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17/5/2013

4. Perturbations

4.1 Introduction to perturbation theory

[R05 7.1]

→ The point-mass two-body problem can be solved analytically, but when we have more then two bodies or if

the point mass approximation is not justified (for instance, at least one of the two bodies is not spherical),

we do not have analytic solutions.

→ In general the motion is governed by a potential function U = U0 +R, where U0 is the point-mass two-body

gravitational potential and R is the so-called disturbing function, which accounts for the presence of other

bodies or for deviations from spherical symmetry in the mass distributions of the bodies.

→ Perturbation theory is a way to account for the presence of R. We distinguish two kinds of perturbation

methods: general perturbations and special perturbations.

→ In many applications the effect of R is at least an order of magnitude smaller than that of U0, so both

general perturbations and special perturbations can be used.

→ When the effects of R are comparable to those of U0 it is not possible to use general perturbations, and

special perturbation methods must be used.

→ General perturbations: this method exploits the fact that the orbit due to U0 changes only slowly due to

the effect of R. So, at a given time the orbit is characterized by the osculating elements, which define

the osculating ellipse (i.e. the “instantaneous” orbit due to U0, which we assume here is an ellipse). Then

equations for the variation of the elements with time are obtained and studied with analytic methods.

→ Special perturbations: given the masses of the bodies, starting from positions and velocities at a given time,

positions and velocities at later times are obtained by numerical integration of the full equations of motion

or of the perturbation equations (i.e. the equations for the variation of the elements).
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→ General perturbation method is applicable only when the perturbation is small, but it allows to individuate

the dominant perturbing terms and better understand the physical evolution. For instance, general

perturbations can enable the sources of observed perturbations to be discovered, because the sources of

the perturbations appear explicitly in the equations.

→ Special perturbation method is applicable to any system and over long timescales, but no attempt to isolate

different perturbing terms. Fundamental tool, for instance, in studying the long-term evolution of planetary

systems.

4.2 General perturbations

[R05 7.1]

→ Initial conditions: at time t0 the osculating elements are a0, e0, i0, Ω0, ω0 and τ0. If R = 0 (i.e. no

perturbation) these elements are constant.

→ Due to R 6= 0 the elements evolve and at a later time t1 they will be a1, e1, i1, Ω1, ω1 and τ1.

→ The quantities ∆a = a1 − a0 etc. are the perturbations in the time interval ∆t = t1 − t0.

4.2.1 The disturbing function

[R05 7.10]

→ Let us write the equations of motion for a system of N > 2 bodies in the frame of reference in which one of

the bodies (the reference body, with mass m1) is in the origin (in this reference frame we call the position

vector r). Let us start from a reference system with origin in the centre of mass (in this reference frame we

call the position vector r′). For the i-th body we have:

mir̈
′
i = G

j 6=i∑
j=1,N

mimj

r3
ij

rij ,

where rij ≡ r′j − r′i. So, for the reference body

r̈′1 = G
∑

j=2,N

mj

r3
1j

r1j ,

while for i-th body:

r̈′i = G
∑

j=1,N

mj

r3
ij

rij (j 6= i)

→ Subtracting we get

r̈1i = r̈′i − r̈′1 = G

j 6=i∑
j=2,N

mj

r3
ij

rij +G
m1

r3
i1

ri1 −G
j 6=i∑

j=2,N

mj

r3
1j

r1j −G
mi

r3
1i

r1i,
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→ Note that rij = −rji, we get

r̈1i = G

j 6=i∑
j=2,N

mj

r3
ij

rij −G
j 6=i∑

j=2,N

mj

r3
1j

r1j −G
mi +m1

r3
1i

r1i,

because
Gm1

r3
i1

ri1 = −Gm1

r3
1i

r1i.

→ Finally, dropping the subscript 1, we get the equation of motion of mass mi relative to the position of the

reference mass m:

r̈i = −G(m+mi)
ri
r3
i

+G

j 6=i∑
j=2,N

mj

(
rj − ri
r3
ij

− rj
r3
j

)
,

where rij = r′j − r′i = rj − ri

→ In this equation the first term in the r.h.s. is the acceleration on body mi due to the main body m. The

other terms are (I: direct terms) acceleration on body mi due to bodies mj and (II: indirect terms) the

negative of the acceleration on body m due to bodies mj (which have effect on the motion of mi, because

we are taking as reference the position of the main body m).

