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Notice 

The course material includes slides downloaded from:!
http://codex.cs.yale.edu/avi/os-book/!

(slides by Silberschatz, Galvin, and Gagne, associated with 
Operating System Concepts, 9th Edition, Wiley, 2013)!

and!
http://retis.sssup.it/~giorgio/rts-MECS.html!

(slides by Buttazzo, associated with Hard Real-Time Computing 
Systems, 3rd Edition, Springer, 2011)!

which has been edited to suit the needs of this course. !
The slides are authorized for personal use only. !
Any other use, redistribution, and any for profit sale of the slides (in any 
form) requires the consent of the copyright owners.!
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Objectives 

  Study software methodologies to support time critical systems:!
  Study software methodologies and algorithms to increase predictability 

in (embedded) computing system… !
!…consisting of several concurrent activities… !
!…subject to timing constraints!

  Learn how to model and analyze a real-time application to predict 
worst-case response times and verify its feasibility under a set of 
constraints!
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Control and Implementation 

  Often, control and implementation are done by different people that do not 
talk to each other:!

  Control guys typically assume a computer with infinite resources and 
computational power. In some case, computation is modeled by a fixed 
delay Δ.!
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Aim of the course

x Studing software methodologies for supportingx Studing software methodologies for supporting
time critical computing systems.

x We will not consider how to control a system, but
only how to provide a proper software support to
control applications.

Control and implementation

Often, control and implementation are done by
different people that do not talk to each other:

Control guys typically assume a computer with infinite
resources and computational power. In some case,
computation is modeled by a fixed delay '.
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Control and Implementation 

  In reality, a computer:!
  has limited resources!
  finite computational power (non null execution times)!
  executes several concurrent activities!
  introduces variable delays (often unpredictable)!

  Modeling such factors and taking them into account in the design phase 
allows a significant improvement in performance and reliability!



Definitions  
and 

Sample Applications 
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Embedded System 

  A computing system hidden in an object to control its functions, enhance its 
performance, manage the available resources and simplify the interaction 
with the user.!
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They are computing systems hidden in an object to control
its functions, enhance its performance, manage the available
resources and simplify the interaction with the user.

Real-Time Systems LaboratoryEmbedded systems

p y

Environment
actuators

sensors

micro-
processor

Object

communication

user other units

Control system components
In every control application, we can distinguish
3 basic components:

x the system to be controlled
– it may include sensors and actuators

x the controller
it sends signals to the system according to a

3 basic components:

– it sends signals to the system according to a 
predetermined control objective

x the environment in which the system operates
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Control System Components 

  In every control application, we can distinguish 3 basic components:!
  The system to be controlled!

 may include sensors and actuators!
  The controller!

 sends signals to the system according to a predetermined control 
objective!

  The environment in which the system operates!
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A Typical Control System 

  Other activities!
  filtering, classification, data fusion, recognition, planning!
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A typical control system

Environ-
mentSystemController

f db kfeedback

Detailed block diagram
System

Controller actuators

Environ.

Sensory
i

internal state

external statepre-
i

feedback
sensor sensor

Other activities
filtering, classification, data fusion, recognition, planning

processing processing
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Software Vision 
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Software Vision

computer

actuators

A/D

D/A

Environ.

sensorsA/D

Thread (task) Resource

Types of control systems

Depending of the system-environment interactions,
we can distinguish 3 types of control systems:

• Monitoring Systems
– do not modify the environment

• Open-loop control systems
l l dif th i t

we can distinguish 3 types of control systems:

– loosely modify the environment

• Closed-loop control systems
– tight interaction between perception and action
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Types of Control Systems 

  Depending on the system-environment interactions, we can distinguish 
among 3 types of control systems:!
  Monitoring systems!

 do not modify the environment!
  Open-loop control systems!

  loosely modify the environment!
  Closed-loop control systems!

  tight interaction between perception and action!
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Monitoring Systems 

  Do not modify the environment!
  surveillance systems, air traffic control!
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Monitoring Systems

Do not modify the environment

Environ-
ment

Data
processing

sensors

sensors
...

