
Real-Time Operating
Systems M

9. Real-Time: Basic Concepts

9.2! Torroni, Real-Time Operating Systems M ©2013!

Notice

The course material includes slides downloaded from:!
http://codex.cs.yale.edu/avi/os-book/!

(slides by Silberschatz, Galvin, and Gagne, associated with
Operating System Concepts, 9th Edition, Wiley, 2013)!

and!
http://retis.sssup.it/~giorgio/rts-MECS.html!

(slides by Buttazzo, associated with Hard Real-Time Computing
Systems, 3rd Edition, Springer, 2011)!

which has been edited to suit the needs of this course. !
The slides are authorized for personal use only. !
Any other use, redistribution, and any for profit sale of the slides (in any
form) requires the consent of the copyright owners.!

9.3! Buttazzo, Hard Real-Time Computing Systems ©2013!

Objectives

  Study software methodologies to support time critical systems:!
  Study software methodologies and algorithms to increase predictability

in (embedded) computing system… !
!…consisting of several concurrent activities… !
!…subject to timing constraints!

  Learn how to model and analyze a real-time application to predict
worst-case response times and verify its feasibility under a set of
constraints!

9.4! Buttazzo, Hard Real-Time Computing Systems ©2013!

Control and Implementation

  Often, control and implementation are done by different people that do not
talk to each other:!

  Control guys typically assume a computer with infinite resources and
computational power. In some case, computation is modeled by a fixed
delay Δ.!

01/10/2012

9

Aim of the course

x Studing software methodologies for supportingx Studing software methodologies for supporting
time critical computing systems.

x We will not consider how to control a system, but
only how to provide a proper software support to
control applications.

Control and implementation

Often, control and implementation are done by
different people that do not talk to each other:

Control guys typically assume a computer with infinite
resources and computational power. In some case,
computation is modeled by a fixed delay '.

9.5! Buttazzo, Hard Real-Time Computing Systems ©2013!

Control and Implementation

  In reality, a computer:!
  has limited resources!
  finite computational power (non null execution times)!
  executes several concurrent activities!
  introduces variable delays (often unpredictable)!

  Modeling such factors and taking them into account in the design phase
allows a significant improvement in performance and reliability!

Definitions
and

Sample Applications

9.7! Buttazzo, Hard Real-Time Computing Systems ©2013!

Embedded System

  A computing system hidden in an object to control its functions, enhance its
performance, manage the available resources and simplify the interaction
with the user.!

01/10/2012

13

They are computing systems hidden in an object to control
its functions, enhance its performance, manage the available
resources and simplify the interaction with the user.

Real-Time Systems LaboratoryEmbedded systems

p y

Environment
actuators

sensors

micro-
processor

Object

communication

user other units

Control system components
In every control application, we can distinguish
3 basic components:

x the system to be controlled
– it may include sensors and actuators

x the controller
it sends signals to the system according to a

3 basic components:

– it sends signals to the system according to a
predetermined control objective

x the environment in which the system operates

9.8! Buttazzo, Hard Real-Time Computing Systems ©2013!

Control System Components

  In every control application, we can distinguish 3 basic components:!
  The system to be controlled!

 may include sensors and actuators!
  The controller!

 sends signals to the system according to a predetermined control
objective!

  The environment in which the system operates!

9.9! Buttazzo, Hard Real-Time Computing Systems ©2013!

A Typical Control System

  Other activities!
  filtering, classification, data fusion, recognition, planning!

01/10/2012

14

A typical control system

Environ-
mentSystemController

f db kfeedback

Detailed block diagram
System

Controller actuators

Environ.

Sensory
i

internal state

external statepre-
i

feedback
sensor sensor

Other activities
filtering, classification, data fusion, recognition, planning

processing processing

9.10! Buttazzo, Hard Real-Time Computing Systems ©2013!

Software Vision

01/10/2012

15

Software Vision

computer

actuators

A/D

D/A

Environ.

sensorsA/D

Thread (task) Resource

Types of control systems

Depending of the system-environment interactions,
we can distinguish 3 types of control systems:

• Monitoring Systems
– do not modify the environment

• Open-loop control systems
l l dif th i t

we can distinguish 3 types of control systems:

– loosely modify the environment

• Closed-loop control systems
– tight interaction between perception and action

9.11! Buttazzo, Hard Real-Time Computing Systems ©2013!

Types of Control Systems

  Depending on the system-environment interactions, we can distinguish
among 3 types of control systems:!
  Monitoring systems!

 do not modify the environment!
  Open-loop control systems!

  loosely modify the environment!
  Closed-loop control systems!

  tight interaction between perception and action!

9.12! Buttazzo, Hard Real-Time Computing Systems ©2013!

Monitoring Systems

  Do not modify the environment!
  surveillance systems, air traffic control!

01/10/2012

16

Monitoring Systems

Do not modify the environment

Environ-
ment

Data
processing

sensors

sensors
...

Real-time system

Examples: surveillance systems, air traffic control

sensors
Display

Open-loop control systems

Sensing and control are loosely coupled

Environ-
ment

SystemController actuators

Examples: assembly robots, sorting robots

sensors
Data

processingPlanning

9.13! Buttazzo, Hard Real-Time Computing Systems ©2013!

Open-Loop Control Systems

  Sensing and control are loosely coupled!
  Assembly robots, sorting robots!

01/10/2012

16

Monitoring Systems

Do not modify the environment

Environ-
ment

Data
processing

sensors

sensors
...

Real-time system

Examples: surveillance systems, air traffic control

sensors
Display

Open-loop control systems

Sensing and control are loosely coupled

Environ-
ment

SystemController actuators

Examples: assembly robots, sorting robots

sensors
Data

processingPlanning

9.14! Buttazzo, Hard Real-Time Computing Systems ©2013!

Closed-Loop Control Systems

  Sensing and control are tightly coupled!
  Flight control systems, military systems, living beings!

01/10/2012

17

Closed-loop control systems

Sensing and control are tightly coupled

Environ-
ment

SystemController actuators

Examples: flight control systems, military systems,
living beings

sensors
Data

processingPlanning

F3

Multi-level feedback control

S2

S3

A2

A3

F1

F2
Sensing Control

Environment
S1 A1

9.15! Buttazzo, Hard Real-Time Computing Systems ©2013!

Implications

  The tight interaction with the environment requires the system to react to
events within precise timing constraints!