→ In many cases the first term in the r.h.s. dominates. For instance, in the Solar System even Jupiter

has mj/m ∼ 0.001. In the case of the Earth(m)-Moon(mi)-Sun(mj) system, the Earth-Moon distance

(∼ 3.84 × 108 m) is about 1/400 AU (1 AU ∼ 1.5 × 1011 m), so the term
∑

j is the sum of differences of

almost equal numbers, so it is very small as compared to the first term (even though M� ∼ 3×105MEarth ∼
3× 107MMoon).

→ The above equation can be written as

r̈i = ∇i (U0i +Ri) ,

where

U0i ≡
G(m+mi)

ri
,

Ri ≡ G
j 6=i∑

j=2,N

mj

(
1

rij
− ri · rj

r3
j

)
,

and

∇i =
∂

∂xi
î+

∂

∂yi
ĵ +

∂

∂zi
k̂.

→ Note that

rij =
√

(xj − xi)2 + (yj − yi)2 + (zj − zi)2,

ri · rj = xixj + yiyj + zizj ,

rj = (rj · rj)1/2 =
√
x2
j + y2

j + z2
j ,
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so

∇i

(
1

rij

)
=

rij
r3
ij

,

∇i

(
−ri · rj

r3
j

)
= −rj

r3
j

.

→ Therefore

∇iU0i = −G(m+mi)rij
r3
ij

,

∇iRi = G

j 6=i∑
j=2,N

mj

(
rij
r3
ij

− rj
r3
j

)
,

→ Ri is the disturbing function for body mi.

4.2.2 Lagrange’s planetary equations

[R05 7.10]

Hamiltonian formulation

→ The equations that describe the evolution of the osculating elements are called Lagrange’s planetary

equations.

→ Here we derive Lagrange’s planetary equations in the context of the Hamiltonian formulation of mechanics.

→ From the above derivation of the disturbing function (and from the equations of motion r̈i = ∇iU0,i +∇iRi)

we can infer the form of the corresponding Hamiltonian. Let’s consider here the mass-normalized

Hamiltonian H̃ (see discussion in 2.4.2).

→ The Hamiltonian is

H̃ = H̃0 + H̃1,

where (dropping index i and using Φ0 = −U0 as unperturbed gravitational potential)

H̃0 =
1

2

(
p̃2
x + p̃2

y + p̃2
z

)
+ Φ0 =

1

2

(
p̃2
x + p̃2

y + p̃2
z

)
− U0,

H̃1 = −R

→ With this definition the canonic equations give the equations of motion derived above

ẋ =
∂H̃
∂p̃x

= p̃x

˙̃px = −∂H̃
∂x

=⇒ ẍ =
∂U0

∂x
+
∂R
∂x

(here p̃x = ẋ, because we have mass-normalized the Hamiltonian), and similarly for y and z.
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Canonical coordinates

→ When considering the two-body problem (mi and m) in Hamiltonian dynamics we have seen that it is

possible to write the solution in terms of 6 canonic variables α̃i, β̃i with i = 1, 2, 3 such that they are all

constant.

→ These constant (mass-normalized) canonical coordinates are

α̃1 = Ẽ = −GM
2a

, β̃1 = −τ

α̃2 = L̃ =
√
GMa(1− e2), β̃2 = ω

α̃3 = L̃z =
√
GMa(1− e2) cos i, β̃3 = Ω,

where M = m+mi, or, using µ = GM,

α̃1 = − µ

2a
, β̃1 = −τ,

α̃2 =
√
µa(1− e2), β̃2 = ω,

α̃3 =
√
µa(1− e2) cos i, β̃3 = Ω.

