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Abstract Continuous-timebranchingprocesses describe the evolution of a populationwhose
individuals generate a random number of children according to a birth process. Such branch-
ing processes can be used to understand preferential attachment models in which the birth
rates are linear functions. We are motivated by citation networks, where power-law citation
counts are observed as well as aging in the citation patterns. To model this, we introduce
fitness and age-dependence in these birth processes. The multiplicative fitness moderates the
rate at which children are born, while the aging is integrable, so that individuals receives
a finite number of children in their lifetime. We show the existence of a limiting degree
distribution for such processes. In the preferential attachment case, where fitness and aging
are absent, this limiting degree distribution is known to have power-law tails. We show that
the limiting degree distribution has exponential tails for bounded fitnesses in the presence of
integrable aging, while the power-law tail is restored when integrable aging is combined with
fitness with unbounded support with at most exponential tails. In the absence of integrable
aging, such processes are explosive.
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1 Introduction

Preferential attachment models (PAMs) aim to describe dynamical networks. As for many
real-world networks, PAMs present power-law degree distributions that arise directly from
the dynamics, and are not artificially imposed as, for instance, in configuration models or
inhomogeneous random graphs.

PAMs were first proposed by Albert and Barabási [1], who defined a random graph model
where, at every discrete time step, a new vertex is added with one or more edges, that are
attached to existing vertices with probability proportional to the degrees, i.e.,

P (vertex (n + 1) is attached to vertex i | graph at time n) ∝ Di (n),

where Di (n) denotes the degree of a vertex i ∈ {1, . . . , n} = [n] at time n. In general,
the dependence of the attachment probabilities on the degree can be through a preferential
attachment function of the degree, also called preferential attachment weights. Such models
are called PAMs with general weight function. According to the asymptotics of the weight
function w(·), the limiting degree distribution of the graph can behave rather differently.
There is an enormous body of literature showing that PAMs present power-law decay in the
limiting degree distribution precisely when the weight function is affine, i.e., it is a constant
plus a linear function. See e.g., [23, Chap. 8] and the references therein. In addition, these
models show the so-called old-get-richer effect, meaning that the vertices of highest degrees
are the vertices present early in the network formation. An extension of this model is called
preferential attachment models with a random number of edges [8], where new vertices are
added to the graph with a different number of edges according to a fixed distribution, and
again power-law degree sequences arise. A generalization that also gives younger vertices
the chance to have high degrees is given by PAMs with fitness as studied in [9,10]. Borgs et
al. [6] present a complete description of the limiting degree distribution of such models, with
different regimes according to the distribution of the fitness, using generalized Polyá’s urns.
An interesting variant of a multi-type PAM is investigated in [20], where the author consider
PAMs where fitnesses are not i.i.d. across the vertices, but they are sampled according to
distributions depending on the fitnesses of the ancestors.

This work is motivated by citation networks, where vertices denote papers and the directed
edges correspond to citations. For such networks, other models using preferential attachment
schemes and adaptations of them have been proposed mainly in the physics literature. Aging
effects, i.e., considering the age of a vertex in its likelihood to obtain children, have been
extensively considered as the starting point to investigate their dynamics [7,11,12,25,26].
Here the idea is that old papers are less likely to be cited than new papers. Such aging has been
observed inmanycitationnetworkdatasets andmakesPAMswithweight functions depending
only on the degree ill-suited for them. As mentioned above, such models could more aptly
be called old-get-richer models, i.e., in general old vertices have the highest degrees. In
citation networks, instead, papers with many citations appear all the time. Barabási, Wang
and Song [24] investigate a model that incorporates these effects. On the basis of empirical
data, they suggest a model where the aging function follows a lognormal distribution with
paper-dependent parameters, and the preferential attachment function is the identity. In [24],
the fitness function is estimated rather than the more classical approach where it is taken to
be i.i.d. Hazoglou et al. in [13] propose a similar dynamics for citation evolution , but only
considering the presence of aging and cumulative advantage without fitness.

Tree models, arising when new vertices are added with only one edge, have been ana-
lyzed in [2,3,21,22] and lead to continuous-time branching processes (CTBP). The degree
distributions in tree models show identical qualitative behavior as for the non-tree setting,
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The Dynamics of Power Laws: Fitness… 1139

while their analysis is much simpler. Motivated by this and the wish to understand the quali-
tative behavior of PAMs with general aging and fitness, the starting point of our model is the
CTBP or tree setting. Such processes have been intensively studied, due to their applications
in other fields, such as biology. Detailed and rigorous analysis of CTBPs can be found in
[2–5,14,17,22]. A CTBP consists of individuals, whose children are born according to cer-
tain birth processes, these processes being i.i.d. across the individuals in the population. The
birth processes (Vt )t≥0 are defined in term of point or jump processes on N [14,17], where
the birth times of children are the jump times of the process, and the number of children of
an individual at time t ∈ R

+ is given by Vt .
In the literature, the CTBPs are used as a technical tool to study PAMs [3,20,22]. Indeed,

the CTBP at the nth birth time follows the same law as the PAM consisting of n vertices. In
[3,22], the authors prove an embedding theorem between branching processes and pref-
erential attachment trees, and give a description of the degree distribution in terms of the
asymptotic behavior of the weight function w(·). In particular, a power-law degree distribu-
tion is present in the case of (asymptotically) linear weight functions [21]. In the sub-linear
case, instead, the degree distribution is stretched-exponential, while in the super-linear case
it collapses, in the sense that one of the first vertices will receive all the incoming new edges
after a certain step [18]. Due to the apparent exponential growth of the number of nodes in
citation networks, we view the continuous-time process as the real network, which deviates
from the usual perspective. Because of its motivating role in this paper, let us now discuss
the empirical properties of citation networks in detail.

1.1 Citation Networks Data

Let us now discuss the empirical properties of citation networks in more detail. We analyze
the Web Of Science database, focusing on three different fields of science: Probability and
Statistics (PS), Electrical Engineering (EE) and Biotechnology and Applied Microbiology
(BT). We first point out some characteristics of citation networks that we wish to replicate
in our models.

Real-world citation networks possess five main characteristics:

(1) In Fig. 1, we see that the number of scientific publications grows exponentially in time.
While this is quite prominent in the data, it is unclear how this exponential growth arises.

Fig. 1 Number of publication
per year (logarithmic Y axis)
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Fig. 2 Loglog plot for the
in-degree distribution tail in
citation networks
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Fig. 3 Degree distribution for papers from 1984 over time
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Fig. 4 Time evolution for the number of citations of samples of 20 randomly chosen papers from 1980 for
PS and EE, and from 1982 for BT

This could either be due to the fact that the number of journals that are listed in Web Of
Science grows over time, or that journals contain more and more papers.

(2) In Fig. 2, we notice that these datasets have empirical power-law citation distributions.
Thus, most papers attract few citations, but the amount of variability in the number
of citations is rather substantial. We are also interested in the dynamics of the citation
distribution of the papers published in a given year, as time proceeds. This can be
observed in Fig. 3. We see a dynamical power law, meaning that at any time the degree
distribution is close to a power law, but the exponent changes over time (and in fact
decreases, which corresponds to heavier tails). When time grows quite large, the power
law approaches a fixed value.

(3) In Fig. 4, we see that the majority of papers stop receiving citations after some time,
while few others keep being cited for longer times. This inhomogeneity in the evolution
of node degrees is not present in classical PAMs, where the degree of every fixed vertex
grows as a positive power of the graph size. Figure 4 shows that the number of citations
of papers published in the same year can be rather different, and the majority of papers
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Fig. 5 Average degree increment over a 20-years time window for papers published in different years. PS
presents an aging effect different from EE and BT, showing that papers in PS receive citations longer than
papers in EE and BT
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Fig. 6 Linear dependence between past and future number of citations for papers from 1988

actually stop receiving citations quite soon. In particular, after a first increase, the average
increment of citations decreases over time (see Fig. 5). We observe a difference in this
aging effect between the PS dataset and the other two datasets, due to the fact that in PS,
scientists tend to cite older papers than in EE or BT. Nevertheless the average increment
of citations received by papers in different years tends to decrease over time for all three
datasets.

(4) Figure 6 shows the linear dependence between the past number of citations of a paper
and the future ones. Each plot represents the average number of citations received by
papers published in 1984 in the years 1993, 2006 and 2013 according to the initial
number of citations in the same year. At least for low values of the starting number
of citations, we see that the average number of citations received during a year grows
linearly. This suggests that the attractiveness of a paper depends on the past number of
citations through an affine function.

(5) A last characteristic that we observe is the lognormal distribution of the age of cited
papers. In Fig. 7, we plot the distribution of cited papers, looking at references made
by papers in different years. We have used a 20 years time window in order to compare
different citing years. Notice that this lognormal distribution seems to be very similar
within different years, and the shape is similar over different fields.

Let us now explain how we translate the above empirical characteristics into our model.
First, CTBPs grow exponentially over time, as observed in citation networks. Secondly, the
aging present in citation networks, as seen both in Figs. 4 and 5, suggests that citation rates
become smaller for large times, in such a way that typical papers stop receiving citations at
some (random) point in time. The hardest characteristic to explain is the power-law degree
sequence. For this, we note that citations of papers are influenced by many external factors
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Fig. 7 Distribution of the age of cited papers for different citing years

that affect the attractiveness of papers (the journal, the authors, the topic,…). Since this cannot
be quantified explicitly, we introduce another source of randomness in our birth processes
that we call fitness. This appears in the form of multiplicative factors of the attractiveness of
a paper, and for lack of better knowledge, we take these factors to be i.i.d. across papers, as
often assumed in the literature. These assumptions are similar in spirit as the ones by Barabási
et al. [24], which were also motivated by citation data, and we formalize and extend their
results considerably. In particular, we give the precise conditions under which power-law
citation counts are observed in this model.

Our main goal is to define CTBPs with both aging as well as random fitness that keep
having a power-law decay in the in-degree distribution. Before discussing our model in detail
in Sect. 2, we present the heuristic ideas behind it as well as the main results of this paper.

1.2 Our Main Contribution

The crucial point of this work is to show that it is possible to obtain power-law degree
distributions in preferential attachment trees where the birth process is not just depending on
an asymptotically linear weight sequence, in the presence of integrable aging and fitness. Let
us now briefly explain how these two effects change the behavior of the degree distribution.

Integrable Aging and Affine Preferential Attachment Without Fitness In the presence
of aging but without fitness, we show that the aging effect substantially slows down the birth
process. In the case of affine weights, aging destroys the power-law of the stationary regime,
generating a limiting distribution that consists of a power law with exponential truncation.
We prove this under reasonable conditions on the underlying aging function (see Lemma
5.1).

Integrable Aging and Super-Linear Preferential Attachment Without Fitness Since the
aging destroys the power-law of the affine PAcase, it is natural to askwhether the combination
of integrable aging and super-linearweights restores the power-law limiting degree distribu-
tion. Theorem2.3 states that this is not the case, as super-linearweights imply explosiveness of
the branching process, which is clearly unrealistic in the setting of citation networks (here, we
call a weight sequence k �→ fk super-linearwhen

∑
k≥1 1/ fk < ∞). This result is quite gen-

eral, because it holds for any integrable aging function. Due to this, it is impossible to obtain
power-laws from super-linear preferential attachment weights. This suggests that (apart from
slowly-varying functions), affine preferential attachment weights have the strongest possible
growth, while maintaining exponential (and thus, in particular, non-explosive) growth.

Integrable Aging and Affine Preferential Attachment with Unbounded Fitness In the
case of aging and fitness, the asymptotic behavior of the limiting degree distribution is rather
involved. We estimate the asymptotic decay of the limiting degree distribution with affine
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weights in Proposition 5.5. With the example fitness classes analyzed in Sect. 5.3, we prove
that power-law tails are possible in the setting of aging and fitness, at least when the fitness
has roughly exponential tail. So far, PAMs with fitness required the support of the fitness
distribution to be bounded. The addition of aging allows the support of the fitness distribution
to be unbounded, a feature that seems reasonable to us in the context of citation networks.
Indeed, the relative attractivity of one paper compared to another one can be enormous, which
is inconsistent with a bounded fitness distribution. While we do not know precisely what the
necessary and sufficient conditions are on the aging and the fitness distribution to assure a
power-law degree distribution, our results suggests that affine PA weights with integrable
aging and fitnesses with at most an exponential tail in general do so, a feature that was not
observed before.

Dynamical Power Laws In the case of fitness with exponential tails, we further observe that
the number of citations of a paper of age t has a power-law distribution with an exponent
that depends on t . We call this a dynamical power law, and it is a possible explanation of the
dynamical power laws observed in citation data (see Fig. 3).

Universality An interesting and highly relevant observation in this paper is that the limiting
degree distribution of preferential attachment treeswith aging andfitness shows ahigh amount
of universality. Indeed, for integrable aging functions, the dependence on the precise choice
of the aging function seems to be minor, except for the total integral of the aging function.
Further, the dependence on fitness is quite robust as well.

2 Our Model and Main Results

In this paper we introduce the effect of aging and fitness in CTBP populations, giving rise to
directed trees. Our model is motivated by the study of citation networks, which can be seen
as directed graphs. Trees are the simplest case in which we can see the effects of aging and
fitness. Previous work has shown that PAMs can be obtained from PA trees by collapsing, and
their general degree structure can be quite well understood from those in trees. For example,
PAMs with fixed out-degree m ≥ 2 can be defined through a collapsing procedure, where
a vertex in the multigraph is formed by m ∈ N vertices in the tree (see [23, Sect. 8.2]). In
this case, the limiting degree distribution of the PAM preserve the structure of the tree case
([23, Sect. 8.4], [5, Sect. 5.7]). This explains the relevance of the tree case results for the
study of the effect of aging and fitness in PAMs. It could be highly interesting to prove this
rigorously.

