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Università di Bologna

email: claudio.melchiorri@unibo.it

C. Melchiorri Trajectory Planning 1 / 131



Trajectory Planning
Scaling trajectories

Analysis of Trajectories
Trajectories in the Workspace

Summary

1 Trajectory Planning
Introduction
Joint-space trajectories
Third-order polynomial trajectories
Fifth-order polynomial trajectories
Trapezoidal trajectories
Spline trajectories

2 Scaling trajectories
Kinematic scaling of trajectories
Dynamic scaling of trajectories

3 Analysis of Trajectories
Dynamic analysis of trajectories
Comparison of trajectories
Coordination of more motion axes

4 Trajectories in the Workspace
Position trajectories
Rotational trajectories

C. Melchiorri Trajectory Planning 2 / 131



Trajectory Planning
Scaling trajectories

Analysis of Trajectories
Trajectories in the Workspace

Introduction
Joint-space trajectories
Third-order polynomial trajectories
Fifth-order polynomial trajectories
Trapezoidal trajectories
Spline trajectories

Kinematics: geometrical relationships in terms of position/velocity between
the joint- and work-space.

Dynamics: relationships between the torques applied to the joints and the
consequent movements of the links.

Control: computation of the control actions (joint torques) necessary to
execute a desired motion.

Trajectory planning: planning of the desired movements of the manipulator.

Usually, the user is requested to define some points and general features of the
trajectory (e.g. initial/final points, duration, maximum velocity, etc.), and the
real computation of the trajectory is demanded to the control system.
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Trajectory planning

Trajectory planning: IMPORTANT aspect in robotics, VERY IMPORTANT
for the dimensioning, control, and use of electric motors in automatic machines
(e.g. packaging).

Origin of the interest for the control area was the substitution of mechanical
cams with electric cams in the design of automatic machines.

=⇒
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Trajectory planning

Some suggested references:

C. Melchiorri, Traiettorie per azionamenti elettrici, Progetto Leonardo,
Esculapio Ed., Bologna, Feb. 2000;

G. Canini, C. Fantuzzi, Controllo del moto per macchine automatiche,
Pitagora Ed., Bo, 2003;

G. Legnani, M. Tiboni, R. Adamini, Meccanica degli azionamenti: Vol. 1 -

Azionamenti elettrici, Progetto Leonardo, Esculapio Ed., Bologna, Feb.
2002.

L. Biagiotti, C. Melchiorri, Trajectory Planning for Automatic Machines

and Robots, Springer, 2008.
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Springer, 2008 Esculapio, 2000
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Trajectory planning

The planning modalities for trajectories may be quite different:

point-to-point

with pre-defined path

Or:

in the joint space;

in the work space, either defining some points of interest (initial and final
points, via points) or the whole geometric path x = x(t).

For planning a desired trajectory, it is necessary to specify two aspects:

geometric path

motion law

with constraints on the continuity (smoothness) of the trajectory and on its
time-derivatives up to a given degree.
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Geometric path and motion law

The geometric path can be defined in the work-space or in the joint-space.
Usually, it is expressed in a parametric form as

p = p(s) work-space

q = q(σ) joint-space

The parameter s (σ) is defined as a function of time, and in this manner the
motion law s = s(t) (σ = σ(t)) is obtained.

t
0 T

time

s
0

length

smax

px = px(s)
py = py (s)
pz = pz(s)

path

a (s = 0)

b (s = smax )
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Geometric path and motion law

Examples of geometric paths: (in the work space) linear, circular or parabolic
segments or, more in general, tracts of analytical functions.

In the joint space, geometric paths are obtained by assigning initial/final (and,
in case, also intermediate) values for the joint variables, along with the desired
motion law.

Concerning the motion law, it is necessary to specify continuos functions up to
a given order of derivations (often at least first and second order, i.e. velocity
and acceleration).

Usually, polynomial functions a of proper degree n are employed:

s(t) = a0 + a1t + a2t
2 + . . .+ ant

n

In this manner, a “smooth” interpolation of the points defining the geometric
path is achieved.
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Trajectory planning

Input data to an algorithm for trajectory planning are:

data defining on the path (points),

geometrical constraints on the path (e.g. obstacles),

constraints on the mechanical dynamics

constraints due to the actuation system

Output data is:

the trajectory in the joint- or work-space, given as a sequence (in time) of
the acceleration, velocity and position values:

a(kT ), v(kT ), p(kT ) k = 0, . . . ,N

being T a proper time interval defining the instants in which the trajectory
is computed (and converted in the joint space) and sent to each actuator.
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Trajectory planning

Usually, the user has to specify only a minimum amount of information about
the trajectory, such as initial and final points, duration of the motion,
maximum velocity, and so on.

Work-space trajectories allow to consider directly possible constraints on
the path (obstacles, path geometry, . . . ) that are more difficult to take
into consideration in the joint space (because of the non linear kineamtics)

Joint space trajectories are computationally simpler and allow to consider
problems due to singular configurations, actuation redundancy,
velocity/acceleration constraints.
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Joint-space trajectories

Trajectories are specified by defining some characteristic points:

directly assigned by some specifications

assigned by defining desired configurations x in the work-space, which are
then converted in the joint space using the inverse kinematic model.

The algorithm that computes a function q(t) interpolating the given points is
characterized by the following features:

trajectories must be computationally efficient

the position and velocity profiles (at least) must be continuos functions of
time

undesired effects (such as non regular curvatures) must be minimized or
completely avoided.

In the following discussion, a single joint is considered.

If more joints are present, a coordinated motion must be planned, e.g.
considering for each of them the same initial and final time instant, or
evaluating the most stressed joint (with the largest displacement) and then
scaling suitably the motion of the remaining ones.
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Polynomial trajectories

In the most simple cases, (a segment of) a trajectory is specified by assigning
initial and final conditions on: time (duration), position, velocity,
acceleration, . . . . Then, the problem is to determine a function

q = q(t) or q = q(σ), σ = σ(t)

so that those conditions are satisfied.

This is a boundary condition problem, that can be easily solved by considering
polynomial functions such as:

q(t) = a0 + a1t + a2t
2 + . . .+ ant

n

The degree n (3, 5, ...) of the polynomial depends on the number of boundary
conditions that must be verified and on the desired “smoothness” of the
trajectory.
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Polynomial trajectories

In general, besides the initial and final values, other constraints could be
specified on the values of some time-derivatives (velocity, acceleration, jerk,
. . . ) in generic instants tj . In other terms, one could be interested in defining a
polynomial function q(t) whose k-th derivative has a specified value qk(tj ) at a
given istant tj .

Mathematically, these conditions may be expressed as:

k!ak + (k + 1)!ak+1tj + . . .+
n!

(n − k)!
ant

n−k
j = q

k(tj)

or, in matrix form:
M a = b

where:

- M is a known (n + 1)× (n + 1) matrix,

- b is the vector with the n + 1 constraints on the trajectory (known data),

- a = [a0, a1, . . . , an]
T contains the unknown parameters to be computed

a = M−1b
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Third-order polynomial trajectories

Given an initial and a final instant ti , tf , a (segment of a) trajectory may be
specified by assigning initial and final conditions:

initial position and velocity qi , q̇i ;

final position and velocity qf , q̇f

There are four boundary conditions, and therefore a polynomial of degree 3 (at
least) must be considered

q(t) = a0 + a1t + a2t
2 + a3t

3 (1)

where the four parameters a0, a1, a2, a3 must be defined so that the boundary
conditions are satisfied.From the boundary conditions, it follows that

q(ti ) = a0 + a1ti + a2t
2
i + a3t

3
i = qi

q̇(ti ) = a1 + 2a2ti + 3a3t
2
i = q̇i

q(tf ) = a0 + a1tf + a2t
2
f + a3t

3
f = qf

q̇(tf ) = a1 + 2a2tf + 3a3t
2
f = q̇f

(2)
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Third-order polynomial trajectories

In order to solve these equations, let us assume for the moment that ti = 0.
Therefore:

a0 = qi (3)

a1 = q̇i (4)

a2 =
−3(qi − qf )− (2q̇i + q̇f )tf

t2f
(5)

a3 =
2(qi − qf ) + (q̇i + q̇f )tf

t3f
(6)
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Third-order polynomial trajectories

Position, velocity and acceleration profiles obtained with a cubic polynomial and
boundary conditions: qi = 10o , qf = 30o , q̇i = q̇f = 0 o/s, ti = 0, tf = 1s:
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Obviously:

position → cubic function
velocity → parabolic function
acceleration → linear function
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Third-order polynomial trajectories

Non null initial velocity: qi = 10o , qf = 30o , q̇i = −20 o/s, q̇f = −50 o/s,
ti = 0, tf = 1s.
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Third-order polynomial trajectories

The results obtained with the polynomial (1) and the coefficients (3)-(6) can
be generalized to the case in which ti 6= 0. One obtains:

q(t) = a0 + a1(t − ti) + a2(t − ti )
2 + a3(t − ti )

3
ti ≤ t ≤ tf

with coefficients

a0 = qi

a1 = q̇i

a2 =
−3(qi − qf )− (2q̇i + q̇f )(tf − ti )

(tf − ti)2

a3 =
2(qi − qf ) + (q̇i + q̇f )(tf − ti )

(tf − ti)3

In this manner, it is very simple to plan a trajectory passing through a sequence
of intermediate points.
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Third-order polynomial trajectories

The trajectory is divided in n segments, each of them defined by:

initial and final point qk e qk+1

initial and final instant tk , tk+1

initial and final velocity q̇k , q̇k+1

k = 0, . . . , n − 1.