→ The corresponding mass-normalized two-body Hamiltonian is null: H̃0 = 0. Clearly, the two-body

(unperturbed) Hamiltonian H̃0 does not depend on α̃i and β̃i (α̃i are the momenta and β̃i are the

coordinates), so

˙̃αi = −∂H̃0

∂β̃i
= 0,

˙̃
βi =

∂H̃0

∂α̃i
= 0.

→ Now, in our case the Hamiltonian is in the form H̃ = H̃0 + H̃1 = H̃0 −R, so the canonic variables α̃i and

β̃i are not constant, but they vary as

˙̃αi = −∂H̃1

∂β̃i
=
∂R
∂β̃i

,

˙̃
βi =

∂H̃1

∂α̃i
= − ∂R

∂α̃i
.

→ Now we combine the above Hamilton equations to obtain the perturbation equations, i.e. Lagrange planetary

equations, i.e. the equations that describe the time-variation of the orbital elements of the osculating ellipse,

due to the presence of the disturbing function R.
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Hamilton’s equations in terms of orbital elements

→ Hamilton equation (I)

˙̃α1 =
∂R
∂β̃1

→ So we have

−∂R
∂τ

=
∂R
∂β̃1

= ˙̃α1 =
d

dt

(
− µ

2a

)
=

µȧ

2a2
=
n2aȧ

2

where we have used µ = n2a3 [we recall µ = GM = G(m+mi)], so

ȧ = − 2

n2a

∂R
∂τ

(I)

→ Note that n appears in the expression of Lagrange’s planetary equations. However, n is not an independent

orbital element, and must be considered just a function of a: n = n(a) =
√
µ/a3. So dn/da = −(3/2)n/a.

Other useful relations:
√
µa = na2 and

√
µ/a = na.

→ Hamilton equation (II)

˙̃α2 =
∂R
∂β̃2

,

so
∂R
∂ω

=
∂R
∂β̃2

= ˙̃α2 =
d

dt

[√
µa(1− e2)

]
=
na
√

1− e2

2

[
ȧ− 2ae

1− e2
ė

]
,

which can be written as

ȧ− 2ae

1− e2
ė =

2

na
√

1− e2

∂R
∂ω

(II)

→ Hamilton equation (III)

˙̃α3 =
∂R
∂β̃3

,

so

∂R
∂Ω

=
∂R
∂β̃3

= ˙̃α3 =
d

dt

[√
µa(1− e2) cos i

]
=
na
√

1− e2

2

[
ȧ− 2ae

1− e2
ė

]
cos i− na2

√
1− e2 cos i tan i

di

dt
=

=
na
√

1− e2 cos i

2

[
ȧ− 2ae

(1− e2)
ė− 2a tan i

di

dt

]
so

ȧ− 2ae

1− e2
ė− 2a tan i

di

dt
=

2

na
√

1− e2 cos i

∂R
∂Ω

(III)

→ Now we use combinations of the other three Hamilton equations

˙̃
β1 = − ∂R

∂α̃1
,

a
˙̃
β2 = − ∂R

∂α̃2
,

˙̃
β3 = − ∂R

∂α̃3
.
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→ Equation (IV) for ∂R/∂i (i appears only in α3):

∂R
∂i

=
∂R
∂α̃3

∂α̃3

∂i
= − ˙̃

β3

(
−na2

√
1− e2 sin i

)
= Ω̇na2

√
1− e2 sin i

i.e.

Ω̇ =
1

na2
√

1− e2 sin i

∂R
∂i

(IV )

→ Equation (V) for ∂R/∂e (e appears only in α̃2 and α̃3):

∂R
∂e

=
∂R
∂α̃2

∂α̃2

∂e
+
∂R
∂α̃3

∂α̃3

∂e
= − ˙̃

β2
∂α̃2

∂e
− ˙̃
β3
∂α̃3

∂e
= −ω̇

(
− ena2

(1− e2)1/2

)
− Ω̇

(
− ena2

(1− e2)1/2
cos i

)
=

=
ena2

√
1− e2

(
ω̇ + Ω̇ cos i

)
so

ω̇ + Ω̇ cos i =
(1− e2)1/2

ena2

∂R
∂e

(V )

→ Equation (VI) for ∂R/∂a (a appears in α̃1, α̃2 and α̃3):