2.1 Our CTBP Model

CTBPs represent a population made of individuals producing children independently from
each other, according to i.i.d. copies of a birth process on N. We present the general theory
of CTBPs in Sect. 3, where we define such processes in detail and we refer to general results
that are used throughout the paper. In general, considering a birth process (Vt )t≥0 on N,
every individual in the population has an i.i.d. copy of the process (Vt )t≥0, and the number
of children of individual x at time t is given by the value of the process V x

t . We consider
birth processes defined by a sequence of weights ( fk)k∈N describing the birth rates. Here,
the time between the kth and the (k + 1)st jump is exponentially distributed with parameter
fk . The behavior of the whole population is determined by this sequence.
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1144 A. Garavaglia et al.

The fundamental theorem for the CTBPs that we study is Theorem 3.10 quoted in Sect.
3. It states that, under some hypotheses on the birth process (Vt )t≥0, the population grows
exponentially in time, which nicely fits the exponential growth of scientific publications as
indicated in Fig. 1. Further, using a so-called random vertex characteristic as introduced in
[14], a complete class of properties of the population can be described, such as the fraction
of individuals having k children, as we investigate in this paper. The two main properties
are stated in Definitions 3.8 and 3.9, and are called supercritical andMalthusian properties.
These properties require that there exists a positive value α∗ such that

E
[
VTα∗

] = 1, and − d

dα
E
[
VTα

]
∣
∣
∣
∣
α=α∗

< ∞,

where Tα denotes an exponentially distributed random variable with rate α independent of the
process (Vt )t≥0. The unique value α∗ that satisfies both conditions is called the Malthusian
parameter, and it describes the exponential growth rate of the population size. The aim is to
investigate the ratio

number of individuals with k children at time t

size total population at time t
.

According to Theorem 3.10, this ratio converges almost surely to a deterministic limiting
value pk . The sequence (pk)k∈N, which we refer to as the limiting degree distribution of the
CTBP (see Definition 3.12), is given by

pk = E
[
P (Vu = k)u=Tα∗

]
.

The starting idea of our model of citation networks is that, given the history of the process
up to time t ,

the rate of an individual of age t and k children to generate a new child is Y fkg(t), (2.1)

where fk is a non-decreasing PA function of the degree, g is an integrable function of time, and
Y is a positive random variable called fitness. Therefore, the likelihood to generate children
increases by having many children and/or a high fitness, while it is reduced by age.

Recalling Fig. 6, we assume that the PA function f is affine, so fk = ak + b. In terms of
a PA scheme, this implies

P (a paper cites another with past k citations | past) ≈ n(k)(ak + b)

A
,

where n(k) denotes the number of papers with k past citations, and A is the normalization
factor. Such behavior has already been observed by Redner [19] and Barabási et al. [15]).

We assume throughout the paper that the aging function g is integrable. In fact, we start by
the fact that the age of cited papers is lognormally distributed (recall Fig. 7). By normalizing
such a distribution by the average increment in the number of citations of papers in the selected
time window, we identify a universal function g(t). Such function can be approximated by a
lognormal shape of the form

g(t) ≈ c1e
−c2(log(t+1)−c3)2 ,

for c1, c2 and c3 field-dependent parameters. In particular, from the procedure used to define
g(t), we observe that

g(t) ≈ number of references to year t

number of papers of age t

total number of papers considered

total number of references considered
,
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which means in terms of PA mechanisms that

P (a paper cites another of age t | past) ≈ n(t)g(t)

B
,

where B is the normalization factor, while this time n(t) is the number of paper of age t .
This suggests that the citing probability depends on age through a lognormal aging function
g(t), which is integrable. This is one of the main assumptions in our model, as we discuss in
Sect. 1.2.

It is known from the literature [2,21,22] that CTBPs show power-law limiting degree
distributions when the infinitesimal rates of jump depend only on a sequence ( fk)k∈N that
is asymptotically linear. Our main aim is to investigate whether power-laws can also arise
in branching processes that include aging and fitness. The results are organized as follows.
In Sect. 2.2, we discuss the results for CTBPs with aging in the absence of fitness. In Sect.
2.3, we present the results with aging and fitness. In Sect. 2.4, we specialize to fitness with
distributions with exponential tails, where we show that the limiting degree distribution is a
power law with a dynamic power-law exponent.

2.2 Results with Aging Without Fitness

In this section, we focus on aging in PA trees in the absence of fitness. The aging process can
then be viewed as a time-changed stationary birth process (see Definition 3.13). A stationary
birth process is a stochastic process (Vt )t≥0 such that, for h small enough,

P (Vt+h = k + 1 | Vt = k) = fkh + o(h).

In general, we assume that k �→ fk is increasing. The affine case arises when fk = ak + b
with a, b > 0. By our observations in Fig. 6, as well as related works [15,19], the affine case
is a reasonable approximation for the attachment rates in citation networks.

For a stationary birth process (Vt )t≥0, under the assumption that it is supercritical and
Malthusian, the limiting degree distribution (pk)k∈N of the corresponding branching process
is given by

pk = α∗

α∗ + fk

k−1∏

i=0

fi
α∗ + fi

. (2.2)

For a more detailed description, we refer to Sect. 3.2. Branching processes defined by sta-
tionary processes (with no aging effect) have a so-called old-get-richer effect. As this is
not what we observe in citation networks (recall Fig. 4), we want to introduce aging in the
reproduction process of individuals. The aging process arises by adding age-dependence in
the infinitesimal transition probabilities:

Definition 2.1 (Aging birth processes) Consider a non-decreasing PA sequence ( fk)k∈N of
positive real numbers and an aging function g : R

+ → R
+. We call a stochastic process

(Nt )t≥0 an aging birth process (without fitness) when

(1) N0 = 0, and Nt ∈ N for all t ∈ N;
(2) Nt ≤ Ns for every t ≤ s;
(3) for fixed k ∈ N and t ≥ 0, as h → 0,

P (Nt+h = k + 1 | Nt = k) = fkg(t)h + o(h).

Agingprocesses are time-rescaledversions of the corresponding stationary process defined
by the same sequence ( fk)k∈N. In particular, for any t ≥ 0, Nt has the same distribution as
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VG(t), where G(t) = ∫ t
0 g(s)ds. In general, we assume that the aging function is integrable,

which means that G(∞) := ∫∞
0 g(s)ds < ∞. This implies that the number of children of a

single individual in its entire lifetime has distribution VG(∞), which is finite in expectation.
In terms of citation networks, this assumption is reasonable since we do not expect papers to
receive an infinite number of citations ever (recall Fig. 5). Instead, for the stationary process
(Vt )t≥0 in Definition 3.13, we have that P-a.s. Vt → ∞, so that also the aging process
diverges P-a.s. when G(∞) = ∞.

For aging processes, the main result is the following theorem, proven in Sect. 4. In its
statement, we rely on the Laplace transform of a function. For a precise definition of this
notion, we refer to Sect. 3:

Theorem 2.2 (Limiting distribution for aging branching processes) Consider an integrable
aging function g and a PA sequence ( fk)k∈N. Denote the corresponding aging birth process
by (Nt )t≥0. Then, assuming that (Nt )t≥0 is supercritical and Malthusian, the limiting degree
distribution of the branching process N defined by the birth process (Nt )t≥0 is given by

pk = α∗

α∗ + fkL̂g(k, α∗)

k−1∏

i=0

fi L̂g(i, α∗)
α∗ + fi L̂g(i, α∗)

, (2.3)

whereα∗ is theMalthusian parameter of N . Here, the sequence of coefficients (L̂g(k, α∗))k∈N

appearing in (2.3) is given by

L̂g(k, α∗) = L(P (N· = k) g(·))(α∗)
L(P (N· = k))(α∗)

, (2.4)

where, for h : R
+ → R, L(h(·))(α) denotes the Laplace transform of h.

Further, considering a fixed individual in the branching population, the total number of
children in its entire lifetime is distributed as VG(∞), where G(∞) is the L1-norm of g.

The limiting degree distributionmaintains a product structure as in the stationary case (see
(2.2) for comparison). Unfortunately, the analytic expression for the probability distribution
(pk)k∈N in (2.3) given by the previous theorem is not explicit. In the stationary case, the form
reduces to the simple expression in (2.2).

In general, the asymptotics of the coefficients (L̂g(k, α∗))k∈N is unclear, since it depends
both on the aging function g as well as the PA weight sequence ( fk)k∈N itself in an intricate
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Fig. 8 Examples of stationary and aging limit degree distributions
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way. In particular, we have no explicit expression for the ratio in (2.4), except in special
cases. In this type of birth process, the cumulative advantage given by ( fk)k∈N and the aging
effect given by g cannot be separated from each other.

Numerical examples in Fig. 8 show how aging destroys the power-law degree distribution.
In each of the two plots, the limiting degree distribution of a stationary process with affine PA
weights gives a power-law degree distribution, while the process with two different integrable
aging functions does not. In the examples we have used g(t) = e−λt and g(t) = (1 + t)−λ

for some λ > 1, and we observe the insensitivity of the limiting degree distribution with
respect to g. The distribution given by (2.3) can be seen as the limiting degree distribution
of a CTBP defined by preferential attachment weight ( fkL̂g(k, α∗))k∈N. This suggests that
fkL̂g(k, α∗) is not asymptotically linear in k.
In Sect. A.2, we investigate the two examples in Fig. 8, showing that the limiting degree

distribution has exponential tails, a fact that we know in general just as an upper bound (see
Lemma 5.3).

In order to apply the general CTBP result in Theorem 3.10 below, we need to prove that
an aging process (Nt )t≥0 is supercritical and Malthusian. We show in Sect. 4 that, for an
integrable aging function g, the corresponding process is supercritical if and only if

lim
t→∞ E

[
VG(t)

] = E
[
VG(∞)

]
> 1. (2.5)

Condition (2.5) heuristically suggests that the process (Nt )t≥0 has a Malthusian parameter if
and only if the expected number of children in the entire lifetime of a fixed individual is larger
than one, which seems quite reasonable. In particular, such a result follows from the fact that
if g is integrable, then the Laplace transform is always finite for every α > 0. In other words,
since NTα∗ has the same distribution as VG(Tα∗ ), E[NTα∗ ] is always bounded by E[VG(∞)].
This implies that G(∞) cannot be too small, as otherwise the Malthusian parameter would
not exist, and the CTBP would die out P-a.s.

The aging effect obviously slows down the birth process, and makes the limiting degree
distribution have exponential tails for affine preferential attachmentweights.Onemaywonder
whether the power-law degree distribution could be restored when ( fk)k∈N grows super-
linearly instead. Here, we say that a sequence of weights ( fk)k∈N grows super-linearly when∑

k≥1 1/ fk < ∞ (see Definition 3.16). In the super-linear case, however, the branching
process is explosive, i.e., for every individual the probability of generating an infinite number
of children in finite time is 1. In this situation, the Malthusian parameter does not exist, since
the Laplace transform of the process is always infinite. One could ask whether, by using an
integrable aging function, this explosive behavior is destroyed. The answer to this question
is given by the following theorem:

Theorem 2.3 (Explosive aging branching processes for super-linear attachment weights)
Consider a stationary process (Vt )t≥0 defined by super-linear PA weights ( fk)k∈N. For any
aging function g, the corresponding non-stationary process (Nt )t≥0 is explosive.

The proof of Theorem 2.3 is rather simple, and is given in Sect. 4.2. We investigate the
case of affine PA weights fk = ak + b in more detail in Sect. 5.1. Under a hypothesis on
the regularity of the integrable aging function, in Proposition 5.2, we give the asymptotic
behavior of the corresponding limiting degree distribution. In particular, as k → ∞,

pk = C1
�(k + b/a)

�(k + 1)
e−C2kG(k, g)(1 + o(1)),

for some positive constants C1,C2. The term G(k, g) is a function of k, the aging function g
and its derivative. The precise behavior of such term depends crucially on the aging function.
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Apart from this, we notice that aging generates an exponential term in the distribution, which
explains the two examples in Fig. 8. In Sect. A.2, we prove that the two limiting degree
distributions in Fig. 8 indeed have exponential tails.

2.3 Results with Aging and Fitness

The analysis of birth processes becomes harder when we also consider fitness. First of all,
we define the birth process with aging and fitness as follows:

Definition 2.4 (Aging birth process with fitness) Consider a birth process (Vt )t≥0. Let
g : R

+ → R
+ be an aging function, and Y a positive random variable. The process

Mt := VYG(t) is called a birth process with aging and fitness.

Definition 2.4 implies that the infinitesimal jump rates of the process (Mt )t≥0 are as in
(2.1), so that the birth probabilities of an individual depend on the PA weights, the age of
the individual and on its fitness. Assuming that the process (Mt )t≥0 is supercritical and
Malthusian, we can prove the following theorem:

Theorem 2.5 (Limiting degree distribution for aging and fitness) Consider a process
(Mt )t≥0 with integrable aging function g, fitnesses that are i.i.d. across the population,
and assume that it is supercritical and Malthusian with Malthusian parameter α∗. Then, the
limiting degree distribution for the corresponding branching process is given by

pk = E

[
α∗

α∗ + fkY L̂(k, α∗, Y )

k−1∏

i=0

fi Y L̂(i, α∗, Y )

α∗ + fi Y L̂(i, α∗, Y )

]

.

For a fixed individual, the distribution (qk)k∈N of the number of children it generates over
its entire lifetime is given by

qk = P
(
VYG(∞) = k

)
.

Similarly to Theorem 2.2, the sequence (L̂(k, α∗, Y ))k∈N is given by

L̂(k, α∗, Y ) =
(
L(P

(
VuG(·) = k

)
g(·))(α∗)

L(P
(
VuG(·) = k

)
)(α∗)

)

u=Y

,

where again L(h(·))(α) denotes the Laplace transform of a function h. Notice that in this
case, with the presence of the fitness Y , this sequence is no longer deterministic but random
instead. We still have the product structure for (pk)k∈N as in the stationary case, but now we
have to average over the fitness distribution.