Real-time system

Examples: surveillance systems,  air traffic control

sensors
Display

Open-loop control systems

Sensing and control are loosely coupled

Environ-
ment

SystemController actuators

Examples: assembly robots,  sorting robots

sensors
Data

processingPlanning
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Open-Loop Control Systems 

  Sensing and control are loosely coupled!
  Assembly robots, sorting robots!
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Closed-Loop Control Systems 

  Sensing and control are tightly coupled!
  Flight control systems, military systems, living beings!
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Closed-loop control systems

Sensing and control are tightly coupled

Environ-
ment

SystemController actuators

Examples: flight control systems, military systems,
living beings

sensors
Data

processingPlanning

F3

Multi-level feedback control

S2

S3

A2

A3

F1

F2
Sensing Control

Environment
S1 A1
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Implications 

  The tight interaction with the environment requires the system to react to 
events within precise timing constraints!

  Timing constraints are imposed by the dynamics of the environment!

  The operating system must be able to execute tasks within timing 
constraints!
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A Robot Control Example 

  Consider a robot equipped with:!
  two actuated wheels!
  two proximity (US) sensors!
  a mobile (pan/tilt) camera!
  a wireless transceiver!

  Goal:!
  follow a path based on visual feedback!
  avoid obstacles!
  send complete robot status every 20 ms!
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Implications
x The tight interaction with the environment

i th t t t t t ithirequires the system to react to events within
precise timing constraints.

x Timing constraints are imposed by the
dynamics of the environment.

35

The operating system must be able to
execute tasks within timing constraints.

A robot control example

Consider a mobile robot equipped with:

¾ two actuated wheels;

¾ two proximity (US) sensors;

¾ a mobile (pan/tilt) camera;

¾ a wireless tranceiver.

Goal
¾ Follow a path based on visual feedback;
¾ Avoid obstacles;
¾ Send complete robot status every 20 ms.
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Hierarchical Control 
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Hierarchical control

visualͲbased
navigation

visual
tracking

obstacle
avoidance

vehicle
control

10�ms

100�ms
object
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mot_dx mot_sxpan tiltcamera US2US1

1�ms1�ms

5�ms20�ms
feature

extraction motor
control

motor
control

motor
control

motor
control

Design requirements

¾Modularity: a subsystem must be developed without
knowing the details of other subsystems (team work).

¾ Configurability: software must be adapted to different
situations (through the use of suitable parameters)
without changing the source code.

¾ Portability: minimize code changes when porting the
system to different hardware platforms.y p

¾ Predictability: allow the estimation of maximum delays.

¾ Efficiency: optimize the use of available resources
(computation time, memory, energy).
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Design Requirements 

  Modularity: a subsystem must be developed without knowing the details of 
other subsystems (team work)!

  Configurability: software must be adapted to different situations (through 
the use of suitable parameters) without changing the source code!

  Portability: minimize code changes when porting the system to different 
hardware platforms!

  Predictability: allow the estimation of maximum delays!
  Efficiency: optimize the use of available resources (computation time, 

memory, energy)!
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Operating System Requirements 

  Timeliness: results must be correct not only in their value but also in the 
time domain!
  provide kernel mechanism for time management and for handling tasks 

with explicit timing constraints and different criticality!
  Predictability: system must be analyzable to predict the consequences of 

any scheduling decision!
  if some task cannot be guaranteed within time constraints, system must 

notify this in advance, to handle the exception (plan alternative actions)!
  Efficiency: operating system should optimize the use of available resources 

(computation time, memory, energy)!
  Robustness: must be resilient to peak-load conditions!
  Fault tolerance: single software/hardware failures should not cause the 

system to crash!
  Maintainability: modular architecture to ensure that modifications are easy 

to perform!
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Modularity 

  Modularity can be achieved by:!
  partitioning the system into a set of subsystems, each managed by one 

or more computational tasks!
  the definition of precise interfaces between tasks, each specifying:!

 data exchanged with the other tasks (input and output)!
  functionality of the task (what it has to do)!
 validity assumptions (e.g., admissible ranges)!
 performance requirements (priority, period, deadline, jitter)!