∂R
∂a

=
∂R
∂α̃1

∂α̃1

∂a
+
∂R
∂α̃2

∂α̃2

∂a
+
∂R
∂α̃3

∂α̃3

∂a
= − ˙̃

β1
∂α̃1

∂a
− ˙̃
β2
∂α̃2

∂a
− ˙̃
β3
∂α̃3

∂a
=

=
n2a

2
τ̇ −

√
1− e2

na

2
(ω̇ + Ω̇ cos i)

so

τ̇ −
√

1− e2

n
(ω̇ + Ω̇ cos i) =

2

n2a

∂R
∂a

(V I)

Equations for the variation of the elements

→ We now combine equations (I-VI) to obtain Lagrange’s planetary equations in the form da/dt = ... etc.

(I):
da

dt
= − 2

n2a

∂R
∂τ

(1)

(II+I):
de

dt
=

1− e2

2ae
ȧ− 1− e2

2ae

2

na
√

1− e2

∂R
∂ω

de

dt
= −
√

1− e2

a2en

[√
1− e2

n

∂R
∂τ

+
∂R
∂ω

]
(2)

(III+II):
di

dt
=

1

2a tan i
ȧ− 2ae

2a tan i(1− e2)
ė− 1

a2n sin i
√

1− e2

∂R
∂Ω

=
1

2a tan i

[
ȧ− 2ae

1− e2
ė

]
− 1

a2n sin i
√

1− e2

∂R
∂Ω

=
1

2a tan i

[
2

na
√

1− e2

∂R
∂ω

]
− 1

a2n sin i
√

1− e2

∂R
∂Ω
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=
1

a2n
√

1− e2

[
1

tan i

∂R
∂ω
− 1

sin i

∂R
∂Ω

]
(3)

(IV):
dΩ

dt
=

1

na2
√

1− e2 sin i

∂R
∂i

(4)

(V+IV):

dω

dt
= −Ω̇ cos i+

(1− e2)1/2

ena2

∂R
∂e

= − cos i

na2
√

1− e2 sin i

∂R
∂i

+
(1− e2)1/2

ena2

∂R
∂e

=
1

a2n
√

1− e2

[
1− e2

e

∂R
∂e
− 1

tan i

∂R
∂i

]
(5)

(VI+V):

dτ

dt
=

√
1− e2

n
(ω̇ + Ω̇ cos i) +

2

n2a

∂R
∂a

=

=
1− e2

en2a2

∂R
∂e

+
2

n2a

∂R
∂a

.

Summary of Lagrange’s planetary equations

→ In summary Lagrange’s planetary equations (1-6) are

da

dt
= − 2

n2a

∂R
∂τ

(1) (I)

de

dt
= −1− e2

a2en2

∂R
∂τ
−
√

1− e2

a2en

∂R
∂ω

(2) (II + I)

di

dt
=

1

a2n
√

1− e2

[
1

tan i

∂R
∂ω
− 1

sin i

∂R
∂Ω

]
(3) (III + II)

dΩ

dt
=

1

na2
√

1− e2 sin i

∂R
∂i

(4) (V + IV )

dω

dt
=

1

a2n
√

1− e2

[
1− e2

e

∂R
∂e
− 1

tan i

∂R
∂i

]
(5) (IV + V )

dτ

dt
=

1− e2

ea2n2

∂R
∂e

+
2

n2a

∂R
∂a

(6′) (V I + V )

→ The specific form of Lagrange’s planetary equations depends on the choice of the elements.

→ Roy uses as orbital elements

a (semi-major axis)

e (eccentricity)

i (inclination)

Ω (longitude of the ascending node)

ω (argument of pericentre)

χ = −nτ (mean anomaly at epoch, sometimes indicated with M0)
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→ MD (see also Roy 7.7) use as orbital elements

a (semi-major axis)

e (eccentricity)

i (inclination)

Ω (longitude of the ascending node)

$ = Ω + ω (longitude of pericentre)

ε = $ + χ (mean longitude at epoch)

4.2.3 Expansion and classification of arguments of the disturbing function

[MD 6.3, 6.7, 6.9]

→ Lagrange’s planetary equations can be studied analytically by writing the disturbing functionR as a function

of the orbital elements of the osculating ellipse and expanding the derivatives of R with respect to the

elements.