We point out that Theorem 2.2 is a particular case of Theorem 2.5, when we consider
Y ≡ 1. We state the two results as separate theorems to improve the logic of the presentation.
We prove Theorem 2.5 in Sect. 4.1. In Sect. 4.2 we show how Theorem 2.2 can be obtained
from Theorem 2.5, and in particular how Condition (2.5) is obtained from the analogous
Condition (2.6) stated below for general fitness distributions.

With affine PAweights, in Proposition 5.5, we can identify the asymptotics of the limiting
degree distribution we obtain. This is proved by similar techniques as in the case of aging
only, even though the result cannot be expressed so easily. In particular, we prove

pk = �(k + b/a)

�(b/a)�(k + 1)

2π√
det(kHk(tk, sk))

e−k�k (tk ,sk )P (N1 ≥ −tk,N2 ≥ −sk) (1 + o(1)),
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where the function �k(t, s) depends on the aging function, the density μ of the fitness and
k. The point (tk, sk) is the absolute minimum of �k(t, s), Hk(t, s) is the Hessian matrix of
�k(t, s), and (N1,N2) is a bivariate normal vector with covariancematrix related to Hk(t, s).
We do not know the necessary and sufficient conditions for the existence of such a minimum
(tk, sk). However, in Sect. 5.3, we consider two examples where we can apply this result, and
we show that it is possible to obtain power-laws for them.

In the case of aging and fitness, the supercriticality condition in (2.5) is replaced by the
analogous condition that

E
[
VYG(t)

]
< ∞ for every t ≥ 0 and lim

t→∞ E
[
VYG(t)

]
> 1. (2.6)

Borgs et al. [6] and Dereich [9,10] prove results on stationary CTBPs with fitness. In these
works, the authors investigate models with affine dependence on the degree and bounded
fitness distributions. This is necessary since unbounded distributions with affine weights are
explosive and thus do not haveMalthusian parameter.We refer to Sect. 3.3 for amore precise
discussion of the conditions on fitness distributions.

In the case of integrable aging and fitness, it is possible to consider affine PAweights, even
with unbounded fitness distributions, as exemplified by (2.6). In particular, for fk = ak + b,

E[Vt ] = b

a

(
eat − 1

)
.

As a consequence, Condition (2.6) can be written as

∀t ≥ 0 E

[
eaYG(t)

]
< ∞ and lim

t→∞ E

[
eaYG(t)

]
> 1 + a

b
. (2.7)

The expected value E
[
eaYG(t)

]
is the moment generating function of Y evaluated in aG(t).

In particular, a necessary condition to have a Malthusian parameter is that the moment
generating function is finite on the interval [0, aG(∞)). As a consequence, denoting E[esY ]
by ϕY (s), we have effectively moved from the condition of having bounded distributions to
the condition

ϕY (x) < +∞ on [0, aG(∞)), and lim
x→aG(∞)

ϕY (x) >
a + b

a
. (2.8)

Condition (2.8) is weaker than assuming a bounded distribution for the fitness Y , which
means we can consider a larger class of distributions for the aging and fitness birth processes.
Particularly for citation networks, it seems reasonable to have unbounded fitnesses, as the
relative popularity of papers varies substantially.

2.4 Dynamical Power-Laws for Exponential Fitness and Integrable Aging

In Sect. 5.3 we introduce three different classes of fitness distributions, for which we give
the asymptotics for the limiting degree distribution of the corresponding CTBP.

The first class is called heavy-tailed. Recalling (2.8), any distribution Y in this class
satisfies, for any t > 0,

ϕY (t) = E

[
etY
]

= +∞. (2.9)

These distributions have a tail that is thicker than exponential. For instance, power-law
distributions belong to this first class. Similarly to unbounded distributions in the stationary
regime, such distributions generate explosive birth processes, independent of the choice of
the integrable aging functions.
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The second class is called sub-exponential. The density μ of a distribution Y in this class
satisfies

∀ β > 0, lim
s→+∞ μ(s)eβs = 0. (2.10)

An example of this class is the density μ(s) = Ce−θs1+ε
, for some ε,C, θ > 0. For such

density, we show in Proposition 5.7 that the corresponding limiting degree distribution has a
thinner tail than a power-law.

The third class is called general-exponential. The density μ of a distribution Y in this
class is of the form

μ(s) = Ch(s)e−θs, (2.11)

where h(s) is a twice differentiable function such that h′(s)/h(s) → 0 and h′′(s)/h(s) →
0 as s → ∞, and C is a normalization constant. For instance, exponential and Gamma
distributions belong to this class. From (2.8), we know that in order to obtain a non-explosive
process, it is necessary to consider the exponential rate θ > aG(∞). We will see that the
limiting degree distribution obeys a power law as θ > aG(∞) with tails becoming thinner
when θ increases.

For a distribution in the general exponential class, as proven in Proposition 5.6, the limiting
degree distribution of the corresponding CTBP has a power-law term, with slowly-varying
corrections given by the aging function g and the function h. We do not state Propositions
5.6 and 5.7 here, as these need notation and results from Sect. 5.1. For this reason, we only
state the result for the special case of purely exponential fitness distribution:

Corollary 2.6 (Exponential fitness distribution) Let the fitness distribution Y be exponen-
tially distributed with parameter θ , and let g be an integrable aging function. Assume that
the corresponding birth process (Mt )t≥0 is supercritical and Malthusian. Then, the limiting
degree distribution (pk)k∈N of the corresponding CTBP M is

pk = E

[
θ

θ + fkG(Tα∗)

k−1∏

i=0

fi G(Tα∗)

θ + fi G(Tα∗)

]

.

The distribution (qk)k∈N of the number of children of a fixed individual in its entire lifetime
is given by

qk = θ

θ + G(∞) fk

k−1∏

i=0

G(∞) fi
θ + G(∞) fi

.

Using exponential fitnessmakes the computation of the Laplace transform and the limiting
degree distribution easier.We refer to Sect. 5.4 for the precise proof. In particular, the sequence
defined in Corollary 2.6 is very similar to the limiting degree distribution of a stationary
process with a bounded fitness. Let (ξYt )t≥0 be a birth process with PA weights ( fk)k∈N and
fitness Y with bounded support. As proved in [10, Corollary 2.8], and as we show in Sect.
3.3, the limiting degree distribution of the corresponding branching process, assuming that
(ξYt )t≥0 is supercritical and Malthusian, has the form

pk = E

[
α∗

α∗ + Y fk

k−1∏

i=0

Y fi
α∗ + Y fi

]

= P

(
ξYTα∗ = k

)
.

We notice the similarities with the limiting degree sequence given by Corollary 2.6. When g
is integrable, the random variable G(Tα∗) has bounded support. In particular, we can rewrite
the sequence of the Corollary 2.6 as
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pk = P

(
ξ
G(Tα∗ )

Tθ
= k

)
.

As a consequence, the limiting degree distribution of the process (Mt )t≥0 equals that of a
stationary process with fitness G(Tα∗) and Malthusian parameter θ .

In the case where Y has exponential distribution and the PAweights are affine, we can also
investigate the occurrence of dynamical power laws. In fact, with (Mt )t≥0 such a process,
the exponential distribution Y leads to

Pk[M](t) = P (Mt = k) = θ

θ + fkG(t)

k−1∏

i=0

fi G(t)

θ + fi G(t)

= θ

aG(t)

�((b+θ)/(aG(t))

�(aG(t))

�(k+b/(aG(t)))

�(k + b/(aG(t)) + 1 + θ/(aG(t)))
.

(2.12)

Here, Mt describes the number of children of an individual of age t . In other words, (P(Mt =
k))k∈N is a distribution such that, as k → ∞,

Pk[M](t) = P (Mt = k) = k−(1+θ/aG(t))(1 + o(1)).

This means that for every time t ≥ 0, the random variable Mt has a power-law distribution
with exponent τ(t) = 1 + θ/aG(t) > 2. In particular, for every t ≥ 0, Mt has finite
expectation. We call this behavior where power laws occur that vary with the age of the
individuals a dynamical power law. This occurs not only in the case of pure exponential
fitness, but in general for every distribution as in (2.11), as shown in Proposition 5.6 below.

Further, we see that when t → ∞, the dynamical power-law exponent coincides with the
power-law exponent of the entire population. Indeed, the limiting degree distribution equals

pk = E

[

θ/(aG(Tα∗ )))
�(θ/(aG(Tα∗ )) + b/(aG(Tα∗ ))

�(b/(aG(Tα∗ )))

�(k + b/(aG(Tα∗ )))

�(k + b/(aG(Tα∗ )) + 1 + θ/(aG(Tα∗ )))

]

.

(2.13)

In Fig. 9, we show a numerical example of the dynamical power-law for a process with
exponential fitness distribution and affineweights.When time increases, the power-law expo-
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Fig. 9 Degree distribution for simulated processes with fitness, aging and affine weights. We considered
a = 1, b = 3.1567, exponentially distributed fitness with parameter θ = 2.3866, and normalized lognormal
aging function. Simulations made at different times show the change of the power-law exponent
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Fig. 10 Example of limiting degree distribution for branching processes

nent monotonically decreases to the limiting exponent τ ≡ τ(∞) > 2, which means that the
limiting distribution still has finite first moment. Note the similarity to the case of citation
networks in Fig. 3.

When t → ∞, the power-law exponent converges, and also Mt converges in distribution
to a limiting random distribution M∞ given by

qk = P (M∞ = k)= θ

aG(∞)

�((b + θ)/(aG(∞))

�(b/(aG(∞)))

�(k + b/(aG(∞)))

�(k + b/(aG(∞))+1 + θ/(aG(∞)))
.

(2.14)

M∞ has a power-law distribution, where the power-law exponent is

τ = lim
t→∞ τ(t) = 1 + θ/(aG(∞)) > 2.

In particular, since τ > 2, a fixed individual has finite expected number of children also in its
entire lifetime, unlike the stationary case with affine weights. In terms of citation networks,
this type of processes predicts that papers do not receive an infinite number of citations after
they are published (recall Fig. 5).

Figure 8 shows the effect of aging on the stationary process with affine weights, where the
power-law is lost due to the aging effect. Thus, aging slows down the stationary process, and
it is not possible to create the amount of high-degree vertices that are present in power-law
distributions. Fitness can speed up the aging process to gain high-degree vertices, so that the
power-law distribution is restored. This is shown in Fig. 10, where aging is combined with
exponential fitness for the same aging functions as in Fig. 8.

In the stationary case, it is not possible to use unbounded distributions for the fitness to
obtain a Malthusian process if the PA weights ( fk)k∈N are affine. In fact, using unbounded
distributions, the expected number of children at exponential time Tα is not finite for any
α > 0, i.e., the branching process is explosive. The aging effect allows us to relax the
condition on the fitness, and the restriction to bounded distributions is relaxed to a condition
on its moment generating function.

2.5 Conclusion and Open Problems

Beyond the Tree Setting In this paper, we only consider the tree setting, which is clearly
unrealistic for citation networks.However, the analysis of PAMshas shown that the qualitative
features of the degree distribution for PAMs are identical to those in the tree setting. Proving
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this remains an open problem that we hope to address hereafter. Should this indeed be the
case, then we could summarize our findings in the following simple way: The power-law
tail distribution of PAMs is destroyed by integrable aging, and cannot be restored either by
super-linear weights or by adding bounded fitnesses. However, it is restored by unbounded
fitnesses with at most an exponential tail. Part of these results are example based, while we
have general results proving that the limiting degree distribution exists.

Structure of thePaperThe present paper is organized as follows. In Sect. 3, we quote general
results on CTBPs, in particular Theorem 3.10 that we use throughout our proofs. In Sect. 3.2,
we describe known properties of the stationary regime. In Sect. 3.3, we briefly discuss the
Malthusian parameter, focusing on conditions on fitness distributions to obtain supercritical
processes. In Sect. 4, we prove Theorems 2.3 and 2.5, and we show how Theorem 2.2 is a
particular case of Theorem 2.5. In Sect. 5 we specialize to the case of affine PA function,
giving precise asymptotics.

3 General Theory of Continuous-Time Branching Processes

3.1 General Set-Up of the Model

In this sectionwepresent the general theoryof continuous-timebranchingprocesses (CTBPs).
In such models, individuals produce children according to i.i.d. copies of the same birth
process. We now define birth processes in terms of point processes:

Definition 3.1 (Point process) A point process ξ is a random variable from a probability
space (,A, P) to the space of integer-valued measures on R

+.

A point process ξ is defined by a sequence of positive real-valued random variables
(Tk)k∈N. With abuse of notation, we can denote the density of the point process ξ by

ξ(dt) =
∑

k∈N

δTk (dt),

where δx (dt) is the delta measure in x , and the random measure ξ evaluated on [0, t] as
ξ(t) = ξ([0, t]) =

∑

k∈N

1[0,t](Tk).

We suppose throughout the paper that Tk < Tk+1 with probability 1 for every k ∈ N.

Remark 3.2 Equivalently, considering a sequence (Tk)k∈N (where T0 = 0) of positive real-
valued random variables, such that Tk < Tk+1 with probability 1, we can define

ξ(t) = ξ([0, t]) = k when t ∈ [Tk, Tk+1).

We will often define a point process from the jump-times sequence of an integer-valued
process (Vt )t≥0. For instance, consider (Vt )t≥0 as a Poisson process, and denote Tk = inf{t >

0 : Vt ≥ k}. Then we can use the sequence (Tk)k∈N to define a point process ξ . The point
process defined from the jump times of a process (Vt )t≥0 will be denoted by ξV .

We now introduce some notation before giving the definition of CTBP. We denote the set
of individuals in the population using Ulam-Harris notation for trees. The set of individuals
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is

N =
⋃

n∈N

N
n .