The above relationships are then adopted for each of these segments.
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Third-order polynomial trajectories

Position, velocity and acceleration profiles with:

t0 = 0 t1 = 2 t2 = 4 t3 = 8 t4 = 10
q0 = 10o q1 = 20o q2 = 0o q3 = 30o q4 = 40o

q̇0 = 0o/s q̇1 = −10o/s q̇2 = 20o/s q̇3 = 3o/s q̇4 = 0o/s
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Third-order polynomial trajectories

Often, a trajectory is assigned by specifying a sequence of desired points
(via-points) without indication on the velocity in these points.
In these cases, the “most suitable” values for the velocities must be
automatically computed.
This assignment is quite simple with heuristic rules such as:

q̇1 = 0;

q̇k =







0 sign(vk ) 6= sign(vk+1)

1
2
(vk + vk+1) sign(vk ) = sign(vk+1)

q̇n = 0

being

vk =
qk − qk−1

tk − tk−1

the ‘slope’ of the tract [tk−1 − tk ].
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Third-order polynomial trajectories

Automatic computation of the intermediate velocities (data as in the previous
example)

t0 = 0 t1 = 2 t2 = 4 t3 = 8 t4 = 10
q0 = 10o q1 = 20o q2 = 0o q3 = 30o q4 = 40o
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Fifth-order polynomial trajectories

From the above examples, it may be noticed that both the position and
velocity profiles are continuous functions of time.

This is not true for the acceleration, that presents therefore discontinuities
among different segments. Moreover, it is not possible to specify for this signal
suitable initial/final values in each segment.

In many applications, these aspects do not constitute a problem, being the
trajectories “smooth” enough.

On the other hand, if it is requested to specify initial and final values for the
acceleration (e.g. for obtaining acceleration profiles), then (at least) fifth-order
polynomial functions should be considered

q(t) = a0 + a1t + a2t
2 + a3t

3 + a4t
4 + a5t

5

with the six boundary conditions:

q(ti) = qi q(tf ) = qf
q̇(ti) = q̇i q̇(tf ) = q̇f
q̈(ti) = q̈i q̈(tf ) = q̈f
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Fifth-order polynomial trajectories

In this case, (if T = tf − ti ) the coefficients of the polynomial are

a0 = qi

a1 = q̇i

a2 =
1

2
q̈i

a3 =
1

2T 3
[20(qf − qi)− (8q̇f + 12q̇i )T − (3q̈f − q̈i )T

2]

a4 =
1

2T 4
[30(qi − qf ) + (14q̇f + 16q̇i )T + (3q̈f − 2q̈i)T

2]

a5 =
1

2T 5
[12(qf − qi)− 6(q̇f + q̇i)T − (q̈f − q̈i)T

2]

If a sequence of points is given, the same considerations made for third-order
polynomials trajectories can be made in computing the intermediate velocity
values.
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Fifth-order polynomial trajectories

Fifth-order trajectory with the boundary conditions:
qi = 10o , qf = 30o , q̇i = q̇f = 0 o/s, q̈i = q̈f = 0 o/s2, ti = 0s, tf = 1s.
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Obviously:

position → 5-th order function
velocity → 4-th order function
acceleration → 3-rd order function
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Fifth-order polynomial trajectories

Comparison of fifth- and third-order trajectories with the boundary conditions:
qi = 10o , qf = 30o , q̇i = q̇f = 0 o/s, q̈i = q̈f = 0 o/s2, ti = 0s, tf = 1s.
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blue → fifth-order
green → third-order
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Fifth-order polynomial trajectories

Position, velocity, acceleration profiles with automatic assignment of the
intermediate velocities and null accelerations.
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Note that the resulting motion has smoother profiles.
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Trapezoidal trajectories

A different approach for planning a trajectory is to compute linear segments
joined with parabolic blends.

In the linear tract, the velocity is constant while, in the parabolic blends, it is a
linear function of time: trapezoidal profiles, typical of this type of trajectory,
are then obtained.

In trapezoidal trajectories, the duration is divided into three parts:

1 in the first part, a constant acceleration is applied, then the velocity is
linear and the position a parabolic function of time

2 in the second, the acceleration is null, the velocity is constant and the
position is linear in time

3 in the last part a (negative) acceleration is applied, then the velocity is a
negative ramp and the position a parabolic function.
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Trapezoidal trajectories

Usually, the acceleration and the deceleration phases have the same duration
(ta = td). Therefore, symmetric profiles, with respect to a central instant
(tf − ti)/2, are obtained.
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Trapezoidal trajectories

The trajectory is computed according to the following equations.

1) Acceleration phase, t ∈ [0÷ ta].
The position, velocity and acceleration are described by

q(t) = a0 + a1t + a2t
2

q̇(t) = a1 + 2a2t

q̈(t) = 2a2

The parameters are defined by constraints on the initial position qi and
the velocity q̇i , and on the desired constant velocity q̇v that must be
obtained at the end of the acceleration period. Assuming a null initial
velocity and considering ti = 0 one obtains

a0 = qi

a1 = 0

a2 =
q̇v

2ta

In this phase, the acceleration is constant and equal to q̇v/ta.
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Trapezoidal trajectories

2) Constant velocity phase, t ∈ [ta ÷ tf − ta].
Position, velocity and acceleration are now defined as

q(t) = b0 + b1t

q̇(t) = b1

q̈(t) = 0

where, because of continuity,

b1 = q̇v

Moreover, the following equation must hold

q(ta) = qi + q̇v
ta

2
= b0 + q̇v ta

and then

b0 = qi − q̇v
ta

2
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Trapezoidal trajectories

3) Deceleration phase, t ∈ [tf − ta ÷ tf ].
The position, velocity and acceleration are given by

q(t) = c0 + c1t + c2t
2

q̇(t) = c1 + 2c2t

q̈(t) = 2c2

The parameters are now defined with constrains on the final position qf
and velocity q̇f , and on the velocity q̇v at the beginning of the deceleration
period.
If the final velocity is null, then:

c0 = qf −
q̇v

2

t
2
f

ta

c1 = q̇v
tf

ta

c2 = − q̇v

2ta
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Summarizing, the trajectory is computed as

q(t) =























qi +
q̇v
2ta

t2 0 ≤ t < ta

qi + q̇v (t − ta
2 ) ta ≤ t < tf − ta

qf − q̇v
ta

(tf − t)2

2 tf − ta ≤ t ≤ tf
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Trapezoidal trajectories

Typical position, velocity and acceleration profiles of a trapezoidal trajectory.
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Some additional constraints must be specified in order to solve the previous
equations.
A typical constraint concerns the duration of the acceleration/deceleration
periods ta that, for symmetry, must satisfy the condition

ta ≤ tf /2

Moreover, the following condition must be verified (for the sake of simplicity,
consider ti = 0):

q̈ta =
qm − qa

tm − ta







qa = q(ta)
qm = (qi + qf )/2
tm = tf /2

qa = qi +
1

2
q̈t

2
a

from which
q̈t

2
a − q̈tf ta + (qf − qi) = 0 (7)

Finally:

q̇v =
qf − qi

tf − ta
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Any pair of values (q̈, ta) verifying (7) can be considered.