  Asynchronous communication mechanisms!
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Control View 
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situations (through the use of suitable parameters)
without changing the source code.

¾ Portability: minimize code changes when porting the
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Software View 

01/10/2012

21

Software View
periodic task buffer

visual
tracking

obstacle
avoidance

vehicle
control

visualͲbased
navigation

object
recognition

mot_dx mot_sxpan tiltcamera US2US1

feature
extraction

motor
control

RTOS responsibilities

The RealͲTime Operating Systems (RTOS) is responsible for :

¾managing the concurrent execution of the various¾managing the concurrent execution of the various
activities;

¾ decide the order of execution of the tasks (scheduling),
satisfying the specified requirements;

¾ l i ibl i i fli d i h f¾ solving possible timing conflicts during the access of
shared resources (mutual exclusion);

¾manage the timely execution of asynchronous events
(interrupts).
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RTOS Responsibilities 

  The Real-Time Operating System (RTOS) is responsible for:!
  managing the concurrent execution of the various activities!

 concurrent tasks!
  decide the order of execution of the tasks, satisfying the specified 

requirements!
 scheduling!

  solving possible timing conflicts during the access of shared resources!
 critical sections!

  manage the timely execution of asynchronous events!
  interrupts!
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What is a Real-Time System? 

  A computer system able to respond to events within precise timing 
constraints!

  A system where the correctness depends not only on the output values, 
but also on the time at which results are produced!
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event

Real-time systems

A computing system able to respond to

Real-Time
System

event

action

A computing system able to respond to
events within precise timing constraints is
called a Real-Time System.

What’s a real-time system?

E i t
x (t)

It is a system in which the correctness depends

EnvironmentRT system

y
t

( )

(t+')

It is a system in which the correctness depends
not only on the output values, but also on the
time at which results are produced.
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Typical Objection 

  “It is not worth to invest in Real Time theory, because computer speed is 
increasing exponentially, and all timing constraints can eventually be 
handled.”!

!Answer!
  Given an arbitrary computer speed, we must always guarantee that timing 

constraints can be met. Testing is NOT sufficient!
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Real-Time ≠ Fast 

  A real-time system is not a fast system!
  Speed is always relative to a specific environment!
  Running faster is good, but does not guarantee a correct behaviour.!

  The objective of a real-time system is to guarantee the timing behaviour of 
each individual task!

  The objective of a fast system is to minimize the average response time of a 
task set. But…!
  Don’t trust average when you have to guarantee individual 

performance!
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Sources of Nondeterminism 

  Architecture!
  cache, pipelining, interrupts, DMA!

  Operating System!
  scheduling, synchronization, communication!

  Language!
  lack of explicit support for time!

  Design Methodologies!
  lack of analysis and verification techniques!
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Design Methodologies 

  Traditional approach: empirical techniques!
  assembly programming!
  timing through dedicated timers!
  control through driver programming!
  priority manipulations!

  Many disadvantages!!
  tedious programming, heavily relies on programmer’s ability!
  difficult code understanding (readability × efficiency = k)!
  difficult software maintainability!

 MLOC, understanding takes more than rewriting => bug prone!
  difficult to verify timing constraints without OS & language support!
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Implications 

  Dangerous way of programming real-time applications!
  May work in most situations, but high risk of failure!
  When the system fails, it is very difficult to understand why!
  Low reliability!
  Many famous failures!

  First flight of the Space Shuttle, 1979 (transient overload at initialization)!
 probability of failure ~1.5%!