For x ∈ N
n and k ∈ N we denote the k-th child of x by xk ∈ N

n+1. This construction is well
known, and has been used in other works on branching processes (see [14,17,22] for more
details).

We now are ready to define our branching process:

Definition 3.3 (Continuous-time branching process) Given a point process ξ , we define the
CTBP associated to ξ as the pair of a probability space

(,A, P) =
∏

x∈N
(x ,Ax , Px ) ,

and an infinite set (ξ x )x∈N of i.i.d. copies of the process ξ . We will denote the branching
process by ξ .

Remark 3.4 (Point processes and their jump times) Throughout the paper, we will define
point processes in terms of jump times of processes (Vt )t≥0. In order to keep the notation
light, we will denote branching processes defined by point processes given by jump times
of the process Vt by V . To make it more clear, by V we denote a probability space as in
Definition 3.3 and an infinite set of measures (ξ xV )x∈N, where ξV is the point process defined
by the process V .

According to Definition 3.3, a branching process is a pair of a probability space and a
sequence of random measures. It is possible though to define an evolution of the branching
population. At time t = 0, our population consists only of the root, denoted by∅. Every time
t an individual x gives birth to its k-th child, i.e., ξ x (t) = k + 1, assuming that ξ x (t−) = k,
we start the process ξ xk . Formally:

Definition 3.5 (Population birth times)We define the sequence of birth times for the process
ξ as τ

ξ
∅

= 0, and for x ∈ N ,

τ
ξ
xk = τ ξ

x + inf
{
s ≥ 0 : ξ x (s) ≥ k

}
.

In this way we have defined the set of individuals, their birth times and the processes
according to which they reproduce. We still need a way to count how many individuals are
alive at a certain time t .

Definition 3.6 (Random characteristic) A random characteristic is a real-valued process
� : ×R → R such that�(ω, s) = 0 for any s < 0, and�(ω, s) = �(s) is a deterministic
bounded function for every s ≥ 0 that only depends on ω through the birth time of the
individual, as well as the birth process of its children.

An important example of a randomcharacteristic is obtained by the function1R+(s), which
measures whether the individual has been born at time s. Another example is 1R+(s)1{k}(ξ),
which measures whether the individual has been born or not at time s and whether it has k
children presently.

For each individual x ∈ N , �x (ω, s) denotes the value of � evaluated on the progeny of
x , regarding x as ancestor, when the age of x is s. In other words, �x (ω, s) is the evaluation
of � on the tree rooted at x , ignoring the rest of the population. If we do not specify the
individual x , then we assume that � = �∅. We use random characteristics to describe the
properties of the branching population.
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Definition 3.7 (Evaluated branching processes) Consider a random characteristic � as in
Definition 3.6. We define the evaluated branching processes with respect to� at time t ∈ R

+
as

ξ�
t =

∑

x∈N
�x (t − τ ξ

x ).

The meaning of the evaluated branching process is clear when we consider the random
characteristic �(t) = 1R+(t), for which

ξ
1
R+

t =
∑

x∈N
(1R+)x (t − τ ξ

x ),

which is the number of x ∈ N such that t − τ
ξ
x ≥ 0, i.e., the total number of individuals

already born up to time t . Another characteristic that we consider in this paper is, for k ∈ N,
�k(t) = 1{k}(ξt ), for which

ξ
�k
t =

∑

x∈N
1{k}

(
ξ x
t−τ

ξ
x

)

is the number of individuals with k children at time t .
As known from the literature, the properties of the branching process are determined by

the behavior of the point process ξ . First of all, we need to introduce some notation. Consider
a function f : R

+ → R. We denote the Laplace transform of f by

L( f (·))(α) =
∫ ∞

0
e−αt f (t)dt.

With a slight abuse of notation, if μ is a positive measure on R
+, then we denote

L(μ(d·))(α) =
∫ ∞

0
e−αtμ(dt).

We use the Laplace transform to analyze the point process ξ :

Definition 3.8 (Supercritical property) Consider a point process ξ on R
+. We say ξ is

supercritical when there exists α∗ > 0 such that

L(Eξ(d·))(α∗) =
∫ ∞

0
e−α∗t

Eξ(dt) =
∑

k∈N

E

[∫ ∞

0
e−α∗tδTk (dt)

]

=
∑

k∈N

E

[
e−α∗Tk

]
= 1.

We call α∗ the Malthusian parameter of the process ξ .

We point out that Eξ(d·) is an abuse of notation to denote the density of the averaged
measureE[ξ([0, t])]. A second fundamental property for the analysis of branching processes
is the following:

Definition 3.9 (Malthusian property) Consider a supercritical point process ξ , with
Malthusian parameter α∗. The process ξ is Malthusian when

− d

dα
(L(Eξ(dt))) (α)

∣
∣
∣
∣
α∗

=
∫ ∞

0
te−α∗t

Eξ(d·) =
∑

k∈N

E

[
Tke

−α∗Tk
]

< ∞.
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We denote
α̃ = inf {α > 0 : L (Eξ(d·)) (α) < ∞}, (3.1)

and we will also assume that the process satisfies the condition

lim
α↘α̃

L (Eξ(d·)) (α) > 1. (3.2)

Integrating by parts, it is possible to show that, for a point process ξ ,

L (Eξ(d·)) (α) = E
[
VTα

]
,

where Tα is an exponentially distributed random variable independent of the process (Vt )t≥0.
Heuristically, the Laplace transform of a point process ξV is the expected number of chil-
dren born at exponentially distributed time Tα . In this case the Malthusian parameter is the
exponential rate α∗ such that at time Tα∗ exactly one children has been born.

These two conditions are required to prove the main result on branching processes that
we rely upon:

Theorem 3.10 (Population exponential growth)Consider the point process ξ , and the corre-
sponding branching process ξ . Assume that ξ is supercritical andMalthusian with parameter
α∗, and suppose that there exists ᾱ < α∗ such that

∫ ∞

0
e−ᾱt

Eξ(dt) < ∞.

Then

(1) there exists a random variable � such that as t → ∞,

e−α∗tξ
1
R+

t
P−as−→ �; (3.3)

(2) for any two random characteristics � and �,

ξ�
t

ξ�
t

P−as−→ L(E[�(·)])(α∗)
L(E[�(·)])(α∗)

. (3.4)

This result is stated in [22, Theorem A], which is a weaker version of [17, Theorem 6.3].
Formula (3.3) implies that, P-a.s., the population size grows exponentially with time. It is
relevant though to give a description of the distribution of the random variable �:

Theorem 3.11 (Positivity of �) Under the hypothesis of Theorem 3.10, if

E
[L(ξ(d·))(α∗) log+ (L(ξ(d·))(α∗)

)]
< ∞, (3.5)

then, on the event {ξ1R+
t → ∞}, i.e., on the event that the branching population keeps

growing in time, the random variable� in (3.3) is positive with probability 1, andE[�] = 1.
Otherwise, � = 0 with probability 1. Condition (3.5) is called the (xlogx) condition.

This result is proven in [14, Theorem 5.3], and it is the CTBPs equivalent of the Kesten-
Stigum theorem for Galton-Watson processes ([16, Theorem 1.1]).

Formula (3.4) says that the ratio between the evaluation of the branching process with
two different characteristics converges P-a.s. to a constant that depends only on the two
characteristics involved. In particular, if we consider, for k ∈ N,

�(t) = 1{k}(ξt ), and �(t) = 1R+(t),
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then Theorem 3.10 gives

ξ�
t

ξ
1
R+

t

P−as−→ α∗L(P (ξ(·) = k))(α∗), (3.6)

since L(E[1R+(·)])(α∗) = 1/α∗. The ratio in the previous formula is the fraction of individ-
uals with k children in the whole population:

Definition 3.12 (Limiting degree distribution for CTBP) The sequence (pk)k∈N, where

pk = α∗L(P (ξ(·) = k))(α∗) = α∗
∫ ∞

0
e−α∗t

P (ξ(t) = k) dt

is the limiting degree distribution for the branching process ξ .

The aim of the following sections will be to study when point processes satisfy the con-
ditions of Theorem 3.10, in order to analyze the limiting degree distribution in Definition
3.12.

3.2 Stationary Birth Processes with No Fitness

In this section we present the theory of birth processes that are stationary and have deter-
ministic rates. This is relevant since the definition of aging processes starts with a stationary
process. In particular, we give description of the affine case, which plays a central role in the
present work:

Definition 3.13 (Stationary non-fitness birth processes)Consider a non-decreasing sequence
( fk)k∈N of positive real numbers. A stationary non-fitness birth process is a stochastic process
(Vt )t≥0 such that

(1) V0 = 0, and Vt ∈ N for all t ∈ R
+;

(2) Vt ≤ Vs for every t ≤ s;
(3) for h small enough,

P (Vt+h = k + 1 | Vt = k) = fkh + o(h), and for j ≥ 2,

P (Vt+h = k + j | Vt = k) = o(h2). (3.7)

We denote the jump times by (Tk)k∈N, i.e.,

Tk = inf {t ≥ 0 : Vt ≥ k} .

We denote the point process corresponding to (Vt )t≥0 by ξV . In this case, (Vt )t≥0 is an
inhomogeneous Poisson process, and for every k ∈ N, Tk+1 − Tk has exponential law with
parameter fk independent of (Th+1−Th)

k−1
h=0. It is possible to show the following proposition:

Proposition 3.14 (Probabilities for (Vt )t≥0) Consider a stationary non-fitness birth process
(Vt )t≥0. Denote, for every k ∈ N, P(Vt = k) = Pk[V ](t). Then

P0[V ](t) = exp (− f0t) , (3.8)

and, for k ≥ 1,

Pk[V ](t) = fk−1exp (− fk t)
∫ t

0
exp ( fk x) Pk−1[V ](x)dx . (3.9)
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For a proof, see [4, Chap. 3, Sect. 2]. From the jump times, it is easy to compute the
explicit expression for the Laplace transform of ξV as

L(EξV (d·))(α) =
∑

k∈N

E

[∫ ∞

0
e−αtδTk (dt)

]

=
∑

k∈N

E

[
e−αTk

]
=
∑

k∈N

k−1∏

i=0

fi
α + fi

,

since every Tk can be seen as sum of independent exponential random variables with param-
eters given by the sequence ( fk)k∈N. Assuming now that ξV is supercritical and Malthusian
with parameter α∗, we have the explicit expression for the limit distribution (pk)k∈N, given
by (2.2).

An analysis of the behavior of the limit distribution of branching processes is presented in
[2] and [21], where the authors prove that (pk)k∈N has a power-law tail only if the sequence
of rates ( fk)k∈N is asymptotically linear with respect to k.

Proposition 3.15 (Characterization of stationary and linear process V ) Consider the
sequence fk = ak + b. Then:

(1) for every α ∈ R
+,

L(EξV (d·))(α) = �(α∗/a + b/a)

�(b/a)

∑

k∈N

�(k + b/a)

�(k + b/a + α/a)
= b

α − a
.

(2) The Malthusian parameter is α∗ = a + b, and α̃ = a, where α̃ is defined as in (3.1).
(3) The derivative of the Laplace transform is

− b

(α − a)2
,

which is finite whenever α > a;
(4) The process (Vt )t≥0 satisfies the (xlogx) condition (3.5).

Proof The proof can be found in [22, Theorem 2], or [2, Theorem 2.6]. ��
For affine PA weights ( fk)k∈N = (ak + b)k∈N, the Malthusian parameter α∗ exists. Since

α∗ = a + b, the limiting degree distribution of the branching process V is given by

pk = (1 + b/a)
�(1 + 2b/a)

�(b/a)

� (k + b/a)

� (k + b/a + 2 + b/a)
. (3.10)

Notice that pk has a power-law decay with exponent τ = 2 + b
a . Branching processes of

this type are related to PAM, also called the Barabási-Albert model [1]. This model shows
the so-called old-get-richer effect. Clearly this is not true for real-world citation networks.
In Fig. 5, we notice that, on average, the increment of the citation received by old papers is
smaller than the increment of younger papers. Rephrasing it, old papers tend to be cited less
and less over time.

3.3 The Malthusian Parameter

The existence of the Malthusian parameter is a necessary condition to have a branching
process growing at exponential rate. In particular, the Malthusian parameter does not exist in
two cases: when the process is subcritical and grows slower than exponential, or when it is
explosive. In the first case, the branching population might either die out or grow indefinitely
with positive probability, but slower than at exponential rate. In the second case, the population
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size explodes in finite time with probability one. In both cases, the behavior of the branching
population is different from what we observe in citation networks (Fig. 1). For this reason,
we focus on supercritical processes, i.e., on the case where the Malthusian parameter exists.

Denote by (Vt )t≥0 a stationary birth process defined by PA weights ( fk)k∈N. In general,
we assume fk → ∞. Denote the sequence of jump times by (Tk)k∈N. As we quote in Sect.
3.2, the Laplace transform of a birth process (Vt )t≥0 is given by

L(EV (d·))(α) = E

[
∑

k∈N

e−αTk

]

= E
[
VTα

] =
∑

k∈N

k−1∏

i=0

fi
α + fi

.

Such expression comes from the fact that, in stationary regime, Tk is the sum of k independent
exponential random variables. We can write

∑

k∈N

exp

(

−
k−1∑

i=0

log

(

1 + α

fi

))

=
∑

k∈N

exp

(

−α

k−1∑

i=0

1

fi
(1 + o(1))

)

.

The behavior of the Laplace transform depends on the asymptotic behavior of the PA
weights. We define now the terminology we use:

Definition 3.16 (Superlinear PA weights) Consider a PA weight sequence ( fk)k∈N. We say
that the PA weights are superlinear if

∑∞
i=0 1/ fi < ∞.

