
Real-Time Operating
Systems M

5. Process Synchronization

5.2! Torroni, Real-Time Operating Systems M ©2013!

Notice

The course material includes slides downloaded from:!
http://codex.cs.yale.edu/avi/os-book/!

(slides by Silberschatz, Galvin, and Gagne, associated with
Operating System Concepts, 9th Edition, Wiley, 2013)!

and!
http://retis.sssup.it/~giorgio/rts-MECS.html!

(slides by Buttazzo, associated with Hard Real-Time Computing
Systems, 3rd Edition, Springer, 2011)!

which has been edited to suit the needs of this course. !
The slides are authorized for personal use only. !
Any other use, redistribution, and any for profit sale of the slides (in any
form) requires the consent of the copyright owners.!
For solutions to exercises in this section, also refer to The Little Book of
Semaphores, http://www.greenteapress.com/semaphores/!

5.3! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Process Synchronization

1.  Background!
2.  The Critical-Section Problem!
3.  Peterson’s Solution!
4.  Synchronization Hardware!
5.  Semaphores!
6.  Classic Problems of Synchronization!
7.  Monitors!
8.  Synchronization Examples: Solaris, Windows XP, Linux, Pthreads API. !
9.  Atomic Transactions!

!
!
!

5.4! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Objectives

  To introduce the critical-section problem, whose solutions can be used to
ensure the consistency of shared data!

  To present both software and hardware solutions of the critical-section
problem!

  To examine several classical process-synchronization problems!

  To explore several tools that are used to solve process synchronization
problems!

5.5! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Background

  Processes can execute concurrently!
  May be interrupted at any time, partially completing execution!

  Concurrent access to shared data may result in data inconsistency!

  Maintaining data consistency requires mechanisms to ensure the orderly
execution of cooperating processes!

  Illustration of the problem: consumer-producer revisited!

5.6! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Background

  Illustration of the problem: 
Suppose that we wanted to provide a solution to the consumer-producer
problem that fills all the buffers. We can do so by having an integer
counter that keeps track of the number of full buffers. Initially, counter
is set to 0. It is incremented by the producer after it produces a new buffer
and is decremented by the consumer after it consumes a buffer.!

5.7! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Producer

while (true) {

 /* produce an item in next produced */

 while (counter == BUFFER_SIZE) ;

 /* do nothing */

 buffer[in] = next_produced;

 in = (in + 1) % BUFFER_SIZE;

 counter++;

}

5.8! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Consumer

while (true) {

 while (counter == 0)

 ; /* do nothing */

 next_consumed = buffer[out];

 out = (out + 1) % BUFFER_SIZE;

 counter--;

 /* consume the item in next consumed */

}

5.9! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Race Condition

  counter++ could be implemented as 
 
 register1 = counter
 register1 = register1 + 1
 counter = register1

  counter-- could be implemented as 
 
 register2 = counter
 register2 = register2 - 1
 counter = register2

  Consider this execution interleaving with “count = 5” initially:!
!S0: producer execute register1 = counter {register1 = 5} 
S1: producer execute register1 = register1 + 1 {register1 = 6}  
S2: consumer execute register2 = counter {register2 = 5}  
S3: consumer execute register2 = register2 – 1 {register2 = 4}  
S4: producer execute counter = register1 {counter = 6 }  
S5: consumer execute counter = register2 {counter = 4}!

!

5.10! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Critical Section Problem

  Consider system of n processes {p0, p1, … pn-1}!

  Each process has critical section segment of code!
  Process may be changing common variables, updating table, writing

file, etc!
  When one process in critical section, no other may be in its critical

section!

  Critical section problem is to design protocol to solve this!

  Each process must ask permission to enter critical section in entry section,
may follow critical section with exit section, then remainder section!

!

5.11! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Critical Section

  General structure of process pi is!

5.12! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Solution to Critical-Section Problem

1. Mutual Exclusion - If process Pi is executing in its critical section, then no other processes
can be executing in their critical sections!

2. Progress - If no process is executing in its critical section and there exist some processes
that wish to enter their critical section, then the selection of the processes that will enter the
critical section next cannot be postponed indefinitely!

3. Bounded Waiting - A bound must exist on the number of times that other processes are
allowed to enter their critical sections after a process has made a request to enter its critical
section and before that request is granted!
�  Assume that each process executes at a nonzero speed !
�  No assumption concerning relative speed of the n processes!

