
Real-Time Operating 
Systems M 

  
6. Deadlocks  Memory Management 



6.2! Torroni, Real-Time Operating Systems M ©2013!

Notice 

The course material includes slides downloaded from:!
http://codex.cs.yale.edu/avi/os-book/!

(slides by Silberschatz, Galvin, and Gagne, associated with 
Operating System Concepts, 9th Edition, Wiley, 2013)!

and!
http://retis.sssup.it/~giorgio/rts-MECS.html!

(slides by Buttazzo, associated with Hard Real-Time Computing 
Systems, 3rd Edition, Springer, 2011)!

which has been edited to suit the needs of this course. !
The slides are authorized for personal use only. !
Any other use, redistribution, and any for profit sale of the slides (in any 
form) requires the consent of the copyright owners.!



6.3! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Chapter 7:  Deadlocks 

  System Model!
  Deadlock Characterization!
  Methods for Handling Deadlocks!
  Deadlock Prevention!
  Deadlock Avoidance!
  Deadlock Detection !
  Recovery from Deadlock !



6.4! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Chapter Objectives 

  To develop a description of deadlocks, which prevent sets of concurrent 
processes from completing their tasks!

  To present a number of different methods for preventing or avoiding 
deadlocks in a computer system!

!



6.5! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

System Model 

  System consists of resources!

  Resource types R1, R2, . . ., Rm!

CPU cycles, memory space, I/O devices!
!

  Each resource type Ri has Wi instances.!

  Each process utilizes a resource as follows:!
  request !
  use !
  release!



6.6! Torroni, Real-Time Operating Systems M ©2013!

When Can Deadlock Arise? 



6.7! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Deadlock Characterization 

Deadlock can arise if four conditions hold simultaneously.!
!
  Mutual exclusion:  only one process at a time can use a resource!

  Hold and wait:  a process holding at least one resource is waiting to 
acquire additional resources held by other processes!

  No preemption:  a resource can be released only voluntarily by the process 
holding it, after that process has completed its task!

  Circular wait:  there exists a set {P0, P1, …, Pn} of waiting processes such 
that P0 is waiting for a resource that is held by P1, P1 is waiting for a 
resource that is held by P2, …, Pn–1 is waiting for a resource that is held by 
Pn, and Pn is waiting for a resource that is held by P0.!



6.8! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Deadlock with Mutex Locks 

  Deadlocks can occur via system calls, locking, etc!
  Example with Pthread!
 

 

/* thread one runs in this function */  

void *do_work_one(void *param) 
{  

   pthread_mutex_lock(&first_mutex);  

   pthread_mutex_lock(&second_mutex);  

 

   /* Do some work */ 
 

   pthread_mutex_unlock(&second_mutex);  

   pthread_mutex_unlock(&first_mutex);  

   pthread_exit(0);  

}  

!

/* thread two runs in this function */  

void *do_work_two(void *param) 
{  

   pthread_mutex_lock(&second_mutex);  

   pthread_mutex_lock(&first_mutex);  

 

   /* Do some work */ 
 

   pthread_mutex_unlock(&first_mutex);  

   pthread_mutex_unlock(&second_mutex);  

   pthread_exit(0);  

}  



6.9! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Resource-Allocation Graph 

A set of vertices V and a set of edges E.!
!
  V is partitioned into two types:!

  P = {P1, P2, …, Pn}, the set consisting of all the processes in the system 
!

  R = {R1, R2, …, Rm}, the set consisting of all resource types in the 
system!

  request edge – directed edge Pi → Rj!

  assignment edge – directed edge Rj → Pi!



6.10! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Resource-Allocation Graph (Cont.) 

  Process 
 
 
!

  Resource Type with 4 instances!
!

  Pi requests instance of Rj!

!
  Pi is holding an instance of Rj!

Pi!

Pi!
Rj!

Rj!



6.11! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Example of a Resource Allocation Graph 



6.12! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Another Example  
of a Resource Allocation Graph 



6.13! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Yet Another Example  
of a Resource Allocation Graph 



6.14! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Basic Facts 

  If graph contains no cycles ⇒ no deadlock 
!