As a general example, consider fk = akq + b, where q > 0. In this case, the sequence is
affine when q = 1, superlinear when q > 1 and sublinear when q < 1.

When the weights are superlinear, since C = ∑∞
i=0 1/ fi < ∞, we have

∑

k∈N

exp

(

−α

k−1∑

i=0

1

fi
(1 + o(1))

)

≥
∑

k∈N

exp (−αC) = +∞. (3.11)

This holds for every α > 0. As a consequence, the Laplace transform L(EV (d·))(α) is
always infinite, and there exist no Malthusian parameter. In particular, if we denote by T∞ =
limk→∞ Tk , then T∞ < ∞ a.s. This means that the birth process (Vt )t≥0 explodes in a finite
time.

When the weights are at most linear, the bound in (3.11) does not hold anymore. In fact,
consider as example affine weights fk = ak + b. We have that

∑k−1
i=0

1
fi

= (1/a) log k(1 +
o(1)). As a consequence, the Laplace transform can be written as

∑

k∈N

exp
(
−α

a
log k(1 + o(1))

)
=
∑

k∈N

k− α
a (1 + o(1)). (3.12)

In this case, the Laplace transform is finite for α > a. For the sublinear case, for which∑k−1
i=0 1/ fi = Ck(1−q)(1 + o(1)), we obtain

∑

k∈N

exp
(−Cαk1−q) .

This sum is finite for any α > 0.
We can now introduce fitness in the stationary process:

Remark 3.17 Consider the process (Vt )t≥0 defined by the sequence of PA weights ( fk)k∈N

as in Sect. 3.2. For u ∈ R
+ we denote by (V u

t )t≥0 the process defined by the sequence
(u fk)k∈N. It is easy to show that

L(EξV u (d·))(α) = L(EξV (d·))(α/u).
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The behavior of the degree sequence of (V u
t )t≥0 is the same of the process Vt .

Remark 3.17 shows a sort of monotonicity of the Laplace transform with respect to the
sequence ( fk)k∈N. This is very useful to describe the Laplace transform of a birth process
with fitness, which we define now:

Definition 3.18 (Stationary fitness birth processes) Consider a birth process (Vt )t≥0 defined
by a sequence of weights ( fk)k∈N. Let Y be a positive random variable. We call stationary
fitness birth processes the process (VY

t )t≥0, defined by the random sequence of weights
(Y fk)k∈N, i.e., conditionally on Y ,

P

(
VY
t+h = k + 1 | VY

t = k, Y
)

= Y fkh + o(h).

By Definition 3.18, it is obvious that the properties of the process (VY
t )t≥0 are related to

the properties of (Vt )t≥0. Since we consider a random fitness Y independent of the process
(Vt )t≥0, from Remark 3.17 it follows that

L(EVY (d·))(α) = E [L(EξV u (d·))(α)u=Y ] = E

[
∑

k∈N

k−1∏

i=0

Y fi
α + Y fi

]

. (3.13)

For affine weights the fitness distribution needs to be bounded, as discussed in Sect. 2.4. In
this section we give a qualitative explanation of this fact. Consider the sum in the expectation
in the right hand term of (3.13). We can rewrite the sum as

∑

k∈N

k−1∏

i=0

Y fi
α + Y fi

=
∑

k∈N

exp

(

−
k−1∑

i=0

log

(

1 + α

Y fi

))

=
∑

k∈N

exp

(

− α

Y

k−1∑

i=0

1

fi
(1 + o(1))

)

.

(3.14)
The behavior depends sensitively on the asymptotic behavior of the PAweights. In particular,
a necessary condition for the existence of the Malthusian parameter is that the sum in (3.13)
is finite on an interval of the type (α̃,+∞). In other words, since the Laplace transform is
a decreasing function (when finite), we need to prove the existence of a minimum value α̃

such that it is finite for every α > α̃. Using (3.14) in (3.13), we just need to find a value α

such that the right hand side of (3.14) equals 1.
In the case of affine weights fk = ak + b, we have

∑k−1
i=0

1
fi

= C log k(1 + o(1)), for a
constant C . As a consequence, (3.14) is equal to

E

[
∑

k∈N

exp
(
−C

α

Y
log k

)
]

= E

[
∑

k∈N

k−Cα/Y

]

. (3.15)

The sum inside the last expectation is finite only on the event {Y < Cα}. If Y has an
unbounded distribution, then for every value of α > 0 we have that {Y ≥ Cα} is an event of
positive probability. As a consequence, for every α > 0, the Laplace transform of the birth
process (VY

y )t≥0 is infinite, which means there exists no Malthusian parameter.
This is why a bounded fitness distribution is necessary to have a Malthusian parameter

using affine PA weights. The situation is different in the case of sublinear weights. For
example, consider fk = (1+ k)q , where q ∈ (0, 1). Then, the difference to affine weights is
that now

∑k−1
i=0 1/ fi = Ck1−q(1 + o(1)). Using this in (3.14), we obtain

E

[
∑

k∈N

exp
(
−C

α

Y
k(1−q)

)
]

.
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In this case, since both α and Y are always positive, the last sum is finite with probability 1,
and the expectation might be finite under appropriate moment assumptions on Y .

Assume now that the fitness Y satisfies the necessary conditions, so that the process
(VY

t )t≥0 is supercritical and Malthusian with parameter α∗. We can evaluate the limiting
degree distribution. Conditioning on Y , the Laplace transform of EξVY (dx) is

∑

k∈N

k−1∏

i=0

Y fi
α + Y fi

,

so, as a consequence, the limiting degree distribution of the branching processes is

pk = E

[
α∗

α∗ + Y fk

k−1∏

i=0

Y fi
α∗ + Y fi

]

. (3.16)

It is possible to see that the right-hand side of (3.16) is similar to the distribution of the
simpler case with no fitness given by (2.2). We still have a product structure for the limit
distribution, but in the fitness case it has to be averaged over the fitness distribution. This
result is similar to [10, Theorem 2.7, Corollary 2.8].

Considering affine weights fk = ak + b, we can rewrite (3.16) as

pk = E

[
�((α∗ + b)/(aY ))

�(b/(aY ))

�(k + b/(aY ))

�(k + b/(aY ) + 1 + α∗/(aY ))

]

.

Asymptotically in k, the argument of the expectation in the previous expression is random
with a power-law exponent τ(Y ) = 1 + α∗/(aY ). For example, in this case averaging over
the fitness distribution, it is possible to obtain power-laws with logarithmic corrections (see
eg [5, Corollary 32]).

4 Existence of Limiting Distributions

In this section, we give the proof of Theorems 2.2, 2.3 and 2.5, proving that the branching
processes defined in Sect. 2 do have a limiting degree distribution. As mentioned, we start
by proving Theorem 2.5, and then explain how Theorem 2.2 follows as special case.

Before proving the result, we do need some remarks on the processes we consider. Birth
process with aging alone and aging with fitness are defined respectively in Definition 2.1 and
2.4. Consider then a process with aging and fitness (Mt )t≥0 as in Definition 2.4. Let (Tk)k∈N

denote the sequence of birth times, i.e.,

Tk = inf {t ≥ 0 : Mt ≥ k} .

It is an immediate consequence of the definition that, for every k ∈ N,

P (Tk ≤ t) = P
(
T̄k ≤ YG(t)

)
, (4.1)

where (T̄k)k∈N is the sequence of birth times of a stationary birth process (Vt )t≥0 defined bu
the same PA function f . Consider then the sequence of functions (Pk[V ](t))k∈N associated
with the stationary process (Vt )t≥0 defined by the same sequence of weights ( fk)k∈N (see
Proposition 3.14). As a consequence, for every k ∈ N, P(Mt = k) = E[Pk[V ](YG(t))], and
the same holds for an aging process just considering Y ≡ 1. Formula (4.1) implies that the
aging process is the stationary process with a deterministic time-change given by G(t). A
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process with aging and fitness is the stationary process with a random time-change given by
YG(t).

Assume now that g is integrable, i.e. limt→∞ G(t) = G(∞) < ∞. Using (4.1) we
can describe the limiting degree distribution (qk)k∈N of a fixed individual in the branching
population, i.e., the distribution N∞ (or M∞) of the total number of children an individual
will generate in its entire lifetime. In fact, for every k ∈ N,

lim
t→∞ P (Nt = k) = lim

t→∞ P[V ](G(t)) = P
(
VG(∞) = k

)
, (4.2)

which means that N∞ has the same distribution as VG(∞). With fitness,

lim
t→∞ P (Mt = k) = lim

t→∞ E[P[V ](YG(t))] = P
(
VYG(∞) = k

)
.

For example, in the case of aging only, this is rather different from the stationary case, where
the number of children of a fixed individual diverges as the individual gets old (see e.g
[2, Theorem 2.6]).

4.1 Proof of Theorem 2.5

Birth processes with continuous aging effect and fitness are defined in Definition 2.4. We
now identify conditions on the fitness distribution to have a Malthusian parameter:

Lemma 4.1 (Condition (2.6)) Consider a stationary process (Vt )t≥0, an integrable aging
function g and a random fitness Y . Assume thatE[Vt ] < ∞ for every t ≥ 0. Then the process
(VYG(t))t≥0 is supercritical if and only if Condition (2.6) holds, i.e.,

E
[
VYG(t)

]
< ∞ for every t ≥ 0 and lim

t→∞ E
[
VYG(t)

]
> 1.

Proof For the if part, we need to prove that

lim
α→0+ E

[
VYG(Tα∗ )

]
> 1 and lim

α→∞ E
[
VYG(Tα∗ )

] = 0.

As before, (T̄k)k∈N are the jump times of the process (VG(t))t≥0. Then

E
[
VYG(Tα∗ )

] =
∑

k∈N

E

[
e−αT̄k/Y

]
.

When α → 0, we have E

[
e−αT̄k

]
→ P

(
T̄k/Y < ∞)

. Now,

∑

k∈N

P
(
T̄k < ∞) = lim

t→∞
∑

k∈N

P
(
T̄k/Y ≤ t

) = lim
t→∞ E

[
VYG(t)

]
> 1.

For α → ∞,
∫ ∞

0
αe−αt

E
[
VYG(t)

]
dt =

∫ ∞

0
e−u

E
[
VYG(u/α)

]
du.

When α → ∞ we have E
[
VYG(u/α)

] → 0. Then, fix α0 > 0 such that E
[
VYG(u/α)

]
< 1 for

every α > α0. As a consequence, e−u
E
[
VYG(u/α)

]
du ≤ e−u for any α > α0. By dominated

convergence,

lim
α→∞

∫ ∞

0
αe−αt

E
[
VYG(t)

]
dt = 0.
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Now suppose Condition (2.6) does not hold. This means that E[VYG(t0)] = +∞ for some
t0 ∈ [0,G(∞)) or limt→∞ E[VYG(t0)] ≤ 1.

If the first condition holds, then there exists t0 ∈ (0, aG(∞)) such thatE
[
VYG(t)

] = +∞
for every t ≥ t0 (recall that E

[
VYG(t)

]
in an increasing function in t). As a consequence, for

every α > 0, we have E
[
VYG(Tα)

] = +∞, which means that the process is explosive.
If the second condition holds, then for every α > 0 the Laplace transform of the process

is strictly less than 1, which means there exists no Malthusian parameter. ��
Lemma 4.1 gives a weaker condition on the distribution Y than requiring it to be bounded.

Now, we want to investigate the degree distribution of the branching process, assuming that
the process (Mt )t≥0 is supercritical andMalthusian. Denote theMalthusian parameter by α∗.
The above allows us to complete the proof of Theorem 2.5:

Proof of Theorem 2.5 We start from

pk = E [Pk[V ](YG(Tα∗))] . (4.3)

Conditioning on Y and integrating by parts in the integral given by the expectation in (4.3),
gives

− fkY
∫ ∞

0
e−α∗t Pk[V ](YG(t))g(t)dt + fk−1Y

∫ ∞

0
e−α∗t Pk−1[V ](YG(t))g(t)dt.

Now, we define

L̂(k, α∗, Y ) =
(
L(P

(
VuG(·) = k

)
g(·))(α∗)

L(P
(
VuG(·) = k

)
)(α∗)

)

u=Y

(4.4)

Notice that the sequence (L̂(k, α∗, Y ))k∈N is a sequence of random variables. Multiplying
both sides of the equation by α∗, on the right hand side we have

− fkY L̂(k, α∗, Y )E [Pk [V ](uG(Tα∗ ))]u=Y + fk−1Y L̂(k − 1, α∗, Y )E
[
Pk−1[V ](uG(Tα∗ ))

]
u=Y ,

while on the left hand side we have

α∗
E [Pk[V ](uG(Tα∗))]u=Y .

As a consequence,

E [Pk[V ](uG(Tα∗))]u=Y = fk−1Y L̂(k − 1, α∗, Y )

α∗ + fkY L̂(k, α∗, Y )
E
[
Pk−1[V ](uG(Tα∗))

]
u=Y . (4.5)

We start from p0, that is given by

E [P0[V ](uG(Tα∗))]u=Y = α∗

α∗ + f0Y L̂(0, α∗, Y )
.

Recursively using (4.5), gives

E [Pk[V ](uG(Tα∗))]u=Y = α∗

α∗ + fkY L̂(k, α∗, Y )

k−1∏

i=0

fi Y L̂(i, α∗, Y )

α∗ + fi Y L̂(i, α∗, Y )
.

Taking expectation on both sides gives

pk = E

[
α∗

α∗ + fkY L̂(k, α∗, Y )

k−1∏

i=0

fi Y L̂(i, α∗, Y )

α∗ + fi Y L̂(i, α∗, Y )

]

.

��
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Now the sequence (L̂(k, α∗, Y ))k∈N creates a relation among the sequence of weights, the
aging function and the fitness distribution, so that these three ingredients are deeply related.

