
Real-Time Operating
Systems M

9. Real-Time: Basic Concepts

9.2! Torroni, Real-Time Operating Systems M ©2013!

Notice

The course material includes slides downloaded from:!
http://codex.cs.yale.edu/avi/os-book/!

(slides by Silberschatz, Galvin, and Gagne, associated with
Operating System Concepts, 9th Edition, Wiley, 2013)!

and!
http://retis.sssup.it/~giorgio/rts-MECS.html!

(slides by Buttazzo, associated with Hard Real-Time Computing
Systems, 3rd Edition, Springer, 2011)!

which has been edited to suit the needs of this course. !
The slides are authorized for personal use only. !
Any other use, redistribution, and any for profit sale of the slides (in any
form) requires the consent of the copyright owners.!

9.3! Buttazzo, Hard Real-Time Computing Systems ©2013!

Objectives

  Study software methodologies to support time critical systems:!
  Study software methodologies and algorithms to increase predictability

in (embedded) computing system… !
!…consisting of several concurrent activities… !
!…subject to timing constraints!

  Learn how to model and analyze a real-time application to predict
worst-case response times and verify its feasibility under a set of
constraints!

9.4! Buttazzo, Hard Real-Time Computing Systems ©2013!

Control and Implementation

  Often, control and implementation are done by different people that do not
talk to each other:!

  Control guys typically assume a computer with infinite resources and
computational power. In some case, computation is modeled by a fixed
delay Δ.!

01/10/2012

9

Aim of the course

x Studing software methodologies for supportingx Studing software methodologies for supporting
time critical computing systems.

x We will not consider how to control a system, but
only how to provide a proper software support to
control applications.

Control and implementation

Often, control and implementation are done by
different people that do not talk to each other:

Control guys typically assume a computer with infinite
resources and computational power. In some case,
computation is modeled by a fixed delay '.

9.5! Buttazzo, Hard Real-Time Computing Systems ©2013!

Control and Implementation

  In reality, a computer:!
  has limited resources!
  finite computational power (non null execution times)!
  executes several concurrent activities!
  introduces variable delays (often unpredictable)!

  Modeling such factors and taking them into account in the design phase
allows a significant improvement in performance and reliability!

Definitions
and

Sample Applications

9.7! Buttazzo, Hard Real-Time Computing Systems ©2013!

Embedded System

  A computing system hidden in an object to control its functions, enhance its
performance, manage the available resources and simplify the interaction
with the user.!

01/10/2012

13

They are computing systems hidden in an object to control
its functions, enhance its performance, manage the available
resources and simplify the interaction with the user.

Real-Time Systems LaboratoryEmbedded systems

p y

Environment
actuators

sensors

micro-
processor

Object

communication

user other units

Control system components
In every control application, we can distinguish
3 basic components:

x the system to be controlled
– it may include sensors and actuators

x the controller
it sends signals to the system according to a

3 basic components:

– it sends signals to the system according to a
predetermined control objective

x the environment in which the system operates

9.8! Buttazzo, Hard Real-Time Computing Systems ©2013!

Control System Components

  In every control application, we can distinguish 3 basic components:!
  The system to be controlled!

 may include sensors and actuators!
  The controller!

 sends signals to the system according to a predetermined control
objective!

  The environment in which the system operates!

9.9! Buttazzo, Hard Real-Time Computing Systems ©2013!

A Typical Control System

  Other activities!
  filtering, classification, data fusion, recognition, planning!

01/10/2012

14

A typical control system

Environ-
mentSystemController

f db kfeedback

Detailed block diagram
System

Controller actuators

Environ.

Sensory
i

internal state

external statepre-
i

feedback
sensor sensor

Other activities
filtering, classification, data fusion, recognition, planning

processing processing

9.10! Buttazzo, Hard Real-Time Computing Systems ©2013!

Software Vision

01/10/2012

15

Software Vision

computer

actuators

A/D

D/A

Environ.

sensorsA/D

Thread (task) Resource

Types of control systems

Depending of the system-environment interactions,
we can distinguish 3 types of control systems:

• Monitoring Systems
– do not modify the environment

• Open-loop control systems
l l dif th i t

we can distinguish 3 types of control systems:

– loosely modify the environment

• Closed-loop control systems
– tight interaction between perception and action

9.11! Buttazzo, Hard Real-Time Computing Systems ©2013!

Types of Control Systems

  Depending on the system-environment interactions, we can distinguish
among 3 types of control systems:!
  Monitoring systems!

 do not modify the environment!
  Open-loop control systems!

  loosely modify the environment!
  Closed-loop control systems!

  tight interaction between perception and action!

9.12! Buttazzo, Hard Real-Time Computing Systems ©2013!

Monitoring Systems

  Do not modify the environment!
  surveillance systems, air traffic control!

01/10/2012

16

Monitoring Systems

Do not modify the environment

Environ-
ment

Data
processing

sensors

sensors
...

Real-time system

Examples: surveillance systems, air traffic control

sensors
Display

Open-loop control systems

Sensing and control are loosely coupled

Environ-
ment

SystemController actuators

Examples: assembly robots, sorting robots

sensors
Data

processingPlanning

9.13! Buttazzo, Hard Real-Time Computing Systems ©2013!

Open-Loop Control Systems

  Sensing and control are loosely coupled!
  Assembly robots, sorting robots!

01/10/2012

16

Monitoring Systems

Do not modify the environment

Environ-
ment

Data
processing

sensors

sensors
...

Real-time system

Examples: surveillance systems, air traffic control

sensors
Display

Open-loop control systems

Sensing and control are loosely coupled

Environ-
ment

SystemController actuators

Examples: assembly robots, sorting robots

sensors
Data

processingPlanning

9.14! Buttazzo, Hard Real-Time Computing Systems ©2013!

Closed-Loop Control Systems

  Sensing and control are tightly coupled!
  Flight control systems, military systems, living beings!

01/10/2012

17

Closed-loop control systems

Sensing and control are tightly coupled

Environ-
ment

SystemController actuators

Examples: flight control systems, military systems,
living beings

sensors
Data

processingPlanning

F3

Multi-level feedback control

S2

S3

A2

A3

F1

F2
Sensing Control

Environment
S1 A1

9.15! Buttazzo, Hard Real-Time Computing Systems ©2013!

Implications

  The tight interaction with the environment requires the system to react to
events within precise timing constraints!

