating Systems: these cost functions are not necessarily of 
interest!
  No individual assessment of timing properties (periods, deadlines)!
  Maximum lateness has no direct relation with number of tasks that miss 

their deadline!
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Maximum Lateness 

a)  Min maximum lateness!
b)  Min number of tasks that miss their deadline!



9.83! Buttazzo, Hard Real-Time Computing Systems ©2013!

Cumulative Value 

  Sum of the utility functions computed at each completion time!

Introduzione 9

FUNZIONE DI UTILITA’ DI UN PROCESSO

non real-time

ai fi

v (fi)
soft real-time

ai di fi

v (fi)

hard real-time

ai di fi

v (fi)

-∞
“better never than late”

ai di fi

v (fi)

on-time 

“firm” 



Scheduling Anomalies 
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A Surprising Result… 

  Theorem (Graham, 1976) !
If a task set is optimally scheduled on a multiprocessor with some priority 
assignment, a fixed number of processors, fixed execution times, and 
precedence constraints, then increasing the number of processors, reducing 
execution times, or weakening the precedence constraints can increase the 
schedule length!
!
!
  Brittleness of scheduling algorithms: small changes can have big, 

unexpected consequences!
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Richard’s Anomalies (Graham, 1976) 

  Assume a parallel machine with 3 CPU. All tasks arrive at the same time.!
1.  What priority-based schedule?!
2.  How to improve schedule length?!
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1) Increase number of CPUs 

  Assume 4 CPUs!
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2) Reduce computation time 

  Reduce computation time of each task by 1 unit!
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3) Weaken precedence constraints 

  Remove constraints on T7 and T8!
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Another Surprising Result… 

  If tasks share mutually exclusive resources, or are non-preemptive, 
scheduling anomalies may also occur in uniprocessor systems!

  Theorem (Buttazzo, 2006) !
A real time application that is feasible on a given processor can become 
infeasible when running on a faster processor!
!
!
!
!
What if double the processor’s speed?!
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Another Surprising Result… 

  If tasks share mutually exclusive resources, or are non-preemptible, 
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A dangerous operation: DELAY 

  A delay(Δ) may introduce a delay greater than Δ!
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A dangerous operation: DELAY 

  A delay(Δ) may also increase the response times of other tasks!
  Example for fixed priorities!
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A dangerous operation: DELAY 

  A delay(Δ) may also increase the response times of other tasks!
  Example for deadline scheduling!
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Take-Home Message 

  Tests are not enough for real-time systems!
  Intuitive solutions do not always work!
  Delay should not be used in real-time tasks!
  The safest approach:!

  Use predictable kernel mechanisms!
  Analyze the system to predict the behaviour!

  The operating system is the part most responsible for a predictable 
behavior. Concurrency control must be enforced by: !
  appropriate scheduling algorithms !
  appropriate syncronization protocols !
  efficient communication mechanisms !
  predictable interrupt handling !