  Scud missile on Dhahran, 1993 (delay due to interrupt handling) !
 program flow depends on sensory data, cannot be fully replicated!
  testing is not enough!

  Ariane 5, 1996 (integer overflow in inertial reference system routine)!
 Environment!

  Mars Pathfinder, 1997 (priority inversion, see Silberschatz)!
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Take-Home Message 

  Tests, although necessary, allow only a partial verificaiton of system’s 
behaviour!

  Predictability must be improved at the kernel level!
  Overload handling and fault-tolerance!
  Critical systems must be designed by making pessimistic assumptions…!

  …Murphy’s laws!
  If something can go wrong, it will go wrong!
  If a system stops working, it will do it at the worst possible time!
  Sooner or later, the worst possible combination of circumstances will 

happen…!
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Achieving predictability 

1.  DMA!
  Cycle stealing!

  Possible solution: time-slice method!
  each memory cycle split into two adjacent time slots!

 one reserved for the CPU, the other for the DMA device!
  more expensive than cycle stealing!

 but more predictable!
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Achieving predictability 

2.  Cache!
  Hit ratio!

  80% of times: hits!
  20% of times: performance degrades!
  Preemptive systems destroy locality!
  Cache-related preemption delay difficult to precisely estimate!
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Achieving predictability 

3.  Interrupts!
  Source: peripheral devices!
  Can introduce unbounded delays !
  Handling routines with static priorities !

  generic OS: I/O have real-time constraints!
  RTOS: a control process could be more urgent than interrupt handling!

  3 different approaches!
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Achieving predictability 

3.  Interrupts!
  Can introduce unbounded delays !
!
A.  Disable all interrupts, except the one from the timer; devices handled by 

application tasks using polling!
  + predictability, kernel-independent; - efficiency!

B.  Disable all interrupts except the one from the timer; manage devices via 
periodic kernel routines!
  + encapsulation; - overhead!

C.  Leave all interrupts enabled; minimize drivers’ size (only activates device 
management task)!
  + no busy waiting; - (small) unbounded overhead due to drivers!
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Achieving predictability 

4.  System Calls!
  Could be difficult to evaluate worst-case execution time of each task!

  All system calls should be characterized by bounded execution time!
  Desirable that system calls be preemptable!
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Achieving predictability 

5.  Semaphores!
  Priority inversion!

  Must be avoided!!
  Several methods:!

  Basic priority inheritance!
  Priority ceiling!
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Achieving predictability 

6.  Memory management!
  Demand paging!

  Solution: static partitioning!
  memory segmentation rule with fixed memory management scheme!

  + predictability, - flexibility in dynamic environments!
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Achieving predictability 

7.  Programming language!
  Dynamic data structures!
  Recursion!
  Cycles!

  High-level languages for programming hard real-time applications!
  Real-Time Euclid!
  Real-Time Concurrent C!



Modeling 
Real-Time Activities 
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Task 

  Sequence of instructions that in the absence of other activities is 
continuously executed by the processor until completion.!

 Note: “activation” =  “arrival” = “request” = “release” time!
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¾ Sequence of instructions that in the absence of other
activities is continuously executed by the processor
until completion.

Task

until completion.

Task�Wiactivation�time

start�time
tai si fi

i

Ci

finishing�time

computation
time The�interval fi � ai

is referred to as the�
task�response time Ri

Ri

Ready queue
In a concurrent system, more tasks can be simultaneously
active, but only one can be in execution (running).

¾ An active task that is not in execution is said to be ready.

¾ Ready tasks are kept in a ready queue, managed by a
scheduling policy.

¾ The processor is assigned to the first task in the queue
through a dispatching opearationthrough a dispatching opearation.

Ready�queue

CPU
activation dispatching termination

W1W2W3

01/10/2012

31

¾ Sequence of instructions that in the absence of other
activities is continuously executed by the processor
until completion.