  Two approaches depending on if kernel is preemptive or non-preemptive !
  Preemptive – allows preemption of process when running in kernel mode!
  Non-preemptive – runs until exits kernel mode, blocks, or voluntarily yields CPU!

 Essentially free of race conditions in kernel mode!

5.13! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Peterson’s Solution

  Good algorithmic description of solving the problem!

  Two process solution!

  Assume that the load and store instructions are atomic; that is, cannot be
interrupted!

  The two processes share two variables:!
  int turn;

  Boolean flag[2]

  The variable turn indicates whose turn it is to enter the critical section!

  The flag array is used to indicate if a process is ready to enter the critical
section. flag[i] = TRUE implies that process Pi is ready!!

5.14! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

 do {

 flag[i] = TRUE;

 turn = j;

 while (flag[j] && turn == j);

! ! !critical section !
 flag[i] = FALSE;

! ! !remainder section !
 } while (TRUE);

!
  Provable that !
1.  Mutual exclusion is preserved!
2.  Progress requirement is satisfied!
3.  Bounded-waiting requirement is met!

Algorithm for Process Pi

5.15! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Synchronization Hardware

  Many systems provide hardware support for critical section code!

  All solutions below based on idea of locking!
  Protecting critical regions via locks!

  Uniprocessors – could disable interrupts!
  Currently running code would execute without preemption!
  Generally too inefficient on multiprocessor systems!

 Operating systems using this not broadly scalable!

  Modern machines provide special atomic hardware instructions!
 Atomic = non-interruptible!

  Either test memory word and set value!
  Or swap contents of two memory words!

5.16! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

 do {

! !acquire lock !
! ! !critical section !
! !release lock !
! ! !remainder section !
 } while (TRUE);

Solution to Critical-section Problem Using Locks

5.17! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

test_and_set() Instruction

  Definition:!

 boolean test_and_set (boolean *target)

 {

 boolean rv = *target;

 *target = TRUE;

 return rv:

 }

!

5.18! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Solution using test_and_set()

  Shared Boolean variable lock, initialized to FALSE

  Solution:!

do {
 while (test_and_set(&lock))

 ; /* do nothing */

 /* critical section */

 lock = FALSE;

 /* remainder section */

} while (TRUE);

!
 !

5.19! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

compare_and_swap() Instruction

  Definition:!

int compare_and_swap(int *value, int expected, int new_value) {

 int temp = *value;

 if (*value == expected)

 *value = new_value;

 return temp;

}

!

5.20! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Solution using compare_and_swap()

  Shared Boolean variable lock initialized to FALSE!

  Solution:!

do {
 while (compare_and_swap(&lock, FALSE, TRUE))

 ; /* do nothing */

 /* critical section */

 lock = FALSE;

 /* remainder section */

} while (TRUE);
 !

5.21! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Solution (?) using test_and_set()
  Shared Boolean variable lock, initialized to FALSE

boolean test_and_set (boolean *target) {
 boolean rv = *target;

 *target = TRUE;

 return rv:

}!
 !

do {
 while (test_and_set(&lock))

 ; /* do nothing */

 /* critical section */

 lock = FALSE;

 /* remainder section */

} while (TRUE);

!
 !

5.22! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Bounded-waiting Mutual Exclusion

  Shared Boolean variables lock and flag[n] initialized to FALSE

do {
 flag[i] = TRUE; /* waiting to be granted access to critical section */

 while (flag[i] && test_and_set(&lock))

 ; /* do nothing */

 flag[i] = FALSE;

 /* critical section */

 j = (i + 1) % n;

 while ((j != i) && !flag[j])

 j = (j + 1) % n;

 if (j == i)

 lock = FALSE;

 else

 flag[j] = FALSE;

 /* remainder section */

} while (TRUE);

5.23! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Mutex Locks

  Previous solutions are complicated and generally inaccessible to application
programmers!

  OS designers build software tools to solve critical section problem!
  Simplest is mutex lock!
  Protect critical regions with it by first acquire() a lock then release() it!

  Boolean variable indicating if lock is available or not 
!

  Calls to acquire() and release() must be atomic!
  Usually implemented via hardware atomic instructions!

!

5.24! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

acquire() {

 while (!available)

 ; /* busy wait */

 available = FALSE;

}

release() {

 available = TRUE;

}

do {

 acquire lock!
 critical section!
 release lock !
 remainder section !
} while (TRUE);

!

acquire() and release()

  Solution that requires busy waiting!
  Called a spinlock!
  Not necessarily a useless solution!

