ALMA MATER STUDIORUM
UNIVERSITA DI BOLOGNA

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

Real-Time Operating
Systems M

9. Real-Time: Basic Concepts

Notice

The course material includes slides downloaded from:
http://codex.cs.yale.edu/avi/os-book/

(slides by Silberschatz, Galvin, and Gagne, associated with
Operating System Concepts, 9th Edition, Wiley, 2013)

and
http://retis.sssup.it/~giorgio/rts-MECS.html

(slides by Buttazzo, associated with Hard Real-Time Computing
Systems, 3rd Edition, Springer, 2011)

which has been edited to suit the needs of this course.
The slides are authorized for personal use only.

Any other use, redistribution, and any for profit sale of the slides (in any
form) requires the consent of the copyright owners.

9.2 Torroni, Real-Time Operating Systems M ©2013

Objectives

B Study software methodologies to support time critical systems:

® Study software methodologies and algorithms to increase predictability
in (embedded) computing system...

...consisting of several concurrent activities...
...Subject to timing constraints

® Learn how to model and analyze a real-time application to predict
worst-case response times and verify its feasibility under a set of
constraints

;zetis

Real-Time Systems Laboratory 9.3 Buttazzo, Hard Real-Time Computing Systems ©2013

Control and Implementation

B Often, control and implementation are done by different people that do not
talk to each other:

B Control guys typically assume a computer with infinite resources and
computational power. In some case, computation is modeled by a fixed
delay A.

ﬁetis

Real-Time Systems Laboratory 9.4 Buttazzo, Hard Real-Time Computing Systems ©2013

Control and Implementation

B In reality, a computer:
® has limited resources
e finite computational power (non null execution times)
® executes several concurrent activities
® introduces variable delays (often unpredictable)

B Modeling such factors and taking them into account in the design phase
allows a significant improvement in performance and reliability

;zetis

Real-Time Systems Laboratory 9.5 Buttazzo, Hard Real-Time Computing Systems ©2013

Definitions
and
Sample Applications

;zeti

Real-Time Systems Laboratory

Embedded System

B A computing system hidden in an object to control its functions, enhance its
performance, manage the available resources and simplify the interaction
with the user.

Object

micro-
processor

communication

actuators

Sensors

user =—

;?etis

Real-Time Systems Laboratory

9.7

— other units

Buttazzo, Hard Real-Time Computing Systems ©2013

Control System Components

B In every control application, we can distinguish 3 basic components:
® The system to be controlled
» may include sensors and actuators
® The controller

» sends signals to the system according to a predetermined control
objective

® The environment in which the system operates

ézetis

Real-Time Systems Laboratory 9.8 Buttazzo, Hard Real-Time Computing Systems ©2013

A Typical Control System

—> Controller

bt

actuators

feedback internal state

Sensory
processing

B Other activities

sensor sensor

external state

pre-
processing

e filtering, classification, data fusion, recognition, planning

petis

Real-Time Systems Laboratory

9.9 Buttazzo, Hard Real-Time Computing Systems ©2013

Software Vision

computer

D/A

-0 =
—@
—@

‘ Thread (task)

ﬁetis

Real-Time Systems Laboratory

A/D

9.10

Sensors

Resource

Buttazzo, Hard Real-Time Computing Systems ©2013

Types of Control Systems

B Depending on the system-environment interactions, we can distinguish
among 3 types of control systems:

® Monitoring systems
» do not modify the environment
® Open-loop control systems
» loosely modify the environment
® Closed-loop control systems
» tight interaction between perception and action

ézetis

Real-Time Systems Laboratory 9.11 Buttazzo, Hard Real-Time Computing Systems ©2013

Monitoring Systems

B Do not modify the environment
® surveillance systems, air traffic control

Real-time system | sensors
Data <
. sensors
processing

Sensors

petis

Real-Time Systems Laboratory 9.12 Buttazzo, Hard Real-Time Computing Systems ©2013

Open-Loop Control Systems

B Sensing and control are loosely coupled
® Assembly robots, sorting robots

Controller | System —»

Data

Planning [e— . e
processing

Sensors

ézetis

Real-Time Systems Laboratory 9.13 Buttazzo, Hard Real-Time Computing Systems ©2013

Closed-Loop Control Systems

B Sensing and control are tightly coupled
® Flight control systems, military systems, living beings

Controller — System —

|

Data

Planning e . e—
processing

sensors

ézetis

Real-Time Systems Laboratory 9.14 Buttazzo, Hard Real-Time Computing Systems ©2013

Implications

B The tight interaction with the environment requires the system to react to
events within precise timing constraints

B Timing constraints are imposed by the dynamics of the environment

B The operating system must be able to execute tasks within timing
constraints

;zetis

Real-Time Systems Laboratory 9.15 Buttazzo, Hard Real-Time Computing Systems ©2013