4.2 Proof of Theorems 2.2 and 2.3

As mentioned, Theorem 2.2 follows immediately by considering Y ≡ 1. The proof in fact
is the same, since we can express the probabilities P(Nt = k) as function of the stationary
process (Vt )t≥0 defined by the same PA function f .

Condition (2.5) immediately follows from Condition (2.6). In fact, considering Y ≡ 1,
Condition (2.6) becomes

E
[
VG(t)

]
< ∞ for every t ≥ 0 and lim

t→∞ E
[
VG(t)

]
> 1. (4.6)

The first inequality in general true for the type of stationary process we consider (for instance
with affine f ). The second inequality is exaclty Condition (2.5).

The expression of the sequence (L̂g(k, α∗))k∈N is simplier than the general case given
in (4.4). In fact, in (4.4), the sequence (L̂(k, α∗, Y ))k∈N is actually a sequence of random
variables. In the case of aging alone,

L̂g(k, α∗) = L(P
(
VG(·) = k

)
g(·))(α∗)

L(P
(
VG(·) = k

)
)(α∗)

,

which is a deterministic sequence.

Remark 4.2 Notice that L̂g(k, α∗) = 1 when g(t) ≡ 1, so that G(t) = t for every t ∈ R
+

and there is no aging, and we retrieve the stationary process (Vt )t≥0.

Unfortunately, the explicit expression of the coefficients (L̂g(k, α∗))k∈N is not easy to
find, even though they are deterministic.

Theorem2.3,which states that even if g is integrable, the aging does not affect the explosive
behavior of a birth process with superlinear weights, is a direct consequence of (4.2):

Proof of Theorem 2.3 Consider a birth process (Vt )t≥0, defined by a sequence of superlinear
weights ( fk)k∈N (in the sense of Definition 3.16), and an integrable aging function g. Then,
for every t > 0,

P (Nt = ∞) = P
(
VG(t) = ∞)

> 0.

Since this holds for every t > 0, the process (Nt )t≥0 is explosive. As a consequence, for any
α > 0, E

[
NTα

] = ∞, which means that there exists no Malthusian parameter. ��

5 Affine Weights and Adapted Laplace Method

5.1 Aging and No Fitness

In this section, we consider affine PA weights, i.e., we consider fk = ak + b. The main aim
is to identify the asymptotic behavior of the limiting degree distribution of the branching
process with aging. Consider a stationary process (Vt )t≥0, where fk = ak+b. Then, for any
t ≥ 0, it is possible to show by induction and the recursions in (3.8) and (3.9) that

Pk[V ](t) = P (Vt = k) = 1

�(b/a)

�(k + b/a)

�(k + 1)
e−bt (1 − e−at)k . (5.1)
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We omit the proof of (5.1). As a consequence, since the corresponding aging process is
(VG(t))t≥0, the limiting degree distribution is given by

pk = P (Vt = k) = �(k + b/a)

�(b/a)�(k + 1)

∫ ∞

0
α∗e−α∗te−bG(t)

(
1 − e−aG(t)

)k
dt. (5.2)

We can obtain an immediate upper bound for pk , in fact

pk = �(k + b/a)

�(b/a)�(k + 1)

∫ ∞

0
α∗e−α∗te−bG(t)

(
1 − e−aG(t)

)k
dt

≤ �(k + b/a)

�(b/a)�(k + 1)
(1 − e−aG(∞))k,

which implies that the distribution (pk)k∈N has at most an exponential tail. A more precise
analysis is hard. Instead we will give an asymptotic approximation, by adapting the Laplace
method for integrals to our case.

The Laplace method states that, for a function f that is twice differentiable and with a
unique absolute minimum x0 ∈ (a, b), as k → ∞,

∫ b

a
e−k�(x)dx =

√
2π

k� ′′(x0)
e−k�(x0)(1 + o(1)). (5.3)

In this situation, the interval [a, b] can be infinite. The idea behind this result is that, when
k � 1, themajor contribution to the integral comes from a neighborhood of x0 where e−k�(x)

is maximized. In the integral in (5.2), we do not have this situation, since we do not have an
integral of the type (5.3). Defining

�k(t) := α∗

k
t + b

k
G(t) − log

(
1 − e−aG(t)

)
, (5.4)

we can rewrite the integral in (5.2) as

I (k) :=
∫ ∞

0
α∗e−k�k (t)dt. (5.5)

The derivative of the function �k(t) is

� ′
k(t) = α∗

k
+ b

k
g(t) − ag(t)e−aG(t)

1 − e−aG(t)
. (5.6)

In particular, if there exists a minimum tk , then it depends on k. In this framework, we cannot
directly apply the Laplace method. We now show that we can apply a result similar to (5.3)
even to our case:

Lemma 5.1 (Adapted Laplace method 1) Consider α, a, b > 0. Let the integrable aging
function g be such that

(1) for every t ≥ 0, 0 < g(t) ≤ A < ∞;
(2) g is differentiable on R

+, and g′ is finite almost everywhere;
(3) there exists a positive constant B < ∞ such that g(t) is decreasing for t ≥ B;
(4) assume that the solution tk of� ′

k(t) = 0, for� ′
k(t) as in (5.6), is unique, and g

′(tk) < 0.

Then, for σ 2
k = (k� ′′

k (tk))−1, there exists a constant C such that, as k → ∞,

I (k) = C
√
2πσ 2

k e
−k�k (tk )

(
1

2
+ P

(N (0, σ 2
k ) ≥ tk

)
)

(1 + o(1)),

where N (0, σ 2
k ) denotes a normal distribution with zero mean and variance σ 2

k .
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Since Lemma 5.1 is an adapted version of the classical Laplace method, we move the
proof to Appendix B. We can use the result of Lemma 5.1 to prove:

Proposition 5.2 (Asymptotics—affine weights, aging, no fitness) Consider the affine PA
weights fk = ak + b, an integrable aging function g, and denote the limiting degree distri-
bution of the corresponding branching process by (pk)k∈N. Then, under the hypotheses of
Lemma 5.1, there exists a constant C > 0 such that, as k → ∞,

pk = �(k + b/a)

�(k + 1)

(

Cg(tk) − g′(tk)
g(tk)

)1/2

e−α∗tk (1 − e−aG(∞))k Dk(g)(1 + o(1)), (5.7)

where

Dk(g) = 1

2
+ 1

2
√

π

∫ Ck (g)

−Ck (g)
e− u2

2 du,

and Ck(g) = tk
(
Cg(tk) − g′(tk )

g(tk )

)1/2
.

5.2 Aging and Fitness Case

In this section, we investigate the asymptotic behavior of the limiting degree distribution
of a CTBP, in the case of affine PA weights. The method we use is analogous to that in
Sect. 5.1.

We assume that the fitness Y is absolutely continuous with respect to the Lebesgue mea-
sure, and we denote its density function by μ. The limiting degree distribution of this type
of branching process is given by

pk = P
(
VYG(Tα∗ ) = k

) = �(k + b/a)

�(b/a)�(k + 1)

∫

R+×R+
α∗e−α∗tμ(s)e−bsG(t)

(
1 − e−asG(t)

)k
dsdt.

(5.8)
We immediately see that the degree distribution has exponential tails when the fitness distri-
bution is bounded:

Lemma 5.3 (Exponential tails for integrable aging and bounded fitnesses)When there exists
γ such that μ([0, γ ]) = 1, i.e., the fitness has a bounded support, then

pk ≤ �(k + b/a)

�(b/a)�(k + 1)

(
1 − e−aγG(∞)

)k
. (5.9)

In particular, pk has exponential tails.

Proof Obvious. ��
Like in the situation with only aging, the explicit solution of the integral in (5.8) may be

hard to find. We again have to adapt the Laplace method to estimate the asymptotic behavior
of the integral. We write

I (k) :=
∫

R+×R+
e−k�k (t,s)dsdt, (5.10)

where

�k(t, s) := α∗

k
t + b

k
sG(t) − 1

k
logμ(s) − log(1 − e−saG(t)). (5.11)

As before, we want to minimize the function �k . We state here the lemma:
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Lemma 5.4 (Adapted Laplace method 2) Let �k(t, s) as in (5.11). Assume that

(1) g satisfies the assumptions of Lemma 5.1;
(2) μ is twice differentiable on R

+;
(3) there exists a constant B ′ > 0 such that, for every s ≥ B ′,μ is monotonically decreasing;
(4) (tk, sk) is the unique point where both partial derivatives are zero;
(5) (tk, sk) is the absolute minimum for �k(t, s);
(6) the hessian matrix Hk(tk, sk) of �k(t, s) evaluated in (tk, sk) is positive definite.

Then,

I (k) = e−k�k (tk ,sk ) 2π√
det(kHk(tk, sk))

P (N1(k) ≥ −tk,N2(k) ≥ −sk) (1 + o(1)),

where (N1(k),N2(k)) := N (0, (kHk(tk, sk))−1) is a bivariate normal distributed vector
and 0 = (0, 0).

The proof of Lemma 5.4 can be found in Appendix B.1. Using Lemma 5.4 we can describe
the limiting degree distribution (pk)k∈N:

Proposition 5.5 (Asymptotics—affine weights, aging, fitness) Consider affine PA weights
fk = ak+b, an integrable aging function g and a fitness distribution densityμ. Assume that
the corresponding branching process is supercritical and Malthusian. Under the hypotheses
of Lemma 5.4, the limiting degree distribution (pk)k∈N of the corresponding CTBP satisfies

pk = kb/a−1

�(b/a)

2π√
det(kHk(tk, sk))

e−k�k (tk ,sk )P (N1 ≥ −tk,N2 ≥ −sk) (1 + o(1)).

5.3 Three Classes of Fitness Distributions

Proposition 5.5 in Sect. 5.2 gives the asymptotic behavior of the limiting degree distribution
of a CTBP with integrable aging and fitness. Lemma 5.4 requires conditions under which
the function �k(t, s) as in (5.11) has a unique minimum point denoted by (tk, sk). In this
section we consider the three different classes of fitness distributions that we have introduced
in Sect. 2.4.

For the heavy-tailed class, i.e., for distributions with tail thicker than exponential, there is
nothing to prove. In fact, (2.7) immediately implies that such distributions are explosive.

For the other two cases, we apply Proposition 5.5, giving the precise asymptotic behavior
of the limiting degree distributions of the correponding CTBPs. Propositions 5.6 and 5.7
contain the results respectively on the general-exponential and sub-exponential classes. The
proof of these propositions are moved to Appendix C.

Proposition 5.6 Consider a general exponential fitness distribution as in (2.11). Let (Mt )t≥0

be the corresponding birth process. Denote the unique minimum point of�k(t, s) as in (5.11)
by (tk, sk). Then

(1) for every t ≥ 0, Mt has a dynamical power law with exponent τ(t) = 1 + θ
aG(t) ;

(2) the asymptotic behavior of the limiting degree distribution (pk)k∈N is given by

pk = e−α∗tk h(sk)

(

C̃ − α∗ g′(tk)
g(tk)

)−1/2

k−(1+θ/(aG(∞)))(1 + o(1)),

where the power law term has exponent τ = 1 + θ/aG(∞);
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(3) the distribution (qk)k∈N of the total number of children of a fixed individual has a power
law behavior with exponent τ = 1 + θ/aG(∞).

By (2.8) it is necessary to consider the exponential rate θ > aG(∞) to obtain a non-
explosive process. In particular, this implies that, for every t ≥ 0, τ(t), as well as τ , are
strictly larger than 2. As a consequence, the three distributions (Pk[M](t))k∈N, (pk)k∈N and
(qk)k∈N have finite first moment. Increasing the value of θ leads to power-law distributions
with exponent larger than 3, so with finite variance.

A second observation is that, independently of the aging function g, the point sk is of
order log k. In particular, this has two consequences. First the correction to the power law
given by h(sk) is a power of log k. Since h′(s)/h(s) → 0 as s → ∞. Second the power-law
term k−(1+θ/(aG(∞))) arises from μ(sk). This means that the exponential term in the fitness
distribution μ not only is necessary to obtain a non-explosive process, but also generates the
power law.

The third observation is that the behavior of the three distributions (Pk[M](t))k∈N, (pk)k∈N

and (qk)k∈N depends on the integrability of the aging function, but does only marginally
depends on its precise shape. The contribution of the aging function g to the exponent of the
power law in fact is given only by the value G(∞). The other terms that depend directly on
the shape of g are e−α∗tk and the ratio g′(tk)/g(tk). The ratio g′/g does not contribute for any
function g whose decay is in between power law and exponential. The term e−α∗tk depends
on the behavior of tk , that can be seen as roughly g−1(1/ log k). For any function between
power law and exponential, e−α∗tk is asymptotic to a power of log k.

The last observation is that every distribution in the general exponential class shows a
dynamical power law as for the pure exponential distribution, as shown in Sect. 5.4. The
pure exponential distribution is a special case where we consider h(s) ≡ 1. Interesting is the
fact that τ actually does not depend on the choice of h(s), but only on the exponential rate
θ > aG(∞). In particular, Proposition 5.6 proves that the limiting degree distribution of the
two examples in Fig. 9 have power-law decay.

We move to the class of sub-exponential fitness. We show that the power law is lost due
to the absence of a pure exponential term. We prove the result using densities of the form

μ(s) = Ce−s1+ε

, (5.12)

for ε > 0 and C the normalization constant. The result is the following:

Proposition 5.7 Consider a sub-exponential fitness distribution as in (5.12). Let (Mt )t≥0

be the corresponding birth process. Denote the minimum point of �k(t, s) as in (5.11) by
(tk, sk). Then

(1) for every t ≥ 0, Mt satisfies

P (Mt = k) = k−1(log k)−ε/2e
− θ

(aG(t))1+ε (log k)1+ε

(1 + o(1));
(2) the limiting degree distribution (pk)k∈N of the CTBP has asymptotic behavior given by

pk = e−α∗tk k−1
(

C1 − sε
k
g′(tk)
g(tk)

)

e
− θ

(aG(∞))1+ε (log k)1+ε

(1 + o(1));

(3) the distribution (qk)k∈N of the total number of children of a fixed individual satisfies

qk = k−1(log k)−ε/2e
− θ

(aG(∞))1+ε (log k)1+ε

(1 + o(1)).
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In Proposition 5.7 the distributions (Pk[M](t))k∈N, (pk)k∈N and (qk)k∈N decay faster than
a power law. This is due to the fact that a sub-exponential tail for the fitness distribution does
not allow the presence of sufficiently many individuals in the branching population whose
fitness value is sufficiently high to restore the power law.