  Timing constraints are imposed by the dynamics of the environment!

  The operating system must be able to execute tasks within timing
constraints!

9.16! Buttazzo, Hard Real-Time Computing Systems ©2013!

A Robot Control Example

  Consider a robot equipped with:!
  two actuated wheels!
  two proximity (US) sensors!
  a mobile (pan/tilt) camera!
  a wireless transceiver!

  Goal:!
  follow a path based on visual feedback!
  avoid obstacles!
  send complete robot status every 20 ms!

01/10/2012

18

Implications
x The tight interaction with the environment

i th t t t t t ithirequires the system to react to events within
precise timing constraints.

x Timing constraints are imposed by the
dynamics of the environment.

35

The operating system must be able to
execute tasks within timing constraints.

A robot control example

Consider a mobile robot equipped with:

¾ two actuated wheels;

¾ two proximity (US) sensors;

¾ a mobile (pan/tilt) camera;

¾ a wireless tranceiver.

Goal
¾ Follow a path based on visual feedback;
¾ Avoid obstacles;
¾ Send complete robot status every 20 ms.

9.17! Buttazzo, Hard Real-Time Computing Systems ©2013!

Hierarchical Control

01/10/2012

19

Hierarchical control

visualͲbased
navigation

visual
tracking

obstacle
avoidance

vehicle
control

10�ms

100�ms
object

recognition

mot_dx mot_sxpan tiltcamera US2US1

1�ms1�ms

5�ms20�ms
feature

extraction motor
control

motor
control

motor
control

motor
control

Design requirements

¾Modularity: a subsystem must be developed without
knowing the details of other subsystems (team work).

¾ Configurability: software must be adapted to different
situations (through the use of suitable parameters)
without changing the source code.

¾ Portability: minimize code changes when porting the
system to different hardware platforms.y p

¾ Predictability: allow the estimation of maximum delays.

¾ Efficiency: optimize the use of available resources
(computation time, memory, energy).

9.18! Buttazzo, Hard Real-Time Computing Systems ©2013!

Design Requirements

  Modularity: a subsystem must be developed without knowing the details of
other subsystems (team work)!

  Configurability: software must be adapted to different situations (through
the use of suitable parameters) without changing the source code!

  Portability: minimize code changes when porting the system to different
hardware platforms!

  Predictability: allow the estimation of maximum delays!
  Efficiency: optimize the use of available resources (computation time,

memory, energy)!

9.19! Buttazzo, Hard Real-Time Computing Systems ©2013!

Operating System Requirements

  Timeliness: results must be correct not only in their value but also in the
time domain!
  provide kernel mechanism for time management and for handling tasks

with explicit timing constraints and different criticality!
  Predictability: system must be analyzable to predict the consequences of

any scheduling decision!
  if some task cannot be guaranteed within time constraints, system must

notify this in advance, to handle the exception (plan alternative actions)!
  Efficiency: operating system should optimize the use of available resources

(computation time, memory, energy)!
  Robustness: must be resilient to peak-load conditions!
  Fault tolerance: single software/hardware failures should not cause the

system to crash!
  Maintainability: modular architecture to ensure that modifications are easy

to perform!

9.20! Buttazzo, Hard Real-Time Computing Systems ©2013!

Modularity

  Modularity can be achieved by:!
  partitioning the system into a set of subsystems, each managed by one

or more computational tasks!
  the definition of precise interfaces between tasks, each specifying:!

 data exchanged with the other tasks (input and output)!
  functionality of the task (what it has to do)!
 validity assumptions (e.g., admissible ranges)!
 performance requirements (priority, period, deadline, jitter)!

  Asynchronous communication mechanisms!

9.21! Buttazzo, Hard Real-Time Computing Systems ©2013!

Control View

01/10/2012

19

Hierarchical control

visualͲbased
navigation

visual
tracking

obstacle
avoidance

vehicle
control

10�ms

100�ms
object

recognition

mot_dx mot_sxpan tiltcamera US2US1

1�ms1�ms

5�ms20�ms
feature

extraction motor
control

motor
control

motor
control

motor
control

Design requirements

¾Modularity: a subsystem must be developed without
knowing the details of other subsystems (team work).

¾ Configurability: software must be adapted to different
situations (through the use of suitable parameters)
without changing the source code.

¾ Portability: minimize code changes when porting the
system to different hardware platforms.y p

¾ Predictability: allow the estimation of maximum delays.

¾ Efficiency: optimize the use of available resources
(computation time, memory, energy).

9.22! Buttazzo, Hard Real-Time Computing Systems ©2013!

Software View

01/10/2012

21

Software View
periodic task buffer

visual
tracking

obstacle
avoidance

vehicle
control

visualͲbased
navigation

object
recognition

mot_dx mot_sxpan tiltcamera US2US1

feature
extraction

motor
control

RTOS responsibilities

The RealͲTime Operating Systems (RTOS) is responsible for :

¾managing the concurrent execution of the various¾managing the concurrent execution of the various
activities;

¾ decide the order of execution of the tasks (scheduling),
satisfying the specified requirements;

¾ l i ibl i i fli d i h f¾ solving possible timing conflicts during the access of
shared resources (mutual exclusion);

¾manage the timely execution of asynchronous events
(interrupts).

9.23! Buttazzo, Hard Real-Time Computing Systems ©2013!

RTOS Responsibilities

  The Real-Time Operating System (RTOS) is responsible for:!
  managing the concurrent execution of the various activities!

 concurrent tasks!
  decide the order of execution of the tasks, satisfying the specified

requirements!
 scheduling!

  solving possible timing conflicts during the access of shared resources!
 critical sections!

  manage the timely execution of asynchronous events!
  interrupts!

9.24! Buttazzo, Hard Real-Time Computing Systems ©2013!

What is a Real-Time System?

  A computer system able to respond to events within precise timing
constraints!

  A system where the correctness depends not only on the output values,
but also on the time at which results are produced!

01/10/2012

22

event

Real-time systems

A computing system able to respond to

Real-Time
System

event

action

A computing system able to respond to
events within precise timing constraints is
called a Real-Time System.

What’s a real-time system?

E i t
x (t)

It is a system in which the correctness depends

EnvironmentRT system

y
t

()

(t+')

It is a system in which the correctness depends
not only on the output values, but also on the
time at which results are produced.

9.25! Buttazzo, Hard Real-Time Computing Systems ©2013!