A Robot Control Example

B Consider a robot equipped with:
® two actuated wheels
® two proximity (US) sensors

® a mobile (pan/tilt) camera

® a wireless transceiver

B Goal:
e follow a path based on visual feedback
® avoid obstacles
® send complete robot status every 20 ms

petis

Real-Time Systems Laboratory 9.16 Buttazzo, Hard Real-Time Computing Systems ©2013

Hierarchical Control

visual-based
navigation l
> 100 ms - obstacle
object —— avoidance
recognition
I @ l
| visual vehicle
tracking control
20 ms 5ms
[feature }m e Hmu
extraction oter | | meter control | | contro
? T %1ms?m# ‘ ‘ Imi 1ms Imﬁ
camera an tilt mot_dx mot_sx

ézetis

Real-Time Systems Laboratory 9.17 Buttazzo, Hard Real-Time Computing Systems ©2013

Design Requirements

B Modularity: a subsystem must be developed without knowing the details of
other subsystems (team work)

B Configurability: software must be adapted to different situations (through
the use of suitable parameters) without changing the source code

B Portability: minimize code changes when porting the system to different
hardware platforms

B Predictability: allow the estimation of maximum delays

B Efficiency: optimize the use of available resources (computation time,
memory, energy)

;?etis

Real-Time Systems Laboratory 9.18 Buttazzo, Hard Real-Time Computing Systems ©2013

Operating System Requirements

B Timeliness: results must be correct not only in their value but also in the
time domain

® provide kernel mechanism for time management and for handling tasks
with explicit timing constraints and different criticality

B Predictability: system must be analyzable to predict the consequences of
any scheduling decision

® if some task cannot be guaranteed within time constraints, system must
notify this in advance, to handle the exception (plan alternative actions)

B Efficiency: operating system should optimize the use of available resources
(computation time, memory, energy)

B Robustness: must be resilient to peak-load conditions

B Fault tolerance: single software/hardware failures should not cause the
system to crash

B Maintainability: modular architecture to ensure that modifications are easy

to perform
ﬁetis

Real-Time Systems Laboratory 9.19 Buttazzo, Hard Real-Time Computing Systems ©2013

Modularity

B Modularity can be achieved by:

® partitioning the system into a set of subsystems, each managed by one
or more computational tasks

® the definition of precise interfaces between tasks, each specifying:
» data exchanged with the other tasks (input and output)
» functionality of the task (what it has to do)
» validity assumptions (e.g., admissible ranges)
» performance requirements (priority, period, deadline, jitter)
B Asynchronous communication mechanisms

?etis

Real-Time Systems Laboratory 9.20 Buttazzo, Hard Real-Time Computing Systems ©2013

Control View

visual-based
navigation l
> 100 ms - obstacle
object —— avoidance
recognition
I @ l
| visual vehicle
tracking control
20 ms 5ms
[feature }m e Hmu
extraction oter | | meter control | | contro
? T %1ms?m# ‘ ‘ Imi 1ms Imﬁ
camera an tilt mot_dx mot_sx

ézetis

Real-Time Systems Laboratory 9.21 Buttazzo, Hard Real-Time Computing Systems ©2013

Software View

object
recognition

feature
extraction

camera

ézetis

Real-Time Systems Laboratory

O periodic task buffer
visual-based obstacle
navigation avoidance :

visual vehicle
tracking control

motor

control
tilt US1 US2 mot_dx mot_sx

9.22 Buttazzo, Hard Real-Time Computing Systems ©2013

RTOS Responsibilities

B The Real-Time Operating System (RTOS) is responsible for:
® managing the concurrent execution of the various activities
» concurrent tasks

® decide the order of execution of the tasks, satisfying the specified
requirements

» scheduling

® solving possible timing conflicts during the access of shared resources
» critical sections

® manage the timely execution of asynchronous events
» interrupts

?etis

Real-Time Systems Laboratory 9.23 Buttazzo, Hard Real-Time Computing Systems ©2013

What is a Real-Time System?

B A computer system able to respond to events within precise timing
constraints

Environment

y (t+Ai

B A system where the correctness depends not only on the output values,
but also on the time at which results are produced

controlle

’

;?etis

Real-Time Systems Laboratory 9.24 Buttazzo, Hard Real-Time Computing Systems ©2013

Typical Objection

B “Itis not worth to invest in Real Time theory, because computer speed is
increasing exponentially, and all timing constraints can eventually be

handled.”
Answer

B Given an arbitrary computer speed, we must always guarantee that timing
constraints can be met. Testing is NOT sufficient

;; i
Buttazzo, Hard Real-Time Computing Systems ©2013

Real-Time Systems Laboratory 9.25

Real-Time # Fast

A real-time system is not a fast system

Speed is always relative to a specific environment
B Running faster is good, but does not guarantee a correct behaviour.