Task

until completion.

Task�Wiactivation�time

start�time
tai si fi

i

Ci

finishing�time

computation
time The�interval fi � ai

is referred to as the�
task�response time Ri

Ri

Ready queue
In a concurrent system, more tasks can be simultaneously
active, but only one can be in execution (running).

¾ An active task that is not in execution is said to be ready.

¾ Ready tasks are kept in a ready queue, managed by a
scheduling policy.

¾ The processor is assigned to the first task in the queue
through a dispatching opearationthrough a dispatching opearation.

Ready�queue

CPU
activation dispatching termination

W1W2W3



9.41! Buttazzo, Hard Real-Time Computing Systems ©2013!

Schedule 

  A particular assignment of tasks to the processor that determines the task 
execution sequence. Formally:!
Given a task set Γ={ τ1, …, τn }, a schedule is a function σ: R+ à N  that 
associates an integer k to each time slice [ti, ti+1) with the meaning:!

 k=0: in [ti, ti+1) the processor is idle!
 k>0: in [ti, ti+1) the processor executes τk!

  At times t1, t2,…: context switch !
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Schedule

W1 W2 W3 idleidle

V(t)
3

2

1

0
tt3 t4t2t1

¾ Each interval [ti, ti+1) is called a time slice.

¾ In time instants t1, t2, t3, t4 the processor is said to
perform a context switch.

Preemptive schedule

W1

priority

W2

W3

V(t)

0 2 4 6 10 12 148 16 18 20

3
2
1
0

0 2 4 6 10 12 148 16 18 20
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Preemptive Scheduling 

  A running tasks may be suspended and placed in the ready queue!
  + Exception handling: timely response to issues!
  + Different levels of criticality: preemption executes most critical tasks!
  + Higher efficiency (CPU utilization)!
  - Destroys program locality!
  - Introduces runtime overhead!
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Definitions 

  Definition: feasible schedule!
  A schedule σ is said to be feasible if all the tasks can complete 

according to a set of specified constraints. !

  Definition: schedulable set of tasks!
  A set of tasks Γ is said to be schedulable if there exists at least one 

algorithm that can produce a feasible schedule for it. !
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Real-Time Task 

  It is a task characterized by a timing constraint on its response time, called 
deadline:!

  “Completion time” = fi - si = Ri – (si- ai)!

  Definition: feasible task!
  A real-time task τi is said to be feasible if it completes within its absolute 

deadline, that is, if fi ≤ di, or, equivalently, if Ri ≤ Di. !
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¾ It is a task characterized by a timing constraint on its
response time, called deadline:

Real-Time Task

tai si fi

response time Ri

di
absolute�deadline

(d a + R )

relative�deadline�Di

Wi

response�time��Ri (di =�ai +�Ri)

A realͲtime task Wi is said to be feasible if it
completes within its absolute deadline, that
is, if fi d di, o equivalently, if Ri d Di

Slack  and  Lateness

Di

tai si fi

Ri

di

Wi

slacki = di - fi

Di lateness Li = fi - di

tai si fi

Ri

di

Wi
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Slack and Lateness 

  “Slack” if lateness is negative (task completes before deadline)!
  “Laxity” or “slack time” Xi = di – ai – Ci!

  “Tardiness” or “exceeding time” Ei = max( 0, Li )!
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Tasks and Jobs 

  A task running several times on different input data generates a sequence 
of instances (jobs): !

!
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Tasks  and  jobs

A task running several times on different input
data generates a sequence of instances (jobs):data generates a sequence of instances (jobs):

Job 1

Wi,1 Wi,2 Wi,3

Job 2 Job 3

ai,k ai,k+1
t

Wi
Ci

ai,1

Activation mode

• Time driven: (periodic tasks)
The task is automatically activated by theThe task is automatically activated by the
operating system at predefined time instants.