Typical Objection

  “It is not worth to invest in Real Time theory, because computer speed is
increasing exponentially, and all timing constraints can eventually be
handled.”!

!Answer!
  Given an arbitrary computer speed, we must always guarantee that timing

constraints can be met. Testing is NOT sufficient!

9.26! Buttazzo, Hard Real-Time Computing Systems ©2013!

Real-Time ≠ Fast

  A real-time system is not a fast system!
  Speed is always relative to a specific environment!
  Running faster is good, but does not guarantee a correct behaviour.!

  The objective of a real-time system is to guarantee the timing behaviour of
each individual task!

  The objective of a fast system is to minimize the average response time of a
task set. But…!
  Don’t trust average when you have to guarantee individual

performance!

9.27! Buttazzo, Hard Real-Time Computing Systems ©2013!

Sources of Nondeterminism

  Architecture!
  cache, pipelining, interrupts, DMA!

  Operating System!
  scheduling, synchronization, communication!

  Language!
  lack of explicit support for time!

  Design Methodologies!
  lack of analysis and verification techniques!

9.28! Buttazzo, Hard Real-Time Computing Systems ©2013!

Design Methodologies

  Traditional approach: empirical techniques!
  assembly programming!
  timing through dedicated timers!
  control through driver programming!
  priority manipulations!

  Many disadvantages!!
  tedious programming, heavily relies on programmer’s ability!
  difficult code understanding (readability × efficiency = k)!
  difficult software maintainability!

 MLOC, understanding takes more than rewriting => bug prone!
  difficult to verify timing constraints without OS & language support!

9.29! Buttazzo, Hard Real-Time Computing Systems ©2013!

Implications

  Dangerous way of programming real-time applications!
  May work in most situations, but high risk of failure!
  When the system fails, it is very difficult to understand why!
  Low reliability!
  Many famous failures!

  First flight of the Space Shuttle, 1979 (transient overload at initialization)!
 probability of failure ~1.5%!

  Scud missile on Dhahran, 1993 (delay due to interrupt handling) !
 program flow depends on sensory data, cannot be fully replicated!
  testing is not enough!

  Ariane 5, 1996 (integer overflow in inertial reference system routine)!
 Environment!

  Mars Pathfinder, 1997 (priority inversion, see Silberschatz)!

9.30! Buttazzo, Hard Real-Time Computing Systems ©2013!

Take-Home Message

  Tests, although necessary, allow only a partial verificaiton of system’s
behaviour!

  Predictability must be improved at the kernel level!
  Overload handling and fault-tolerance!
  Critical systems must be designed by making pessimistic assumptions…!

  …Murphy’s laws!
  If something can go wrong, it will go wrong!
  If a system stops working, it will do it at the worst possible time!
  Sooner or later, the worst possible combination of circumstances will

happen…!

9.31! Buttazzo, Hard Real-Time Computing Systems ©2013!

Achieving predictability

1.  DMA!
  Cycle stealing!

  Possible solution: time-slice method!
  each memory cycle split into two adjacent time slots!

 one reserved for the CPU, the other for the DMA device!
  more expensive than cycle stealing!

 but more predictable!

9.32! Buttazzo, Hard Real-Time Computing Systems ©2013!

Achieving predictability

2.  Cache!
  Hit ratio!

  80% of times: hits!
  20% of times: performance degrades!
  Preemptive systems destroy locality!
  Cache-related preemption delay difficult to precisely estimate!

9.33! Buttazzo, Hard Real-Time Computing Systems ©2013!

Achieving predictability

3.  Interrupts!
  Source: peripheral devices!
  Can introduce unbounded delays !
  Handling routines with static priorities !

  generic OS: I/O have real-time constraints!
  RTOS: a control process could be more urgent than interrupt handling!

  3 different approaches!

9.34! Buttazzo, Hard Real-Time Computing Systems ©2013!

Achieving predictability

3.  Interrupts!
  Can introduce unbounded delays !
!
A.  Disable all interrupts, except the one from the timer; devices handled by

application tasks using polling!
  + predictability, kernel-independent; - efficiency!

B.  Disable all interrupts except the one from the timer; manage devices via
periodic kernel routines!
  + encapsulation; - overhead!

C.  Leave all interrupts enabled; minimize drivers’ size (only activates device
management task)!
  + no busy waiting; - (small) unbounded overhead due to drivers!

9.35! Buttazzo, Hard Real-Time Computing Systems ©2013!

Achieving predictability

4.  System Calls!
  Could be difficult to evaluate worst-case execution time of each task!

  All system calls should be characterized by bounded execution time!
  Desirable that system calls be preemptable!

9.36! Buttazzo, Hard Real-Time Computing Systems ©2013!

Achieving predictability

5.  Semaphores!
  Priority inversion!

  Must be avoided!!
  Several methods:!

  Basic priority inheritance!
  Priority ceiling!

9.37! Buttazzo, Hard Real-Time Computing Systems ©2013!

Achieving predictability

6.  Memory management!
  Demand paging!

  Solution: static partitioning!
  memory segmentation rule with fixed memory management scheme!

  + predictability, - flexibility in dynamic environments!

9.38! Buttazzo, Hard Real-Time Computing Systems ©2013!

Achieving predictability

7.  Programming language!
  Dynamic data structures!
  Recursion!
  Cycles!

  High-level languages for programming hard real-time applications!
  Real-Time Euclid!
  Real-Time Concurrent C!

Modeling
Real-Time Activities

9.40! Buttazzo, Hard Real-Time Computing Systems ©2013!

Task

  Sequence of instructions that in the absence of other activities is
continuously executed by the processor until completion.!

 Note: “activation” = “arrival” = “request” = “release” time!

01/10/2012

31

¾ Sequence of instructions that in the absence of other
activities is continuously executed by the processor
until completion.

Task

until completion.

Task�Wiactivation�time

start�time
tai si fi

i

Ci

finishing�time

computation
time The�interval fi � ai

is referred to as the�
task�response time Ri

Ri

Ready queue
In a concurrent system, more tasks can be simultaneously
active, but only one can be in execution (running).

¾ An active task that is not in execution is said to be ready.

¾ Ready tasks are kept in a ready queue, managed by a
scheduling policy.

¾ The processor is assigned to the first task in the queue
through a dispatching opearationthrough a dispatching opearation.

Ready�queue

CPU
activation dispatching termination

W1W2W3

01/10/2012

31

¾ Sequence of instructions that in the absence of other
activities is continuously executed by the processor
until completion.