  Timing constraints are imposed by the dynamics of the environment!

  The operating system must be able to execute tasks within timing
constraints!

9.16! Buttazzo, Hard Real-Time Computing Systems ©2013!

A Robot Control Example

  Consider a robot equipped with:!
  two actuated wheels!
  two proximity (US) sensors!
  a mobile (pan/tilt) camera!
  a wireless transceiver!

  Goal:!
  follow a path based on visual feedback!
  avoid obstacles!
  send complete robot status every 20 ms!

01/10/2012

18

Implications
x The tight interaction with the environment

i th t t t t t ithirequires the system to react to events within
precise timing constraints.

x Timing constraints are imposed by the
dynamics of the environment.

35

The operating system must be able to
execute tasks within timing constraints.

A robot control example

Consider a mobile robot equipped with:

¾ two actuated wheels;

¾ two proximity (US) sensors;

¾ a mobile (pan/tilt) camera;

¾ a wireless tranceiver.

Goal
¾ Follow a path based on visual feedback;
¾ Avoid obstacles;
¾ Send complete robot status every 20 ms.

9.17! Buttazzo, Hard Real-Time Computing Systems ©2013!

Hierarchical Control

01/10/2012

19

Hierarchical control

visualͲbased
navigation

visual
tracking

obstacle
avoidance

vehicle
control

10�ms

100�ms
object

recognition

mot_dx mot_sxpan tiltcamera US2US1

1�ms1�ms

5�ms20�ms
feature

extraction motor
control

motor
control

motor
control

motor
control

Design requirements

¾Modularity: a subsystem must be developed without
knowing the details of other subsystems (team work).

¾ Configurability: software must be adapted to different
situations (through the use of suitable parameters)
without changing the source code.

¾ Portability: minimize code changes when porting the
system to different hardware platforms.y p

¾ Predictability: allow the estimation of maximum delays.

¾ Efficiency: optimize the use of available resources
(computation time, memory, energy).

9.18! Buttazzo, Hard Real-Time Computing Systems ©2013!

Design Requirements

  Modularity: a subsystem must be developed without knowing the details of
other subsystems (team work)!

  Configurability: software must be adapted to different situations (through
the use of suitable parameters) without changing the source code!

  Portability: minimize code changes when porting the system to different
hardware platforms!

  Predictability: allow the estimation of maximum delays!
  Efficiency: optimize the use of available resources (computation time,

memory, energy)!

9.19! Buttazzo, Hard Real-Time Computing Systems ©2013!

Operating System Requirements

  Timeliness: results must be correct not only in their value but also in the
time domain!
  provide kernel mechanism for time management and for handling tasks

with explicit timing constraints and different criticality!
  Predictability: system must be analyzable to predict the consequences of

any scheduling decision!
  if some task cannot be guaranteed within time constraints, system must

notify this in advance, to handle the exception (plan alternative actions)!
  Efficiency: operating system should optimize the use of available resources

(computation time, memory, energy)!
  Robustness: must be resilient to peak-load conditions!
  Fault tolerance: single software/hardware failures should not cause the

system to crash!
  Maintainability: modular architecture to ensure that modifications are easy

to perform!

9.20! Buttazzo, Hard Real-Time Computing Systems ©2013!

Modularity

  Modularity can be achieved by:!
  partitioning the system into a set of subsystems, each managed by one

or more computational tasks!
  the definition of precise interfaces between tasks, each specifying:!

 data exchanged with the other tasks (input and output)!
  functionality of the task (what it has to do)!
 validity assumptions (e.g., admissible ranges)!
 performance requirements (priority, period, deadline, jitter)!

  Asynchronous communication mechanisms!

9.21! Buttazzo, Hard Real-Time Computing Systems ©2013!

Control View

01/10/2012

19

Hierarchical control

visualͲbased
navigation

visual
tracking

obstacle
avoidance

vehicle
control

10�ms

100�ms
object

recognition

mot_dx mot_sxpan tiltcamera US2US1

1�ms1�ms

5�ms20�ms
feature

extraction motor
control

motor
control

motor
control

motor
control

Design requirements

¾Modularity: a subsystem must be developed without
knowing the details of other subsystems (team work).

¾ Configurability: software must be adapted to different
situations (through the use of suitable parameters)
without changing the source code.

¾ Portability: minimize code changes when porting the
system to different hardware platforms.y p

¾ Predictability: allow the estimation of maximum delays.

¾ Efficiency: optimize the use of available resources
(computation time, memory, energy).

9.22! Buttazzo, Hard Real-Time Computing Systems ©2013!

Software View

01/10/2012

21

Software View
periodic task buffer

visual
tracking

obstacle
avoidance

vehicle
control

visualͲbased
navigation

object
recognition

mot_dx mot_sxpan tiltcamera US2US1

feature
extraction

motor
control

RTOS responsibilities

The RealͲTime Operating Systems (RTOS) is responsible for :

¾managing the concurrent execution of the various¾managing the concurrent execution of the various
activities;

¾ decide the order of execution of the tasks (scheduling),
satisfying the specified requirements;

¾ l i ibl i i fli d i h f¾ solving possible timing conflicts during the access of
shared resources (mutual exclusion);

¾manage the timely execution of asynchronous events
(interrupts).

9.23! Buttazzo, Hard Real-Time Computing Systems ©2013!

RTOS Responsibilities

  The Real-Time Operating System (RTOS) is responsible for:!
  managing the concurrent execution of the various activities!

 concurrent tasks!
  decide the order of execution of the tasks, satisfying the specified

requirements!
 scheduling!

  solving possible timing conflicts during the access of shared resources!
 critical sections!

  manage the timely execution of asynchronous events!
  interrupts!

9.24! Buttazzo, Hard Real-Time Computing Systems ©2013!

What is a Real-Time System?

  A computer system able to respond to events within precise timing
constraints!

  A system where the correctness depends not only on the output values,
but also on the time at which results are produced!

01/10/2012

22

event

Real-time systems

A computing system able to respond to

Real-Time
System

event

action

A computing system able to respond to
events within precise timing constraints is
called a Real-Time System.

What’s a real-time system?

E i t
x (t)

It is a system in which the correctness depends

EnvironmentRT system

y
t

()

(t+')

It is a system in which the correctness depends
not only on the output values, but also on the
time at which results are produced.

9.25! Buttazzo, Hard Real-Time Computing Systems ©2013!