• Event driven: (aperiodic tasks)
The task is activated at an event arrival or by
explicitly invocating a system call.
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Activation Mode 

  Time-driven !
  Periodic tasks (τi)!
  The task is automatically activated by the operating system at 

predefined time instants. !

  Event-driven !
  Aperiodic tasks: “jobs” (Ji) !
  The task is activated at an event arrival or by explicitly invocating a 

system call. !
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Periodic Task 

  A periodic task τi generates an infinite sequence of instances or jobs 
(same code on different data): τi,1, τi,2, …, τi,k, …!
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input
CiUi =
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The IDLE State 
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Periodic Task 

01/10/2012

37

input
CiUi =

Periodic task

Ci

timer

computation time

(period Ti )
sync

output utilization�factor

Ti
Ui

¾ A periodic task Wi generates an infinite sequence ofp i g q
jobs: Wi1, Wi2,  , Wik (same code on different data):

Ti
Ci

Wi

Ti

C

Wi (Ci , Ti , Di ) job Wik

Periodic task

) + (k 1) T

ai,k ai,k+1 t

Ci

ai,1 = )i

task phase

ai,k =  )i + (k�1) Ti

di,k =  ai,k + Di

often
Di = Ti



9.51! Torroni, Real-Time Operating Systems M ©2013!

Exercise 

  Consider a periodic task τ1(C1,T1,D1) with phase Φ1, where:!
  C1 = 10 ms, T1 = 50 ms, D1 = 25 ms, and Φ1 = 100 ms!

  What is τ1’s utilization factor?!
  Is τ1 feasible?!
  What is τ1,1’s absolute deadline?!
  What is τ1,1’s laxity?!
  What is τ1,2’s release time?!
  Can τ1,1 and τ1,2 have different laxity?!
  Can τ1,1 and τ1,2 have different slack?!
  If τ1,2’s slack is 10ms, what is τ1,s’s finishing time?!
  What is τ1,2’s response time?!
  With a 2-CPU machine, can τ1,2 and τ1,3 have the same release time?!
  Can τ1,2 and τ1,3 have the same finishing time?!
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Aperiodic Task 
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Estimating Ci is Not Easy 
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Predictability vs. Efficiency 
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Predictability vs. Efficiency 
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Criticality and Value 

  It is a parameter related to the consequences of missing the deadline!
  Hard: missing deadline may have catastrophic consequences!
  Hard Real-Time System if it can handle hard tasks!

 sensory acquisition!
  low-level control!
 sensory-motor planning !

  Soft: missing a deadline causes performance degradation!
  reading data from the keyboard—user command interpretation!
 message displaying!
 graphical activities !

  Value, vi = the relative importance of a task wrt other tasks!
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Jitter 

  It is a measure of the time variation of a periodic event:!
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Types of Jitter 
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Task Constraints 
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Types of Constraints 

  Timing constraints!
  Activation, completion, jitter. !

  Precedence constraints!
  They impose an ordering in the execution. !

  Resource constraints !
  They enforce a synchronization in the access of mutually exclusive 

resources. !
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Explicit Timing Constraints 

  Timing constraints can be explicit or implicit. !

  Explicit timing constraints!
  Directly included in the system specifications. !

  Example:!
  open the valve in 10 seconds!
  send the position within 40 ms!
  read the altimeter every 200 ms!
  acquire the camera every 20 ms !
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Implicit Timing Constraints 

  They do not appear in the system specifications…!
  but need to be met in order to satisfy the performance requirements!

  Example!
  What is the validity of a sensory data?!
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Computing the Yellow Duration 

  D ≥ Td + Tr + Tb!

  Td = Detection time!
  Tr = Reaction time!
  Tb = Braking time ~ v / .5 g!

  Td = .8s, Tr = .8s, v = 50 km/h (14 m/s) à D ≥ ???!
  vmax???!
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Precedence Constraints 

  Sometimes tasks must be executed with specific precedence relations, 
specified by a Directed Acyclic Graph (Precedence Graph):!