In this case, we have that sk is roughly c1 log k−c2 log log k. Hence, as first approximation,
sk is still of logarithmic order. The power-law term is lost because there is no pure exponential
term in the distributionμ. In fact, in this caseμ(sk) generates the dominant term e−θ(log k)1+ε

.

5.4 The Case of Exponentially Distributed Fitness: Proof of Corollary 2.6

The casewhen the fitness Y is exponentially distributed turns out to be simpler. In this section,
denote the fitness by Tθ , where θ is the parameter of the exponential distribution. First of all,
we investigate the Laplace transform of the process. In fact, we can write

E
[
MTα

] =
∫ ∞

0
θe−θs

E
[
VsG(Tα)

]
ds,

which is the Laplace transform of the stationary process (VsG(Tα))s≥0 with bounded fitness
G(Tα) in θ . As a consequence,

E
[
MTα

] =
∑

k∈N

E

[
k−1∏

i=0

fi G(Tα)

θ + fi G(Tα)

]

.

Suppose that there exists a Malthusian parameter α∗. This means that, for fixed ( fk)k∈N, g
and θ , α∗ is the unique value such that E

[
MTα∗

] = 1. As a consequence, if we fix ( fk)k∈N,
g and α∗, θ is the unique value such that

∑

k∈N

E

[
k−1∏

i=0

fi G(Tα)

θ + fi G(Tα)

]

= 1.

Therefore θ is the Malthusian parameter of the process (VsG(Tα))s≥0. We are now ready to
prove Corollary 2.6:

Proof of Corollary 2.6 We can write P (Mt = k) = P
(
VTθG(t) = k

)
, which means that we

have to evaluate the Laplace transform ofP
(
VsG(t) = k

)
in θ . Using (5.1) the first part follows

immediately by simple calculations. For the second part, we just need to take the limit as
t → ∞. For the sequence (pk)k∈N, the result is immediate since pk = E[Pk[M](Tα∗)]. ��

The case of affine PA weights fk = ak + b is particularly nice. As already mentioned in
Sect. 2, the process (Mt )t≥0 has a power-law distribution at every t ∈ R

+ and (2.12) follows
immediately.

Further, (2.13) and (2.14) follow directly. ��
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A. Limiting Distribution with Aging Effect, No Fitness

In this section, we analyze the limiting degree distribution (pk)k∈N of CTBPs with aging
but no fitness. In Sect. A.1 we prove the adapted Laplace method for the general asymptotic
behavior of pk . In Sect. A.2 we consider some examples of aging function g, giving the
asymptotics for the corresponding distributions.

A.1 Proofs of Lemma 5.1 and Proposition 5.2

Proof of Lemma 5.1 First of all, we show that tk is actually a minimum. In fact,

lim
t→0

d

dt
�k(t) = −∞, and lim

t→∞
d

dt
�k(t) = α

k
> 0.

As a consequence, tk is a minimum. Then,

lim
k→∞ g(tk)

(
α∗

k

1 − e−aG(∞)

ae−aG(∞)

)−1

= lim
k→∞ g(tk)

ak

α∗(eaG(∞) − 1)
= 1. (A.1)

In particular, g(tk) is of order 1/k. Then, since tk is the actual minimum, and g is monoton-
ically decreasing for t ≥ B,

� ′′
k (tk) = b

k
g′(tk) + g(tk)

2 a
2e−aG(tk )(2 − e−aG(tk ))

(1 − e−aG(tk ))2
− g′(tk)

ae−aG(tk )

1 − e−aG(tk )
> 0. (A.2)

We use the fact that we are evaluating the second derivative in the point tk where the first
derivative is zero. This means

g(tk)
ae−aG(tk ))

1 − e−aG(tk )
= α

k
+ b

k
g(tk).

We use this in (A.2) to obtain

k� ′′
k (tk) = bg′(tk) + g(tk)

a(2 − e−aG(tk ))

1 − e−aG(tk )
(α + bg(tk)) − g′(tk)

g(tk)
(α + bg(tk))

= g(tk)
a(2 − e−aG(tk ))

1 − e−aG(tk )
(α + bg(tk)) − α

g′(tk)
g(tk)

. (A.3)

Now, we use Taylor expansion around tk of �k(t) in the integral in (5.5). Since we use the
expansion around tk , which is the minimum of �k(t), the first derivative of �k is zero. As a
consequence, we have

I (k) =
∫ ∞

0
e
−k
(
�k (tk )+ 1

2� ′′
k (tk )(t−tk )2+o((t−tk )2)

)

dt.

First of all, notice that the contribution of the terms with |t − tk | � 1 is negligible. In fact,
we have

e−k�k (t) ≤ e−α∗t (1 − e−aG(∞))k, (A.4)

which means that such terms are exponentially small, so we can ignore them. Now we make
a change of variable u = t − tk . Then

I (k) =
∫ ∞

−tk
e
−k
(
�k (tk )+ 1

2� ′′
k (tk )u2+o(u2)

)

du.
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In particular, since the term e−k�k (tk ) does not depend on u, we can write

I (k) = e−k�k (tk )
∫ ∞

−tk
e
−k
(
1
2� ′′

k (tk )u2+o(u2)
)

du.

We use the notation k�k(tk) = 1
σ 2
k
, which means we can rewrite the integral as

e−k�k (tk )
√
2πσ 2

k

∫ tk

−∞
1

√
2πσ 2

k

e
− u2

2σ2k dt = e−k�k (tk )
√
2πσ 2

k P
(N (0, σ 2

k ) ≤ tk
)
.

Since the distribution N (0, σ 2
k ) is symmetric with respect to 0, for every k ∈ N,

P
(N (0, σ 2

k ) ≤ tk
) = 1

2

[

1 + 1√
π

∫ tk/σk

−tk/σk
e− u2

2 du

]

. (A.5)

The behavior of the above integral depends on the ratio tk/σk , which is bounded between 0
and 1. As a consequence, the term P

(N (0, σ 2
k ) ≤ tk

)
is bounded between 1/2 and 1. ��

Using Lemma 5.1, we can prove Proposition 5.2:

Proof of Proposition 5.2 Recall that σ 2
k = (k�(tk)′′)−1. Using (A.3), the fact that g is

bounded almost everywhere, and g′(tk) < 0, we can write

k�(tk)
′′ = α

(
a(2 − e−aG(∞))

1 − e−aG(∞)
g(tk) − g′(tk)

g(tk)

)

(1 + o(1)). (A.6)

Notice that in (A.6) the terms g(tk)− g′(tk )
g(tk )

are always strictly positive, since g(t) is decreas-

ing and tk → ∞ as k → ∞. As a consequence, we can replace the term
√
2π/σ 2

k by
(
Cg(tk) − g′(tk )

g(tk )

)1/2
, for C = a(2−e−aG(∞))

1−e−aG(∞) . We also have that

e−k�k (tk ) = exp
[
−α∗tk − bG(tk) + k log

(
1 − e−aG(tk )

)]

= e−α∗tk (1 − e−aG(∞))k(1 + o(1)),

since G(tk) converges to G(∞). For the term in (A.5), it is easy to show that it is asymptotic
to Dk(g). This completes the proof. ��

A.2 Examples of Aging Functions

In this section, we analyze two examples of aging functions, in order to give examples of the
limiting degree distribution of the branching process.We consider affineweights fk = ak+b,
and three different aging functions:

g(t) = e−λt , g(t) = (1 + t)−λ, and g(t) = λ1e
−λ2(log(t+1)−λ3)

2
.

We assume that in every case the aging function g is integrable, so we consider λ > 0 for the
exponential case, λ > 1 for the power-law case and λ1, λ2, λ3 > 0 for the lognormal case.
We assume that g satisfies Condition (2.5) in order to have a supercritical process.

We now apply (5.7) to these three examples, giving their asymptotics. In general, we

approximate tk with the solution of, for c1 = ae−aG(∞)

1−e−aG(∞) ,
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α∗

k
+ b

k
g(t) − c1g(t) = 0. (A.7)

We start considering the exponential case g(t) = e−λt . In this case, from (A.7) we obtain
that, ignoring constants,

tk = log k(1 + o(1)). (A.8)

As we expected, tk → ∞. We now use (A.6), which gives a bound on σ 2
k in (A.1) in terms

of g and its derivatives. As a consequence,
(

g(tk) − g′(tk)
g(tk)

)−1/2

= (
e−λtk + λ

)1/2 ∼ λ1/2(1 + o(1)).

Looking at e−k�k (tk ), it is easy to compute that, with tk as in (A.8),

exp
[
−α∗ log k + bG(tk) + k log(1 − e−aG(tk ))

]
= k−α∗

(1 + o(1)).

Since tk/σk → ∞, then P
(N (0, σ 2

k ) ≤ tk
) → 1, so that

pk = �(k + b/a)

�(b/a)

1

�(k + 1)
C1k

−α∗
e−C2k(1 + o(1)),

which means that pk has an exponential tail with power-law corrections.
We now apply the same result to the power-law aging function, so g(t) = (1+ t)−λ, and

G(t) = 1
λ−1 (1 + t)1−λ. In this case

(1 + tk) =
(

α∗

c1k

)−1/λ

(1 + o(1)).

We use again (A.1), so

(

g(tk) − g′(tk)
g(tk)

)

=
(

α∗

c1k
+ λ

(
c1k

α∗

)1/λ
)1/2

∼ kα∗/2λ(1 + o(1)).

In conclusion,

pk = �(k + b/a)

�(b/a)

1

�(k + 1)
kα∗/2λe

−α∗
(

α∗
c1k

)−1/λ−C2k
(1 + o(1)),

which means that also in this case we have a power-law with exponential truncation.
In the case of the lognormal aging function, (A.7) implies that

[log(tk + 1) − λ3]2 ≈ + 1

λ2
log
( c1

α∗ k
)

.

By (A.1) we can say that
(

g(tk) − g′(tk)
g(tk)

)

=
(

λ1 log
( c1

α∗ k
)

+ 2λ2
log(tk + 1)

tk + 1

)

(1 + o(1)) = λ1 log
( c1

α∗ k
)

(1 + o(1)).

We conclude then, for some constant C3 > 0,

pk = �(k + b/a)

�(b/a)

1

�(k + 1)

(
λ1 log

( c1
α∗ k

))1/2
e−α∗e(log(

c1
α∗ k))1/2

e−C3k(1 + o(1)).
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B. Limiting Distribution with Aging and Fitness

In this section, we consider birth processes with aging and fitness. We prove Lemma 5.4,
used in the proof of Proposition 5.5. Then we give examples of limiting degree distributions
for different aging functions and exponentially distributed fitness.

B.1 Proofs of Lemma 5.4 and Proposition 5.5

Proof of Lemma 5.4 We use again second order Taylor expansion of the function �k(t, s)
centered in (tk, sk), where the first order partial derivatives are zero. As a consequence we
write

exp [−k�k(t, s)] = exp

[

−k�k(tk, sk) + 1

2
xT (kHk(tk, sk)) x + o(||x||2)

]

,

where

x =
[
t − tk
s − sk

]

, and Hk(tk, sk) =

⎡

⎢
⎢
⎢
⎣

∂2�k

∂t2
(tk, sk)

∂2�k

∂s∂t
(tk, sk)

∂2�k

∂s∂t
(tk, sk)

∂2�k

∂s2
(tk, sk)

⎤

⎥
⎥
⎥
⎦

.

As for the proof of Lemma 5.1, we start by showing that we can ignore the terms where
||x||2 � 1. In fact,

e−k�k (t,s) ≤ exp
(−α∗t − bsG(t) + k log(μ(s))

)
.

Since μ is a probability density, μ(s) < 1 for s � 1. As a consequence, log(μ(s)) < 0,
which means that the above bound is exponentially decreasing whenever t and s are very
large. As a consequence, we can ignore the contribution given by the termswhere |t−tk | � 1
and |s − sk | � 1.

The term e−k�k (tk ,sk ) is independent of t and s, so we do not consider it in the integral.
Writing u = t − tk and v = s − sk , we can write

∫

R+×R+
e− 1

2 x
T (kHk (tk ,sk ))xdsdt =

∫ ∞

−tk

∫ ∞

−sk
e− 1

2 y
T (kHk (tk ,sk )) ydudv,

where this time yT = [u v]. As a consequence,
∫ ∞

−tk

∫ ∞

−sk
e− 1

2 y
T (kHk (tk ,sk )) ydudv = 2π√

det(kHk(tk, sk))
P (N1(k) ≥ −tk,N2(k) ≥ −sk) ,

(B.1)
provided that the covariance matrix (kHk(tk, sk))−1 is positive definite. ��

As a consequence, we can use (B.1) to obtain that, for the corresponding limiting degree
distribution of the branching process (pk)k∈N, as k → ∞,

pk = �(k + b/a)

�(b/a)

1

�(k + 1)
e−k�k (tk ,sk ) 2π

√
det(kHk(tk , sk))

P (N1(k) ≥ −tk ,N2(k)

≥ −sk) (1 + o(1)).

