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verfügbar.
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Abstract

Protein aggregation into highly structured amyloid fibrils is associated both

with devastating diseases, including Alzheimer’s disease and type 2 diabetes,

and functional roles, such as the storage of neuropeptides. Experimental ev-

idence shows that the toxic species in amyloid diseases are small oligomers.

These oligomers are transient and, hence, are hard to characterize experimen-

tally. In this thesis, I study the aggregation of amyloidogenic peptides into

oligomers using classical molecular dynamics simulations. Most of the pep-

tides simulated are variants of the amyloid-β peptide (Aβ), which is involved

in the development of Alzheimer’s disease. First, I investigate the aggregation

of Aβ25−35 and two functional amyloidogenic tachykinin peptides: kassinin and

neuromedin K. The three peptides have similar primary sequences, yet, while

Aβ25−35 is toxic, tachykinin peptides are not. In my simulations, tachykinin

peptides aggregate faster than Aβ25−35, which suggests that functional amy-

loids may avoid toxicity by rapidly aggregating into the non-toxic fibril phase.

Furthermore, I observe that peptides that exist in extended conformations as

monomers aggregate faster than those in hairpin-like conformations. Next, I

compare the ability of different force fields in modeling intrinsically disordered

proteins (IDPs) and protein aggregation. In recent years, new force fields have

been developed to balance different secondary structures in protein folding

simulations. These new force fields should perform better than older ones for

IDPs or protein aggregation. In my simulations of Aβ42, which is an IDP, the

new force fields, particularly CHARMM22*, reproduce experimental nuclear

magnetic resonance data better than the older force fields under study. In the

simulations of protein aggregation, none of the force fields is able to distin-

guish between slowly, fast and non-aggregating peptides. However, the force

fields predict similar inter-peptide contacts for aggregating peptides, indicat-

ing that protein aggregation is driven by the same interactions with all force

fields. Finally, I study the monomer dynamics of multiple mutants of Aβ16−22

with different aggregation propensity. No correlation is observed between en-

semble averaged properties and aggregation propensity. However, the implied

time scale of the slowest process of the monomer dynamics correlates with ag-

gregation propensity, which shows that amyloidogenic peptide aggregation is
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encoded in the dynamical properties of the monomer. This thesis presents an

advance in the simulations of protein aggregation, providing new insight into

the formation of amyloid oligomers. Only if the physico-chemical principles

of this process are understood, one can rationally design therapeutic agents

against amyloid diseases and create novel amyloid-based nanomaterials.
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Zusammenfassung

Die Ausbildung hoch-strukturierter Amyloid-Fibrillen ist zum einen mit schw-

eren Krankheiten, einschließlich der Alzheimerschen Demenz und Typ II Di-

abetes, als auch mit funktionalen Rollen wie zum Beispiel der Speicherung

von Neuropeptiden assoziiert. Experimentelle Daten belegen, dass die toxis-

che Spezies in amyloidogenen Erkankungen niedermolekulare Oligomere sind.