→ Consider, for simplicity, the case of a three-body system. The motion of a body of mass m around a primary

of mass m0 is perturbed by the presence of a third body of mass m′. Viceversa, the motion of the body m′

around the primary m0 is perturbed by the presence of the body m.

→ The osculating elements are a, e, i, λ, $, Ω for body m and a′, e′, i′, λ′, $′, Ω′ for body m′. We use here,

instead of τ and ω, the mean longitude λ and the longitude of pericentre $, where λ = n(t − τ) + $ and

$ = ω + Ω

→ Note that, in the unperturbed problem, the mean longitudes λ and λ′ increase linearly with time, being

proportional to nt and n′t, while all the other elements are constant in the unperturbed problem. λ′ and λ

are the only rapidly varying variables.

→ Consider the motion of body m: it can be described using Lagrange’s planetary equations. It can be shown

(e.g. MD 6.3) that the perturbing function, as a function of the osculating elements, can be expanded in

the form

R =
∑
k

Sk(a, a′, e, e′, i, i′) cosφk,

where each φk is in the form

φ = j1λ
′ + j2λ+ j3$

′ + j4$ + j5Ω′ + j6Ω,

where ji are positive and negative integers such that
∑6

i=1 ji = 0.

→ We refer to the terms φk as the arguments of the expansion and to Sk as the coefficients of the expansion.
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→ It is clear that, in the perturbed problem, all arguments in which λ and λ′ do not appear correspond to

slowly varying terms, or secular terms (i.e. long-period terms).

→ Among the terms whose arguments depend on λ and λ′ we distinguish resonant terms and short-period

terms. Note that in the unperturbed problem j1λ
′ + j2λ = (j1n

′ + j2n)t+ const.

→ Resonant terms are those such that j1n
′ + j2n ≈ 0, which happens when n and n′ are commensurable

(because the ji are integers), i.e. when there is mean motion resonance. Recalling the relation n ∝ a−3/2,

this condition for resonance can be expressed for semi-major axes as

a

a′
≈
(
|j1|
|j2|

)2/3

→ Short-period terms are all the other terms (those depending on λ and λ′, but not resonant).

→ Averaging principle: the short-period terms average out to zero over the long period motion, so they can be

neglected. The only important terms are the secular terms and the resonant terms.

→ Comparison with numerical integration support the idea that the averaging principle works. See Fig. MD

6.3 (FIG CM4.1 only secular terms, for a case far from resonance); Fig. MD 6.5 (FIG CM4.2 secular and

resonant terms, for an asteroid close to 2:1 Jovian resonance)

4.3 Special perturbations

[R05 8.1-8.2]

→ The method of special perturbations consists in numerically integrating the equations of motion of the N

bodies in any of their possible forms. Also known as method of numerical integration of orbits.

→ In celestial mechanics the number of bodies is small, so computing the force is not expensive. Main limitation

is the rounding-off error, which affects the long-term evolution of given initial conditions.

→ There are several implementations of the special perturbation method, depending on the formulation of the

equations of motion and on the numerical integration algorithm. The choice depends on several factors:

type of orbit, required accuracy, length of time span, available computing facilities.

4.3.1 Formulation of the equations of motion

[R05 8.3-8.5]

→ We recall here three of the main approaches: Cowell’s method, Encke’s method, integration of the

perturbation equations (i.e. Lagrange’s planetary equations).
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→ Cowell’s method. In this case the equations of motion are integrated in their usual form: Newton equations

in Cartesian coordinates. So, for a system of N bodies, we have

mir̈i = −∂V
∂ri

, i = 1, . . . , N,

i.e.

miẍi = −∂V
∂xi

, miÿi = −∂V
∂yi

, ..., etc.,

where

V = −1

2
G

N∑
i=1

N∑
j=1

mimj

rij
,

with j 6= i, rij = |rij | and rij = rj − ri. So

mir̈i = G

j 6=i∑
j=1,N

mimj

r3
ij

rij ,

or

r̈i = G

j 6=i∑
j=1,N

mj

r3
ij

rij .