  If graph contains a cycle ⇒!
  if only one instance per resource type, then deadlock!
  if several instances per resource type, possibility of deadlock!



6.15! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Methods for Handling Deadlocks 

  Ensure that the system will never enter a deadlock state  
!

  Allow the system to enter a deadlock state and then recover 
!

  Ignore the problem and pretend that deadlocks never occur in the system; 
used by most operating systems, including UNIX!



6.16! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Deadlock Prevention 

Restrain the ways request can be made.!
!
  Mutual Exclusion – not required for sharable resources; must hold for 

nonsharable resources!
  Some resources are intrinsically nonsharable!

  Hold and Wait – must guarantee that whenever a process requests a 
resource, it does not hold any other resources!
  Require process to request and be allocated all its resources before it 

begins execution, or allow process to request resources only when the 
process has none!
 Example: copy from DVD to disk; sort; print results!

  Low resource utilization; starvation possible (popular resources)!



6.17! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Deadlock Prevention (Cont.) 

  No Preemption –!
  If a process that is holding some resources requests another resource 

that cannot be immediately allocated to it, then all resources currently 
being held are released!
 Alternatively: preempt resources from waiting process, or wait. !

  Preempted resources are added to the list of resources for which the 
process is waiting!

  Process will be restarted only when it can regain its old resources, as 
well as the new ones that it is requesting!

  Circular Wait – impose a total ordering of all resource types, and require 
that each process requests resources in an increasing order of enumeration!



6.18! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Deadlock Example with Lock Ordering 

void transaction(Account from, Account to, double amount)  

{  

   mutex lock1, lock2;  

   lock1 = get_lock(from);  

   lock2 = get_lock(to);  

 

   acquire(lock1);  

      acquire(lock2);  

 

         withdraw(from, amount);  

         deposit(to, amount);  

 

      release(lock2);  

   release(lock1);  

}  



6.19! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Deadlock Avoidance 

Requires that the system has some additional a priori information  
available.!
!
  Simplest and most useful model requires that each process declare the 

maximum number of resources of each type that it may need  
!

  The deadlock-avoidance algorithm dynamically examines the resource-
allocation state to ensure that there can never be a circular-wait condition  
!

  Resource-allocation state is defined by the number of available and 
allocated resources, and the maximum demands of the processes!



6.20! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Safe State 

  When a process requests an available resource, system must decide if 
immediate allocation leaves the system in a safe state  
!

  System is in safe state if there exists a sequence <P1, P2, …, Pn> of ALL 
the  processes  in the systems such that  for each Pi, the resources that Pi 
can still request can be satisfied by currently available resources + 
resources held by all the Pj, with j < I!

  That is:!
  If Pi resource needs are not immediately available, then Pi can wait until 

all Pj have finished!
  When Pj is finished, Pi can obtain needed resources, execute, return 

allocated resources, and terminate!
  When Pi terminates, Pi +1 can obtain its needed resources, and so on !



6.21! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Basic Facts 

  If a system is in safe state ⇒ no deadlocks 
!

  If a system is in unsafe state ⇒ possibility of deadlock 
!

  Avoidance ⇒ ensure that a system will never enter an unsafe state.!



6.22! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Safe, Unsafe, Deadlock State  



6.23! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Avoidance algorithms 

  Single instance of a resource type!
  Use a resource-allocation graph!

  Multiple instances of a resource type!
   Use the banker’s algorithm!



6.24! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Resource-Allocation Graph Scheme 

  Claim edge Pi → Rj indicated that process Pj may request resource Rj; 
represented by a dashed line  
!

  Claim edge converts to request edge when a process requests a resource  
!

  Request edge converted to an assignment edge when the  resource is 
allocated to the process!

!
  When a resource is released by a process, assignment edge reconverts to a 

claim edge  
!

  Resources must be claimed a priori in the system!