  Immediate predecessor !
  Predecessor!
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Sample Application 

  Tasks: !
  Acquisition (acq1, acq2)!
  Edge detection (edge1, edge2)!
  Shape detection (shape), pixel disparities (disp)!
  Height determination (height), recognition (rec)!

  Precedence graph?!
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Precedence Graph 
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Resource Constraints 

  To preserve data consistency, shared resources must be accessed in 
mutual exclusion: !
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Mutual Exclusion 

  However, mutual exclusion introduces extra delays: !
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Definition of 
Scheduling Problems 
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General Scheduling Problem 

  Given:!
  a set of n tasks, Γ = {τ1, τ2, …, τn}!

 a precedence graph!
 a set of timing constraints associated with each task!

  a set of m processors, P = {P1, P2, …, Pm}!
  a set of s types of resources, R = {R1, R2, …, Rs}!

!
      find an assignment of P and R to Γ which produces a feasible schedule.!
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The general
scheduling problem

Given a set * of n tasks, a set P of m processors, and
a set R of r resources, find an assignment of P and R
to * which produces a feasible schedule.

*

3

Scheduling
algorithm

*

R
P V

feasible

Complexity

x In 1975 Garey and Johnson showed thatx In 1975, Garey and Johnson showed that
the general scheduling problem is NP hard.

x However, polynomial time algorithms can be
found under particular conditions.

4
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Scheduling Complexity 

  In 1975, Garey and Johnson showed that the general scheduling problem is 
NP hard. !
  There is no known polinomial time algorithm!
  Meaning:!

 Consider n = 30 tasks; elementary step = 1μs !
 Alg. 1: O(n) !
 Alg. 2: O(n6) !
 Alg. 3: O(6n)!
 Computation time?!

  However, polynomial time algorithms can be found under particular 
conditions !
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Simplifying Assumptions 

  Simplify architecture!
  Single processor!

  Homogeneous task sets!
  Only periodic / only aperiodic!

  Fully preemptive tasks!
  Simultaneous activations!
  No precedence constraints!
  No resource constraints !
  …!

  Different classes of algorithms!
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Algorithm Tassonomy 

  Preemptive vs. Non Preemptive !
  Static vs. Dynamic!
  On-line vs. Off-line!
  Optimal vs. Heuristic !
  Guaranteed vs. Best-effort!

  Clairvoyant algorithm!
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Static vs Dynamic 

  Static scheduling algorithms!
  scheduling decisions are taken based on fixed parameters, statically 

assigned to tasks before activation. !

  Dynamic scheduling algorithms!
  scheduling decisions are taken based on parameters that can change 

with time. !
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Off-line vs. On-line 

  Off-line scheduling algorithms!
  all scheduling decisions are taken before task activation: the schedule is 

stored in a table and later executed by a dispatcher !
 “table-driven scheduling”!

  On-line scheduling algorithms!
  scheduling decisions are taken at run-time on the set of active tasks!

 When?!
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Optimal vs. Heuristic 

  Optimal scheduling algorithms!
  They generate a schedule that minimizes a cost function, defined based 

on an optimality criterion. !

  Heuristic scheduling algorithms!
  They generate a schedule according to a heuristic function that tries to 

satisfy an optimality criterion, but there is no guarantee of success. !
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Guaranteed vs. Best Effort 

  Guaranteed scheduling algorithms!
  They generate a feasible schedule if there exists one !
  Needed is hard real-time!
  Pessimistic assumptions!

  Best effort scheduling algorithms!
  No guarantee of a feasible schedule.!
  Useful if soft real-time !
  Optimize average performance!
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Guarantee-Based Algorithms 

  In hard real-time applications, the feasibility of the schedule must be 
guaranteed before task execution!
  Give the system time to try and avoid catastrophic consequences!
  Look-ahead and worst-case reasoning!