Given the acceleration q̈ (for example q̈max), then

ta =
tf

2
−

√

q̈2t2f − 4q̈(qf − qi)

2q̈

from which we have also that the minimum value for the acceleration is

|q̈| ≥ 4|qf − qi |
t2f

if the value |q̈| = 4|qf −qi |

t2
f

is assigned, then ta = tf /2 and the constant velocity

tract does not exist.

If the value ta = tf /3 is specified, the following velocity and acceleration values
are obtained

q̇v =
3(qf − qi)

2tf
q̈ =

9(qf − qi)

2t2f
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Another way to compute this type of trajectory is to define a maximum value
q̈a for the desired acceleration and then compute the relative duration ta of the
acceleration and deceleration periods.

If the maximum values (q̈max and q̇max , known) for the acceleration and
velocity must be reached, it is possible to assign



















ta =
q̇max

q̈max
acceleration time

q̇max(T − ta) = qf − qi = L displacement

T =
Lq̈max + q̇

2
max

q̈max q̇max
time duration

and then (tf = ti + T )

q(t) =















qi +
1
2
q̈max(t − ti )

2 ti ≤ t ≤ ti + ta

qi + q̈max ta(t − ti − ta
2
) ti + ta < t ≤ tf − ta

qf − 1
2
q̈max(tf − t − ti)

2 tf − ta < t ≤ tf

(8)
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Trapezoidal trajectories

In this case, the linear tract exists if and only if

L ≥ q̇
2
max

q̈max

Otherwise






ta =

√

L
q̈max

acceleration time

T = 2ta total time duration

and (still tf = ti + T )

q(t) =







qi +
1
2
q̈max(t − ti )

2 ti ≤ t ≤ ti + ta

qf − 1
2
q̈max(tf − t)2 tf − ta < t ≤ tf

(9)
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Trapezoidal trajectories

With this modality for computing the trajectory, the time duration of the
motion from qi to qf is not specified. In fact, the period T is computed on the
basis of the maximum acceleration and velocity values.

If more joints have to be co-ordinated with the same constraints on the
maximum acceleration and velocity, the joint with the largest displacement
must be individuated. For this joint, the maximum value q̈max for the
acceleration is assigned and then the corresponding values ta and T are
computed.

For the remaining joints, the acceleration and velocity values must be
computed on the basis of these values of ta and T , and on the basis of the
given displacement Li :

q̈i =
Li

ta(T − ta)
, q̇i =

Li

T − ta

C. Melchiorri Trajectory Planning 40 / 131



Trajectory Planning
Scaling trajectories

Analysis of Trajectories
Trajectories in the Workspace

Introduction
Joint-space trajectories
Third-order polynomial trajectories
Fifth-order polynomial trajectories
Trapezoidal trajectories
Spline trajectories

Trapezoidal trajectories
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Trapezoidal trajectories

The trajectories in the workspace are:
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Trapezoidal trajectories

If a trajectory interpolating more consecutive points is computed with the
above technique, a motion with null velocities in the via-points is obtained.
Since this behavior may be undesirable, it is possible to “anticipate” the
actuation of a tract of the trajectory between points qk and qk+q before the
motion from qk−1 to qk is terminated. This is possible by adding (starting at
an instant tk − t′a) the velocity and acceleration contributions of the two
segments [qk−1 − qk ] and [qk − qk+1].
Obviously, another possibility is to compute the parameters of the functions
defining the trapezoidal trajectory in order to have desired boundary conditions
(i.e. velocities) for each segment.
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Spline

In general, the problem of defining a function interpolating a set of n points
can be solved with a polynomial function of degree n − 1.

In planning a trajectory, this approach does not give good results since the
resulting motions in general present large oscillations.
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In general, given:

2 points =⇒ unique line

3 points =⇒ unique quadric

...

n points =⇒ unique polynomial
with degree n − 1
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The (unique) polynomial p(x) with degree n − 1 interpolating n points (xi , yi )
can be computed by the Lagrange expression:

p(x) =
(x − x2)(x − x3) · · · (x − xn)

(x1 − x2)(x1 − x3) · · · (x1 − xn)
y1 +

(x − x1)(x − x3) · · · (x − xn)

(x2 − x1)(x2 − x3) · · · (x2 − xn)
y2 + · · ·+

+ · · ·+ (x − x1)(x − x2) · · · (x − xn−1)

(xn − x1)(xn − x2) · · · (xn − xn−1)
yn

Other (recursive) expressions have been defined, more efficient from a
computational point of view (Neville formulation).
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Another (less efficient) approach for the computation of the coefficients of the
polynomial p(x) is based on the following procedure:

yi = p(xi ) = an−1x
n−1
i + · · ·+ a1xi + a0 i = 1, . . . , n

y =















y1
y2
...

yn−1

yn















=















xn−1
1 xn−2

1 · · · x1 1
xn−1
2 xn−2

2 · · · x2 1
...

xn−1
n−1 xn−2

n−1 · · · xn−1 1
xn−1
n xn−2

n · · · xn 1





























an−1

an−2

...
a1
a0















= Xa

and then, by inverting matrix X, the parameters are obtained

a = X−1y

=⇒ Numerical problems in computing X−1 for high values of n!!!
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Given n points, in order to avoid the problem of high ‘oscillations’ (and also of
the numerical precision):

=⇒
NO: one polynomial of degree n − 1

YES: n − 1 polynomials with lower degree p (p < n − 1):
each polynomial interpolates a segment of the trajectory.

Usually, the degree p of the n − 1 polynomials is chosen so that continuity of
the velocity and acceleration profile is achieved. In this case, the choice p = 3
is made (cubic polynomials):

q(t) = a0 + a1t + a2t
2 + a3t

3

There are 4 coefficients for each polynomial, and therefore it is necessary to
compute 4(n − 1) coefficients.

Obviously, it is possible to choose higher values for p (e.g. p = 5, 7, . . .).

C. Melchiorri Trajectory Planning 47 / 131



Trajectory Planning
Scaling trajectories

Analysis of Trajectories
Trajectories in the Workspace

Introduction
Joint-space trajectories
Third-order polynomial trajectories
Fifth-order polynomial trajectories
Trapezoidal trajectories
Spline trajectories

Spline

4(n − 1) coefficients

On the other hand, there are:

- 2(n − 1) conditions on the position (each cubic function interpolates the
initial/final points);

- n − 2 conditions on the continuity of velocity in the intermediate points;

- n − 2 conditions on the continuity of acceleration in the intermediate
points.

Therefore, there are

4(n − 1)− 2(n − 1)− 2(n − 2) = 2

degrees of freedom left, that can be used for example for imposing proper
conditions on the initial and final velocity.
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Spline

The function obtained in this manner is a spline.

Among all the interpolating functions of n points with the same degree of
continuity of derivation, the spline has the smallest curvature.

q(t)

v1

vn

q1

q2

q3

qk
qk+1

qn−2

qn−1

qn

t1 t2 t3 tk tk+1 tn−2 tn−1 tnTk

... ...
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Mathematically, it is necessary to compute a function















q(t) = {qk(t), t ∈ [tk , tk+1], k = 1, . . . , n − 1}

qk(τ ) = ak0 + ak1τ + ak2τ
2 + ak3τ

3, τ ∈ [0,Tk ],
(τ = t − tk , Tk = tk+1 − tk)

with the conditions

qk(0) = qk , qk(Tk ) = qk+1 k = 1, . . . , n − 1

q̇k(Tk ) = q̇k+1(0) = vk k = 1, . . . , n − 2

q̈k(Tk ) = q̈k+1(0) k = 1, . . . , n − 2
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Spline - Computation

The parameters aki are computed according to the following algorithm.

Let assume that the velocities vk , k = 2, . . . , n − 1 in the intermediate points
are known.