6.25! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Resource-Allocation Graph 



6.26! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Unsafe State In Resource-Allocation Graph 



6.27! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Resource-Allocation Graph Algorithm 

  Suppose that process Pi requests a resource Rj!

  The request can be granted only if converting the request edge to an 
assignment edge does not result in the formation of a cycle in the resource 
allocation graph!



6.28! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Banker’s Algorithm 

  Multiple instances 
!

  Each process must a priori claim maximum use  
!

  When a process requests a resource it may have to wait   
!

  When a process gets all its resources it must return them in a finite amount 
of time!



6.29! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Data Structures for the Banker’s Algorithm  

Let n = number of processes, and m = number of resources types. !
!
  Available:  Vector of length m. If available [j] = k, there are k instances of 

resource type Rj  available!

  Max: n x m matrix.  If Max [i,j] = k, then process Pi may request at most k 
instances of resource type Rj!

  Allocation:  n x m matrix.  If Allocation[i,j] = k then Pi is currently allocated k 
instances of Rj!

  Need:  n x m matrix. If Need[i,j] = k, then Pi may need k more instances of 
Rj to complete its task!

 
Need [i,j] = Max[i,j] – Allocation [i,j]!



6.30! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Safety Algorithm 

1. !Let Work and Finish be vectors of length m and n, respectively.  Initialize:!
Work = Available!
Finish [i] = false for i = 0, 1, …, n- 1!
!

2. !Find an i such that both: !
(a) Finish [i] = false!
(b) Needi ≤ Work!
If no such i exists, go to step 4!
!

3.  Work = Work + Allocationi 
Finish[i] = true  
go to step 2!

4. !If Finish [i] == true for all i, then the system is in a safe state!



6.31! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Resource-Request Algorithm for Process Pi 

     Request = request vector for process Pi.  If Requesti [j] = k then process Pi 
wants k instances of resource type Rj!

1. !If Requesti ≤ Needi go to step 2.  Otherwise, raise error condition, since 
process has exceeded its maximum claim!

2. !If Requesti ≤ Available, go to step 3.  Otherwise Pi  must wait, since 
resources are not available!

3. !Pretend to allocate requested resources to Pi by modifying the state as 
follows:!

! !Available = Available  – Request;!
! !Allocationi = Allocationi + Requesti;!
! !Needi = Needi – Requesti;!

  If safe ⇒ the resources are allocated to Pi!
  If unsafe ⇒ Pi must wait, and the old resource-allocation state is 

restored!



6.32! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Example of Banker’s Algorithm 

  5 processes P0  through P4; !
      3 resource types:!
              A (10 instances),  B (5instances), and C (7 instances)!
 Snapshot at time T0:!
! ! !Allocation !  Max !Available!
! ! !A B C !       A B C !A B C!
! !P0 !0 1 0 !         7 5 3 !3 3 2!
! ! P1 !2 0 0 !        3 2 2  !
! ! P2 !3 0 2 !        9 0 2!
! ! P3 !2 1 1 !        2 2 2!
! ! P4 !0 0 2 !         4 3 3  !!!



6.33! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Example (Cont.) 

  The content of the matrix Need is defined to be Max – Allocation!
!
! ! !Need!
! ! !A B C!
! ! P0 !7 4 3 !
! ! P1 !1 2 2 !
! ! P2 !6 0 0 !
! ! P3 !0 1 1!
! ! P4 !4 3 1  
!

  The system is in a safe state since the sequence < P1, P3, P4, P2, P0> 
satisfies safety criteria!



6.34! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Example:  P1 Request (1,0,2) 

  Check that Request ≤ Available (that is, (1,0,2) ≤ (3,3,2) ⇒ true!
! ! !Allocation !Need !   Available!
! ! !A B C !A B C ! A B C !
! !P0 !0 1 0 !7 4 3 !2 3 0!
! !P1!      3 0 2             0 2 0 !!
! !P2 !3 0 2 ! 6 0 0 !
! !P3 !2 1 1 !0 1 1!
! !P4 !0 0 2 ! 4 3 1 !

!

  Executing safety algorithm shows that sequence < P1, P3, P4, P0, P2> 
satisfies safety requirement!