Task

until completion.

Task�Wiactivation�time

start�time
tai si fi

i

Ci

finishing�time

computation
time The�interval fi � ai

is referred to as the�
task�response time Ri

Ri

Ready queue
In a concurrent system, more tasks can be simultaneously
active, but only one can be in execution (running).

¾ An active task that is not in execution is said to be ready.

¾ Ready tasks are kept in a ready queue, managed by a
scheduling policy.

¾ The processor is assigned to the first task in the queue
through a dispatching opearationthrough a dispatching opearation.

Ready�queue

CPU
activation dispatching termination

W1W2W3

9.41! Buttazzo, Hard Real-Time Computing Systems ©2013!

Schedule

  A particular assignment of tasks to the processor that determines the task
execution sequence. Formally:!
Given a task set Γ={ τ1, …, τn }, a schedule is a function σ: R+ à N that
associates an integer k to each time slice [ti, ti+1) with the meaning:!

 k=0: in [ti, ti+1) the processor is idle!
 k>0: in [ti, ti+1) the processor executes τk!

  At times t1, t2,…: context switch !

01/10/2012

33

Schedule

W1 W2 W3 idleidle

V(t)
3

2

1

0
tt3 t4t2t1

¾ Each interval [ti, ti+1) is called a time slice.

¾ In time instants t1, t2, t3, t4 the processor is said to
perform a context switch.

Preemptive schedule

W1

priority

W2

W3

V(t)

0 2 4 6 10 12 148 16 18 20

3
2
1
0

0 2 4 6 10 12 148 16 18 20

9.42! Buttazzo, Hard Real-Time Computing Systems ©2013!

Preemptive Scheduling

  A running tasks may be suspended and placed in the ready queue!
  + Exception handling: timely response to issues!
  + Different levels of criticality: preemption executes most critical tasks!
  + Higher efficiency (CPU utilization)!
  - Destroys program locality!
  - Introduces runtime overhead!

01/10/2012

33

Schedule

W1 W2 W3 idleidle

V(t)
3

2

1

0
tt3 t4t2t1

¾ Each interval [ti, ti+1) is called a time slice.

¾ In time instants t1, t2, t3, t4 the processor is said to
perform a context switch.

Preemptive schedule

W1

priority

W2

W3

V(t)

0 2 4 6 10 12 148 16 18 20

3
2
1
0

0 2 4 6 10 12 148 16 18 20

9.43! Buttazzo, Hard Real-Time Computing Systems ©2013!

Definitions

  Definition: feasible schedule!
  A schedule σ is said to be feasible if all the tasks can complete

according to a set of specified constraints. !

  Definition: schedulable set of tasks!
  A set of tasks Γ is said to be schedulable if there exists at least one

algorithm that can produce a feasible schedule for it. !

9.44! Buttazzo, Hard Real-Time Computing Systems ©2013!

Real-Time Task

  It is a task characterized by a timing constraint on its response time, called
deadline:!

  “Completion time” = fi - si = Ri – (si- ai)!

  Definition: feasible task!
  A real-time task τi is said to be feasible if it completes within its absolute

deadline, that is, if fi ≤ di, or, equivalently, if Ri ≤ Di. !

01/10/2012

35

¾ It is a task characterized by a timing constraint on its
response time, called deadline:

Real-Time Task

tai si fi

response time Ri

di
absolute�deadline

(d a + R)

relative�deadline�Di

Wi

response�time��Ri (di =�ai +�Ri)

A realͲtime task Wi is said to be feasible if it
completes within its absolute deadline, that
is, if fi d di, o equivalently, if Ri d Di

Slack and Lateness

Di

tai si fi

Ri

di

Wi

slacki = di - fi

Di lateness Li = fi - di

tai si fi

Ri

di

Wi

9.45! Buttazzo, Hard Real-Time Computing Systems ©2013!

Slack and Lateness

  “Slack” if lateness is negative (task completes before deadline)!
  “Laxity” or “slack time” Xi = di – ai – Ci!

  “Tardiness” or “exceeding time” Ei = max(0, Li)!

01/10/2012

35

¾ It is a task characterized by a timing constraint on its
response time, called deadline:

Real-Time Task

tai si fi

response time Ri

di
absolute�deadline

(d a + R)

relative�deadline�Di

Wi

response�time��Ri (di =�ai +�Ri)

A realͲtime task Wi is said to be feasible if it
completes within its absolute deadline, that
is, if fi d di, o equivalently, if Ri d Di

Slack and Lateness

Di

tai si fi

Ri

di

Wi

slacki = di - fi

Di lateness Li = fi - di

tai si fi

Ri

di

Wi

9.46! Buttazzo, Hard Real-Time Computing Systems ©2013!

Tasks and Jobs

  A task running several times on different input data generates a sequence
of instances (jobs): !

!

01/10/2012

36

Tasks and jobs

A task running several times on different input
data generates a sequence of instances (jobs):data generates a sequence of instances (jobs):

Job 1

Wi,1 Wi,2 Wi,3

Job 2 Job 3

ai,k ai,k+1
t

Wi
Ci

ai,1

Activation mode

• Time driven: (periodic tasks)
The task is automatically activated by theThe task is automatically activated by the
operating system at predefined time instants.

• Event driven: (aperiodic tasks)
The task is activated at an event arrival or by
explicitly invocating a system call.

9.47! Buttazzo, Hard Real-Time Computing Systems ©2013!

Activation Mode

  Time-driven !
  Periodic tasks (τi)!
  The task is automatically activated by the operating system at

predefined time instants. !

  Event-driven !
  Aperiodic tasks: “jobs” (Ji) !
  The task is activated at an event arrival or by explicitly invocating a

system call. !

9.48! Buttazzo, Hard Real-Time Computing Systems ©2013!

Periodic Task

  A periodic task τi generates an infinite sequence of instances or jobs
(same code on different data): τi,1, τi,2, …, τi,k, …!