  No context switch required when a
process must wait on a lock!

  Useful when locks expected for
short periods of time!

  Especially in multiprocessor
systems!

5.25! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Semaphore

  Synchronization tool that does not require busy waiting !
  Semaphore S – integer variable!
  Two standard operations modify S: wait() and signal()

  Less complicated!
  Can only be accessed via two indivisible (atomic) operations!

wait (S) {

 while (S <= 0)

 ; // busy wait

 S--;

}

signal (S) {

 S++;

}

5.26! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Semaphore Usage

  Counting semaphore – integer value can range over an unrestricted domain!
  Binary semaphore – integer value can range only between 0 and 1!

  Then a mutex lock!
  Can implement a counting semaphore S as a binary semaphore!
  Can solve various synchronization problems!
  Consider P1 and P2 that require S1 to happen before S2!

P1:

 S1;

 signal(synch);

P2:

 wait(synch);

 S2;!

5.27! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Semaphore Implementation

  Must guarantee that no two processes can execute wait() and
signal() on the same semaphore at the same time!

  Thus, implementation becomes the critical section problem where the wait
and signal code are placed in the critical section!
  Could now have busy waiting in critical section implementation!

 But implementation code is short!
 Little busy waiting if critical section rarely occupied!

  Note that applications may spend lots of time in critical sections and
therefore this is not a good solution!

 !
!

5.28! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Implementation with no busy waiting

  With each semaphore there is an associated waiting queue!
  Each entry in a waiting queue has two data items:!

  value (of type integer)!
  pointer to next record in the list!
!

  Two operations:!
  block() – place the process invoking the operation on the appropriate

waiting queue!
  wakeup() – remove one of processes in the waiting queue and place it

in the ready queue!
 !

5.29! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Semaphore Implementation
with no Busy waiting

typedef struct{

 int value;

 struct process *list;

} semaphore;

wait(semaphore *S) {

 S->value--;

 if (S->value < 0) {;

 add this process to S->list;
 block();

 }

}

signal(semaphore *S) {

 S->value++;

 if (S->value <= 0) {;

 remove a process P from S->list;
 wakeup(P);

 }

}

5.30! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Deadlock and Starvation

  Deadlock – two or more processes are waiting indefinitely for an event that
can be caused by only one of the waiting processes!

  Let S and Q be two semaphores initialized to 1!
! ! P0 ! P1!

 wait(S); wait(Q);

 wait(Q); wait(S);

 signal(S); signal(Q);

 signal(Q); signal(S);

  Starvation – indefinite blocking !
  A process may never be removed from the semaphore queue in which it

is suspended!
  Priority Inversion – Scheduling problem when lower-priority process holds

a lock needed by higher-priority process!
  Solved via priority-inheritance protocol!

5.31! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Classical Problems of Synchronization

  Classical problems used to test newly-proposed synchronization schemes!

  Bounded-Buffer Problem!

  Readers and Writers Problem!

  Dining-Philosophers Problem!

5.32! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Bounded-Buffer Problem

  Buffer with n slots, each can hold one item!

  Semaphore mutex initialized to the value 1!
  Used to grant mutually exclusive access to buffer!

  Semaphore full initialized to the value 0!
  Number of full slots!

  Semaphore empty initialized to the value n!
  Number of empty slots!

5.33! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Bounded-Buffer Problem

  The structure of the producer process!

do {

 ...
 /* produce an item in next_produced */

 ...

 wait(empty);

 wait(mutex);

 ...
 /* add next produced to the buffer */

 ...

 signal(mutex);

 signal(full);

} while (TRUE);

5.34! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Bounded-Buffer Problem

  The structure of the consumer process!

do {

 wait(full);

 wait(mutex);

 ...
 /* remove an item from buffer to next_consumed */

 ...

 signal(mutex);

 signal(empty);

 ...
 /* consume the item in next consumed */

 ...
} while (TRUE);

!

5.35! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Readers-Writers Problem

  A data set is shared among a number of concurrent processes!
  Readers – only read the data set; they do not perform any updates!
  Writers – can both read and write  

!
  Problem – allow multiple readers to read at the same time!

  Only one single writer can access the shared data at the same time!

  Several variations of how readers and writers are treated – all involve priorities!

  Shared Data!
  Data set!
  Semaphore rw_mutex initialized to 1!
  Semaphore mutex initialized to 1!
  Integer read_count initialized to 0!