  Can request for (3,3,0) by P4 be granted?!

  Can request for (0,2,0) by P0 be granted?!
!



6.35! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Deadlock Detection 

  Allow system to enter deadlock state  
!

  Detection algorithm 
!

  Recovery scheme!



6.36! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Single Instance of Each Resource Type 

  Maintain wait-for graph!
  Nodes are processes!
  Pi → Pj   if Pi is waiting for Pj 
!

  Periodically invoke an algorithm that searches for a cycle in the graph. If 
there is a cycle, there exists a deadlock!

!
  An algorithm to detect a cycle in a graph requires an order of n2 operations, 

where n is the number of vertices in the graph!



6.37! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Resource-Allocation Graph and Wait-for Graph 

Resource-Allocation Graph! Corresponding wait-for graph!



6.38! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Several Instances of a Resource Type 

  Available:  A vector of length m indicates the number of available resources 
of each type!

  Allocation:  An n x m matrix defines the number of resources of each type 
currently allocated to each process!

  Request:  An n x m matrix indicates the current request  of each process.  
If Request [i][j] = k, then process Pi is requesting k more instances of 
resource type Rj.!



6.39! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Detection Algorithm 

1. !Let Work and Finish be vectors of length m and n, respectively Initialize:!
(a) Work = Available!
(b) !For i = 1,2, …, n, if Allocationi ≠ 0, then  

Finish[i] = false; otherwise, Finish[i] = true!
!

2. !Find an index i such that both:!
(a) !Finish[i] == false!
(b) !Requesti ≤ Work 

!
If no such i exists, go to step 4!



6.40! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Detection Algorithm (Cont.) 

3. !Work = Work + Allocationi 
Finish[i] = true  
go to step 2  
!

4. !If Finish[i] == false, for some i, 1 ≤ i ≤  n, then the system is in deadlock 
state. Moreover, if Finish[i] == false, then Pi is deadlocked!
!!

Algorithm requires an order of O(m x n2) operations to detect 
whether the system is in deadlocked state!

!



6.41! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Example of Detection Algorithm 

  Five processes P0 through P4; three resource types  
A (7 instances), B (2 instances), and C (6 instances)!

!
  Snapshot at time T0:!
! ! ! Allocation !Request !Available!
! ! !A B C !  A B C !A B C!
!        P0 !          0 1 0             0 0 0 !0 0 0!

             P1 !          !2 0 0 !  2 0 2!
             P2 !!          3 0 3             0 0 0 !
             P3 ! !2 1 1 !   1 0 0 !
!       P4 ! !0 0 2 !   0 0 2!

!
  Sequence <P0, P2, P3, P1, P4> will result in Finish[i] = true for all i!
!



6.42! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Example (Cont.) 

  P2 requests an additional instance of type C!
! ! !Request!
! ! !A B C!
! ! P0 !0 0 0!
! ! P1 !2 0 2!
! ! P2 !0 0 1!
! ! P3 !1 0 0 !
! ! P4 !0 0 2!

!

  State of system?!
  Can reclaim resources held by process P0, but insufficient resources to 

fulfill other processes; requests!
  Deadlock exists, consisting of processes P1,  P2, P3, and P4!



6.43! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Detection-Algorithm Usage 

  When, and how often, to invoke depends on:!
  How often a deadlock is likely to occur?!
  How many processes will need to be rolled back?!

 one for each disjoint cycle  
!

  If detection algorithm is invoked arbitrarily, there may be many cycles in the 
resource graph and so we would not be able to tell which of the many 
deadlocked processes “caused” the deadlock.!



6.44! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Recovery from Deadlock:   
Process Termination 

  Abort all deadlocked processes 
!

  Abort one process at a time until the deadlock cycle is eliminated  
!

  In which order should we choose to abort?!
1.  Priority of the process!
2.  How long process has computed, and how much longer to completion!
3.  Resources the process has used!
4.  Resources process needs to complete!
5.  How many processes will need to be terminated!
6.  Is process interactive or batch?!