So the Cartesian components are

ẍi = G

j 6=i∑
j=1,N

mj

r3
ij

(xj − xi), etc.

→ Encke’s method. The equations of motion are written in the following form. Let us consider for instance the

case of the Solar System. For a given planet of mass m, let us define r2b(t) as the planet-Sun separation

vector in the two-body orbit of the planet due to the presence of the Sun only:

r̈2b + µ
r2b

r3
2b

= 0,

where µ = G(M� +m). The actual orbit is

r̈ + µ
r

r3
= F,

where F is the force due to all the other bodies (but the Sun). Subtracting, we have

ρ̈ = F + µ

(
r2b

r3
2b

− r

r3

)
where ρ ≡ r − r2b. The term in parenthesis is algebraically manipulated to avoid the necessity of using

too many significative figures, due to subtraction of very similar numbers. r2b(t) is known analytically and

the integration variable is the small difference ρ, which varies more slowly than r. This is exploited to use

longer timesteps in the integration.
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→ Integration of perturbation equations. Lagrange’s planetary equations are integrated numerically.

Advantages: longer timestep than equations of motion integration; orbital elements in input/output; no

need to include explicitly central body (perturbation method). Disadvantages: complicated functions in the

right-hand side; breakdown of the equation in specific configurations (denominators to zero); necessity to

solve Kepler’s equation

M = ξ − e sin ξ

which allows to convert the mean anomaly into the eccentric anomaly ξ, needed in order to obtain the

position of the body, using distance from the focus r and true anomaly f , given by

r = a(1− e cos ξ)

and

cos f =
cos ξ − e

1− e cos ξ
.

4.3.2 Numerical integration algorithms

[P92 chapt. 16; B07]

→ In all approaches we have to integrate a system of ordinary differential equations (ODEs). These might be

first-order (Lagrange’s planetary equations) or second order (Encke’s or Cowell’s equations). But a second-

order system can be always recast in the form of a first-order system. Note that in some cases it is more

convenient to integrate directly second order: for instance Stoermer rule can be applied to the full N -body

equations because the right-hand side does not depend on the first derivatives (force is conservative, i.e. it

depends only on position; see P92 16.5). However, here we consider only the case of first-order systems.

→ A second-order ODE (or system of ODEs) can be transformed into a first-order ODE (or system of ODEs)

as follows:
d2y

dt2
= F (t, y, y′),

where y′ ≡ dy/dt.

v(t) ≡ dy

dt

so we get the system
dy

dt
= v

dv

dt
= F (t, y, v)

with v = v(t) and y = y(t). Writing w = (y, v), the above system is clearly in the form

dw

dt
= f(t,w),

where w = w(t).
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→ When the problem is reduced to first-order system of ODE, we must just find a method to solve an equation

in the form
dy

dt
= f(t, y),

where y = y(t). We recall that in theN -body case t is time and y is either a phase-space coordinate (Newton’s

equations of motion) or an orbital element (Lagrange’s planetary equations). In all cases our problem is an

initial value problem, so the initial values t0 (i.e. initial time) and y0 = y(t0) (initial coordinates or elements)

are given.

→ Numerical methods to integrate a system of ODEs: we have already mentioned that several choices are

possible. Well known algorithms are Runge-Kutta, Bulirsch-Stoer, symplectic integrators etc. Typically in

celestial mechanics high accuracy is required. This is due to a combination of the chaotic nature of the orbits

and the necessity of integrating over long time spans: if the integration is not accurate enough, relatively

small integration errors can lead to completely wrong orbits over long timescales.

→ Here we briefly describe only the Bulirsch-Stoer method, which is a robust method, often used in applications

of celestial mechanics.