In this case, we can impose for each cubic polynomial the four boundary
conditions on position and velocity:











qk(0) = ak0 = qk
q̇k(0) = ak1 = vk

qk(Tk ) = ak0 + ak1T + ak2T
2 + ak3T

3 = qk+1

q̇k(Tk ) = ak1 + 2ak2T + 3ak3T
2 = vk+1

and then


























ak0 = qk
ak1 = vk

ak2 = 1
Tk

[

3(qk+1 − qk)
Tk

− 2vk − vk+1

]

ak3 = 1
T

2
k

[

2(qk − qk+1)
Tk

+ vk + vk+1

]

... but the velocities vk are not known...
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Spline - Computation

By using the conditions on continuity of the accelerations in the intermediate
points, one obtains

q̈k(Tk ) = 2ak2 + 6ak3 Tk = 2ak+1,2 = q̈k+1(0) k = 1, . . . , n − 2

form which, by substituting the expressions of ak2, ak3, ak+1,2 and multiplying by
(Tk Tk+1)/2, one obtains

Tk+1vk+2(Tk+1+Tk )vk+1+Tkvk+2 =
3

TkTk+1

[

T
2
k (qk+2 − qk+1) + T

2
k+1(qk+1 − qk)

]

These equations may be written in matrix form as



















T2 2(T1 + T2) T1
0 T3 2(T2 + T3) T2

.

.

.
Tn−2 2(Tn−3 + Tn−2) Tn−3 0

Tn−1 2(Tn−2 + Tn−1) Tn−2





































v1
v2

.

.

.
vn−1
vn



















=



















c1
c2

.

.

.
cn−3
cn−2



















where the ck are (known) constant terms depending on the intermediate
positions and the duration of each segments.
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Spline - Computation

Since the velocities v1 and vn are known, the corresponding columns can be
eliminated form the left-hand side matrix, and then



















2(T1 + T2) T1
T3 2(T2 + T3) T2

.

.

.
Tn−2 2(Tn−3 + Tn−2) Tn−3

Tn−1 2(Tn−2 + Tn−1)





























v2

.

.

.
vn−1











=



































3
T1T2

[

T2
1 (q3 − q2) + T2

2 (q2 − q1)
]

− T2v1

3
T2T3

[

T2
2 (q4 − q3) + T2

3 (q3 − q2)
]

.

.

.
3

Tn−3Tn−2

[

T2
n−3(qn−1 − qn−2) + T2

n−2(qn−2 − qn−3)
]

3
Tn−2Tn−1

[

T2
n−2(qn − qn−1) + T2

n−1(qn − qn−2)
]

− Tn−2vn



































that is A(T) v = c(T,q, v1, vn)

or Av = c
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Spline - Computation

The matrix A is tridiagonal, and is always invertible if Tk > 0
(|akk | >

∑

j 6=k
|akj |).

Being A tridiagonal, its inverse is computed by efficient numerical
algorithms (based on the Gauss-Jordan method).

Once A−1 is known, the velocities v2, . . . , vn−1 are computed as

v = A−1c

and the problem is solved.
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Spline

The total duration of a spline is

T =

n−1
∑

k=1

Tk = tn − t1

It is possible to define an optimality problem aiming at minimizing T . The
values of Tk must be computed so that T is minimized and the constraints on
the velocity and acceleration are satisfied.

Formally the problem is formulated as















minTk
T =

∑n−1
k=1 Tk

tale che
|q̇(τ,Tk )| < vmax τ ∈ [0T ]

|q̈(τ,Tk )| < amax τ ∈ [0T ]

Non linear optimization problem with linear objective function, solvable with
classical techniques from the operational research field.
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Spline - Example

A spline trough the points q1 = 0, q2 = 2, q3 = 12, q4 = 5 must be defined,
minimizing the total duration T and with the constraints: vmax = 3, amax = 2.

The non linear optimization problem

min T = T1 + T2 + T3

is defined, with the constraints reported in the following slide.

By solving this problem (e.g. with the Matlab Optimization Toolbox) the
following values are obtained:

T1 = 1.5549, T2 = 4.4451, T3 = 4.5826, ⇒ T = 10.5826 sec
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Spline - Esempio

Constraints on the optimization problem:




















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a11 ≤ vmax (velocità iniziale del I tratto ≤ vmax )
a21 ≤ vmax (velocità iniziale del II tratto ≤ vmax )
a31 ≤ vmax (velocità iniziale del III tratto ≤ vmax )

a11 + 2a12T1 + 3a13T
2
1 ≤ vmax (velocità finale del I tratto ≤ vmax )

a21 + 2a22T2 + 3a23T
2
2 ≤ vmax (velocità finale del II tratto ≤ vmax )

a31 + 2a32T3 + 3a33T
2
3 ≤ vmax (velocità finale del III tratto ≤ vmax )

a11 + 2a12

(

− a12
3a13

)

+ 3a13

(

− a12
3a13

)2
≤ vmax (velocità all’interno del I tratto ≤ vmax )

a21 + 2a22

(

− a22
3a23

)

+ 3a23

(

− a22
3a23

)2
≤ vmax (velocità all’interno del II tratto ≤ vmax )

a31 + 2a32

(

− a32
3a33

)

+ 3a33

(

− a32
3a33

)2
≤ vmax (velocità all’interno del III tratto ≤ vmax )

2a12 ≤ amax (accelerazione iniziale del I tratto ≤ amax )
2a22 ≤ amax (accelerazione iniziale del II tratto ≤ amax )
2a32 ≤ amax (accelerazione iniziale del III tratto ≤ amax )
2a12 + 6a13T1 ≤ amax (accelerazione finale del I tratto ≤ amax )
2a22 + 6a23T2 ≤ amax (accelerazione finale del II tratto ≤ amax )
2a32 + 6a33T3 ≤ amax (accelerazione finale del III tratto ≤ amax )
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Spline - Esempio

Position, velocity and acceleration profiles of the optimal trajectory.

0 2 4 6 8 10 12
0

2

4

6

8

10

12

14
POSIZIONE

0 2 4 6 8 10 12
−3

−2

−1

0

1

2

3
VELOCITA"

0 2 4 6 8 10 12
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2
ACCELERAZIONE

C. Melchiorri Trajectory Planning 58 / 131



Trajectory Planning
Scaling trajectories

Analysis of Trajectories
Trajectories in the Workspace

Introduction
Joint-space trajectories
Third-order polynomial trajectories
Fifth-order polynomial trajectories
Trapezoidal trajectories
Spline trajectories

Spline

The above procedure for computing the spline is adopted also for more motion
axes (joints). Notice that the matrix Aj (T) = A(T) is the same for all the
joints (depends only on the parameters Tk), while the vector c(T, qj , vi1, vin)
depends on the specific i-th joint.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−2

0

2

4

6

8

10

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−2

0

2

4

6

8

10

C. Melchiorri Trajectory Planning 59 / 131



Trajectory Planning
Scaling trajectories

Analysis of Trajectories
Trajectories in the Workspace

Introduction
Joint-space trajectories
Third-order polynomial trajectories
Fifth-order polynomial trajectories
Trapezoidal trajectories
Spline trajectories

Spline

From the expressions of matrix A and the vector c (Av = c)

A=













2(T1 + T2) T1

T3 2(T2 + T3) T2

...
Tn−2 2(Tn−3 + Tn−2) Tn−3

Tn−1 2(Tn−2 + Tn−1)













c =

























3
T1T2

[

T 2
1 (q3 − q2) + T 2

2 (q2 − q1)
]

− T2v1

3
T2T3

[

T 2
2 (q4 − q3) + T 2

3 (q3 − q2)
]

...
3

Tn−3Tn−2

[

T 2
n−3(qn−1 − qn−2) + T 2

n−2(qn−2 − qn−3)
]

3
Tn−2Tn−1

[

T 2
n−2(qn − qn−1) + T 2

n−1(qn − qn−2)
]

− Tn−2vn
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Spline

If

the duration Tk of each interval is multiplied by a constant λ (linear
scaling)

the initial and final velocities are null

one obtains that the new durationT ′, the velocities and accelerations of the
new trajectory are:

T
′ = = λT

v
′
k =

1

λ
vk

ak =
1

λ2
ak
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Spline - Example

Comparison of a n − 1 polynomial, a spline, and a composition of cubic
polynomials.

11 points, vin = vfin = 0 m/s
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Spline - Example
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Università di Bologna

email: claudio.melchiorri@unibo.it

C. Melchiorri Trajectory Planning 64 / 131



Trajectory Planning
Scaling trajectories

Analysis of Trajectories
Trajectories in the Workspace

Kinematic scaling of trajectories
Dynamic scaling of trajectories

Scaling trajectories

Due to several reasons, like limits on the actuation system (torques,
accelerations, velocities, ...) or computational efficiency, it is often requested to
scale trajectories and motion laws.

It is possible to adopt

Kinematic scaling procedures

Dynamic scaling procedures
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Kinematic scaling of trajectories

If a trajectory is expressed in parametric form as a function of a parameter
σ = σ(t), by changing the parameterization it is possible to obtain in a simple
manner a trajectory satisfying constraints on velocity or accelerations.