Typical Objection

  “It is not worth to invest in Real Time theory, because computer speed is
increasing exponentially, and all timing constraints can eventually be
handled.”!

!Answer!
  Given an arbitrary computer speed, we must always guarantee that timing

constraints can be met. Testing is NOT sufficient!

9.26! Buttazzo, Hard Real-Time Computing Systems ©2013!

Real-Time ≠ Fast

  A real-time system is not a fast system!
  Speed is always relative to a specific environment!
  Running faster is good, but does not guarantee a correct behaviour.!

  The objective of a real-time system is to guarantee the timing behaviour of
each individual task!

  The objective of a fast system is to minimize the average response time of a
task set. But…!
  Don’t trust average when you have to guarantee individual

performance!

9.27! Buttazzo, Hard Real-Time Computing Systems ©2013!

Sources of Nondeterminism

  Architecture!
  cache, pipelining, interrupts, DMA!

  Operating System!
  scheduling, synchronization, communication!

  Language!
  lack of explicit support for time!

  Design Methodologies!
  lack of analysis and verification techniques!

9.28! Buttazzo, Hard Real-Time Computing Systems ©2013!

Design Methodologies

  Traditional approach: empirical techniques!
  assembly programming!
  timing through dedicated timers!
  control through driver programming!
  priority manipulations!

  Many disadvantages!!
  tedious programming, heavily relies on programmer’s ability!
  difficult code understanding (readability × efficiency = k)!
  difficult software maintainability!

 MLOC, understanding takes more than rewriting => bug prone!
  difficult to verify timing constraints without OS & language support!

9.29! Buttazzo, Hard Real-Time Computing Systems ©2013!

Implications

  Dangerous way of programming real-time applications!
  May work in most situations, but high risk of failure!
  When the system fails, it is very difficult to understand why!
  Low reliability!
  Many famous failures!

  First flight of the Space Shuttle, 1979 (transient overload at initialization)!
 probability of failure ~1.5%!

  Scud missile on Dhahran, 1993 (delay due to interrupt handling) !
 program flow depends on sensory data, cannot be fully replicated!
  testing is not enough!

  Ariane 5, 1996 (integer overflow in inertial reference system routine)!
 Environment!

  Mars Pathfinder, 1997 (priority inversion, see Silberschatz)!

9.30! Buttazzo, Hard Real-Time Computing Systems ©2013!

Take-Home Message

  Tests, although necessary, allow only a partial verificaiton of system’s
behaviour!

  Predictability must be improved at the kernel level!
  Overload handling and fault-tolerance!
  Critical systems must be designed by making pessimistic assumptions…!

  …Murphy’s laws!
  If something can go wrong, it will go wrong!
  If a system stops working, it will do it at the worst possible time!
  Sooner or later, the worst possible combination of circumstances will

happen…!

9.31! Buttazzo, Hard Real-Time Computing Systems ©2013!

Achieving predictability

1.  DMA!
  Cycle stealing!

  Possible solution: time-slice method!
  each memory cycle split into two adjacent time slots!

 one reserved for the CPU, the other for the DMA device!
  more expensive than cycle stealing!

 but more predictable!

9.32! Buttazzo, Hard Real-Time Computing Systems ©2013!

Achieving predictability

2.  Cache!
  Hit ratio!

  80% of times: hits!
  20% of times: performance degrades!
  Preemptive systems destroy locality!
  Cache-related preemption delay difficult to precisely estimate!

9.33! Buttazzo, Hard Real-Time Computing Systems ©2013!

Achieving predictability

3.  Interrupts!
  Source: peripheral devices!
  Can introduce unbounded delays !
  Handling routines with static priorities !

  generic OS: I/O have real-time constraints!
  RTOS: a control process could be more urgent than interrupt handling!

  3 different approaches!

9.34! Buttazzo, Hard Real-Time Computing Systems ©2013!

Achieving predictability

3.  Interrupts!
  Can introduce unbounded delays !
!
A.  Disable all interrupts, except the one from the timer; devices handled by

application tasks using polling!
  + predictability, kernel-independent; - efficiency!

B.  Disable all interrupts except the one from the timer; manage devices via
periodic kernel routines!
  + encapsulation; - overhead!

C.  Leave all interrupts enabled; minimize drivers’ size (only activates device
management task)!
  + no busy waiting; - (small) unbounded overhead due to drivers!

9.35! Buttazzo, Hard Real-Time Computing Systems ©2013!

Achieving predictability

4.  System Calls!
  Could be difficult to evaluate worst-case execution time of each task!

  All system calls should be characterized by bounded execution time!
  Desirable that system calls be preemptable!

9.36! Buttazzo, Hard Real-Time Computing Systems ©2013!

Achieving predictability

5.  Semaphores!
  Priority inversion!

  Must be avoided!!
  Several methods:!

  Basic priority inheritance!
  Priority ceiling!

9.37! Buttazzo, Hard Real-Time Computing Systems ©2013!

Achieving predictability

6.  Memory management!
  Demand paging!

  Solution: static partitioning!
  memory segmentation rule with fixed memory management scheme!

  + predictability, - flexibility in dynamic environments!

9.38! Buttazzo, Hard Real-Time Computing Systems ©2013!

Achieving predictability

7.  Programming language!
  Dynamic data structures!
  Recursion!
  Cycles!

  High-level languages for programming hard real-time applications!
  Real-Time Euclid!
  Real-Time Concurrent C!

Modeling
Real-Time Activities

9.40! Buttazzo, Hard Real-Time Computing Systems ©2013!

Task

  Sequence of instructions that in the absence of other activities is
continuously executed by the processor until completion.!

 Note: “activation” = “arrival” = “request” = “release” time!

01/10/2012

31

¾ Sequence of instructions that in the absence of other
activities is continuously executed by the processor
until completion.

Task

until completion.

Task�Wiactivation�time

start�time
tai si fi

i

Ci

finishing�time

computation
time The�interval fi � ai

is referred to as the�
task�response time Ri

Ri

Ready queue
In a concurrent system, more tasks can be simultaneously
active, but only one can be in execution (running).

¾ An active task that is not in execution is said to be ready.

¾ Ready tasks are kept in a ready queue, managed by a
scheduling policy.

¾ The processor is assigned to the first task in the queue
through a dispatching opearationthrough a dispatching opearation.

Ready�queue

CPU
activation dispatching termination

W1W2W3

01/10/2012

31

¾ Sequence of instructions that in the absence of other
activities is continuously executed by the processor
until completion.