This results holds if the point (tk, sk) is the absolute minimum of �k , and the Hessian matrix
is positive definite at (tk, sk).
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B.2 The Hessian Matrix of �k(t, s)

First of all, we need to find a point (tk, sk) which is the solution of the system

∂�k

∂t
= α∗

k
+ b

k
sg(t) − sag(t)e−saG(t)

1 − e−saG(t)
= 0, (B.2)

∂�k

∂s
= b

k
G(t) − 1

k

μ′(s)
μ(s)

− aG(t)e−saG(t)

1 − e−saG(t)
= 0. (B.3)

Denote the solution by (tk, sk). Then

∂2�k

∂t2
= b

k
sg′(tk) + g(tk)

2 s2a2e−asG(tk )

(1 − e−asG(tk ))2
− g′(tk)

ase−asG(tk )

1 − e−asG(tk )
,

∂2�k

∂s2
= −1

k

μ′′(s)μ(s) − μ′(s)2

μ(s)2
+ a2G(t)2e−saG(t)

(1 − e−saG(t))2
,

∂2�k

∂s∂t
= b

k
g(tk) +

(

1 − 1

ask

)(
b

k
G(tk) − 1

k

μ′(sk)
μ(sk)

)(
α∗

k
+ b

k
skg(tk)

)

. (B.4)

From (B.2) and (B.3) we know

α∗

k
+ b

k
skg(tk) = skag(tk)e−skaG(tk )

1 − e−skaG(tk )
,

b

k
G(tk) − 1

k

μ′(sk)
μ(sk)

= aG(tk)e−skaG(tk )

1 − e−skaG(tk )
. (B.5)

Using (B.5) in the expressions for the second derivatives,

∂2�k

∂t2
= b

k
skg

′(tk) + askg(tk)

(1 − e−askG(tk ))

(
α

k
+ b

k
skg(tk)

)

− g′(tk)
g(tk)

(
α

k
+ b

k
skg(tk)

)

= askg(tk)

(1 − e−askG(tk ))

(
α

k
+ b

k
skg(tk)

)

− α

k

g′(tk)
g(tk)

, (B.6)

∂2�k

∂s2
= −1

k

μ′′(sk)μ(sk) − μ′(sk)2

μ(sk)2
+ aG(tk)

1 − e−askG(tk )

(
b

k
G(tk) − 1

k

μ′(sk)
μ(sk)

)

= −1

k

μ′′(sk)
μ(sk)

+ 1

k

(
μ′(sk)
μ(sk)

)2

− 1

k

μ′(sk)
μ(sk)

aG(tk)

1 − e−askG(tk )
+ 1

k

abG(tk)2

1 − e−askG(tk )
.

(B.7)

In conclusion, the matrix kHk(tk, sk) is given by

(kHk(tk, sk))1,1 = askg(tk)

(1 − e−askG(tk ))
(α + bskg(tk)) − α

g′(tk)
g(tk)

;

(kHk(tk, sk))2,2 = −μ′′(sk)
μ(sk)

+
(

μ′(sk)
μ(sk)

)2

− μ′(sk)
μ(sk)

aG(tk)

1 − e−askG(tk )
+ abG(tk)2

1 − e−askG(tk )
;

(kHk(tk, sk))2,1 = bg(tk) +
(

1 − 1

ask

)(
b

k
G(tk) − 1

k

μ′(sk)
μ(sk)

)
(
α∗ + bskg(tk)

)
. (B.8)
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We point out that, solving (B.3) in terms of s, it follows that

s = 1

aG(t)
log

(

1 + k
aG(t)

bG(t) − μ′(s)
μ(s)

)

. (B.9)

As a consequence,

skg(tk) = α∗G(tk)
μ(sk)

μ′(sk)
. (B.10)

We use (B.9), (B.10) and the expressions for the elements of the Hessian matrix given in
(B.8) for the examples in Sect. B.3. We also use the formulas of this section in the proof of
Propositions 5.6 and 5.7 given in Sect. C.

B.3 Examples of Aging Functions

Here we give examples of limiting degree distributions.We consider the same three examples
of aging functions we considered in Sect. A.2, so

g(t) = e−λt , g(t) = (1 + t)−λ, and g(t) = λ1e
−λ2(log(t+1)−λ3)

2
.

We consider exponentially distributed fitness, so μ(s) = θe−θs . In order to have a super-
critical and Malthusian process, we can rewrite Condition (2.8) for exponentially distributed
fitness as aG(∞) < θ < (a + b)G(∞).

In general, we identify the minimum point (tk, sk), then use (C.13). For all three examples,
replacing G(t) by G(∞) and using (B.9), it holds that

sk ≈ 1

aG(∞)
log

(

k
aG(∞)

bG(∞) + θ

)

,

and skg(tk) ≈ α∗G(∞)θ . For the exponential aging function, using (B.10), it follows that
e−λtk ≈ log k. In this case, since g′(t)/g(t) = −λ, the conclusion is that, ignoring the
constants,

pk = k−(1+λθ/a)(log k)α
∗/λ(1 + o(1)).

For the inverse-power aging function tk ≈ (log k)1/λ, which implies (ignoring again the
constants) that

pk = k−(1+(λ−1)θ/a)e−α∗(log k)1/λ (1 + o(1)),

where we recall that, for g being integrable, λ > 1. For the lognormal case,

tk ≈ e(log k)1/2 ,

which means that

pk = k−(1+θ/aG(∞))e−α∗e(log k)1/2

(1 + o(1)).

C. Proof of Propositions 5.6 and 5.7

In the present section, we prove Propositions 5.6 and 5.7. These proofs are applications of
Proposition 5.5, and mainly consist of computations. In the proof of the two propositions,
we often refer to Appendix B.2 for expressions regarding the Hessian matrix of �k(t, s) as
in (5.11).
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C.1 Proof of Proposition 5.6

We start by proving the existence of the dynamical power-law. We already know that

P (Mt = k) = �(k + b/a)

�(b/a)�(k + 1)

∫ ∞

0
μ(s)e−bsG(t)

(
1 − e−asG(t)

)k
ds. (C.1)

We write

J (k) =
∫ ∞

0
e−kψk (s)ds, (C.2)

where

ψk(s) = bG(t)

k
s − 1

k
log(μ(s)) − log

(
1 − e−asG(t)

)
. (C.3)

In order to give asymptotics on J (k) as in (C.2), we can use a Laplace method similar to the
one used in the proof of Lemma 5.1, but the analysis is simpler since in this case ψk(s) is a
function of only one variable. The idea is again to find a minimum point sk for ψk(s), and to
use Taylor expansion inside the integral, so

ψk(s) = ψk(sk) + 1

2
ψ ′′

k(sk)(s − sk)
2 + o((s − sk)

2).

We can ignore the contribution of the terms where (s − sk)2 � 1, since e−kψk (s) ≤ e−bsG(t),
so that the error is at most exponentially small. As a consequence,

J (k) =
√

π

ψ ′′
k(sk)

e−kψk (sk )(1 + o(1)). (C.4)

The minimum sk is a solution of

dψk(s)

ds
= bG(t)

k
− 1

k

μ′(s)
μ(s)

− aG(t)e−saG(t)

1 − e−asG(t)
= 0. (C.5)

In particular, sk satisfies the following equality, which is similar to (B.9):

sk = 1

aG(t)
log

(

1 + k
aG(t)

bG(t) − μ′(sk)/μ(sk)

)

. (C.6)

When μ(s) = Ch(s)e−θs ,

μ′(s)
μ(s)

= h′(s)e−θs − θh(s)e−θs

h(s)e−θs
= −θ

(

1 − h′(s)
θh(s)

)

≈ −θ. (C.7)

In particular, this implies

sk = 1

aG(t)
log

(

1 + k
aG(t)

bG(t) + θ

)

(1 + o(1)). (C.8)

Similarly to the element (kHk(tk, sk))2,2 in (B.8),

k
d2ψk(sk)

ds2
= −μ′′(sk)

μ(sk)
+
(

μ′(sk)
μ(sk)

)2

− μ′(sk)
μ(sk)

aG(t)

1 − e−askG(t)
+ abG(t)2

1 − e−askG(t)
. (C.9)

For the general exponential class, the ratio

μ′′(sk)
μ(sk)

= h′′(s)
h(s)

− 2θ + θ2.
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As a consequence, k d2ψk (s)
ds2

converges to a positive constant, which means that sk is an actual

minimum. Then J (k) = c1e−kψk (sk )(1+o(1)). Using this in (C.1) and ignoring the constants,

P (Mt = k) = �(k + b/a)

�(b/a)�(k + 1)
e−skbG(t)μ(sk)(1 + o(1))

= k−1k−b/akb/ah(sk)k
−θ/aG(t)(1 + o(1)) = h(sk)k

−(1+θ/aG(t))(1 + o(1)),

(C.10)

which is a power-law distribution with exponent τ(t) = 1+ θ/aG(t), and minor corrections
given by h(sk). This holds for every t ≥ 0. In particular, considering G(∞) instead of G(t),
with the same argument we can also prove that the distribution of the total number of children
obeys a power-law tail with exponent τ(∞) = 1 + θ/aG(∞).

We now prove the result on the limiting distribution (pk)k∈N of the CTBP, for which we
apply directly Proposition 5.5, using the analysis on the Hessian matrix given in Sect. B.2.
First of all, from (B.9) it follows that

sk = 1

aG(tk)
log

(

1 + k
aG(tk)

bG(tk) + θ

)

(1 + o(1)), (C.11)

and by (B.10)

skg(tk)
k→∞−→ α

G(∞)

θ
. (C.12)

For the Hessian matrix, using (C.11) and (C.11) in (B.8), for any integrable aging function
g we have

(kHk(tk, sk))2,2 = C2 + o(1) > 0, and (kHk(tk, sk))2,1 = o(1),

but (kHk(tk, sk))1,1 behaves according to g′(tk)/g(tk). If this ratio is bounded, then
(kHk(tk, sk))1,1 = C1 + o(1) > 0, while (kHk(tk, sk))1,1 → ∞ whenever g′(tk)/g(tk)
diverges. In both cases, (tk, sk) is a minimum. In particular, again ignoring the multiplica-
tive constants and using (C.11) and (C.12) in the definition of �k(t, s), the limiting degree
distribution of the CTBP is asymptotic to

k−(1+θ/(aG(tk )))h(sk)e
−α∗tk

(

C̃ − α∗ g′(tk)
g(tk)

)−1/2

, (C.13)

where the term
(
C̃ − α∗ g′(tk )

g(tk )

)−1/2
,which comes from the determinant of theHessianmatrix,

behaves differently according to the aging function. With this, the proof of Proposition 5.6
is complete. ��

C.2 Proof of Proposition 5.7

This proof is identical to the proof of Proposition 5.6, but this time we consider a sub-
exponential distribution. First, we start looking at the distribution of the birth process at a
fixed time t ≥ 0. We define ψk(s) and J (k) as in (C.3) and (C.2). We use again (C.1), so

sk = 1

aG(t)
log

(

1 + k
aG(t)

bG(t) − μ′(sk)/μ(sk)

)

.

In this case, we have
μ′(s)
μ(s)

= −θ(1 + ε)sε. (C.14)
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Then sk satisfies

sk = 1

aG(t)
log

(

1 + k
aG(t)

bG(t) + θ(1 + ε)sε
k

)

. (C.15)

By substitution, it is easy to check that sk is approximatively c1 log k−c2 log log k = log k(1−
log log k
log k ), for some positive constants c1 and c2. This means that as first order approximation,

sk is still of logarithmic order. Then,

μ′′(s)
μ(s)

= θ2(1 + ε)2s2ε − θ(1 + ε)εsε−1. (C.16)

Using (C.14) and (C.16), we can write

k
d2ψk(s)

ds2
= θ(1 + ε)εsε−1

k + θ(1 + ε)sε
k

aG(t)

1 − e−askG(t)
+ abG(t)2

1 − e−askG(t)

= θ(1 + ε)εsε−1
k + θ(1 + ε)

sε
k

k
(bG(t) + θ(1 + ε)sε

k )

+bG(t)

k
(bG(t) + θ(1 + ε)sε

k ). (C.17)

The dominant term is c1sε
k , for some constant c1. This means k d2ψk (s)

ds2
is of order (log k)ε.

Now,

J (k) =
(

k
d2ψk(s)

ds2

)−1/2

Ce−bG(t)sk−θs1+ε
k +k log(1−e−aG(t)sk )(1 + o(1))

= (log k)−ε/2k−b/ae−θ(log k)1+ε

(1 + o(1)). (C.18)

As a consequence,

P (Mt = k) = k−1(log k)−ε/2e−θ(log k)1+ε

(1 + o(1)), (C.19)

which is not a power-law distribution. Again using similar arguments, we show that the
limiting degree distribution of the CTBP does not show a power-law tail. In this case

sk = 1

aG(tk)
log

(

1 + k
aG(tk)

bG(tk) + θ(1 + ε)sε
k

)

,

and

skg(tk) = αG(tk)

θ(1 + ε)sε
k

= αG(tk)

logε k
(1 + o(1)) → 0.

The Hessian matrix elements are

(kHk(tk, sk))1,1 = aα2G(tk)

sε
k

− aα
g′(tk)
g(tk)

+ o(1),

(kHk(tk, sk))2,2 = θ(1 + ε)εsε−1
k + θsε

k aG(∞) + abG(∞)2 + o(1),

(kHk(tk, sk))1,2 = o(1). (C.20)

This implies that

det (kHk(tk, sk)) = C1 − sε
k
g′(tk)
g(tk)

+ o(1) > 0. (C.21)
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As a consequence, (tk, sk) is an actual minimum. Then using the definition of �k(t, s),

pk = e−α∗tk k−1+b/ak−b/aμ(sk) ∼ e−α∗tk k−1
(

C1 − sε
k
g′(tk)
g(tk)

)

e
− θ

(aG(∞))1+ε (log k)1+ε

(1 + o(1)).

(C.22)
This completes the proof. ��
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