For this purpose, it is convenient to express the trajectory in normal form, i.e.:

p(t) = p0 + (p1 − p0)s(τ ) = p0 + Ls(τ )

being s(τ ) a proper parameterization, with

0 ≤ s ≤ 1, τ =
t − t0

t1 − t0
=

t − t0

T

In this manner, it results

dp

dt
= L

T
s ′(τ ) d2p

dt2
= L

T 2 s
′′(τ )

d3p

dt3
= L

T 3 s
′′′(τ ) . . .

dnp

dtn
= L

T n s
(n)(τ )
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Kinematic scaling of trajectories

From

dp

dt
= L

T
s ′(τ ) d2p

dt2
= L

T 2 s
′′(τ )

d3p

dt3
= L

T 3 s
′′′(τ ) . . .

dnp

dtn
= L

T n s
(n)(τ )

it follows that the maximum values for the velocity, acceleration, etc. are
obtained in correspondence of the maximum values of the functions s ′, s ′′, ....

These values and the corresponding time instants τ (t) are known from the
chosen parameterization s(τ ).

Notice that if the duration T of the trajectory is changed, it is possible to
satisfy in an exact manner the given constraints or to optimize the trajectory
itself (minimum time). Moreover, it is easily possible to co-ordinate more
motion axes.
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Kinematic scaling of trajectories

Polynomial trajectories of degree 3

Consider a parameterization expressed by a cubic polynomial

s(τ ) = a0 + a1τ + a2τ
2 + a3τ

3, 0 ≤ s ≤ 1, 0 ≤ τ ≤ 1, τ =
t

T

If the boundary conditions p0 = 0, v0 = 0, v1 = 0 are specified, one obtains

a0 = 0, a1 = 0, a2 = 3, a3 = −2

Therefore:

s(τ ) = 3τ 2 − 2τ 3

s
′(τ ) = 6τ − 6τ 2

s
′′(τ ) = 6− 12τ

s
′′′(τ ) = −12
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Kinematic scaling of trajectories

Then

s ′max = s ′(0.5) =
3

2
=⇒ q̇max =

3L

2T

s ′′max = s ′′(0) = 6 =⇒ q̈max =
6L

T 2
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Kinematic scaling of trajectories

Polynomial trajectories of degree 5

The polynomial s(τ ) in normal form is now:

s(τ ) = a0+a1τ+a2τ
2+a3τ

3+a4τ
4+a5τ

5, 0 ≤ s ≤ 1, 0 ≤ τ ≤ 1, τ =
t

T

With null boundary conditions on accelerations and velocities, the following
values for the parameters are obtained (trajectory 3-4-5)

a0 = 0, a1 = 0, a2 = 0, a3 = 10 a4 = −14, a5 = 6

Then

s(τ ) = 10τ 3 − 15τ 4 + 6τ 5

s
′(τ ) = 30τ 2 − 60τ 3 + 30τ 4

s
′′(τ ) = 60τ − 180τ 2 + 120τ 3

s
′′′(τ ) = 60− 360τ + 360τ 2
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Kinematic scaling of trajectories

Therefore
s ′max = s ′(0.5) =

15

8
=⇒ q̇max =

15L

8T

s ′′max = s ′′(0.2123) =
10

√
3

3
=⇒ q̈max =

10
√
3L

3T 2

s ′′′max = s ′′′(0) = 60 =⇒ q̈max = 60
L

T 3
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Kinematic scaling of trajectories

Polynomial trajectories of degree 7

If a continuos jerk profile is requested, a polynomial with higher degree must be
adopted. The normal form for a polynomial s(τ ) of degree 7 is:

s(τ ) = a0 + a1τ + a2τ
2 + a3τ

3 + a4τ
4 + a5τ

5 + a6τ
6 + a7τ

7

If null boundary conditions on velocity, acceleration and jerk are specified, the
following parameters are obtained (trajectory 4-5-6-7)

a0 = 0, a1 = 0, a2 = 0, a3 = 0 a4 = 35, a5 = −84, a6 = 70, a7 = −20

Therefore

s(τ ) = 35τ 4 − 84τ 5 + 70τ 6 − 20τ 7

s
′(τ ) = 140τ 3 − 420τ 4 + 420τ 5 − 140τ 6

s
′′(τ ) = 420τ 2 − 1680τ 3 + 2100τ 4 − 840τ 5

s
′′′(τ ) = 840τ − 5040τ 2 + 8400τ 3 − 4200τ 4
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The maximum velocity and acceleration values are obtained for

s′max = s′(0.5) =
35

16
=⇒ q̇max =

35L

16T

s′′max = s′′(
5±

√
5

10
) =

84
√
5

25
=⇒ q̈max =

84
√
5

25

L

T 2

s′′′max = s′′′(
1 +

√

3/5

2
) = 42, s′′′min = s′′′(0.5) = −105

2
=⇒ max

τ
|s′′′| = 105

2
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Considerations on limits and durations of trajectories

From the previous examples, it is clear that if the displacement L and the
duration T of a motion are specified, the profiles of velocity, acceleration and
jerk are defined by the parameterization s(τ ) chosen to generate the motion
profile.
In particular, the maximum values for these variables are determined (for the
sake of simplicity, consider the case L > 0).

Pol. 3 Pol. 5 Pol. 7 Cicl. Harmon.

Vel. (∗L/T )
3

2
= 1.5

15

8
= 1.875

35

16
= 2.1875 2

π

2
= 1.5708

Acc. (∗L/T2) 6
10

√
3

3
= 5.7735

84
√

5

25
= 7.5132 2π = 6.2832

π2

2
= 4.9348

Jerk (∗L/T3) 12 60
105

2
= 52.25 4π2 = 39.4784

π3

2
= 15.5031

Notice that the polynomial of degree 7, originating a very smooth profile,
requires higher velocity and acceleration values. Viceversa, the harmonic
trajectory has a very good behavior.
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Example: scaling a trajectory

Trajectory 3-4-5. Polynomial in normal form:

s(τ ) = aτ 5 + bτ 4 + cτ 3 + dτ 2 + eτ + f

with

0 ≤ s ≤ 1, 0 ≤ τ ≤ 1, τ =
t

T

The trajectory is

q(t) = q0 + (q1 − q0)s(τ ) = q0 + Ls(τ )

and

q̇(t) = Ls
′(τ )

1

T

q̈(t) = Ls
′′(τ )

1

T 2

. . .
dnq

dtn
= Ls

(n)(τ )
1

T n
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Example: scaling a trajectory

Then (trajectory 3-4-5, f = e = d = 0, and a = 6, b = −15, c = 10)

s
′(τ ) = 30τ 4 − 60τ 3 + 30τ 2

s
′′(τ ) = 120τ 3 − 180τ 2 + 60τ

s
′′′(τ ) = 360τ 2 − 360τ + 60

and

s ′max = s ′(0.5) =
15

8
=⇒ q̇max =

15L

8T

s ′′max = s ′′(0.2123) =
10

√
3

3
=⇒ q̈max =

10
√
3L

3T 2

. . .

Given constraints on maximum acceleration and velocity, it is possible to
properly scaling the trajectory.