B The objective of a real-time system is to guarantee the timing behaviour of
each individual task

B The objective of a fast system is to minimize the average response time of a
task set. But...

® Don't trust average when you have to guarantee individual
performance

?etis

Real-Time Systems Laboratory 9.26 Buttazzo, Hard Real-Time Computing Systems ©2013

Sources of Nondeterminism

B Architecture
® cache, pipelining, interrupts, DMA
B Operating System
® scheduling, synchronization, communication
B Language
® lack of explicit support for time
B Design Methodologies
@ lack of analysis and verification techniques

;zetis

Real-Time Systems Laboratory 9.27 Buttazzo, Hard Real-Time Computing Systems ©2013

Design Methodologies

B Traditional approach: empirical techniques
® assembly programming
@ timing through dedicated timers
® control through driver programming
@ priority manipulations

B Many disadvantages!
® tedious programming, heavily relies on programmer’s ability
@ difficult code understanding (readability x efficiency = k)
@ difficult software maintainability
» MLOC, understanding takes more than rewriting => bug prone
@ difficult to verify timing constraints without OS & language support

;?etis

Real-Time Systems Laboratory 9.28 Buttazzo, Hard Real-Time Computing Systems ©2013

Implications

Dangerous way of programming real-time applications
May work in most situations, but high risk of failure

When the system fails, it is very difficult to understand why
Low reliability

Many famous failures

® First flight of the Space Shuttle, 1979 (transient overload at initialization)
» probability of failure ~1.5%

® Scud missile on Dhahran, 1993 (delay due to interrupt handling)
» program flow depends on sensory data, cannot be fully replicated
» testing is not enough

® Ariane 5, 1996 (integer overflow in inertial reference system routine)
» Environment

® Mars Pathfinder, 1997 (priority inversion, see Silberschatz)

etis

Real-Time Systems Laboratory 9.29 Buttazzo, Hard Real-Time Computing Systems ©2013

Take-Home Message

B Tests, although necessary, allow only a partial verificaiton of system’s
behaviour

B Predictability must be improved at the kernel level
B Overload handling and fault-tolerance
B Critical systems must be designed by making pessimistic assumptions...

B ...Murphy’s laws
@ If something can go wrong, it will go wrong
@ If a system stops working, it will do it at the worst possible time

® Sooner or later, the worst possible combination of circumstances will
happen...

?etis

Real-Time Systems Laboratory 9.30 Buttazzo, Hard Real-Time Computing Systems ©2013

Achieving predictability

1. DMA
B Cycle stealing

B Possible solution: time-slice method
® each memory cycle split into two adjacent time slots
» one reserved for the CPU, the other for the DMA device
® more expensive than cycle stealing
» but more predictable

;zetis

Real-Time Systems Laboratory 9.31 Buttazzo, Hard Real-Time Computing Systems ©2013

Achieving predictability

2. Cache
B Hit ratio
® 80% of times: hits
® 20% of times: performance degrades
® Preemptive systems destroy locality
® Cache-related preemption delay difficult to precisely estimate

petis

Real-Time Systems Laboratory 9.32 Buttazzo, Hard Real-Time Computing Systems ©2013

Achieving predictability

3. Interrupts
B Source: peripheral devices
B Can introduce unbounded delays
B Handling routines with static priorities
® generic OS: I/O have real-time constraints
® RTOS: a control process could be more urgent than interrupt handling

B 3 different approaches

ézetis

Real-Time Systems Laboratory 9.33 Buttazzo, Hard Real-Time Computing Systems ©2013

Achieving predictability

w

Interrupts
Can introduce unbounded delays

A. Disable all interrupts, except the one from the timer; devices handled by
application tasks using polling

® + predictability, kernel-independent; - efficiency

B. Disable all interrupts except the one from the timer; manage devices via
periodic kernel routines

® + encapsulation; - overhead

C. Leave all interrupts enabled; minimize drivers’ size (only activates device
management task)

® + no busy waiting; - (small) unbounded overhead due to drivers

;?etis

Real-Time Systems Laboratory 9.34 Buttazzo, Hard Real-Time Computing Systems ©2013

Achieving predictability

4. System Calls
B Could be difficult to evaluate worst-case execution time of each task

B All system calls should be characterized by bounded execution time
B Desirable that system calls be preemptable

;zetis

Real-Time Systems Laboratory 9.35 Buttazzo, Hard Real-Time Computing Systems ©2013

Achieving predictability

5. Semaphores
M Priority inversion

B Must be avoided!