01/10/2012

37

input
CiUi =

Periodic task

Ci

timer

computation time

(period Ti)
sync

output utilization�factor

Ti
Ui

¾ A periodic task Wi generates an infinite sequence ofp i g q
jobs: Wi1, Wi2, , Wik (same code on different data):

Ti
Ci

Wi

Ti

C

Wi (Ci , Ti , Di) job Wik

Periodic task

) + (k 1) T

ai,k ai,k+1 t

Ci

ai,1 =)i

task phase

ai,k =)i + (k�1) Ti

di,k = ai,k + Di

often
Di = Ti

01/10/2012

37

input
CiUi =

Periodic task

Ci

timer

computation time

(period Ti)
sync

output utilization�factor

Ti
Ui

¾ A periodic task Wi generates an infinite sequence ofp i g q
jobs: Wi1, Wi2, , Wik (same code on different data):

Ti
Ci

Wi

Ti

C

Wi (Ci , Ti , Di) job Wik

Periodic task

) + (k 1) T

ai,k ai,k+1 t

Ci

ai,1 =)i

task phase

ai,k =)i + (k�1) Ti

di,k = ai,k + Di

often
Di = Ti

9.49! Buttazzo, Hard Real-Time Computing Systems ©2013!

The IDLE State

01/10/2012

42

Support for periodic tasks

task Wi

while (condition) {

wait_for_next_period();

while (condition) {

}

ready

running

idle

activeactive

idle idle

The IDLE state

dispatching

i

signal wait

RUNNINGREADY

terminateactivate

BLOCKED

Timer

wait_for_next_periodwake_up
IDLE

preemption

9.50! Buttazzo, Hard Real-Time Computing Systems ©2013!

Periodic Task

01/10/2012

37

input
CiUi =

Periodic task

Ci

timer

computation time

(period Ti)
sync

output utilization�factor

Ti
Ui

¾ A periodic task Wi generates an infinite sequence ofp i g q
jobs: Wi1, Wi2, , Wik (same code on different data):

Ti
Ci

Wi

Ti

C

Wi (Ci , Ti , Di) job Wik

Periodic task

) + (k 1) T

ai,k ai,k+1 t

Ci

ai,1 =)i

task phase

ai,k =)i + (k�1) Ti

di,k = ai,k + Di

often
Di = Ti

9.51! Torroni, Real-Time Operating Systems M ©2013!

Exercise

  Consider a periodic task τ1(C1,T1,D1) with phase Φ1, where:!
  C1 = 10 ms, T1 = 50 ms, D1 = 25 ms, and Φ1 = 100 ms!

  What is τ1’s utilization factor?!
  Is τ1 feasible?!
  What is τ1,1’s absolute deadline?!
  What is τ1,1’s laxity?!
  What is τ1,2’s release time?!
  Can τ1,1 and τ1,2 have different laxity?!
  Can τ1,1 and τ1,2 have different slack?!
  If τ1,2’s slack is 10ms, what is τ1,s’s finishing time?!
  What is τ1,2’s response time?!
  With a 2-CPU machine, can τ1,2 and τ1,3 have the same release time?!
  Can τ1,2 and τ1,3 have the same finishing time?!

9.52! Buttazzo, Hard Real-Time Computing Systems ©2013!

Aperiodic Task

01/10/2012

38

x Aperiodic: ai,k+1 > ai,k

Aperiodic task

minimum�
interarrival�time

x Sporadic: ai,k+1 t ai,k + Ti

Wi
Ci

job Wik

Ci Ci

ai,k ai,k+1 t
Wi

ai,1

Estimating Ci is not easy

?

¾ Each job operates on different data and
can take different paths.

¾ Even for the same data computation time

occurrencies

loop
?

?

¾ Even for the same data, computation time
depends on the processor state (cache,
prefetch queue, number of preemptions).

execution
time

Ci
min

Ci
maxtimer

9.53! Buttazzo, Hard Real-Time Computing Systems ©2013!

Estimating Ci is Not Easy

01/10/2012

38

x Aperiodic: ai,k+1 > ai,k

Aperiodic task

minimum�
interarrival�time

x Sporadic: ai,k+1 t ai,k + Ti

Wi
Ci

job Wik

Ci Ci

ai,k ai,k+1 t
Wi

ai,1

Estimating Ci is not easy

?

¾ Each job operates on different data and
can take different paths.

¾ Even for the same data computation time

occurrencies

loop
?

?

¾ Even for the same data, computation time
depends on the processor state (cache,
prefetch queue, number of preemptions).

execution
time

Ci
min

Ci
maxtimer

9.54! Buttazzo, Hard Real-Time Computing Systems ©2013!

Predictability vs. Efficiency

01/10/2012

39

Predictability vs. Efficiency

occurrencies

execution
time

Ci
min

Ci
max

Ci
avg

Ci estimate
safeefficientunsafe

HARD�task�SOFT�tasknonͲRT�task

Predictability vs. Efficiency

efficiency predictability

Ci
min

Ci
max

Ci
avg

Ci

9.55! Buttazzo, Hard Real-Time Computing Systems ©2013!

Predictability vs. Efficiency

01/10/2012

39

Predictability vs. Efficiency

occurrencies

execution
time

Ci
min

Ci
max

Ci
avg

Ci estimate
safeefficientunsafe

HARD�task�SOFT�tasknonͲRT�task

Predictability vs. Efficiency

efficiency predictability

Ci
min

Ci
max

Ci
avg

Ci

9.56! Buttazzo, Hard Real-Time Computing Systems ©2013!

Criticality and Value

  It is a parameter related to the consequences of missing the deadline!
  Hard: missing deadline may have catastrophic consequences!
  Hard Real-Time System if it can handle hard tasks!

 sensory acquisition!
  low-level control!
 sensory-motor planning !

  Soft: missing a deadline causes performance degradation!
  reading data from the keyboard—user command interpretation!
 message displaying!
 graphical activities !

  Value, vi = the relative importance of a task wrt other tasks!

9.57! Buttazzo, Hard Real-Time Computing Systems ©2013!

Jitter

  It is a measure of the time variation of a periodic event:!

01/10/2012

41

Jitter

It�is�a�measure�of�the�time�variation�of�a�periodic�event:

t1 t2 t3

Absolute: max (tk – ak) – min (tk – ak)

a1 a2 a3 a4

Absolute: max (tk ak) min (tk ak)
k k

Relative: max | (tk – ak) – (fk-1 – ak-1) |
k

Types of Jitter

Wi

FinishingͲtime�Jitter

fi,1

Wi
fi,2 fi,3

si,1

Wi

StartͲtime�Jitter

si,2 si,3, , i,3

CompletionͲtime�Jitter��(I/O�Jitter)

si,1

Wi
si,2 si,3fi,2fi,1 fi,3

9.58! Buttazzo, Hard Real-Time Computing Systems ©2013!