Task

until completion.

Task�Wiactivation�time

start�time
tai si fi

i

Ci

finishing�time

computation
time The�interval fi � ai

is referred to as the�
task�response time Ri

Ri

Ready queue
In a concurrent system, more tasks can be simultaneously
active, but only one can be in execution (running).

¾ An active task that is not in execution is said to be ready.

¾ Ready tasks are kept in a ready queue, managed by a
scheduling policy.

¾ The processor is assigned to the first task in the queue
through a dispatching opearationthrough a dispatching opearation.

Ready�queue

CPU
activation dispatching termination

W1W2W3

9.41! Buttazzo, Hard Real-Time Computing Systems ©2013!

Schedule

  A particular assignment of tasks to the processor that determines the task
execution sequence. Formally:!
Given a task set Γ={ τ1, …, τn }, a schedule is a function σ: R+ à N that
associates an integer k to each time slice [ti, ti+1) with the meaning:!

 k=0: in [ti, ti+1) the processor is idle!
 k>0: in [ti, ti+1) the processor executes τk!

  At times t1, t2,…: context switch !

01/10/2012

33

Schedule

W1 W2 W3 idleidle

V(t)
3

2

1

0
tt3 t4t2t1

¾ Each interval [ti, ti+1) is called a time slice.

¾ In time instants t1, t2, t3, t4 the processor is said to
perform a context switch.

Preemptive schedule

W1

priority

W2

W3

V(t)

0 2 4 6 10 12 148 16 18 20

3
2
1
0

0 2 4 6 10 12 148 16 18 20

9.42! Buttazzo, Hard Real-Time Computing Systems ©2013!

Preemptive Scheduling

  A running tasks may be suspended and placed in the ready queue!
  + Exception handling: timely response to issues!
  + Different levels of criticality: preemption executes most critical tasks!
  + Higher efficiency (CPU utilization)!
  - Destroys program locality!
  - Introduces runtime overhead!

01/10/2012

33

Schedule

W1 W2 W3 idleidle

V(t)
3

2

1

0
tt3 t4t2t1

¾ Each interval [ti, ti+1) is called a time slice.

¾ In time instants t1, t2, t3, t4 the processor is said to
perform a context switch.

Preemptive schedule

W1

priority

W2

W3

V(t)

0 2 4 6 10 12 148 16 18 20

3
2
1
0

0 2 4 6 10 12 148 16 18 20

9.43! Buttazzo, Hard Real-Time Computing Systems ©2013!

Definitions

  Definition: feasible schedule!
  A schedule σ is said to be feasible if all the tasks can complete

according to a set of specified constraints. !

  Definition: schedulable set of tasks!
  A set of tasks Γ is said to be schedulable if there exists at least one

algorithm that can produce a feasible schedule for it. !

9.44! Buttazzo, Hard Real-Time Computing Systems ©2013!

Real-Time Task

  It is a task characterized by a timing constraint on its response time, called
deadline:!

  “Completion time” = fi - si = Ri – (si- ai)!

  Definition: feasible task!
  A real-time task τi is said to be feasible if it completes within its absolute

deadline, that is, if fi ≤ di, or, equivalently, if Ri ≤ Di. !

01/10/2012

35

¾ It is a task characterized by a timing constraint on its
response time, called deadline:

Real-Time Task

tai si fi

response time Ri

di
absolute�deadline

(d a + R)

relative�deadline�Di

Wi

response�time��Ri (di =�ai +�Ri)

A realͲtime task Wi is said to be feasible if it
completes within its absolute deadline, that
is, if fi d di, o equivalently, if Ri d Di

Slack and Lateness

Di

tai si fi

Ri

di

Wi

slacki = di - fi

Di lateness Li = fi - di

tai si fi

Ri

di

Wi

9.45! Buttazzo, Hard Real-Time Computing Systems ©2013!

Slack and Lateness

  “Slack” if lateness is negative (task completes before deadline)!
  “Laxity” or “slack time” Xi = di – ai – Ci!

  “Tardiness” or “exceeding time” Ei = max(0, Li)!

01/10/2012

35

¾ It is a task characterized by a timing constraint on its
response time, called deadline:

Real-Time Task

tai si fi

response time Ri

di
absolute�deadline

(d a + R)

relative�deadline�Di

Wi

response�time��Ri (di =�ai +�Ri)

A realͲtime task Wi is said to be feasible if it
completes within its absolute deadline, that
is, if fi d di, o equivalently, if Ri d Di

Slack and Lateness

Di

tai si fi

Ri

di

Wi

slacki = di - fi

Di lateness Li = fi - di

tai si fi

Ri

di

Wi

9.46! Buttazzo, Hard Real-Time Computing Systems ©2013!

Tasks and Jobs

  A task running several times on different input data generates a sequence
of instances (jobs): !

!

01/10/2012

36

Tasks and jobs

A task running several times on different input
data generates a sequence of instances (jobs):data generates a sequence of instances (jobs):

Job 1

Wi,1 Wi,2 Wi,3

Job 2 Job 3

ai,k ai,k+1
t

Wi
Ci

ai,1

Activation mode

• Time driven: (periodic tasks)
The task is automatically activated by theThe task is automatically activated by the
operating system at predefined time instants.

• Event driven: (aperiodic tasks)
The task is activated at an event arrival or by
explicitly invocating a system call.

9.47! Buttazzo, Hard Real-Time Computing Systems ©2013!

Activation Mode

  Time-driven !
  Periodic tasks (τi)!
  The task is automatically activated by the operating system at

predefined time instants. !

  Event-driven !
  Aperiodic tasks: “jobs” (Ji) !
  The task is activated at an event arrival or by explicitly invocating a

system call. !

9.48! Buttazzo, Hard Real-Time Computing Systems ©2013!

Periodic Task

  A periodic task τi generates an infinite sequence of instances or jobs
(same code on different data): τi,1, τi,2, …, τi,k, …!