Co-ordination of more motion axes made on the basis of the “most stressed”
actuator.
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Example: scaling a trajectory

If:
q0 = 0; q1 = 100; t0 = 0; t1 = 2; q̇max = 200; q̈max = 400
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Example: scaling a trajectory

Tmin,v =
15L

8q̇max

= 0.9375 s, Tmin,a =

√

10
√
3L

3q̈max

= 1.2014 s Tmin = max{Tmin,v , Tmin,a}
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Dynamic scaling of trajectories

When a trajectory is specified for a complex mechanical system, because of the
dynamics of the actuation system, of the robot manipulator or of the load
(dynamic couplings), torques non physically achievable by the actuators could
be requested. In these cases, it is possible to scale the trajectory taking into
account the dynamics of the system in order to obtain a physically achievable
motion.
The dynamic model of a manipulator is

M(q)q̈+ C(q, q̇)q̇+ g(q) = τ

Then, for each joint

mT
i (q)q̈+

1

2
q̇TCi(q)q̇+ gi (q) = τi i = 1, . . . , n

If
q = q(σ) σ = σ(t)

is a proper parameterization of the trajectory with a motion law such that

q̇ =
d q

dσ
σ̇, q̈ =

d2 q

dσ2
σ̇2 +

d q

dσ
σ̈

C. Melchiorri Trajectory Planning 79 / 131



Trajectory Planning
Scaling trajectories

Analysis of Trajectories
Trajectories in the Workspace

Kinematic scaling of trajectories
Dynamic scaling of trajectories

Dynamic scaling of trajectories

By substitution in the dynamic model:

[

m
T
i (q(σ))

d q

dσ

]

σ̈+

[

m
T
i (q(σ))

d2 q

dσ2
+

1

2

d qT

dσ
Ci(q(σ))

d q

dσ

]

σ̇2+gi (q(σ)) = τi

from which

αi (σ)σ̈ + βi (σ)σ̇
2 + γi(σ) = τi

Notice that γi (σ) (gravitational terms) depend on the position only (σ).
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Dynamic scaling of trajectories

Let us suppose to compute the torques τi necessary to achieve the motion
defined by q = q(σ), σ = σ(t):

τi (t) = αi (σ(t))σ̈(t) + βi (σ(t))σ̇
2(t) + γi(σ(t)), i = 1, ..., n, t ∈ [0, T ]

If the time-axis is changed (e.g. in a linear fashion (x = kt)), a different
parameterization of the trajectory is obtained

t → x = kt x ∈ [0, kT ] σ(t) → σ̂(x)

Notice that in general even a non linear parameterization x = x(t) could be
considered.

With the new parameterization, one obtains:

σ̂(x) = σ(t)

˙̂σ(x) =
σ̇(t)

k

¨̂σ(x) =
σ̈(t)

k2
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Dynamic scaling of trajectories

Therefore
- if k > 1 a slower motion is obtained
- if k < 1 a faster motion is obtained.

With the new parameterization, the torques compute as:

τi (x) = αi (σ̂(x))¨̂σ(x) + βi (σ̂(x)) ˙̂σ
2(x) + γi(σ̂(x))

= αi (σ(t))
σ̈(t)

k2
+ βi (σ(t))

σ̇2(t)

k2
+ γi(σ(t))

=
1

k2
[τi (t)− γi (σ(t))] + γi(σ(t))

from which

τi(x)− γi(x) =
1

k2
[τi (t)− γi (t)]
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Dynamic scaling of trajectories

Some considerations:

it is not necessary to re-compute the whole trajectory
neglecting the gravitational term, the ‘new’ torques are obtained by scaling
by the factor 1/k2 the ‘old’ torques.
the motion os slower if k > 1, and it is faster if k < 1 (total duration
equal to kT )

t

0 T

x

0 kT

σ̂(x) = σ̂(kt) = σ(t)

σ0 σmax

p = p(σ)

p
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Dynamic scaling of trajectories

Example: Consider a 2 dof manipulator. In order to track a desired motion, the
following torques should be generated:

t

−U1

U1

t

−U2

U2
By defining

k
2 = max

{

1,
|τ1|
U1

,
|τ2|
U2

}

≥ 1

then:

x = kt

total time = kT ≥ T

Then, the new torques are physically achievable, (τ (x) = τ (t)/k2), and at least
one of them saturates in a point.

A variable scaling can be adopted to avoid slowing down the whole trajectory
(saturation usually occurs in a single point).

For the optimal motion law (minimum time), at least one actuator saturates in
each segment of the trajectory.
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Introduction

Vibrations are undesired phenomena often present in automatic machines.
They are basically due to the presence of structural elasticity in the mechanical
system, and may be generated during the normal working cycle of the machine
due to several reasons.

In particular, vibrations may be produced if trajectories with a discontinuous

acceleration profile are imposed to the actuation system.

=⇒ Acceleration discontinuities → sudden variation of the inertial forces
applied to the system.

=⇒ Relevant discontinuities of such forces, applied to an elastic system (i.e.
any mechanical device), generate vibrational effects.

=⇒ Since every mechanism is characterized by some elasticity, this type of
phenomenon must always be considered in the design of a trajectory, that
therefore should have a smooth acceleration profile or, more in general, a

limited bandwidth.
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Example

Let consider a 1-dof mechanical system (output: position x(t)):

A M

C

K

Y X

Acceleration ẍ(t) of the system when the (acceleration of the) input is a step
or a sinusoidal function: without (top) and with damping (bottom).
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Models for Analysis of Vibrations

Analysis of the vibration effects =⇒
Models that consider the elastic, iner-
tial and dissipative properties of the el-
ements of the mechanical system.

A M

C

K

Y X

The complexity level of the model is usually chosen as a compromise between
the desired precision and the computational burden.

The simplest criterion is to describe the mechanical devices, that are
intrinsically distributed parameter systems, as lumped parameter systems, i.e.
as rigid masses (without elasticity) and elastic elements (without mass).

Energy dissipative elements are introduced in order to consider frictional
phenomena among moving parts.

The numerical values of the elements that describe inertia, elasticity and
dissipative effects have to be determined by energetic considerations, i.e. trying
to maintain the equivalence of the kinetic and elastic energy of the model with
the energy of the corresponding parts of the mechanism under study.

The description of these phenomena can be either linear or nonlinear.
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Linear model with one degree of freedom

Some considerations

If x(t) and y(t) are the positions of
mass M and A respectively, and z(t) =
y(t)− x(t), the dynamics of the system
is described by:

mẍ + k0(x − y) = 0

from which

z̈ + ω2
0z = ÿ , ω0 =

√

k0

m

being ω0 the natural frequency of the
mechanical system.

A model with viscous friction (coefficient b) on the mass M is described as

mẍ + bẋ + k0(x − y) = 0
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Linear model with one degree of freedom

Output of the two models with a step input

Acceleration step
(b = 0; b 6= 0)
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Linear model with one degree of freedom

In the first case, due to oscillations the maximum value of ẍ is twice the value
of ÿ . Notice that this result does not depend on the stiffness k0 of the
mechanism:

if k0 increases, then the natural frequency ω0 increases as well, while the
amplitude of ẍ remains constant;

the difference z(t) between the positions of M and A depends on k0 (if k0
increases, then, z(t) decreases).
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Linear model with one degree of freedom

Output of the two models with a sinusoidal input:

Sinusoidal acceleration
(b = 0; b 6= 0)
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Linear model with one degree of freedom

Although the acceleration oscillations have not a real influence on the position
of the mass M, they generate a structural stress to the mechanical device.
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This phenomenon may be characterized by an analysis of the frequency content
of the acceleration signal given as input to the system: the frequency range of
the acceleration signal should be compared with the Bode diagram of the
mechanism, and in particular with its natural frequency ω0.
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Linear model with one degree of freedom

Bode diagrams of the mechanical system (b = 2,m = 1, k0 = 100) and of two
acceleration signals:
→ for the step, the Bode diagram is equal to 1 ∀ ω,
→ the frequency of the sinusoidal acceleration is ω = 2πT , T = 5 s.
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Comparison of the ‘trapezoidal’ and ‘double S’ trajectories

The ‘trapezoidal’ and ‘double S’ trajectories are very common in industrial practice,
and therefore it is of interest a comparison of their main features. The criteria for the
comparison are:

a) actuator usage;

b) duration of the trajectory;

c) analysis of the frequency content (vibrations induced on the mech. structure).

The trapezoidal, double S and triangular (limit case of trapezoidal) trajectories are
considered for the analysis.
The duration of the trajectory is T , and the acceleration of the ‘double S’ and of the
trapezoidal trajectories are

√
3 times the acceleration of the triangular profile, while

the velocity of the trapezoidal trajectory has been set in order to obtain the same
duration T .

T

V

vmax

τmax

v

c
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a - Use of actuators

From the data sheet, the following characteristics (among others) of an electric
drive can be obtained:

- Continuous torque (τc) (or rated torque): torque that the motor can
produce continuously without exceeding thermal limits.

- Peak torque (τp): maximum torque that the motor can generate for short
periods.

- Rated speed (ωn): maximum value of the speed at rated torque (and at
rated voltage).

- Maximum power: maximum amount of output power generated by the
motor.