Types of Jitter

01/10/2012

41

Jitter

It�is�a�measure�of�the�time�variation�of�a�periodic�event:

t1 t2 t3

Absolute: max (tk – ak) – min (tk – ak)

a1 a2 a3 a4

Absolute: max (tk ak) min (tk ak)
k k

Relative: max | (tk – ak) – (fk-1 – ak-1) |
k

Types of Jitter

Wi

FinishingͲtime�Jitter

fi,1

Wi
fi,2 fi,3

si,1

Wi

StartͲtime�Jitter

si,2 si,3, , i,3

CompletionͲtime�Jitter��(I/O�Jitter)

si,1

Wi
si,2 si,3fi,2fi,1 fi,3

Task Constraints

9.60! Buttazzo, Hard Real-Time Computing Systems ©2013!

Types of Constraints

  Timing constraints!
  Activation, completion, jitter. !

  Precedence constraints!
  They impose an ordering in the execution. !

  Resource constraints !
  They enforce a synchronization in the access of mutually exclusive

resources. !

9.61! Buttazzo, Hard Real-Time Computing Systems ©2013!

Explicit Timing Constraints

  Timing constraints can be explicit or implicit. !

  Explicit timing constraints!
  Directly included in the system specifications. !

  Example:!
  open the valve in 10 seconds!
  send the position within 40 ms!
  read the altimeter every 200 ms!
  acquire the camera every 20 ms !

9.62! Buttazzo, Hard Real-Time Computing Systems ©2013!

Implicit Timing Constraints

  They do not appear in the system specifications…!
  but need to be met in order to satisfy the performance requirements!

  Example!
  What is the validity of a sensory data?!

01/10/2012

45

Implicit timing constraints

They do not appear in the system specification,
but they need to be met to satisfy the

Example

What�is�the�time�validity�of�a�sensory�data?

but they need to be met to satisfy the
performance requirements.

t0 ?

Computing the yellow duration

D t Td + Tr + Tb

T d i i

STOP

90

Td = detection time
Tr = reaction time
Tb = braking time

9.63! Buttazzo, Hard Real-Time Computing Systems ©2013!

Computing the Yellow Duration

  D ≥ Td + Tr + Tb!

  Td = Detection time!
  Tr = Reaction time!
  Tb = Braking time ~ v / .5 g!

  Td = .8s, Tr = .8s, v = 50 km/h (14 m/s) à D ≥ ???!
  vmax???!

01/10/2012

45

Implicit timing constraints

They do not appear in the system specification,
but they need to be met to satisfy the

Example

What�is�the�time�validity�of�a�sensory�data?

but they need to be met to satisfy the
performance requirements.

t0 ?

Computing the yellow duration

D t Td + Tr + Tb

T d i i

STOP

90

Td = detection time
Tr = reaction time
Tb = braking time

9.64! Buttazzo, Hard Real-Time Computing Systems ©2013!

Precedence Constraints

  Sometimes tasks must be executed with specific precedence relations,
specified by a Directed Acyclic Graph (Precedence Graph):!

  Immediate predecessor !
  Predecessor!

9.65! Buttazzo, Hard Real-Time Computing Systems ©2013!

Sample Application

  Tasks: !
  Acquisition (acq1, acq2)!
  Edge detection (edge1, edge2)!
  Shape detection (shape), pixel disparities (disp)!
  Height determination (height), recognition (rec)!

  Precedence graph?!

01/10/2012

52

Sample application
stereo vision

processing recognition

103

Precedence graph

acq1 acq2

edge1 edge2

shapedisp

104

depth

rec

9.66! Buttazzo, Hard Real-Time Computing Systems ©2013!

Precedence Graph

01/10/2012

52

Sample application
stereo vision

processing recognition

103

Precedence graph

acq1 acq2

edge1 edge2

shapedisp

104

depth

rec

9.67! Buttazzo, Hard Real-Time Computing Systems ©2013!

Resource Constraints

  To preserve data consistency, shared resources must be accessed in
mutual exclusion: !

01/10/2012

53

Types of constraints
• Timing constraints

– activation, completion, jitter.

• Precedence constraints
– they impose an ordering in the execution.

• Resource constraints

105

esou ce co st a ts
– they enforce a synchronization in the
access of mutually exclusive resources.

Resource constraints
To preserve data consistency, shared resources
m st be accessed in m t al e cl sionmust be accessed in mutual exclusion:

x = 3
y = 5

WW WRx = 1
y = 8

x = 1
y = 5

106

WW

WR

x=1 y=8

read

9.68! Buttazzo, Hard Real-Time Computing Systems ©2013!

Mutual Exclusion

  However, mutual exclusion introduces extra delays: !

01/10/2012

54

Mutual exclusion
However, mutual exclusion introduces extra delays:

x = 3
y = 5x = 1

y = 8
x = 1
y = 8

WW WR

W x = 1 y = 8

107

WW

WR

'

read

Definition of
Scheduling Problems

9.70! Buttazzo, Hard Real-Time Computing Systems ©2013!

General Scheduling Problem

  Given:!
  a set of n tasks, Γ = {τ1, τ2, …, τn}!

 a precedence graph!
 a set of timing constraints associated with each task!

  a set of m processors, P = {P1, P2, …, Pm}!
  a set of s types of resources, R = {R1, R2, …, Rs}!

!
 find an assignment of P and R to Γ which produces a feasible schedule.!

01/10/2012

2

The general
scheduling problem

Given a set * of n tasks, a set P of m processors, and
a set R of r resources, find an assignment of P and R
to * which produces a feasible schedule.

*

3

Scheduling
algorithm

*

R
P V

feasible

Complexity

x In 1975 Garey and Johnson showed thatx In 1975, Garey and Johnson showed that
the general scheduling problem is NP hard.

x However, polynomial time algorithms can be
found under particular conditions.

4

9.71! Buttazzo, Hard Real-Time Computing Systems ©2013!

Scheduling Complexity

  In 1975, Garey and Johnson showed that the general scheduling problem is
NP hard. !
  There is no known polinomial time algorithm!
  Meaning:!

 Consider n = 30 tasks; elementary step = 1μs !
 Alg. 1: O(n) !
 Alg. 2: O(n6) !
 Alg. 3: O(6n)!
 Computation time?!

  However, polynomial time algorithms can be found under particular
conditions !