Diese Oligomere sind allerdings kurzlebig und daher experimentell schwer zu

charakterisieren. In dieser Arbeit untersuche ich die Aggregation von amy-

loidogenen Peptiden zu Oligomeren mithilfe von klassichen Molekülardynamik-

Simulationen. Die Mehrzahl der simulierten Peptide sind Varianten des Amyloid-

β-Peptids (Aβ), welches in der Entstehung der Alzheimer-Krankheit involviert

ist. Zunächst untersuche ich die Aggregation von Aβ25−35 und zwei funk-

tionellen amyloidogenen Tachykininen (Kassinin und Neuromedin K). Diese

drei Peptide weisen eine hohe Sequenzidentität auf, jedoch ist Aβ25−35 toxisch,

wohingegen die Tachykinin-Peptide es nicht sind. In meinen Simulationen

aggregieren die Tachykinin-Peptide schneller als Aβ25−35, was nahelegt, dass

funktionelle Amyloide möglicherweise schneller in die nicht-toxischen Fibrillen

aggregieren und dadurch die toxische Oligomer-Phase meiden. Darüber hin-

aus beobachte ich, dass die Peptide, welche als Monomer in einer ausgedehnten

Konformation vorliegen, schneller aggregieren als jene, die in einer Haarnadel-

Stuktur existieren. Anschließend vergleiche ich unterschiedliche Kraftfelder

im Bezug auf ihre Fähigkeit, intrinsisch ungeordnete Proteine (intrinsically

disordered proteins, IDPs) und Proteinaggregation zu modellieren. In den

letzten Jahren wurden neue Kraftfelder entwickelt, um Sekundärstrukturen

während der Proteinfaltung ausgeglichen simulieren zu können. Die Vermu-

tung ist, dass diese neuen Kraftfelder auch besser geeignet sind für die Simu-

lation von IDPs und Proteinaggregation als die älteren Kraftfelder. In meinen

Simulationen des IDPs Aβ42 kann das CHARMM22*-Kraftfeld experimentelle

Kernspinresonanzspektroskopie-Daten deutlich besser reproduzieren als ältere

von mir getestete Kraftfelder. In den Proteinaggregation-Simulationen kann

keins der Kraftfelder überzeugen, da kein Kraftfeld fähig ist, zwischen schnell,

langsam und nicht-aggregierenden Peptiden zu unterscheiden. Allerdings sagen

die Kraftfelder ähnliche Kontakte zwischen den Peptiden voraus, was da-
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rauf hindeutet, dass Proteinaggregation bei allen untersuchten Kraftfeldern

durch die gleichen Interaktionen ausgelöst wird. Schließlich untersuche ich die

Monomerdynamik mehrerer Aβ16−22-Varianten mit unterschiedlichen Aggre-

gationseigenschaften. Zwischen den Ensemble-gemittelten Eigenschaften und

den experimentell bestimmten Aggregationskinetiken kann ich keinen Zusam-

menhang beobachten. Allerdings korreliert die Zeitskala des langsamsten Prozesses

der Monomerdynamik mit der Aggregationsneigung, was zeigt, dass die Aggre-

gation von amyloidogenen Peptiden bereits in den dynamischen Eigenschaften

des Monomers kodiert ist. Diese Arbeit stellt einen Fortschritt in der Simula-

tion von Protein-Aggregation dar und präsentiert neue Erkenntnisse über die

Bildung amyloidogener Oligomere. Nur wenn die physikochemischen Prinzip-

ien dieses Prozesses verstanden sind, können therapeutische Mittel gegen amy-

loidogene Erkankungen durch rationelles Design sowie neue amyloid-basierte

Nanomaterialien entwickelt werden.
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1. Introduction

1.1. Protein Aggregation

Protein aggregation is the process by which individual proteins come together

to form stable non-covalent aggregates. Individual proteins in these aggre-

gates may stay in conformations which are similar to the non-aggregated

monomers, or, more commonly, change drastically from the conformations

of the monomers in solution. Among the latter, the most studied aggregates

are amyloids, in which proteins and peptides which are often intrinsically dis-

ordered proteins (IDPs) and do not adopt stable 3-dimensional structures,

aggregate into highly-structured fibrils mostly formed by β-sheets. Amyloids

have been studied at length because of their association with devastating dis-

eases, such as Alzheimer’s disease, Parkinson’s disease or type 2 diabetes.6,7

However, amyloids can also have functional roles in nature8,9 and could be the

basis for the design of novel biocompatible nanomaterials.10 It has been hy-

pothesised that most proteins can form amyloids under the right environmental

conditions11 even if most proteins do not form them under normal conditions.

The most common disease associated with amyloid formation is Alzheimer’s

disease, which is also the most common type of dementia (about 50-70 % of

the patients with dementia in Europe have Alzheimer’s disease12). Alzheimer’s

disease features a slow progressive decline in mental ability in which memory,

thinking and judgement deteriorate and the personality of the patients may

change. An estimated 7.3 million people suffer dementia in Europe12 (slightly

over 1 % of the population). Because dementia is age-related (only 0.09 %

of women and 0.16 % of men between 30-59 suffer dementia but 36 % of

women and 31.58 % of men between 95 and 99 suffer dementia12) and the

population of Europe is ageing,13 the number of affected people will most

probably increase in the future. The cost of Alzheimer’s disease in 2008 in

Europe was estimated to be 160.3 billion e, with 71.7 billion e for direct costs

and 88.6 billion e for informal care,14 which demonstrates the high economic

burden of the disease. The hallmark of Alzheimer’s disease is the existence of

intracellular amyloid plaques in the patient’s brain, formed by amyloid fibrils

of the amyloid-β (Aβ) protein, a peptide which is an IDP in its monomer state.
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1. Introduction

There is no known cure for Alzheimer’s disease, and current treatment only

masks the symptoms.15

Parkinson’s disease is the second most common neurodegenerative condi-

tion after Alzheimer’s disease, affecting an estimated 1.2 million Europeans.16

Parkinson’s disease impairs the neurons that control movement, and typical

symptoms include tremor, muscle rigidity and slowness of movement. Non-

motor symptoms include pain, anxiety and depression. There is also no cure

for Parkinson’s disease and current treatments only control the symptoms.

One of the main physiological changes in Parkinson’s disease is the aggrega-

tion of α-synuclein, a presynaptic neuronal protein, into amyloids.17 These

amyloids form Lewy bodies which can be found in the brains of patients with

Parkinson’s disease.