M Several methods:
® Basic priority inheritance
® Priority ceiling

ézetis

Real-Time Systems Laboratory 9.36 Buttazzo, Hard Real-Time Computing Systems ©2013

Achieving predictability

6. Memory management
B Demand paging

B Solution: static partitioning

® memory segmentation rule with fixed memory management scheme
B + predictability, - flexibility in dynamic environments

petis

Real-Time Systems Laboratory 9.37 Buttazzo, Hard Real-Time Computing Systems ©2013

Achieving predictability

7. Programming language
B Dynamic data structures
B Recursion

B Cycles

B High-level languages for programming hard real-time applications

® Real-Time Euclid
® Real-Time Concurrent C

petis

Real-Time Systems Laboratory 9.38 Buttazzo, Hard Real-Time Computing Systems ©2013

Modeling
Real-Time Activities

§e€£~%

Real-Time Systems Laborato

Task

B Sequence of instructions that in the absence of other activities is
continuously executed by the processor until completion.

activation time Task H C.
Al
start time > | | _
- a4 5 f; t
computation | — | R;
time .
The interval f, — a;
- is referred to as the
finishing time 1 task response time R.
activation _ Ready queue jishatching termination

. » Note: “activation” = “arrival” = “request” = “release” time

etis

Real-Time Systems Laboratory 9.40 Buttazzo, Hard Real-Time Computing Systems ©2013

Schedule

B A particular assignment of tasks to the processor that determines the task
execution sequence. Formally:

Given a task set '={ 1., ..., T, }, a schedule is a function o: R* > N that
associates an integer k to each time slice [t, t.,,) with the meaning:

» k=0:1in [t;, t;,,) the processor is idle
» k>0:in [t, t,,,) the processor executes T,

idle T Ty T3 idle

o(t) ,
3 _|
2 |
1

t, t, t, t, t

B Attimest,,t,,...: context switch

ézetis

Real-Time Systems Laboratory 9.41 Buttazzo, Hard Real-Time Computing Systems ©2013

Preemptive Scheduling

B A running tasks may be suspended and placed in the ready queue

® + Exception handling: timely response to issues
® + Different levels of criticality: preemption executes most critical tasks
® + Higher efficiency (CPU utilization)
® - Destroys program locality
® - Introduces runtime overhead
priority
Tl: e
0o 2 436 8 10 | 12 154 16 158 20
o)
1A —_—
t - 0 T T T | T T | T Y T
e zs 0 2 4 6 8 10 12 14 16 18 20

Real-Time Systems Laboratory 9.42 Buttazzo, Hard Real-Time Computing Systems ©2013

Definitions

B Definition: feasible schedule

® A schedule o is said to be feasible if all the tasks can complete
according to a set of specified constraints.

B Definition: schedulable set of tasks

® A setof tasks I is said to be schedulable if there exists at least one
algorithm that can produce a feasible schedule for it.

ézetis

Real-Time Systems Laboratory 9.43 Buttazzo, Hard Real-Time Computing Systems ©2013

Real-Time Task

B I|tis a task characterized by a timing constraint on its response time, called

deadline:
relative deadline D;
g T 1] l -
4 Si f; d; t
' absolute deadline
response time R; | (d.=a +D)

B “Completiontime”=f-s =R, —(s-a)

B Definition: feasible task
® Areal-time task T,is said to be feasible if it completes within its absolute

deadline, that is, if f;, < d, or, equivalently, if R, < D.
ﬁetzs

Real-Time Systems Laboratory 9.44 Buttazzo, Hard Real-Time Computing Systems ©2013

Slack and Lateness

D;
O S
a, S f; d, t
R; | slackiQdi-ﬁ
D, lateness | L;=f; - d,
T T]] | .
a; §; d; f; t
R

B “Slack” if lateness is negative (task completes before deadline)
B “Laxity” or “slack time” X. =d. —a, — C,
B “Tardiness” or “exceeding time” E; = max(0, L;)

ézetis

Real-Time Systems Laboratory 9.45 Buttazzo, Hard Real-Time Computing Systems ©2013

Tasks and Jobs

B A task running several times on different input data generates a sequence
of instances (jobs):

Job 1 Job 2 Job 3
Ti,1 Ti,2 Ti,3
A N\ r A N\ - A
Ci
i | 1 Iﬂ] 1 1 |—|1 ;
ai | i k i k1 t

b 9

petis

Real-Time Systems Laboratory 9.46 Buttazzo, Hard Real-Time Computing Systems ©2013

Activation Mode

B Time-driven
® Periodic tasks (T))

® The task is automatically activated by the operating system at
predefined time instants.