  Static real-time systems: guarantee off-line; table-based scheduling!
  + Run-time overhead does not depend on complexity of scheduling 

algorihtm!
  - Flexibility!

  Dynamic real-time systems: task can be created at run-time!
  Guarantee online every time a new task is created!
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Guarantee Mechanism 

  Worst-case assumption: a task could unnecessarily be rejected!
  - Efficiency!

  Early detection of potential overload situation!
  + Avoid negative effects (possible catastrophe, domino effect)!
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Domino Effect 



9.81! Buttazzo, Hard Real-Time Computing Systems ©2013!

Metrics for Performance Evaluation 

  Classical operating systems!
  Optimality: min cost function!

  Average response time!
  Total completion time!
  Weighted sum of completion times!
  Maximum lateness!
  Maximum number of late tasks!
  …!

  Real-Time Operating Systems: these cost functions are not necessarily of 
interest!
  No individual assessment of timing properties (periods, deadlines)!
  Maximum lateness has no direct relation with number of tasks that miss 

their deadline!
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Maximum Lateness 

a)  Min maximum lateness!
b)  Min number of tasks that miss their deadline!
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Cumulative Value 

  Sum of the utility functions computed at each completion time!

Introduzione 9

FUNZIONE DI UTILITA’ DI UN PROCESSO

non real-time

ai fi

v (fi)
soft real-time

ai di fi

v (fi)

hard real-time

ai di fi

v (fi)

-∞
“better never than late”

ai di fi

v (fi)

on-time 

“firm” 



Scheduling Anomalies 
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A Surprising Result… 

  Theorem (Graham, 1976) !
If a task set is optimally scheduled on a multiprocessor with some priority 
assignment, a fixed number of processors, fixed execution times, and 
precedence constraints, then increasing the number of processors, reducing 
execution times, or weakening the precedence constraints can increase the 
schedule length!
!
!
  Brittleness of scheduling algorithms: small changes can have big, 

unexpected consequences!
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Richard’s Anomalies (Graham, 1976) 

  Assume a parallel machine with 3 CPU. All tasks arrive at the same time.!
1.  What priority-based schedule?!
2.  How to improve schedule length?!
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1) Increase number of CPUs 

  Assume 4 CPUs!
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2) Reduce computation time 

  Reduce computation time of each task by 1 unit!
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3) Weaken precedence constraints 

  Remove constraints on T7 and T8!
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Another Surprising Result… 

  If tasks share mutually exclusive resources, or are non-preemptive, 
scheduling anomalies may also occur in uniprocessor systems!

  Theorem (Buttazzo, 2006) !
A real time application that is feasible on a given processor can become 
infeasible when running on a faster processor!
!
!
!
!
What if double the processor’s speed?!
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Another Surprising Result… 

  If tasks share mutually exclusive resources, or are non-preemptible, 
scheduling anomalies may also occur in uniprocessor systems!

  Theorem (Buttazzo, 2006) !
A real time application that is feasible on a given processor can become 
infeasible when running on a faster processor!
!
!
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!
!
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A dangerous operation: DELAY 

  A delay(Δ) may introduce a delay greater than Δ!
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A dangerous operation: DELAY 

  A delay(Δ) may also increase the response times of other tasks!
  Example for fixed priorities!
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A dangerous operation: DELAY 

  A delay(Δ) may also increase the response times of other tasks!
  Example for deadline scheduling!
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Take-Home Message 

  Tests are not enough for real-time systems!
  Intuitive solutions do not always work!
  Delay should not be used in real-time tasks!
  The safest approach:!

  Use predictable kernel mechanisms!
  Analyze the system to predict the behaviour!

  The operating system is the part most responsible for a predictable 
behavior. Concurrency control must be enforced by: !
  appropriate scheduling algorithms !
  appropriate syncronization protocols !
  efficient communication mechanisms !
  predictable interrupt handling !