01/10/2012

37

input
CiUi =

Periodic task

Ci

timer

computation time

(period Ti)
sync

output utilization�factor

Ti
Ui

¾ A periodic task Wi generates an infinite sequence ofp i g q
jobs: Wi1, Wi2, , Wik (same code on different data):

Ti
Ci

Wi

Ti

C

Wi (Ci , Ti , Di) job Wik

Periodic task

) + (k 1) T

ai,k ai,k+1 t

Ci

ai,1 =)i

task phase

ai,k =)i + (k�1) Ti

di,k = ai,k + Di

often
Di = Ti

01/10/2012

37

input
CiUi =

Periodic task

Ci

timer

computation time

(period Ti)
sync

output utilization�factor

Ti
Ui

¾ A periodic task Wi generates an infinite sequence ofp i g q
jobs: Wi1, Wi2, , Wik (same code on different data):

Ti
Ci

Wi

Ti

C

Wi (Ci , Ti , Di) job Wik

Periodic task

) + (k 1) T

ai,k ai,k+1 t

Ci

ai,1 =)i

task phase

ai,k =)i + (k�1) Ti

di,k = ai,k + Di

often
Di = Ti

9.49! Buttazzo, Hard Real-Time Computing Systems ©2013!

The IDLE State

01/10/2012

42

Support for periodic tasks

task Wi

while (condition) {

wait_for_next_period();

while (condition) {

}

ready

running

idle

activeactive

idle idle

The IDLE state

dispatching

i

signal wait

RUNNINGREADY

terminateactivate

BLOCKED

Timer

wait_for_next_periodwake_up
IDLE

preemption

9.50! Buttazzo, Hard Real-Time Computing Systems ©2013!

Periodic Task

01/10/2012

37

input
CiUi =

Periodic task

Ci

timer

computation time

(period Ti)
sync

output utilization�factor

Ti
Ui

¾ A periodic task Wi generates an infinite sequence ofp i g q
jobs: Wi1, Wi2, , Wik (same code on different data):

Ti
Ci

Wi

Ti

C

Wi (Ci , Ti , Di) job Wik

Periodic task

) + (k 1) T

ai,k ai,k+1 t

Ci

ai,1 =)i

task phase

ai,k =)i + (k�1) Ti

di,k = ai,k + Di

often
Di = Ti

9.51! Torroni, Real-Time Operating Systems M ©2013!

Exercise

  Consider a periodic task τ1(C1,T1,D1) with phase Φ1, where:!
  C1 = 10 ms, T1 = 50 ms, D1 = 25 ms, and Φ1 = 100 ms!

  What is τ1’s utilization factor?!
  Is τ1 feasible?!
  What is τ1,1’s absolute deadline?!
  What is τ1,1’s laxity?!
  What is τ1,2’s release time?!
  Can τ1,1 and τ1,2 have different laxity?!
  Can τ1,1 and τ1,2 have different slack?!
  If τ1,2’s slack is 10ms, what is τ1,s’s finishing time?!
  What is τ1,2’s response time?!
  With a 2-CPU machine, can τ1,2 and τ1,3 have the same release time?!
  Can τ1,2 and τ1,3 have the same finishing time?!

9.52! Buttazzo, Hard Real-Time Computing Systems ©2013!

Aperiodic Task

01/10/2012

38

x Aperiodic: ai,k+1 > ai,k

Aperiodic task

minimum�
interarrival�time

x Sporadic: ai,k+1 t ai,k + Ti

Wi
Ci

job Wik

Ci Ci

ai,k ai,k+1 t
Wi

ai,1

Estimating Ci is not easy

?

¾ Each job operates on different data and
can take different paths.

¾ Even for the same data computation time

occurrencies

loop
?

?

¾ Even for the same data, computation time
depends on the processor state (cache,
prefetch queue, number of preemptions).

execution
time

Ci
min

Ci
maxtimer

9.53! Buttazzo, Hard Real-Time Computing Systems ©2013!

Estimating Ci is Not Easy

01/10/2012

38

x Aperiodic: ai,k+1 > ai,k

Aperiodic task

minimum�
interarrival�time

x Sporadic: ai,k+1 t ai,k + Ti

Wi
Ci

job Wik

Ci Ci

ai,k ai,k+1 t
Wi

ai,1

Estimating Ci is not easy

?

¾ Each job operates on different data and
can take different paths.

¾ Even for the same data computation time

occurrencies

loop
?

?

¾ Even for the same data, computation time
depends on the processor state (cache,
prefetch queue, number of preemptions).

execution
time

Ci
min

Ci
maxtimer

9.54! Buttazzo, Hard Real-Time Computing Systems ©2013!

Predictability vs. Efficiency

01/10/2012

39

Predictability vs. Efficiency

occurrencies

execution
time

Ci
min

Ci
max

Ci
avg

Ci estimate
safeefficientunsafe

HARD�task�SOFT�tasknonͲRT�task

Predictability vs. Efficiency

efficiency predictability

Ci
min

Ci
max

Ci
avg

Ci

9.55! Buttazzo, Hard Real-Time Computing Systems ©2013!

Predictability vs. Efficiency

01/10/2012

39

Predictability vs. Efficiency

occurrencies

execution
time

Ci
min

Ci
max

Ci
avg

Ci estimate
safeefficientunsafe

HARD�task�SOFT�tasknonͲRT�task

Predictability vs. Efficiency

efficiency predictability

Ci
min

Ci
max

Ci
avg

Ci

9.56! Buttazzo, Hard Real-Time Computing Systems ©2013!

Criticality and Value

  It is a parameter related to the consequences of missing the deadline!
  Hard: missing deadline may have catastrophic consequences!
  Hard Real-Time System if it can handle hard tasks!

 sensory acquisition!
  low-level control!
 sensory-motor planning !

  Soft: missing a deadline causes performance degradation!
  reading data from the keyboard—user command interpretation!
 message displaying!
 graphical activities !

  Value, vi = the relative importance of a task wrt other tasks!

9.57! Buttazzo, Hard Real-Time Computing Systems ©2013!

Jitter

  It is a measure of the time variation of a periodic event:!

01/10/2012

41

Jitter

It�is�a�measure�of�the�time�variation�of�a�periodic�event:

t1 t2 t3

Absolute: max (tk – ak) – min (tk – ak)

a1 a2 a3 a4

Absolute: max (tk ak) min (tk ak)
k k

Relative: max | (tk – ak) – (fk-1 – ak-1) |
k

Types of Jitter

Wi

FinishingͲtime�Jitter

fi,1

Wi
fi,2 fi,3

si,1

Wi

StartͲtime�Jitter

si,2 si,3, , i,3

CompletionͲtime�Jitter��(I/O�Jitter)

si,1

Wi
si,2 si,3fi,2fi,1 fi,3

9.58! Buttazzo, Hard Real-Time Computing Systems ©2013!