B Event-driven
® Aperiodic tasks: “jobs” (J)

® The task is activated at an event arrival or by explicitly invocating a
system call.

petis

Real-Time Systems Laboratory 9.47 Buttazzo, Hard Real-Time Computing Systems ©2013

Periodic Task

input)

[Ci

| Ui — T

— [C; computation time i
Uil utilization factor
sync | |

B A periodic task 1;generates an infinite sequence of instances or jobs
(same code on different data): T;;, T;5, ..., T --.

petis

Real-Time Systems Laboratory 9.48 Buttazzo, Hard Real-Time Computing Systems ©2013

The IDLE State

BLOCKED

dispatching

activate terminate

—®{ READY

RUNNING

preemption

wake_up wait_for_next_period

Timer

petis

Real-Time Systems Laboratory 9.49 Buttazzo, Hard Real-Time Computing Systems ©2013

Periodic Task

7 (Ci, Ti, Di) T job Tik

c .~
= = = el
aj,1 = ;i ai ai k+1 t
task phase
aix = Oi+(k=1)T; r often \

dix = aixt Dj Di=1

ézetis

Real-Time Systems Laboratory 9.50 Buttazzo, Hard Real-Time Computing Systems ©2013

Exercise

B Consider a periodic task 1,(C,,T,,D,) with phase ®,, where:
® C,=10ms, T,=50 ms, D, =25 ms, and ®, = 100 ms

What is t,’s utilization factor?

Is 1, feasible?

What is T, ;'s absolute deadline?

What is 1, 4’s laxity?

What is T, ,’s release time?

Can 1, , and T, , have different laxity?

Can 1,4 and T, , have different slack?

If T, ,’s slack is 10ms, what is T, s finishing time?

What is T, ,'s response time?

With a 2-CPU machine, can T, , and 1, 5 have the same release time?

Can 1, ,and T, 5 have the same finishing time?

:_"'] ALMA MATER STUDIDRUM
5| UNIVERSITA DI BOLDGNA

NS 9.51 Torroni, Real-Time Operating Systems M ©2013

Aperiodic Task

e Aperiodic: ajx.; > ajx ~ minimum
interarrival time

[] /
e Sporadic: dixr1 = aix T T

jOb Tik

R Ciﬁ 1 ICiTIH | ICiﬁ l :
Qi k

adi k+1

ézetis

Real-Time Systems Laboratory 9.52 Buttazzo, Hard Real-Time Computing Systems ©2013

Estimating C; is Not Easy

» Each job operates on different data and

can take different paths.
» Even for the same data, computation time
depends on the processor state (cache,
| prefetch queue, number of preemptions).
oop
? A _
occurrencies
|
I R
‘ ‘ execution
AN | | ‘ L, fme
timer min max

C.

i i

ézetis

Real-Time Systems Laboratory 9.53 Buttazzo, Hard Real-Time Computing Systems ©2013

Predictability vs. Efficiency

A # occurrencies

P T N _ execution
. avg max | time
min avg max
0 o o— C. estimate
unsafe efficient safe

ézetis

Real-Time Systems Laboratory 9.54 Buttazzo, Hard Real-Time Computing Systems ©2013

Predictability vs. Efficiency

A

efficiency predictability

C.
;zetis

Real-Time Systems Laboratory 9.55 Buttazzo, Hard Real-Time Computing Systems ©2013

Criticality and Value

B Itis a parameter related to the consequences of missing the deadline
® Hard: missing deadline may have catastrophic consequences
® Hard Real-Time System if it can handle hard tasks

» Sensory acquisition
» low-level control
» sensory-motor planning
® Soft: missing a deadline causes performance degradation
» reading data from the keyboard —user command interpretation
» message displaying
» graphical activities

B Value, v, = the relative importance of a task wrt other tasks

?etis

Real-Time Systems Laboratory 9.56 Buttazzo, Hard Real-Time Computing Systems ©2013

Jitter

B Itis a measure of the time variation of a periodic event:

ail %1 az L[2 as £3 I8.4 '
Absolute: max (t, —a,) — min (t, —a,)
k k
Relative: mkax | (t —ay) — (fig —ay) |

ézetis

Real-Time Systems Laboratory 9.57 Buttazzo, Hard Real-Time Computing Systems ©2013

Types of Jitter

Finishing-time lJitter

>

Ti || [] ‘
fi1 fin fi3
Start-time lJitter
- - N ‘
S I 1 M .
Si,1 $i,2 8i,3

Completion-time Jitter (1/0 lJitter)

v | | 1 |
1 1 [1 [
si1 fii Si2 fio si3 fis

ézetis

Real-Time Systems Laboratory

9.58 Buttazzo, Hard Real-Time Computing Systems ©2013

Task Constraints

ﬁeq}%

Real-Time Systems Laborato

Types of Constraints

B Timing constraints

@ Activation, completion, jitter.
B Precedence constraints

® They impose an ordering in the execution.
B Resource constraints

® They enforce a synchronization in the access of mutually exclusive
resources.

petis

Real-Time Systems Laboratory 9.60 Buttazzo, Hard Real-Time Computing Systems ©2013

Explicit Timing Constraints

B Timing constraints can be explicit or implicit.