5.36! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Readers-Writers Problem

  The structure of a writer process!
 !
do {
 wait(rw_mutex);

 ...
 /* writing is performed */

 ...

 signal(rw_mutex);

} while (TRUE);

!
!
 !

5.37! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Readers-Writers Problem

  The structure of a reader process!
do {

 wait(mutex);
 read_count++;
 if (read_count == 1)

 wait(rw_mutex);

 signal(mutex);

 ...
 /* reading is performed */

 ...

 wait(mutex);
 read_count--;
 if (read_count == 0)

 signal(rw_mutex);

 signal(mutex);

} while (TRUE);

!
!
 !

5.38! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Readers-Writers Problem Variations

  First variation – no reader kept waiting unless writer has permission to use
shared object!

  Second variation – once writer is ready, it performs write asap!

  Both may have starvation leading to even more variations!

  Problem is solved on some systems by kernel providing reader-writer locks!

5.39! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Dining-Philosophers Problem

  Philosophers spend their lives thinking and eating!
  Don’t interact with their neighbors, occasionally try to pick up 2 chopsticks

(one at a time) to eat from bowl!
  Need both to eat, then release both when done!

  In the case of 5 philosophers!
  Shared data !

 Bowl of rice (data set)!
 Semaphore chopstick [5] initialized to 1!

5.40! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

 Dining-Philosophers Problem Algorithm

  The structure of Philosopher i:!
do {

 wait (chopstick[i]);

 wait (chopStick[(i + 1) % 5]);

 // eat

 signal (chopstick[i]);

 signal (chopstick[(i + 1) % 5]);

 // think

} while (TRUE);

!
  What is the problem with this algorithm?!
  What are possible solutions?!

5.41! Torroni, Real-Time Operating Systems M ©2013!

Tanenbaum’s Solution With Semaphores
enum {THINKING, EATING, HUNGRY} state[5];

semaphore self[5]; // initially: 0

semaphore mutex; // initially: 1

/* i-th philosopher */

while(TRUE) {

 /* THINK */

 pick_up(i);

 /* EAT */

 put_down(i);

}

pick_up(i) {

 wait(mutex);

 state[i] = HUNGRY;

 test(i);

 signal(mutex);

 wait(self[i]);

}

int left(i) { return (i+4)%5; }

int right(i) { return (i+1)%5; }

put_down(i) {

 wait(mutex);

 state[i] = THINKING;

 test(right(i));

 test(left(i));

 signal(mutex);

}

test(i) {

 if(state[i] == HUNGRY

 && state[left(i)] != EATING

 && state[right(i)] != EATING) {

 state[i] = EATING;

 signal(self[i]);

 }

}

5.42! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Problems with Semaphores

  Incorrect use of semaphore operations: 
!
  signal (mutex) …. wait (mutex) 
!

  wait (mutex) … wait (mutex)!

  Omitting of wait (mutex) or signal (mutex) (or both)!

  Deadlock and starvation!

5.43! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Monitors

  A high-level abstraction that provides a convenient and effective mechanism for
process synchronization!

  Abstract data type, internal variables only accessible by code within the procedure!
  Only one process may be active within the monitor at a time!
  But not powerful enough to model some synchronization schemes!

monitor monitor-name
{
 // shared variable declarations
 procedure P1 (…) { …. }

 procedure Pn (…) {……}

 Initialization code (…) { … }
 }
}

5.44! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Schematic view of a Monitor

5.45! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Condition Variables

  condition x, y;!

  Two operations on a condition variable:!
  x.wait () – a process that invokes the operation is suspended until

x.signal () !
  x.signal () – resumes one of processes (if any) that invoked x.wait ()!

  If no x.wait () on the variable, then it has no effect on the variable!

5.46! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

 Monitor with Condition Variables

5.47! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Condition Variables Choices

  If process P invokes x.signal (), with Q in x.wait () state, what should happen
next?!
  If Q is resumed, then P must wait!

  Options include!
  Signal and wait – P waits until Q leaves monitor or waits for another

condition!
  Signal and continue – Q waits until P leaves the monitor or waits for

another condition!

  Both have pros and cons!
 Reasonable to keep P running …!
 … but condition for keeping Q waiting may be false now!

  Language implementer can decide!