Types of Jitter

01/10/2012

41

Jitter

It�is�a�measure�of�the�time�variation�of�a�periodic�event:

t1 t2 t3

Absolute: max (tk – ak) – min (tk – ak)

a1 a2 a3 a4

Absolute: max (tk ak) min (tk ak)
k k

Relative: max | (tk – ak) – (fk-1 – ak-1) |
k

Types of Jitter

Wi

FinishingͲtime�Jitter

fi,1

Wi
fi,2 fi,3

si,1

Wi

StartͲtime�Jitter

si,2 si,3, , i,3

CompletionͲtime�Jitter��(I/O�Jitter)

si,1

Wi
si,2 si,3fi,2fi,1 fi,3

Task Constraints

9.60! Buttazzo, Hard Real-Time Computing Systems ©2013!

Types of Constraints

  Timing constraints!
  Activation, completion, jitter. !

  Precedence constraints!
  They impose an ordering in the execution. !

  Resource constraints !
  They enforce a synchronization in the access of mutually exclusive

resources. !

9.61! Buttazzo, Hard Real-Time Computing Systems ©2013!

Explicit Timing Constraints

  Timing constraints can be explicit or implicit. !

  Explicit timing constraints!
  Directly included in the system specifications. !

  Example:!
  open the valve in 10 seconds!
  send the position within 40 ms!
  read the altimeter every 200 ms!
  acquire the camera every 20 ms !

9.62! Buttazzo, Hard Real-Time Computing Systems ©2013!

Implicit Timing Constraints

  They do not appear in the system specifications…!
  but need to be met in order to satisfy the performance requirements!

  Example!
  What is the validity of a sensory data?!

01/10/2012

45

Implicit timing constraints

They do not appear in the system specification,
but they need to be met to satisfy the

Example

What�is�the�time�validity�of�a�sensory�data?

but they need to be met to satisfy the
performance requirements.

t0 ?

Computing the yellow duration

D t Td + Tr + Tb

T d i i

STOP

90

Td = detection time
Tr = reaction time
Tb = braking time

9.63! Buttazzo, Hard Real-Time Computing Systems ©2013!

Computing the Yellow Duration

  D ≥ Td + Tr + Tb!

  Td = Detection time!
  Tr = Reaction time!
  Tb = Braking time ~ v / .5 g!

  Td = .8s, Tr = .8s, v = 50 km/h (14 m/s) à D ≥ ???!
  vmax???!

01/10/2012

45

Implicit timing constraints

They do not appear in the system specification,
but they need to be met to satisfy the

Example

What�is�the�time�validity�of�a�sensory�data?

but they need to be met to satisfy the
performance requirements.

t0 ?

Computing the yellow duration

D t Td + Tr + Tb

T d i i

STOP

90

Td = detection time
Tr = reaction time
Tb = braking time

9.64! Buttazzo, Hard Real-Time Computing Systems ©2013!

Precedence Constraints

  Sometimes tasks must be executed with specific precedence relations,
specified by a Directed Acyclic Graph (Precedence Graph):!

  Immediate predecessor !
  Predecessor!

9.65! Buttazzo, Hard Real-Time Computing Systems ©2013!

Sample Application

  Tasks: !
  Acquisition (acq1, acq2)!
  Edge detection (edge1, edge2)!
  Shape detection (shape), pixel disparities (disp)!
  Height determination (height), recognition (rec)!

  Precedence graph?!

01/10/2012

52

Sample application
stereo vision

processing recognition

103

Precedence graph

acq1 acq2

edge1 edge2

shapedisp

104

depth

rec

9.66! Buttazzo, Hard Real-Time Computing Systems ©2013!

Precedence Graph

01/10/2012

52

Sample application
stereo vision

processing recognition

103

Precedence graph

acq1 acq2

edge1 edge2

shapedisp

104

depth

rec

9.67! Buttazzo, Hard Real-Time Computing Systems ©2013!

Resource Constraints

  To preserve data consistency, shared resources must be accessed in
mutual exclusion: !

01/10/2012

53

Types of constraints
• Timing constraints

– activation, completion, jitter.

• Precedence constraints
– they impose an ordering in the execution.

• Resource constraints

105

esou ce co st a ts
– they enforce a synchronization in the
access of mutually exclusive resources.

Resource constraints
To preserve data consistency, shared resources
m st be accessed in m t al e cl sionmust be accessed in mutual exclusion:

x = 3
y = 5

WW WRx = 1
y = 8

x = 1
y = 5

106

WW

WR

x=1 y=8

read

9.68! Buttazzo, Hard Real-Time Computing Systems ©2013!

Mutual Exclusion

  However, mutual exclusion introduces extra delays: !

01/10/2012

54

Mutual exclusion
However, mutual exclusion introduces extra delays:

x = 3
y = 5x = 1

y = 8
x = 1
y = 8

WW WR

W x = 1 y = 8

107

WW

WR

'

read

Definition of
Scheduling Problems

9.70! Buttazzo, Hard Real-Time Computing Systems ©2013!

General Scheduling Problem

  Given:!
  a set of n tasks, Γ = {τ1, τ2, …, τn}!

 a precedence graph!
 a set of timing constraints associated with each task!

  a set of m processors, P = {P1, P2, …, Pm}!
  a set of s types of resources, R = {R1, R2, …, Rs}!

!
 find an assignment of P and R to Γ which produces a feasible schedule.!

01/10/2012

2

The general
scheduling problem

Given a set * of n tasks, a set P of m processors, and
a set R of r resources, find an assignment of P and R
to * which produces a feasible schedule.

*

3

Scheduling
algorithm

*

R
P V

feasible

Complexity

x In 1975 Garey and Johnson showed thatx In 1975, Garey and Johnson showed that
the general scheduling problem is NP hard.

x However, polynomial time algorithms can be
found under particular conditions.

4

9.71! Buttazzo, Hard Real-Time Computing Systems ©2013!

Scheduling Complexity

  In 1975, Garey and Johnson showed that the general scheduling problem is
NP hard. !
  There is no known polinomial time algorithm!
  Meaning:!

 Consider n = 30 tasks; elementary step = 1μs !
 Alg. 1: O(n) !
 Alg. 2: O(n6) !
 Alg. 3: O(6n)!
 Computation time?!

  However, polynomial time algorithms can be found under particular
conditions !