B Explicit timing constraints
® Directly included in the system specifications.

B Example:
® open the valve in 10 seconds
® send the position within 40 ms
® read the altimeter every 200 ms
® acquire the camera every 20 ms

ézetis

Real-Time Systems Laboratory 9.61 Buttazzo, Hard Real-Time Computing Systems ©2013

Implicit Timing Constraints

B They do not appear in the system specifications...
® Dbut need to be met in order to satisfy the performance requirements

B Example
® What is the validity of a sensory data?

petis

Real-Time Systems Laboratory 9.62 Buttazzo, Hard Real-Time Computing Systems ©2013

Computing the Yellow Duration

a B
(@)

B D=T,+T,+T,
® T, = Detection time
® T, =Reaction time
® T,=Brakingtime~v/.5¢g

B T,=.8s, T =.8s v=50kmh (14 m/s) > D = 227
v, 277

petis

Real-Time Systems Laboratory 9.63 Buttazzo, Hard Real-Time Computing Systems ©2013

Precedence Constraints

B Sometimes tasks must be executed with specific precedence relations,
specified by a Directed Acyclic Graph (Precedence Graph):

i< T,
I 5
I < 14
Iy # 14

® Immediate predecessor
® Predecessor

petis

Real-Time Systems Laboratory 9.64 Buttazzo, Hard Real-Time Computing Systems ©2013

Sample Application

stereo vision
OO
~ processing —|recognition |’

&

B Tasks:

® Acquisition (acqi, acq?)

® Edge detection (edge1, edge?)

® Shape detection (shape), pixel disparities (disp)

® Height determination (height), recognition (rec)
B Precedence graph?

etis

Real-Time Systems Laboratory 9.65 Buttazzo, Hard Real-Time Computing Systems ©2013

Precedence Graph

Cacat Caca2
Caisp (shape
(depn
Cree
ézetis

Real-Time Systems Laboratory 9.66 Buttazzo, Hard Real-Time Computing Systems ©2013

Resource Constraints

B To preserve data consistency, shared resources must be accessed in

mutual exclusion:

w (@
w x=1
y=8

x=1
Twi

< M
i
n W

O

1
S

<
Il

TR

A

A

read

;zetis

Real-Time Systems Laboratory

9.67

Buttazzo, Hard Real-Time Computing Systems ©2013

Mutual Exclusion

B However, mutual exclusion introduces extra delays:
v @ O
w x=1 x=1 R
y=38 y=8
x=1 y=38
Tw h —L

read

< M
I
9 oS

\4

;?etis

Real-Time Systems Laboratory 9.68 Buttazzo, Hard Real-Time Computing Systems ©2013

Definition of
Scheduling Problems

;zeti

Real-Time Systems Laboratory

General Scheduling Problem

B Given:
® asetof ntasks, [={1,, T,, ..., T}
» a precedence graph
» a set of timing constraints associated with each task
® asetof mprocessors, P ={P,,P,, ..., P}
® asetof stypes of resources, R ={R;, R,, ..., R}

find an assignment of P and R to I' which produces a feasible schedule.

Scheduling

|gorith
R — aigorthm feasible

—>G

;zetis

Real-Time Systems Laboratory 9.70 Buttazzo, Hard Real-Time Computing Systems ©2013

Scheduling Complexity

B In 1975, Garey and Johnson showed that the general scheduling problem is
NP hard.

® There is no known polinomial time algorithm
® Meaning:
» Consider n = 30 tasks; elementary step = 1us
» Alg. 1: O(n)
» Alg. 2: O(n®)
» Alg. 3: O(6")
» Computation time?

B However, polynomial time algorithms can be found under particular
conditions

;zetis

Real-Time Systems Laboratory 9.71 Buttazzo, Hard Real-Time Computing Systems ©2013

Simplifying Assumptions

B Simplify architecture
® Single processor

Homogeneous task sets

® Only periodic / only aperiodic
Fully preemptive tasks
Simultaneous activations
No precedence constraints
No resource constraints

Different classes of algorithms

;zetis

Real-Time Systems Laboratory 9.72 Buttazzo, Hard Real-Time Computing Systems ©2013

Algorithm Tassonomy

Preemptive vs. Non Preemptive
Static vs. Dynamic

On-line vs. Off-line

Optimal vs. Heuristic

Guaranteed vs. Best-effort

Clairvoyant algorithm

petis

Real-Time Systems Laboratory 9.73 Buttazzo, Hard Real-Time Computing Systems ©2013

Static vs Dynamic

B Static scheduling algorithms

® scheduling decisions are taken based on fixed parameters, statically
assigned to tasks before activation.