5.48! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Solution to Dining Philosophers

monitor DiningPhilosophers {

 enum { THINKING, HUNGRY, EATING } state [5];
 condition self [5];

 void pickup (int i) {
 state[i] = HUNGRY;
 test(i);
 if (state[i] != EATING)
 self[i].wait();
 }

 void putdown (int i) {
 state[i] = THINKING;

 // test left and right neighbors
 test((i + 4) % 5);
 test((i + 1) % 5);
 }

5.49! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Solution to Dining Philosophers

 void test (int i) {
 if ((state[i] == HUNGRY) &&
 (state[(i + 4) % 5] != EATING) &&
 (state[(i + 1) % 5] != EATING)) {
 state[i] = EATING;
 self[i].signal();
 }
 }

 initialization_code() {
 for (int i = 0; i < 5; i++)
 state[i] = THINKING;
 }

}

5.50! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Solution to Dining Philosophers

!
  Each philosopher i invokes the operations pickup() and putdown() in

the following sequence:!

 DiningPhilosophers.pickup (i);

 EAT

 DiningPhilosophers.putdown (i);
!
  No deadlock, but starvation is possible!
!
!
 !

5.51! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Resuming Processes within a Monitor

  If several processes queued on condition x, and x.signal() is executed,
which should be resumed?!

  FCFS frequently not adequate !

  conditional-wait construct of the form x.wait(c)
  Where c is priority number!
  Process with lowest number (highest priority) is scheduled next!

5.52! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

A Monitor to Allocate Single Resource

monitor ResourceAllocator
{

 boolean busy;
 condition x;
 void acquire(int time) {
 if (busy)
 x.wait(time);
 busy = TRUE;
 }
 void release() {
 busy = FALSE;
 x.signal();
 }

initialization code() {
 busy = FALSE;
 }

} ! !!

5.53! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Synchronization Examples

  Solaris!

  Windows XP!

  Linux!

  Pthreads!

5.54! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Solaris Synchronization

  Implements a variety of locks to support multitasking, multithreading (including real-time threads),
and multiprocessing!

  Uses adaptive mutexes for efficiency when protecting data from short code segments!
  Starts as a standard semaphore spin-lock!
  If lock held, and by a thread running on another CPU, spins!
  If lock held by non-run-state thread, block and sleep waiting for signal of lock being released!

  Uses condition variables !
!
  Uses readers-writers locks when longer sections of code need access to data!

  Uses turnstiles to order the list of threads waiting to acquire either an adaptive mutex or reader-
writer lock!
  Turnstiles are per-lock-holding-thread, not per-object!

  Priority-inheritance per-turnstile gives the running thread the highest of the priorities of the threads
in its turnstile!

5.55! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Windows XP Synchronization

  Uses interrupt masks to protect access to global resources on uniprocessor systems!

  Uses spinlocks on multiprocessor systems!
  Spinlocking-thread will never be preempted!

  Also provides dispatcher objects for threads in user-mode, which may act mutexes,
semaphores, events, and timers!

  Events!
  An event acts much like a condition variable!

  Timers notify one or more thread when time expired!
  Dispatcher objects either signaled-state (object available) or non-signaled

state (thread will block)!

5.56! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Linux Synchronization

  Linux:!
  Prior to kernel Version 2.6, disables interrupts to implement short critical

sections!
  Version 2.6 and later, fully preemptive!

  Linux provides:!
  semaphores!
  spinlocks!
  reader-writer versions of both!

  On single-cpu system, spinlocks replaced by enabling and disabling kernel
preemption!

5.57! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Pthreads Synchronization

  Pthreads API is OS-independent!

  It provides:!
  mutex locks!
  condition variables 
!

  Non-portable extensions include:!
  read-write locks!
  spinlocks!

5.58! Torroni, Real-Time Operating Systems M ©2013!

Quizzes

  A wrong wait/signal sequence may cause starvation!
  A wrong wait/signal sequence may cause a deadlock!
  A deadlock-free solution is guaranteed to not cause starvation!
  A x.signal() operation on a condition variable x may have no effect at all!
  Spinlocks are effective especially on single-processor computer systems!
  A way to solve the priority inversion problem is priority inheritance!
  Critical sections should contain a many instructions as possible!
  Peterson’s solution to the critical section problem meets the bounded

waiting requirement!
  Semaphores cannot be implemented on computer architectures that provide

the compare_and_swap() instruction only (test_and_set() is needed)!

5.59! Torroni, Real-Time Operating Systems M ©2013!

Exercise: Sleeping Barber

  Barbershop: !
  barber room with one barber chair!
  waiting room with n chairs!