9.72! Buttazzo, Hard Real-Time Computing Systems ©2013!

Simplifying Assumptions

  Simplify architecture!
  Single processor!

  Homogeneous task sets!
  Only periodic / only aperiodic!

  Fully preemptive tasks!
  Simultaneous activations!
  No precedence constraints!
  No resource constraints !
  …!

  Different classes of algorithms!

9.73! Buttazzo, Hard Real-Time Computing Systems ©2013!

Algorithm Tassonomy

  Preemptive vs. Non Preemptive !
  Static vs. Dynamic!
  On-line vs. Off-line!
  Optimal vs. Heuristic !
  Guaranteed vs. Best-effort!

  Clairvoyant algorithm!

9.74! Buttazzo, Hard Real-Time Computing Systems ©2013!

Static vs Dynamic

  Static scheduling algorithms!
  scheduling decisions are taken based on fixed parameters, statically

assigned to tasks before activation. !

  Dynamic scheduling algorithms!
  scheduling decisions are taken based on parameters that can change

with time. !

9.75! Buttazzo, Hard Real-Time Computing Systems ©2013!

Off-line vs. On-line

  Off-line scheduling algorithms!
  all scheduling decisions are taken before task activation: the schedule is

stored in a table and later executed by a dispatcher !
 “table-driven scheduling”!

  On-line scheduling algorithms!
  scheduling decisions are taken at run-time on the set of active tasks!

 When?!

9.76! Buttazzo, Hard Real-Time Computing Systems ©2013!

Optimal vs. Heuristic

  Optimal scheduling algorithms!
  They generate a schedule that minimizes a cost function, defined based

on an optimality criterion. !

  Heuristic scheduling algorithms!
  They generate a schedule according to a heuristic function that tries to

satisfy an optimality criterion, but there is no guarantee of success. !

9.77! Buttazzo, Hard Real-Time Computing Systems ©2013!

Guaranteed vs. Best Effort

  Guaranteed scheduling algorithms!
  They generate a feasible schedule if there exists one !
  Needed is hard real-time!
  Pessimistic assumptions!

  Best effort scheduling algorithms!
  No guarantee of a feasible schedule.!
  Useful if soft real-time !
  Optimize average performance!

9.78! Buttazzo, Hard Real-Time Computing Systems ©2013!

Guarantee-Based Algorithms

  In hard real-time applications, the feasibility of the schedule must be
guaranteed before task execution!
  Give the system time to try and avoid catastrophic consequences!
  Look-ahead and worst-case reasoning!

  Static real-time systems: guarantee off-line; table-based scheduling!
  + Run-time overhead does not depend on complexity of scheduling

algorihtm!
  - Flexibility!

  Dynamic real-time systems: task can be created at run-time!
  Guarantee online every time a new task is created!

9.79! Buttazzo, Hard Real-Time Computing Systems ©2013!

Guarantee Mechanism

  Worst-case assumption: a task could unnecessarily be rejected!
  - Efficiency!

  Early detection of potential overload situation!
  + Avoid negative effects (possible catastrophe, domino effect)!

01/10/2012

34

W1

priority

Task states

running

W2

W3

V(t)

0 2 4 6 10 12 148 16 18 20

running
ready

ready

running

runningrunning

3
2
1
0

0 2 4 6 10 12 148 16 18 20

BLOCKED

Task states

READY RUNNING
activation

dispatching

termination

wait
BLOCKED

signal

READY RUNNING

preemption

ACTIVE

acceptance
test

01/10/2012

34

W1

priority

Task states

running

W2

W3

V(t)

0 2 4 6 10 12 148 16 18 20

running
ready

ready

running

runningrunning

3
2
1
0

0 2 4 6 10 12 148 16 18 20

BLOCKED

Task states

READY RUNNING
activation

dispatching

termination

wait
BLOCKED

signal

READY RUNNING

preemption

ACTIVE

YES

NO

9.80! Buttazzo, Hard Real-Time Computing Systems ©2013!

Domino Effect

9.81! Buttazzo, Hard Real-Time Computing Systems ©2013!

Metrics for Performance Evaluation

  Classical operating systems!
  Optimality: min cost function!

  Average response time!
  Total completion time!
  Weighted sum of completion times!
  Maximum lateness!
  Maximum number of late tasks!
  …!

  Real-Time Operating Systems: these cost functions are not necessarily of
interest!
  No individual assessment of timing properties (periods, deadlines)!
  Maximum lateness has no direct relation with number of tasks that miss

their deadline!

9.82! Buttazzo, Hard Real-Time Computing Systems ©2013!

Maximum Lateness

a)  Min maximum lateness!
b)  Min number of tasks that miss their deadline!

9.83! Buttazzo, Hard Real-Time Computing Systems ©2013!

Cumulative Value

  Sum of the utility functions computed at each completion time!

Introduzione 9

FUNZIONE DI UTILITA’ DI UN PROCESSO

non real-time

ai fi

v (fi)
soft real-time

ai di fi

v (fi)

hard real-time

ai di fi

v (fi)

-∞
“better never than late”

ai di fi

v (fi)

on-time

“firm”

Scheduling Anomalies

9.85! Buttazzo, Hard Real-Time Computing Systems ©2013!

A Surprising Result…

  Theorem (Graham, 1976) !
If a task set is optimally scheduled on a multiprocessor with some priority
assignment, a fixed number of processors, fixed execution times, and
precedence constraints, then increasing the number of processors, reducing
execution times, or weakening the precedence constraints can increase the
schedule length!
!
!
  Brittleness of scheduling algorithms: small changes can have big,

unexpected consequences!

9.86! Buttazzo, Hard Real-Time Computing Systems ©2013!

Richard’s Anomalies (Graham, 1976)

  Assume a parallel machine with 3 CPU. All tasks arrive at the same time.!
1.  What priority-based schedule?!
2.  How to improve schedule length?!

01/10/2012

55

Scheduling anomalies
T1: 3

T2: 2

T9: 9
T8: 4 priorityT2: 2

T3: 2

T4: 2

T8: 4
T7: 4
T6: 4
T5: 4

priority

Pi > Pj � i < j

P1
P2

T1

T2 T4

T9

T5 T7 t = 12

109

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 t

P2
P3

T2

T3

T4 T5

T6

T7

T8

tr = 12

Increased processors

T1: 3 T9: 9
T2: 2

T3: 2

T8: 4
T7: 4
T6: 4

T4: 2
T6: 4
T5: 4

P1
P2
P3

T1

T2

T3

T5

T6

T8

T9

110

P4

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 t15

T4 T7

tr = 15

9.87! Buttazzo, Hard Real-Time Computing Systems ©2013!