9.72! Buttazzo, Hard Real-Time Computing Systems ©2013!

Simplifying Assumptions

  Simplify architecture!
  Single processor!

  Homogeneous task sets!
  Only periodic / only aperiodic!

  Fully preemptive tasks!
  Simultaneous activations!
  No precedence constraints!
  No resource constraints !
  …!

  Different classes of algorithms!

9.73! Buttazzo, Hard Real-Time Computing Systems ©2013!

Algorithm Tassonomy

  Preemptive vs. Non Preemptive !
  Static vs. Dynamic!
  On-line vs. Off-line!
  Optimal vs. Heuristic !
  Guaranteed vs. Best-effort!

  Clairvoyant algorithm!

9.74! Buttazzo, Hard Real-Time Computing Systems ©2013!

Static vs Dynamic

  Static scheduling algorithms!
  scheduling decisions are taken based on fixed parameters, statically

assigned to tasks before activation. !

  Dynamic scheduling algorithms!
  scheduling decisions are taken based on parameters that can change

with time. !

9.75! Buttazzo, Hard Real-Time Computing Systems ©2013!

Off-line vs. On-line

  Off-line scheduling algorithms!
  all scheduling decisions are taken before task activation: the schedule is

stored in a table and later executed by a dispatcher !
 “table-driven scheduling”!

  On-line scheduling algorithms!
  scheduling decisions are taken at run-time on the set of active tasks!

 When?!

9.76! Buttazzo, Hard Real-Time Computing Systems ©2013!

Optimal vs. Heuristic

  Optimal scheduling algorithms!
  They generate a schedule that minimizes a cost function, defined based

on an optimality criterion. !

  Heuristic scheduling algorithms!
  They generate a schedule according to a heuristic function that tries to

satisfy an optimality criterion, but there is no guarantee of success. !

9.77! Buttazzo, Hard Real-Time Computing Systems ©2013!

Guaranteed vs. Best Effort

  Guaranteed scheduling algorithms!
  They generate a feasible schedule if there exists one !
  Needed is hard real-time!
  Pessimistic assumptions!

  Best effort scheduling algorithms!
  No guarantee of a feasible schedule.!
  Useful if soft real-time !
  Optimize average performance!

9.78! Buttazzo, Hard Real-Time Computing Systems ©2013!

Guarantee-Based Algorithms

  In hard real-time applications, the feasibility of the schedule must be
guaranteed before task execution!
  Give the system time to try and avoid catastrophic consequences!
  Look-ahead and worst-case reasoning!

  Static real-time systems: guarantee off-line; table-based scheduling!
  + Run-time overhead does not depend on complexity of scheduling

algorihtm!
  - Flexibility!

  Dynamic real-time systems: task can be created at run-time!
  Guarantee online every time a new task is created!

9.79! Buttazzo, Hard Real-Time Computing Systems ©2013!

Guarantee Mechanism

  Worst-case assumption: a task could unnecessarily be rejected!
  - Efficiency!

  Early detection of potential overload situation!
  + Avoid negative effects (possible catastrophe, domino effect)!

01/10/2012

34

W1

priority

Task states

running

W2

W3

V(t)

0 2 4 6 10 12 148 16 18 20

running
ready

ready

running

runningrunning

3
2
1
0

0 2 4 6 10 12 148 16 18 20

BLOCKED

Task states

READY RUNNING
activation

dispatching

termination

wait
BLOCKED

signal

READY RUNNING

preemption

ACTIVE

acceptance
test

01/10/2012

34

W1

priority

Task states

running

W2

W3

V(t)

0 2 4 6 10 12 148 16 18 20

running
ready

ready

running

runningrunning

3
2
1
0

0 2 4 6 10 12 148 16 18 20

BLOCKED

Task states

READY RUNNING
activation

dispatching

termination

wait
BLOCKED

signal

READY RUNNING

preemption

ACTIVE

YES

NO

9.80! Buttazzo, Hard Real-Time Computing Systems ©2013!

Domino Effect

9.81! Buttazzo, Hard Real-Time Computing Systems ©2013!

Metrics for Performance Evaluation

  Classical operating systems!
  Optimality: min cost function!

  Average response time!
  Total completion time!
  Weighted sum of completion times!
  Maximum lateness!
  Maximum number of late tasks!
  …!

  Real-Time Operating Systems: these cost functions are not necessarily of
interest!
  No individual assessment of timing properties (periods, deadlines)!
  Maximum lateness has no direct relation with number of tasks that miss

their deadline!

9.82! Buttazzo, Hard Real-Time Computing Systems ©2013!

Maximum Lateness

a)  Min maximum lateness!
b)  Min number of tasks that miss their deadline!

9.83! Buttazzo, Hard Real-Time Computing Systems ©2013!

Cumulative Value

  Sum of the utility functions computed at each completion time!

Introduzione 9

FUNZIONE DI UTILITA’ DI UN PROCESSO

non real-time

ai fi

v (fi)
soft real-time

ai di fi

v (fi)

hard real-time

ai di fi

v (fi)

-∞
“better never than late”

ai di fi

v (fi)

on-time

“firm”

Scheduling Anomalies

9.85! Buttazzo, Hard Real-Time Computing Systems ©2013!

A Surprising Result…

  Theorem (Graham, 1976) !
If a task set is optimally scheduled on a multiprocessor with some priority
assignment, a fixed number of processors, fixed execution times, and
precedence constraints, then increasing the number of processors, reducing
execution times, or weakening the precedence constraints can increase the
schedule length!
!
!
  Brittleness of scheduling algorithms: small changes can have big,

unexpected consequences!

9.86! Buttazzo, Hard Real-Time Computing Systems ©2013!

Richard’s Anomalies (Graham, 1976)

  Assume a parallel machine with 3 CPU. All tasks arrive at the same time.!
1.  What priority-based schedule?!
2.  How to improve schedule length?!

01/10/2012

55

Scheduling anomalies
T1: 3

T2: 2

T9: 9
T8: 4 priorityT2: 2

T3: 2

T4: 2

T8: 4
T7: 4
T6: 4
T5: 4

priority

Pi > Pj � i < j

P1
P2

T1

T2 T4

T9

T5 T7 t = 12

109

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 t

P2
P3

T2

T3

T4 T5

T6

T7

T8

tr = 12

Increased processors

T1: 3 T9: 9
T2: 2

T3: 2

T8: 4
T7: 4
T6: 4

T4: 2
T6: 4
T5: 4

P1
P2
P3

T1

T2

T3

T5

T6

T8

T9

110

P4

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 t15

T4 T7

tr = 15

9.87! Buttazzo, Hard Real-Time Computing Systems ©2013!