6.45! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Recovery from Deadlock:  
Resource Preemption 

  Selecting a victim – minimize cost 
!

  Rollback – return to some safe state, restart process for that state  
!

  Starvation –  same process may always be picked as victim, include 
number of rollback in cost factor!



6.46! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Chapter 8:  Memory Management 

  Background!
  Swapping !
  Contiguous Memory Allocation!
  Segmentation!
  Paging!
  Structure of the Page Table!



6.47! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Objectives 

  To provide a detailed description of various ways of organizing 
memory hardware!

  To discuss various memory-management techniques, including paging 
and segmentation!

  To provide a detailed description of the Intel Pentium, which supports 
both pure segmentation and segmentation with paging!



6.48! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Background 

  Program must be brought (from disk)  into memory and placed within a 
process for it to be run!

  Main memory and registers are only storage CPU can access directly!
!
  Memory unit only sees a stream of addresses + read requests, or 

address + data and write requests!

  Register access in one CPU clock (or less)!

  Main memory can take many cycles, causing a stall!

  Cache sits between main memory and CPU registers!

  Protection of memory required to ensure correct operation!
!



6.49! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Base and Limit Registers 

  A pair of base and limit registers define the logical address space!
  CPU must check every memory access generated in user mode to 

be sure it is between base and limit for that user!



6.50! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Hardware Address Protection with Base and Limit Registers 

base

memory
trap to operating system

monitor—addressing error

address yesyes

nono

CPU

base ! limit

≥ <



6.51! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Address Binding 

  Programs on disk, ready to be brought into memory to execute form an 
input queue!
  Without support, must be loaded into address 0000!

 First user process physical address always at 0000 !
  Further, addresses represented in different ways at different stages of a 

program’s life!
  Source code addresses usually symbolic!
  Compiled code addresses bind to relocatable addresses!

  i.e. “14 bytes from beginning of this module”!
  Linker or loader will bind relocatable addresses to absolute addresses!

  i.e. 74014!
  Each binding maps one address space to another!

!



6.52! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Binding of Instructions and Data to Memory 

!
  Address binding of instructions and data to memory addresses can 

happen at three different stages!
  Compile time:  If memory location known a priori, absolute 

code can be generated; must recompile code if starting location 
changes!

  Load time:  Must generate relocatable code if memory location 
is not known at compile time!

  Execution time:  Binding delayed until run time if the process 
can be moved during its execution from one memory segment to 
another!
 Need hardware support for address maps (e.g., base and 

limit registers)!



6.53! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Multistep Processing of a User Program  



6.54! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Logical vs. Physical Address Space 

  The concept of a logical address space that is bound to a separate 
physical address space is central to proper memory management!
  Logical address – generated by the CPU; also referred to as 

virtual address!
  Physical address – address seen by the memory unit!

  Logical and physical addresses are the same in compile-time and load-
time address-binding schemes; logical (virtual) and physical addresses 
differ in execution-time address-binding scheme!

  Logical address space is the set of all logical addresses generated by 
a program!

  Physical address space is the set of all physical addresses generated 
by a program!



6.55! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Memory-Management Unit (MMU) 

  Hardware device that at run time maps virtual to physical address!

  Many methods possible, covered in the rest of this chapter 
!

  To start, consider simple scheme where the value in the relocation 
register is added to every address generated by a user process at the 
time it is sent to memory!
  Base register now called relocation register!
  MS-DOS on Intel 80x86 used 4 relocation registers!

  The user program deals with logical addresses; it never sees the real 
physical addresses!
  Execution-time binding occurs when reference is made to location 

in memory!
  Logical address bound to physical addresses!



6.56! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Dynamic relocation using a relocation register 

  Routine is not loaded until it is called!

  Better memory-space utilization; unused 
routine is never loaded!

  All routines kept on disk in relocatable 
load format!

  Useful when large amounts of code are 
needed to handle infrequently occurring 
cases!

  No special support from the operating 
system is required!
  Implemented through program 

design!
  OS can help by providing 

libraries to implement dynamic 
loading!