Intermittent operation

Continuous operation

vmax

τmax

v

c
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a - Use of actuators

Intermittent operation

Continuous operation

vmax

τmax

v

c

vmax

τmax

v

c

(a) (b)

If the motor is in the continuous operation region, it may work for an indefinite
period of time, while in the intermittent region it may work only for a limited
amount of time.
This limited period depends on the thermal dissipation properties of the motor
and of the drive. On the other hand, different trajectories imply different
utilizations of the motor, in particular with respect to the
intermittent/continuous regions. As a matter of fact, the double S trajectories
allow to use the motor exploiting also the intermittent region.
Notice that with double S trajectories the maximum torque and the maximum
velocities are obtained in different time instants.
Theoretically, it is possible to enter the intermittent region also with the
trapezoidal profile, but in this case the thermal power to be dissipated is higher
than with double S trajectories.
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a - Use of actuators

In comparing trajectories, there are some constitutive constraints for the
motors that have to be considered:

1 the requested torque cannot in any case exceed the peak torque;

2 the RMS torque of the trajectory must be not higher than the continuous
torque τcont .

The first is a mechanical constraint, since for all the motors there is a limit to
the torque that can be generated.
The second is related to the thermal energy dissipation capability of the
inverter. The trajectory must avoid heating of the motor.

If τss and τtr are the maximum torque values of the double S and triangular
trajectories, the RMS torque is computed as

τrms =

√

1

T

∫ T

0

C 2(t) dt
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a - Use of actuators

With the triangular profile, one gets

τ 2(t) = τ 2
tr , t ∈ [0,T ]

then
τrms,tr = τtr

From the second constraint, one gets

τtr = τcont

T

A (τ )

τtr

−τtr

T

V
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a - Use of actuators

With the double S trajectory (consider the case without linear velocity
segments), the torque is a linear function and then τ 2

ss has a parabolic profile.

T/4 T/2 3T/4 T

τ 2
ss

In this case
τrms,ss =

τss√
3

Therefore, the maximum torque achievable with this profile is

τss =
√
3 τcont

Notice that this trajectory allows a better exploitation of the motor with
respect to the triangular profile: the maximum torque that it is possible to
generate is higher τss > τtr .
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b - Duration of the trajectory

It is simple to show that the durations Ttr and Tss of the triangular and double
S (without linear velocity segments) trajectories are:

Ttr = 2

√

L

Amax

Tss = 2
√
2

√

L

Amax

Therefore
Tss =

√
2Ttr

As expected, being smoother, the duration of the double S trajectory is 1.41
times higher than the duration of the triangular one.
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b - Duration of the trajectory

On the other hand, with the double S trajectory it is possible to apply higher
acceleration (torque) values (better usage of the actuator):

Amax,ss =
√
3 Amax,tr = 1.7321 Amax,tr

As a consequence, the duration Tss of the double trajectory is reduced, and
therefore

Tss

Ttr

=
√
2

√

Amax,tr

Amax,ss

=
√
2

√

1√
3
= 1.075

Notice that the condition Tss = Ttr is obtained with a torque τss = 2τtr
(Amax,ss = 2Amax,tr ).
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c - Frequency analysis

In many motion control applications, when inertial loads have to be considered,
the frequency range interested by the acceleration (torque) profile of the
trajectory should be limited in order to avoid resonances or unmodeled
dynamics of the mechanical structure.

This aspect, that should always be taken into consideration, is of particular
relevance in case of mechanisms with structural elasticities or high inertia. It is
then important to evaluate the frequency content of the torque signals in order
to understand their influence on the mechanical structure.

With this respect, it is obvious that the smoother the profiles, the better the
results are (e.g. the double S trajectory is better that the triangular one
because the frequency range is narrower).
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c - Frequency analysis

The figure, obtained with accelerations Amax,tr : Amax,ss = 1 :
√
3, it is possible

to notice that the frequency content of the double S profile is lower (already in
the second harmonic) than the triangular profile

The frequency range interested by the double S profile is narrower, and then its
effect on resonances and unmodeled dynamics of the mechanical system (if
present) is reduced.
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c - Frequency analysis

Another example, consid-
ering a trapezoidal profile.
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In case even double S trajectories are not smooth enough and oscillations are
generated on the mechanical structure, smoother profiles should be adopted
like, for example, trajectories with a trapezoidal jerk profile.

More in general, motion profiles with derivative up to a given order n should be
considered: with a trapezoidal (triangular) velocity the trajectory is a C 1

function (continuous first derivative, while the second derivative is
discontinuous), a double S trajectory is a C 2 function, etc.

An alternative approach is to use Spline functions with a proper order.
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Coordination of more motion axes

In many applications, many motion axes are present and need to be
coordinated or synchronized. It is therefore necessary to take proper actions for
this purpose, ranging from a simple synchronization of the start/stop instants
to more complex operations.

Example: automatic machine for packaging medicines (pills)

450 motion axes:

150 electric drives (DC, brushless),
300 step motors

grouped in 40 blocks to be synchronized and coordinated

specific packages for the single client (how many pills, what time, ...)

C. Melchiorri Trajectory Planning 106 / 131



Trajectory Planning
Scaling trajectories

Analysis of Trajectories
Trajectories in the Workspace

Dynamic analysis of trajectories
Comparison of trajectories
Coordination of more motion axes

Coordination of more motion axes

Example: automatic machine for lifting TGV trains

Trains up to 200 meters long

Weight up to 386 tons

Accuracy between the two extremities: 1 mm

N. of lifting stations: 13

C. Melchiorri Trajectory Planning 107 / 131



Trajectory Planning
Scaling trajectories

Analysis of Trajectories
Trajectories in the Workspace

Dynamic analysis of trajectories
Comparison of trajectories
Coordination of more motion axes

Coordination of more motion axes

In multi-axis machines based on mechanical cams, the synchronization of the
different axes of motion is simply achieved by connecting the slaves to a single
master (the coordination is performed at the mechanical level).

In case of electronic cams the problem must be considered in the design of the
motion profiles for the different actuators (the synchronization is performed at
the software level).

A common solution is to obtain the synchronization of the motors by defining a
master motion, that can be either virtual (generated by software) or real (the
position of an actuator of the machine), and then by using this master position
as “time” (i.e. the variable θ(t)) for the other axes.
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Coordination of more motion axes

An example is reported in the figure,
where the variable τ is computed as
a function of the angular position
θ of the master. In the first two
cycles (θ ∈ [00, 7200]) the motion
is “slow” (τ = θ), while in the last
one (θ ∈ [7200, 10800]) the motion is
“fast” (τ = 2 θ).

Two slave axes are present: the
first one generates a cycloidal pro-
file from qc0 = 00 to qc1 = 3600

(solid), while the second one gener-
ates a polynomial profile of degree
5 (dashed) interpolating the points
qp0 = 00, qp1 = 1800, qp2 = 00, in

both cases for τ = [00, 3600].

Note that in the last cycle the velocity
values are doubled, while the accelera-
tions are four times those present in the
the first cycles.
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Coordination of more motion axes

In defining the (constant) velocity vc of the master axis, i.e. the motion law
θ(t), the most ‘stressed’ axis (in terms of velocity, acceleration, . . . ) should be
taken into consideration in order to define profiles that can be generated by
each motor:

vc = min

{

vmax 1

|q̇1(θ)|max

, . . . ,
vmax n

|q̇n(θ)|max

,

√

amax 1

|q̈1(θ)|max

, . . . ,

√

amax n

|q̈n(θ)|max

,

3

√

jmax 1

|...q 1(θ)|max

, . . . , 3

√

jmax n

|...q n(θ)|max

}

Synchronization of different axis of motion can also be defined analytically, as
already briefly discussed for trapezoidal velocity or spline trajectories.
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Workspace trajectories

If trajectories are defined in the workspace, it is necessary to use the inverse
kinematic function to translate the motion specification to the joint space
(where actuators operate). Since this increases the computational burden for
trajectory planning, the operations of computing the trajectory and translating
it to the joint space are made at a lower frequency with respect to the control
frequency. Therefore, it is necessary to interpolate the data before assigning
them to the low-level controllers: usually, a simple linear interpolation is
adopted.