1) Increase number of CPUs

  Assume 4 CPUs!

01/10/2012

55

Scheduling anomalies
T1: 3

T2: 2

T9: 9
T8: 4 priorityT2: 2

T3: 2

T4: 2

T8: 4
T7: 4
T6: 4
T5: 4

priority

Pi > Pj � i < j

P1
P2

T1

T2 T4

T9

T5 T7 t = 12

109

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 t

P2
P3

T2

T3

T4 T5

T6

T7

T8

tr = 12

Increased processors

T1: 3 T9: 9
T2: 2

T3: 2

T8: 4
T7: 4
T6: 4

T4: 2
T6: 4
T5: 4

P1
P2
P3

T1

T2

T3

T5

T6

T8

T9

110

P4

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 t15

T4 T7

tr = 15

9.88! Buttazzo, Hard Real-Time Computing Systems ©2013!

2) Reduce computation time

  Reduce computation time of each task by 1 unit!

01/10/2012

55

Scheduling anomalies
T1: 3

T2: 2

T9: 9
T8: 4 priorityT2: 2

T3: 2

T4: 2

T8: 4
T7: 4
T6: 4
T5: 4

priority

Pi > Pj � i < j

P1
P2

T1

T2 T4

T9

T5 T7 t = 12

109

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 t

P2
P3

T2

T3

T4 T5

T6

T7

T8

tr = 12

Increased processors

T1: 3 T9: 9
T2: 2

T3: 2

T8: 4
T7: 4
T6: 4

T4: 2
T6: 4
T5: 4

P1
P2
P3

T1

T2

T3

T5

T6

T8

T9

110

P4

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 t15

T4 T7

tr = 15

9.89! Buttazzo, Hard Real-Time Computing Systems ©2013!

3) Weaken precedence constraints

  Remove constraints on T7 and T8!

01/10/2012

55

Scheduling anomalies
T1: 3

T2: 2

T9: 9
T8: 4 priorityT2: 2

T3: 2

T4: 2

T8: 4
T7: 4
T6: 4
T5: 4

priority

Pi > Pj � i < j

P1
P2

T1

T2 T4

T9

T5 T7 t = 12

109

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 t

P2
P3

T2

T3

T4 T5

T6

T7

T8

tr = 12

Increased processors

T1: 3 T9: 9
T2: 2

T3: 2

T8: 4
T7: 4
T6: 4

T4: 2
T6: 4
T5: 4

P1
P2
P3

T1

T2

T3

T5

T6

T8

T9

110

P4

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 t15

T4 T7

tr = 15

9.90! Buttazzo, Hard Real-Time Computing Systems ©2013!

Another Surprising Result…

  If tasks share mutually exclusive resources, or are non-preemptive,
scheduling anomalies may also occur in uniprocessor systems!

  Theorem (Buttazzo, 2006) !
A real time application that is feasible on a given processor can become
infeasible when running on a faster processor!
!
!
!
!
What if double the processor’s speed?!

01/10/2012

57

Faster processor

W1

W2

W

double speed deadline miss

113

W1

W2

A dangerous operation: DELAY

A delay(') may cause a delay longer than '.

W1

W2

0 2 4 6 8 10 12 14

delay(2) blocked

114

y()

W1

W2

0 2 4 6 8 10 12 14

9.91! Buttazzo, Hard Real-Time Computing Systems ©2013!

Another Surprising Result…

  If tasks share mutually exclusive resources, or are non-preemptible,
scheduling anomalies may also occur in uniprocessor systems!

  Theorem (Buttazzo, 2006) !
A real time application that is feasible on a given processor can become
infeasible when running on a faster processor!
!
!
!
!
!
!
!
What if double the processor’s speed?!

9.92! Buttazzo, Hard Real-Time Computing Systems ©2013!

A dangerous operation: DELAY

  A delay(Δ) may introduce a delay greater than Δ!

01/10/2012

57

Faster processor

W1

W2

W

double speed deadline miss

113

W1

W2

A dangerous operation: DELAY

A delay(') may cause a delay longer than '.

W1

W2

0 2 4 6 8 10 12 14

delay(2) blocked

114

y()

W1

W2

0 2 4 6 8 10 12 14

9.93! Buttazzo, Hard Real-Time Computing Systems ©2013!

A dangerous operation: DELAY

  A delay(Δ) may also increase the response times of other tasks!
  Example for fixed priorities!

01/10/2012

58

A dangerous operation: DELAY
A delay in a task may also increase the response
time of other tasks (example for fixed priorities):

W1

W2

0 5 10 15

0 4 8 12

delay(1) deadline miss

115

y()

W1

W2

deadline miss

0 5 10 15

0 4 8 12

A dangerous operation: DELAY
A delay in a task may also increase the response
time of other tasks (example for deadline scheduling):

deadline miss

W2
154 120 8

W1
16

116

deadline miss

16

154 120 8

W2

W1
delay(8)

9.94! Buttazzo, Hard Real-Time Computing Systems ©2013!

A dangerous operation: DELAY

  A delay(Δ) may also increase the response times of other tasks!
  Example for deadline scheduling!

01/10/2012

58

A dangerous operation: DELAY
A delay in a task may also increase the response
time of other tasks (example for fixed priorities):

W1

W2

0 5 10 15

0 4 8 12

delay(1) deadline miss

115

y()

W1

W2

deadline miss

0 5 10 15

0 4 8 12

A dangerous operation: DELAY
A delay in a task may also increase the response
time of other tasks (example for deadline scheduling):

deadline miss

W2
154 120 8

W1
16

116

deadline miss

16

154 120 8

W2

W1
delay(8)

9.95! Buttazzo, Hard Real-Time Computing Systems ©2013!

Take-Home Message

  Tests are not enough for real-time systems!
  Intuitive solutions do not always work!
  Delay should not be used in real-time tasks!
  The safest approach:!

  Use predictable kernel mechanisms!
  Analyze the system to predict the behaviour!

  The operating system is the part most responsible for a predictable
behavior. Concurrency control must be enforced by: !
  appropriate scheduling algorithms !
  appropriate syncronization protocols !
  efficient communication mechanisms !
  predictable interrupt handling !