6.57! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Dynamic Linking 

  Static linking – system libraries and program code combined by the 
loader into the binary program image!

  Dynamic linking –linking postponed until execution time!

  Small piece of code, stub, used to locate the appropriate memory-
resident library routine!

  Stub replaces itself with the address of the routine, and executes the 
routine!

  Operating system checks if routine is in processes’ memory address!
  If not in address space, add to address space!

  Dynamic linking is particularly useful for libraries!

  System also known as shared libraries!
  Consider applicability to patching system libraries!

  Versioning may be needed!



6.58! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Swapping 
  Total physical memory space of processes can exceed physical memory!
  A process can be swapped temporarily out of memory to a backing store, and then brought 

back into memory for continued execution!
  Backing store – fast disk large enough to accommodate copies of all memory images for 

all users; must provide direct access to these memory images!
  Roll out, roll in – swapping variant used for priority-based scheduling algorithms; lower-

priority process is swapped out so higher-priority process can be loaded and executed!
  Major part of swap time is transfer time; total transfer time is directly proportional to the 

amount of memory swapped!
  System maintains a ready queue of ready-to-run processes which have memory images on 

disk!
  Does the swapped out process need to swap back in to same physical addresses?!
  Depends on address binding method!

  Plus consider pending I/O to / from process memory space!
  Modified versions of swapping are found on many systems (i.e., UNIX, Linux, and Windows)!

  Swapping normally disabled!
  Started if more than threshold amount of memory allocated!
  Disabled again once memory demand reduced below threshold!

!



6.59! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Schematic View of Swapping 



6.60! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Context Switch Time including Swapping 

  If next processes to be put on CPU is not in memory, need to swap out a process and swap in 
target process!

  Context switch time can then be very high!
  100MB process swapping to hard disk with transfer rate of 50MB/sec!

  Swap out time of 2000 ms!
  Plus swap in of same sized process!
  Total context switch swapping component time of 4000ms (4 seconds)!

  Can reduce if reduce size of memory swapped – by knowing how much memory really being used!
  System calls to inform OS of memory use via request memory() and release 

memory() 

  Other constraints as well on swapping!
  Pending I/O – can’t swap out as I/O would occur to wrong process!
  Or always transfer I/O to kernel space, then to I/O device!

  Known as double buffering, adds overhead!
  Standard swapping not used in modern operating systems!

  But modified version common!
  Swap only when free memory extremely low!



6.61! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Contiguous Allocation 

  Main memory must support both OS and user processes!
  Limited resource, must allocate efficiently!
  Contiguous allocation is one early method!

  Main memory usually into two partitions:!
  Resident operating system, usually held in low memory with interrupt vector!
  User processes then held in high memory!
  Each process contained in single contiguous section of memory!

!
  Relocation registers used to protect user processes from each other, and from changing 

operating-system code and data!
  Base register contains value of smallest physical address!
  Limit register contains range of logical addresses – each logical address must be less 

than the limit register !
  MMU maps logical address dynamically!
  Can then allow actions such as kernel code being transient and kernel changing size!



6.62! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Hardware Support for Relocation  
and Limit Registers 



6.63! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Contiguous Allocation 

  Multiple-partition allocation!
  Degree of multiprogramming limited by number of partitions!
  Variable-partition sizes for efficiency (sized to a given process’ needs)!
  Hole – block of available memory; holes of various size are scattered 

throughout memory!
  When a process arrives, it is allocated memory from a hole large enough to 

accommodate it!
  Process exiting frees its partition, adjacent free partitions combined!
  Operating system maintains information about: 

a) allocated partitions    b) free partitions (hole)!

OS!

process 5!

process 8!

process 2!

OS!

process 5!

process 2!

OS!

process 5!

process 2!

OS!

process 5!
process 9!

process 2!

process 9!

process 10!



6.64! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Dynamic Storage-Allocation Problem 

  How to satisfy a request of size n from a list of free holes?!