TRJ IK ❤ CONTR ROBOT ✲✲ ✲
✻

x(tn) q(tn) qr

-

INT✲ ✲✲
q(tk)

Typical values: ∆tn = 10 ms, ∆tk = 1 ms

=⇒ 10 values of q(tk) for each value of q(tn) (x(tn))

=⇒ there is a delay ∆tn between the two sequences q(tk) and q(tn)

C. Melchiorri Trajectory Planning 112 / 131



Trajectory Planning
Scaling trajectories

Analysis of Trajectories
Trajectories in the Workspace

Position trajectories
Rotational trajectories

Workspace trajectories

Another problem: the Cartesian positions actually achieved during the motion
obtained by interpolating the points q(tn) are not those originally planned.
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Workspace trajectories

For the computation of the workspace trajectories, it is possible to adopt one of
the techniques used for the joint space (substituting the joint variable q(t) with
x(t), i.e. a position or an orientation in the Cartesian space) or to define
analytically the geometric path (e.g. an ellipse) as a function of time (i.e.
p = p(t)) or, better, in a parametric form p = p(s), being s = s(t) a proper
parameterization defining the motion law.
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Example: planar 2 dof manipulator
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Desired trajectory:

• total duration 3s,
• start in pi = [−1.0, 1.0]
• end in pf = [0.7, 1.2]
• composed by two linear seg-
ments with intermediate point
pm = [1.1, 0.0] per tm = 2s.
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Example: planar 2 dof manipulator

Consider the parametric form

x(t) = x0 +
x1 − x0

∆T
τ

y(t) = y0 +
y1 − y0

∆T
τ

where ∆T = t1 − t0, and τ ∈ [0,∆T ] is defined so that desired
position/velocity profiles are obtained, for example linear segments with
parabolic blends (position in the workspace). The kinematic model is

x = l1C1 + l2C12 y = l1S1 + l2S12

while the inverse kinematic equations are

C2 =
x2 + y2 − a22 − a23

2a2a3
S2 =

√

1− C 2
2

θ2 = atan2 (S2, C2) θ1 = atan2 (y , x)− atan2 (a2S2, a1 + a2C2)
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Example: planar 2 dof manipulator
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Position trajectories

To plan a trajectory in the workspace, usually the geometric path p (line, circle,
ellipse, . . . ) is defined as a function of a parameter s(t): p = p(s).

The parameter s = s(t) is computed by using one of the techniques discussed
for joint space trajectories. A classical approach is to plan s(t) as a linear
function with parabolic blends, in order to have in the work space
acceleration/deceleration tracts (low stress for the mechanical and actuation
system).

Notice that for parameterized trajectories the following conditions hold:

ṗ =
d p

ds
ṡ, p̈ =

d p

ds
s̈ +

d2 p

ds2
ṡ
2
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Curvature of a geometric path
Consider a path Γ in the workspace IR

3, expressed in parametric form

p = p(r) =





x(r)
y(r)
z(r)



 , r ∈ [ra, rb]

Assume that the curve is regular, i.e.

ṗ =
d p

dr
6= 0, ∀r ∈ [ra, rb]

Given a point pa of Γ, and a motion direction on the path, the arc lenght of a
generic point p(r) is defined as

s =

∫ p(r)

pa

||ṗ(ρ)||dρ
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By definition, the arc length represents the length of the arc of Γ defined by the
two points p and pa (if p follows pa, or the opposite of such a length if p is
before pa). The value s = 0 is assigned to point pa.
A bijective relationship exists between the values of the arc length s and the
points of the path Γ, and then it is possible to use the arc length for a
parametric expression of Γ.

p = p(s)

It is possible to assign to each point p of Γ a reference frame (Frenet frame)
defined by the following unit vectors



























t =
ṗ

||ṗ|| tangent unit vector

b =
ṗ× p̈

||ṗ × p̈|| binormal unit vector

n = b× t normal unit vector
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The unit vector t lies along the direction tangent to Γ in p, and is directed
along the positive s direction

The unit vector n defines, with t, the osculating plane O, defined as the
plane containing point p and a point p′ ∈ Γ when p′ → p.

The unit vector b (binormal) is defined so that the frame (t, n, b) is
right-handed. Notice that it is not always possible to define uniquely the
Frenet frame.
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Segment of a line
The linear geometric path between points pi and pf has a parametric
representation expressed by

p(s) = pi +
s

||pf − pi ||
(pf − pi ), s ∈ [0, ||pf − pi ||]

Moreover, by deriving p with respect to s, one obtains

d p

ds
=

pf − pi

||pf − pi ||
,

d2 p

ds2
= 0

It is possible to plan a trajectory through a sequence of points with the same
modalities seen in the joint space. If it is required to pass exactly through the
intermediate points, then it is possible to compute the parameter s using one
of the motion laws defined in the joint space (e.g. cubic, trapezoidal, . . . ).
In case it is not required for the manipulator to pass through the intermediate
points, the geometric path can be defined for example by linear segments with
polynomial blends (position error, but non null velocity in the via points).
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A typical profile is shown below. The variable x is defined with a sequence of
points interpolated with linear segments, while the real trajectory only
approximates (in the vicinity of the via points) the given path.

x

tt1 t2 t3 t4ta 2ta t2 − ta t2 + ta t4 − 2ta
t4 − ta
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Arc of a circle
A parametric representation of an arc of a circle is

p =





x

y

z



 =





r cos(θ)
r sin(θ)

0



 θ ∈ [θmin, θmax ]

where the parameter is the angle θ = θ(t). Notice that if the path must be
arbitrarily positioned/oriented in the 3D space, it is sufficient to multiply the
(homogeneous) vector p by a proper transformation matrix T .

y

x

z

θ

r

A motion law with accelera-
tion/deceleration tracts (in the op-
erational space) is obtained if the
parameter (in this case: θ) is computed,
for example, with a trapezoidal velocity
profile.
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Position trajectories - Example

Planar 2 dof manipulator with links’ lenght: a1 = a2 = 1. The desired circular
motion is defined by

center = [0.5, 0.5], radius r = 0.7
θi = −60, θf = 90, T = 1 s
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Rotational trajectories

Planning trajectories in terms of changes in orientation is somehow more
complex than planning in position only. While it is quite simple to plan a
motion between points pi and pf , the same is not true for interpolating the
orientation between two rotational matrices Ri and Rf : for example if the
elements rij are changed linearly from the initial (in Ri) to the final (in Rf )
value, there is not guarantee that the intermediate matrices are real rotation
matrices (orthogonal columns with unit norm).

Usually, the Euler or RPY angles are employed or, alternatively, the angle/axis
representation.

With the Euler or RPY angles, two triples φi , φf are defined, and an
interpolation based on one of the presented techniques can be adopted
(advisable in any case continuity at least of the in rotational velocity).
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With the angle/axis representation, if Ri and Rf are the initial and final
rotation matrices, then a matrix Ri,f exists such that

Ri Ri,f = Rf

or

Ri,f = RT
i Rf =





r11 r12 r13
r21 r22 r23
r31 r32 r33





Then, the unit vector w and the rotational angle θ are

θr = acos
r11 + r22 + r33 − 1

2
(10)

w =
1

2 sin θr





r32 − r23
r13 − r31
r21 − r12



 (11)
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It is now necessary to define a matrix Rt(t) so that Rt(0) = I and
Rt(tf ) = Ri,f . A choice can be

R =





w2
x (1− Cθ) + Cθ wxwy (1− Cθ)− wzSθ wxwz (1− Cθ) + wySθ

wxwy (1− Cθ) + wzSθ w2
y (1− Cθ) + Cθ wywz (1− Cθ)− wxSθ

wxwz (1− Cθ)− wySθ wywz (1− Cθ) + wxSθ w2
z (1− Cθ) + Cθ





where θ(t) is computed according to one of the previous motion law (cubic,
trapezoidal, . . . ) from θ(0) = 0 to θ(tf ) = θr , while w is defined as in (11).

The following rotation matrix is then obtained

R(t) = RiRt(θ(t))
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Final considerations

Some techniques for planning trajectories in the joint and in the work space
have been illustrated.

If the trajectory is planned in the work space, the end-effector moves along well
defined paths, a very important aspect in many industrial applications.

On the other hand, the computational burden is higher in case of work-space
trajectories. For this reason, the frequency at which the trajectory in computed
in lower than the control frequency, and an interpolation is then necessary.

Moreover, since the velocity/acceleration/torque limits required in the
work-space may result non physically achievable in the joint space (i.e. in the
actuation space) a re-computation of the trajectory might be necessary.
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Final considerations

Finally, singular configurations may generate problems if the trajectory is
planned in the work space.

As a matter of fact, if a motion defined in the work space reaches points close
to singular configuration, it should be avoided. Therefore, the trajectory should
be checked in advance and, in case, not actuated or modified.

Clearly all these problems are not present if the trajectory is planned in the
joint space.
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