B Dynamic scheduling algorithms

® scheduling decisions are taken based on parameters that can change
with time.

;zetis

Real-Time Systems Laboratory 9.74 Buttazzo, Hard Real-Time Computing Systems ©2013

Off-line vs. On-line

B Off-line scheduling algorithms

@ all scheduling decisions are taken before task activation: the schedule is
stored in a table and later executed by a dispatcher

» “table-driven scheduling”
B On-line scheduling algorithms

® scheduling decisions are taken at run-time on the set of active tasks
» When?

;zetis

Real-Time Systems Laboratory 9.75 Buttazzo, Hard Real-Time Computing Systems ©2013

Optimal vs. Heuristic

B Optimal scheduling algorithms

® They generate a schedule that minimizes a cost function, defined based
on an optimality criterion.

B Heuristic scheduling algorithms

® They generate a schedule according to a heuristic function that tries to
satisfy an optimality criterion, but there is no guarantee of success.

ézetis

Real-Time Systems Laboratory 9.76 Buttazzo, Hard Real-Time Computing Systems ©2013

Guaranteed vs. Best Effort

B Guaranteed scheduling algorithms
® They generate a feasible schedule if there exists one
® Needed is hard real-time
® Pessimistic assumptions

B Best effort scheduling algorithms
® No guarantee of a feasible schedule.
® Useful if soft real-time
® Optimize average performance

;zetis

Real-Time Systems Laboratory 9.77 Buttazzo, Hard Real-Time Computing Systems ©2013

Guarantee-Based Algorithms

B In hard real-time applications, the feasibility of the schedule must be
guaranteed before task execution

® Give the system time to try and avoid catastrophic consequences
® Look-ahead and worst-case reasoning

B Static real-time systems: guarantee off-line; table-based scheduling

® + Run-time overhead does not depend on complexity of scheduling
algorihtm

® - Flexibility

B Dynamic real-time systems: task can be created at run-time
® Guarantee online every time a new task is created

;?etis

Real-Time Systems Laboratory 9.78 Buttazzo, Hard Real-Time Computing Systems ©2013

Guarantee Mechanism

BLOCKED

signal

dispatching

g termination
preemption

NG TS T -
ACTIVE

activation
acceptance
test

B Worst-case assumption: a task could unnecessarily be rejected

® - Efficiency
B Early detection of potential overload situation

® + Avoid negative effects (possible catastrophe, domino effect)
etis

Real-Time Systems Laboratory 9.79 Buttazzo, Hard Real-Time Computing Systems ©2013

Domino Effect

> |
! |
Jl] L = |
A :|
) : { o
\ |
13 : ¥ .
4 | T
Lo

ﬁetis

Real-Time Systems Laboratory 9.80 Buttazzo, Hard Real-Time Computing Systems ©2013

Metrics for Performance Evaluation

B Classical operating systems
B Optimality: min cost function
® Average response time
® Total completion time
® Weighted sum of completion times
® Maximum lateness
® Maximum number of late tasks

B Real-Time Operating Systems: these cost functions are not necessarily of
interest

® No individual assessment of timing properties (periods, deadlines)

® Maximum lateness has no direct relation with number of tasks that miss
their deadline

;?etis

Real-Time Systems Laboratory 9.81 Buttazzo, Hard Real-Time Computing Systems ©2013

Maximum Lateness

a) Min maximum lateness
b) Min number of tasks that miss their deadline

dl d2 d3 d4 ds
1L|r} lL?:J lL}:l l|4=| lLS:Z
(a) I Js I3 Ja Js
I B L LA e B B B B R R B B R
0 2 4 6 8 10 12 14 16 18 20 2 24 2 '

dl d2 d3 d4 ds
lLI: 3 ll.‘:"‘ ll}:ﬁllﬁ:ﬁ l|‘=-
(b) IR J3 Jy Js J
I 1] v 1 I v 1 1] 1 v I 4 I v | 1 >
0 2 4 6 s 10 12 14 16 18 0 22 24 26 ‘
Le
e .

te.
Real-Time Systems Laboratory 9.82 Buttazzo, Hard Real-Time Computing Systems ©2013

Cumulative Value

B Sum of the utility functions computed at each completion time

non real-time soft real-time on-time
v(f)4 v (f)4
a' Vfl ai dl :f 1 1 1 1
hard real-time
v(fi)1 v(f)1
a; d, Vfa a; d, :fi

=00

“better never than late”

petis

Real-Time Systems Laboratory 9.83 Buttazzo, Hard Real-Time Computing Systems ©2013

Scheduling Anomalies

ﬁetéﬁ

Real-Time Systems Laborato

A Surprising Result...