1) Increase number of CPUs

  Assume 4 CPUs!

01/10/2012

55

Scheduling anomalies
T1: 3

T2: 2

T9: 9
T8: 4 priorityT2: 2

T3: 2

T4: 2

T8: 4
T7: 4
T6: 4
T5: 4

priority

Pi > Pj � i < j

P1
P2

T1

T2 T4

T9

T5 T7 t = 12

109

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 t

P2
P3

T2

T3

T4 T5

T6

T7

T8

tr = 12

Increased processors

T1: 3 T9: 9
T2: 2

T3: 2

T8: 4
T7: 4
T6: 4

T4: 2
T6: 4
T5: 4

P1
P2
P3

T1

T2

T3

T5

T6

T8

T9

110

P4

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 t15

T4 T7

tr = 15

9.88! Buttazzo, Hard Real-Time Computing Systems ©2013!

2) Reduce computation time

  Reduce computation time of each task by 1 unit!

01/10/2012

55

Scheduling anomalies
T1: 3

T2: 2

T9: 9
T8: 4 priorityT2: 2

T3: 2

T4: 2

T8: 4
T7: 4
T6: 4
T5: 4

priority

Pi > Pj � i < j

P1
P2

T1

T2 T4

T9

T5 T7 t = 12

109

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 t

P2
P3

T2

T3

T4 T5

T6

T7

T8

tr = 12

Increased processors

T1: 3 T9: 9
T2: 2

T3: 2

T8: 4
T7: 4
T6: 4

T4: 2
T6: 4
T5: 4

P1
P2
P3

T1

T2

T3

T5

T6

T8

T9

110

P4

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 t15

T4 T7

tr = 15

9.89! Buttazzo, Hard Real-Time Computing Systems ©2013!

3) Weaken precedence constraints

  Remove constraints on T7 and T8!

01/10/2012

55

Scheduling anomalies
T1: 3

T2: 2

T9: 9
T8: 4 priorityT2: 2

T3: 2

T4: 2

T8: 4
T7: 4
T6: 4
T5: 4

priority

Pi > Pj � i < j

P1
P2

T1

T2 T4

T9

T5 T7 t = 12

109

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 t

P2
P3

T2

T3

T4 T5

T6

T7

T8

tr = 12

Increased processors

T1: 3 T9: 9
T2: 2

T3: 2

T8: 4
T7: 4
T6: 4

T4: 2
T6: 4
T5: 4

P1
P2
P3

T1

T2

T3

T5

T6

T8

T9

110

P4

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 t15

T4 T7

tr = 15

9.90! Buttazzo, Hard Real-Time Computing Systems ©2013!

Another Surprising Result…

  If tasks share mutually exclusive resources, or are non-preemptive,
scheduling anomalies may also occur in uniprocessor systems!

  Theorem (Buttazzo, 2006) !
A real time application that is feasible on a given processor can become
infeasible when running on a faster processor!
!
!
!
!
What if double the processor’s speed?!

01/10/2012

57

Faster processor

W1

W2

W

double speed deadline miss

113

W1

W2

A dangerous operation: DELAY

A delay(') may cause a delay longer than '.

W1

W2

0 2 4 6 8 10 12 14

delay(2) blocked

114

y()

W1

W2

0 2 4 6 8 10 12 14

9.91! Buttazzo, Hard Real-Time Computing Systems ©2013!

Another Surprising Result…

  If tasks share mutually exclusive resources, or are non-preemptible,
scheduling anomalies may also occur in uniprocessor systems!

  Theorem (Buttazzo, 2006) !
A real time application that is feasible on a given processor can become
infeasible when running on a faster processor!
!
!
!
!
!
!
!
What if double the processor’s speed?!

9.92! Buttazzo, Hard Real-Time Computing Systems ©2013!

A dangerous operation: DELAY

  A delay(Δ) may introduce a delay greater than Δ!

01/10/2012

57

Faster processor

W1

W2

W

double speed deadline miss

113

W1

W2

A dangerous operation: DELAY

A delay(') may cause a delay longer than '.

W1

W2

0 2 4 6 8 10 12 14

delay(2) blocked

114

y()

W1

W2

0 2 4 6 8 10 12 14

9.93! Buttazzo, Hard Real-Time Computing Systems ©2013!

A dangerous operation: DELAY

  A delay(Δ) may also increase the response times of other tasks!
  Example for fixed priorities!

01/10/2012

58

A dangerous operation: DELAY
A delay in a task may also increase the response
time of other tasks (example for fixed priorities):

W1

W2

0 5 10 15

0 4 8 12

delay(1) deadline miss

115

y()

W1

W2

deadline miss

0 5 10 15

0 4 8 12

A dangerous operation: DELAY
A delay in a task may also increase the response
time of other tasks (example for deadline scheduling):

deadline miss

W2
154 120 8

W1
16

116

deadline miss

16

154 120 8

W2

W1
delay(8)

9.94! Buttazzo, Hard Real-Time Computing Systems ©2013!

A dangerous operation: DELAY

  A delay(Δ) may also increase the response times of other tasks!
  Example for deadline scheduling!

01/10/2012

58

A dangerous operation: DELAY
A delay in a task may also increase the response
time of other tasks (example for fixed priorities):

W1

W2

0 5 10 15

0 4 8 12

delay(1) deadline miss

115

y()

W1

W2

deadline miss

0 5 10 15

0 4 8 12

A dangerous operation: DELAY
A delay in a task may also increase the response
time of other tasks (example for deadline scheduling):

deadline miss

W2
154 120 8

W1
16

116

deadline miss

16

154 120 8

W2

W1
delay(8)

9.95! Buttazzo, Hard Real-Time Computing Systems ©2013!

Take-Home Message

  Tests are not enough for real-time systems!
  Intuitive solutions do not always work!
  Delay should not be used in real-time tasks!
  The safest approach:!

  Use predictable kernel mechanisms!
  Analyze the system to predict the behaviour!

  The operating system is the part most responsible for a predictable
behavior. Concurrency control must be enforced by: !
  appropriate scheduling algorithms !
  appropriate syncronization protocols !
  efficient communication mechanisms !
  predictable interrupt handling !