  First-fit:  Allocate the first hole that is big enough!
  Best-fit:  Allocate the smallest hole that is big enough; must search entire 

list, unless ordered by size  !
  Produces the smallest leftover hole!

  Worst-fit:  Allocate the largest hole; must also search entire list  !
  Produces the largest leftover hole!

  First-fit and best-fit better than worst-fit in terms of speed and storage 
utilization!

!



6.65! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Fragmentation 

  External Fragmentation – total memory space exists to satisfy a 
request, but it is not contiguous!

  Internal Fragmentation – allocated memory may be slightly larger 
than requested memory; this size difference is memory internal to a 
partition, but not being used!

  First fit analysis reveals that given N blocks allocated, 0.5 N blocks lost 
to fragmentation!
  1/3 may be unusable -> 50-percent rule!



6.66! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Fragmentation 

  Reduce external fragmentation by compaction!
  Shuffle memory contents to place all free memory together in one large 

block!
  Compaction is possible only if relocation is dynamic, and is done at 

execution time!
  I/O problem!

 Latch job in memory while it is involved in I/O!
 Do I/O only into OS buffers!

  Possible solution: noncontiguous allocation!
  Segmentation, paging!

  Notice that backing store has same fragmentation problems!



6.67! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Segmentation 

  Memory-management scheme that supports user view of memory !

  A program is a collection of segments!
  A segment is a logical unit such as:!

! !main program!
! !procedure !
! !function!
! !method!
! !object!
! !local variables, global variables!
! !common block!
! !stack!
! !symbol table!
! !arrays!



6.68! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

User’s View of a Program 



6.69! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Logical View of Segmentation 

1!

3!

2!

4!

1!

4!

2!

3!

user space ! physical memory space!



6.70! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Segmentation Architecture  

  Logical address consists of a two tuple:!
! !<segment-number, offset>,!

!

  Segment table – maps two-dimensional physical addresses; each 
table entry has:!
  base – contains the starting physical address where the segments 

reside in memory!
  limit – specifies the length of the segment!

  Segment-table base register (STBR) points to the segment table’s 
location in memory!

  Segment-table length register (STLR) indicates number of segments 
used by a program;!
!                  segment number s is legal if s < STLR!



6.71! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Segmentation Hardware 



6.72! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Paging 

  Physical  address space of a process can be noncontiguous; process 
is allocated physical memory whenever the latter is available!
  Avoids external fragmentation!
  Avoids problem of varying sized memory chunks!

  Divide physical memory into fixed-sized blocks called frames!
  Size is power of 2, between 512 bytes and 16 Mbytes!

  Divide logical memory into blocks of same size called pages!

  Keep track of all free frames!

  To run a program of size N pages, need to find N free frames and 
load program!

  Set up a page table to translate logical to physical addresses!

  Backing store likewise split into pages!
  Still have Internal fragmentation!



6.73! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Address Translation Scheme 

  Address generated by CPU is divided into:!
  Page number (p) – used as an index into a page table which 

contains base address of each page in physical memory!
  Page offset (d) – combined with base address to define the 

physical memory address that is sent to the memory unit!

!
  For given logical address space 2m and page size 2n!

page number! page offset!

p! d!

m - n! n!



6.74! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Paging Hardware 



6.75! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Paging Model of Logical and Physical Memory 



6.76! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Paging Example 

n=2 and m=4   32-byte memory and 4-byte pages!



6.77! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Paging (Cont.) 

  Calculating internal fragmentation!
  Page size = 2,048 bytes!
  Process size = 72,766 bytes!
  35 pages + 1,086 bytes!
  Internal fragmentation of 2,048 - 1,086 = 962 bytes!
  Worst case fragmentation = 1 frame – 1 byte!
  On average fragmentation = 1 / 2 frame size!

  So small frame sizes desirable?!
  But each page table entry takes memory to track!
  Page sizes growing over time!

 Solaris supports two page sizes – 8 KB and 4 MB!
  Process view and physical memory now very different!
  By implementation process can only access its own memory!



6.78! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Free Frames (Frame Table) 

Before allocation! After allocation!