B Theorem (Graham, 1976)

If a task set is optimally scheduled on a multiprocessor with some priority
assignment, a fixed number of processors, fixed execution times, and
precedence constraints, then increasing the number of processors, reducing
execution times, or weakening the precedence constraints can increase the
schedule length

B Brittleness of scheduling algorithms: small changes can have big,
unexpected consequences

;?etis

Real-Time Systems Laboratory 9.85 Buttazzo, Hard Real-Time Computing Systems ©2013

Richard’s Anomalies (Graham, 1976)

Ti:3 O - To: 9

T:2 O Ts: 4 priority
T2 O S ores PR Vi<)
Ta:2 ~() Ts: 4

B Assume a parallel machine with 3 CPU. All tasks arrive at the same time.
1. What priority-based schedule?
2. How to improve schedule length?

;zetis

Real-Time Systems Laboratory 9.86 Buttazzo, Hard Real-Time Computing Systems ©2013

1) Increase number of CPUs

Ti:3 O - To: 9

T:2 O Ts: 4 priority
T2 O S ores PR Vi<)
Ta: 2 ~() Ts:4

B Assume 4 CPUs

petis

Real-Time Systems Laboratory 9.87 Buttazzo, Hard Real-Time Computing Systems ©2013

2) Reduce computation time

Ti:3 O ~() To: 9
T:2 O Tg: 4 priority

T7Z 4 . .
T:2 O O Te: 4 Pi> P; Vi1<];
Ta: 2 ~() Ts: 4

B Reduce computation time of each task by 1 unit

petis

Real-Time Systems Laboratory 0.88 Buttazzo, Hard Real-Time Computing Systems ©2013

3) Weaken precedence constraints

Ti:3 O - To: 9

T:2 O Ts: 4 priority
T2 O S ores PR Vi<)
T4: 2 ~() Ts: 4

B Remove constraints on T, and Tg

petis

Real-Time Systems Laboratory 9.89 Buttazzo, Hard Real-Time Computing Systems ©2013

Another Surprising Result...

B [f tasks share mutually exclusive resources, or are non-preemptive,
scheduling anomalies may also occur in uniprocessor systems

B Theorem (Buttazzo, 2006)

A real time application that is feasible on a given processor can become

infeasible when running on a faster processor

T

A

A

Tzh,.].]

What if double the processor’s speed?

ézetis

Real-Time Systems Laboratory

9.90

Buttazzo, Hard Real-Time Computing Systems ©2013

Another Surprising Result...

B |[f tasks share mutually exclusive resources, or are non-preemptible,
scheduling anomalies may also occur in uniprocessor systems

B Theorem (Buttazzo, 2006)

A real time application that is feasible on a given processor can become
infeasible when running on a faster processor

What if double the processor’s speed?

ézetis

Real-Time Systems Laboratory 9.91 Buttazzo, Hard Real-Time Computing Systems ©2013

A dangerous operation: DELAY

B A delay(A) may introduce a delay greater than A

2 4 6 8 10 12 14
delay(2) blocked

0
Tl_/|q/'|"""|"
T, |

’

2 4 6 8 10 12 14

;zetis

Real-Time Systems Laboratory 9.92 Buttazzo, Hard Real-Time Computing Systems ©2013

A dangerous operation: DELAY

B A delay(A) may also increase the response times of other tasks
® Example for fixed priorities

0 4 8 A 12
1 I I T .
0 | 5 | 0 s
delay(1) deadline miss
| |
0 iy g 12 o
T, | 1 - !
o s 10 s

;zetis

Real-Time Systems Laboratory 9.93 Buttazzo, Hard Real-Time Computing Systems ©2013

A dangerous operation: DELAY

B A delay(A) may also increase the response times of other tasks
® Example for deadline scheduling

deadline miss

o
Y I-J—J— | T . -T- |
delay(8) 16
B L—” - \-—T

0 4 8 12 15

;Petis

Real-Time Systems Laboratory 9.94 Buttazzo, Hard Real-Time Computing Systems ©2013

Take-Home Message

Tests are not enough for real-time systems
Intuitive solutions do not always work
Delay should not be used in real-time tasks

The safest approach:
® Use predictable kernel mechanisms
® Analyze the system to predict the behaviour

B The operating system is the part most responsible for a predictable
behavior. Concurrency control must be enforced by:

® appropriate scheduling algorithms

® appropriate syncronization protocols
@ efficient communication mechanisms
® predictable interrupt handling

?etis

Real-Time Systems Laboratory 9.95 Buttazzo, Hard Real-Time Computing Systems ©2013