  One barber process, m customer processes!
  System’s behaviour:!

  If no customers to be served, barber falls asleep!
  If customer enters barbershop and all chairs occupied, customer leaves!
  If barber busy but chairs available, customer sits in one of free chairs!
  If barber asleep, customer wakes up barber!

5.60! Torroni, Real-Time Operating Systems M ©2013!

Exercise: Sleeping Barber

  Use the following semaphores and global variables.!

semaphore mutex = 1;

semaphore customer, barber = 0; // is a customer/the barber available?

int customers = 0; // how may customers are in the barber shop

/* use functions cut_hair(), get_hair_cut(), and leave_shop() to represent actions */

/* a possible solution is in the next page */

5.61! Torroni, Real-Time Operating Systems M ©2013!

Exercise: Sleeping Barber

/* customer */

while(TRUE) {

 wait(mutex);

 if(customers == n+1) {

 signal(mutex);

 leave_shop();

 }

 customers ++;

 signal(mutex);

 signal(customer);

 wait(barber);

 get_hair_cut();

 wait(mutex);

 customers--;

 signal(mutex);

}!
!

/* barber */

while(TRUE) {

 wait(customer);

 signal(barber);

 cut_hair();

}

5.62! Torroni, Real-Time Operating Systems M ©2013!

Exercise: Cigarette Smokers

  Three (chain-) smoker processes, one arbiter process!
  Each smoker continuously rolls a cigarette and smokes it!

 To roll a cigarette, needs tobacco, paper, matches!
 Has infinite supply of only one type of material!

  The arbiter doesn’t smoke!
  The arbiter code is fixed (given)!

  System’s behaviour:!
  Whenever table empty, the arbiter takes two ingredients from two

agents and places the ingredients on the table!
  The smoker with the third ingredient rolls & smokes a cigarette!
  Smokers do not hoard items from the table!
  Each smoker can smoke at most one cigarette at a time!
  The process continues forever!

5.63! Torroni, Real-Time Operating Systems M ©2013!

Exercise: Cigarette Smokers

  Use the following semaphores and global variables. The arbiter is composed of three agents. !
  Three “pushers” are also defined (one per ingredient). A pusher recognizes the presence of a

given ingredient on the table. Then: !
  if another ingredient has been recognized by the relevant pusher, he activates the smoker

with the missing ingredient. !
  Otherwise, he simply sets a shared Boolen variable isX (isPaper, isTobacco or isMatches) to

let the other pushers know that its ingredient is on the table.!

/* semaphores and shared global variables */

semaphore agentSem = 1 // to activate an arbiter agent (see below)

semaphore tobacco, paper, match = 0 // to signal ingredient on table (or wait for it)

semaphore tobaccoSem, paperSem, matchesSem = 0 // to synchronize pushers

semaphore mutex = 1 // to access critical sections

Boolean isPaper, isTobacco, isMatches = FALSE // is there that ingredient on the table?

5.64! Torroni, Real-Time Operating Systems M ©2013!

Exercise: Cigarette Smokers
/* arbiter is composed of three concurrent agents */

/* matches agent */ /* tobacco agent */ /* paper agent */

wait(agentSem); wait(agentSem); wait(agentSem);

signal(tobacco); signal(paper); signal(tobacco);
signal(paper); signal(matches); signal(matches);

/* use the functions make_cigarette() and smoke() to represent actions */

/* a possible solution is in the next page */

5.65! Torroni, Real-Time Operating Systems M ©2013!

Exercise: Cigarette Smokers

  Two pushers are needed to wake up a smoker. !
  The first pusher that executes the critical section only sets the isX variable!
  The second pusher signals the relevant smoker!

  The smoker waits until he is woken up by a pusher: then he makes a cigarette, wakes up a
(random) arbiter, and smokes.!
  Notice that smoking comes after waking up an arbiter agent (why?)!

/* tobacco pusher – the other pushers are similar */

while(TRUE) {

 wait(tobacco);

 wait(mutex);

 if(isPaper) // is second pusher

 { isPaper = FALSE; signal(matchesSem); }

 else if(isMatches) // is second pusher

 { isMatches = FALSE; signal(paperSem); }

 else // is first pusher

 isTobacco = TRUE;

 signal(mutex);

}

/* smoker agent with matches – the
other smoker agents are similar */

while(TRUE) {

 wait(matchesSem);

 make_cigarette();

 signal(agentSem);

 smoke();

}