4.3.3 Bulirsch-Stoer algorithm

[P92 16.1-16.4]

→ Bulirsch-Stoer algorithm is a method to integrate systems of ODE based on Euler method, Midpoint method

and Modified midpoint method. Before describing the Bulirsch-Stoer algorithm, we briefly describe these

simpler methods. We recall that we want to solve a first-order ODE in the form

dy

dt
= f(t, y),

where y = y(t), with initial conditions y = y0 for t = t0. In general, given ti and ti+1 = ti +H (where H is

the integration step), for known yi = y(ti) we want to estimate y(ti+1) numerically: the approximated result

is called yi+1 ≈ y(ti+1). Such integration steps are repeated to go from the initial value t0 to the final value

tfinal of the independent variable (i.e. time, in the N -body case).

→ Euler method.

yi+1 = yi +Hf(ti, yi),

where H is increment (or step) and f = y′ is evaluated at (ti, yi). yi+1 is the estimated value of y(ti+1)

where ti+1 = ti +H.

→ Midpoint method. The step H is divided in two steps of length H/2 and the slope is evaluated at t+H/2.

yi+1 = yi +Hf(ti+1/2, yi+1/2),
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where

yi+1/2 ≡ yi +
H

2
f(ti, yi),

and ti+1/2 ≡ ti + (H/2).

→ Modified midpoint method. The step H is divided in n steps of length h = H/n. Now yi = y(ti) and

yi+1 ≈ y(t+H). The algorithm reads as follows:

z0 = yi = y(ti)

z1 = z0 + hf0 ≈ y(ti + h),

which is an estimate of y(ti + h) using Euler’s method. Here we have introduced the following notation:

fj ≡ f(ti + jh, zj), so, f0 = f(ti, z0).

z2 = z0 + 2hf1 ≈ y(ti + 2h),

which is an estimate of y(ti + 2h) using the midpoint method. In general, for the M -th substep we have

zj = zj−2 + 2hfj−1 ≈ y(ti + jh),

which is an estimate of y(ti + jh) using the midpoint method. Finally we define yi+1 by averaging between

zn and the average between zn+1 and zn−1:

yi+1 =
1

2

(
zn+1 + zn−1

2
+ zn

)
,

i.e.

yi+1 =
1

4
(zn−1 + 2zn + zn+1) ,

=
1

4
(zn−1 + 2zn + zn−1 + 2hfn) ,

i.e.

yi+1 =
1

2
[zn + zn−1 + hfn] .

→ Bulirsch-Stoer method. With this method each step goes from t to t+H, via several (n) modified-midpoint

method substeps with h = H/n, which are extrapolated to h→ 0.

→ n is not fixed, but for each step we try first with n = 2, and then increase n up to a value which is estimated

to be sufficient (i.e., such that the error is small enough).

→ n is not increased by one unity each time, but through a specific sequence. One of the optimal choices is

n = 2, 4, 6, 8, 10, .... (i.e. n(k) = 2k)
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→ For given k, so for given n = n(k) (and then for given hk = H/n(k)), the modified midpoint method gives

us an estimate yi+1(hk), depending on hk. For each k, i.e. each n(k) in the sequence, via polynomial

extrapolation, we compute

yi+1,k = lim
h→0

fk(h),

where fk(h) is a polynomial function interpolating the k points [hk,yi+1(hk)]. This method is known as

Richardson extrapolation.

→ The extrapolation can be performed as follows. Given k estimates of y∞i+1,k, corresponding to k different

values of n, we define an interpolating function, a polynomial of order k − 1

fk(h) = a0 + a1h+ a2h
2 + ...+ ak−1h

k−1.

There is only an interpolating polynomial of order k − 1 (obtained, for instance, with Lagrange formula or

other interpolating algorithm). So we can compute the coefficients. Then we can compute the extrapolation

to h = 0, which is simply yi+1,k ≡ fk(0) = a0

→ We go on for increasing k. We stop for k = k′ when we meet a convergence criterion. For instance

|yi+1,k′(0)− yi+a,k′−1(0)|
|yi+a,k′(0)|

< ε,

where ε is a (small) dimensionless number, which is the accuracy (e.g. ε ∼ 10−13).

→ Finally

yi+1 = yi+1,k′ ≡ fk′(0).

See plot B07 Fig. 3.4 (FIG CM4.3) and P92 Fig. 16.4.1 (FIG CM4.4).
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