Another major disease associated with amyloids is type 2 diabetes. Diabetes

mellitus is a chronic disease, associated with a higher than normal blood glu-

cose concentration resulting from defects on insulin action. Type 2 diabetes is

the most common type of diabetes with between 85-95 % of diabetics suffer-

ing from it.18 Unlike type 1 diabetes, patients only suffer from relative insulin

deficiency caused by insulin resistance or secretory defects. Untreated type 2

diabetes can lead to blindness or visual disability, kidney failure, heart disease

and neuropathy. In 2010, there were approximately 33 million diabetics in

Europe (around 9 % of the adult population).18 The treatment of diabetes is a

major economical burden, with countries such as Germany or Spain spending

8.6 % of its total health expenditures for the treatment of diabetes.18 One of

the most common pathological features of type 2 diabetes is the existence of

amyloid deposits in pancreatic islets, made of the islet amyloid polypeptide

(IAPP), also known as amylin, a short peptide which is secreted when insulin

is produced from β-cells.19

Alzheimer’s disease, Parkinson’s disease and type 2 diabetes are probably the

most commonly known diseases associated with protein aggregation into amy-

loids. However, there are at least 40 other diseases associated with amyloids

including Huntington’s disease, spongiform encephalopaties (including mad

cow disease), amyotrophic lateral sclerosis, amyloid light-chain (AL) amyloi-

dosis and fibrinogen amyloidosis.6 It has even been hypothesised that p53, a

protein intrinsically related to the development of cancer, may also aggregate

into amyloids.20 Understanding the molecular mechanisms by which normally

soluble proteins aggregate into amyloid fibrils and their relationship to the

toxicity in these diseases is essential to find cures for them.

Even though amyloids are mostly known because of their association with
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1.1. Protein Aggregation

diseases, they can also have normal physiological roles, in which case they are

referred to as functional amyloids. Functional amyloids are found in a wide

variety of organisms: all the way from bacteria to humans.8,9 For example, in

bacteria amyloids formed by the protein curli play an essential role in biofilm

formation and host invasion.21 In the fungus Podospora anserina, amyloids

formed by the protein Het-S participate in the process of heterokaryon in-

compatibility, in which two nuclei check their compatibility.22 There are also

several examples of functional amyloids in animals: the protein Pmel17 forms

an amyloid in Homo sapiens which serves as a scaffold for melanin forma-

tion;23 various protein and peptide hormones are stored as amyloids in the

secretory granules of the endocrine system;24 and the kinases RIP1 and RIP3

form amyloids which work as a signaling complex in programmed necrosis.25

Amyloids also play a role in the storage of long-term memory in Drosophila

melanogaster .26 The existence of functional amyloids calls into question the

fact that amyloids are toxic by their own nature, because functional amyloids

must have had evolutionary pressure to lower their toxicity.

Finally, amyloids have also been proposed lately as the possible basis for

novel nanomaterials.10,27 Amyloids offer many advantages as a material: their

structure is not dependant on complex side-chain interactions but on universal

physico-chemical properties; they are biocompatible, stable, self-aggregating

and can be designed to have multiple functions; they can be as rigid as natu-

ral materials such as silk and bones; and they assemble from simple building

blocks such as soluble precursors in a bottom-up fashion. As a proof of concept,

amyloids were shown to self-assemble into two-dimensional films.28 Moreover,

amyloids can also be employed in enzyme design, in which an existing enzy-

matic pocket can be copied into an amyloid-forming peptide and aggregate into

a catalytic amyloid.29 Amyloids can also be used as storage for long-lasting

drugs in the pharmaceutical industry.30 In this case, the drug is injected into

the patient as an amyloid, which later slowly disassembles, and the released

monomers act as the active drug. It should be noted though, that aggregation

is often deleterious in drug action because they can cause an immune response

in patients and drugs can stop being efficient.31 Another possible use of amy-

loids could be obtained by fusing amyloid-forming peptides with other proteins

with particular properties and self-assemble them in an ordered manner. For

example, the amyloid-forming SH3 domain was fused to a cytochrome protein,

which contains heme molecules with Fe2+ ions, and could work as biologically

compatible nanowires.32 Finally, amyloids have also been used as a material

for carbon capture, which can be easily regenerated through heating.33
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1. Introduction

Because of the involvement of amyloids in multiple devastating diseases, their

growing number of identified functional roles, and the possible construction of

new amyloid-based nanobiomaterials, it is essential to understand the physico-

chemical principles that drive their formation. In such a way, we can help in

finding cures for the diseases caused by aberrant amyloids and rationalise the

design of functional amyloids.

1.2. Amyloid structure

From a structural biology point of view, the most important question regard-

ing amyloids is to determine its molecular structure. William Astbury was

the first one to study the diffraction pattern that amyloids form under X-rays

in 193534 and obtain some structural details about them. He found amyloids

form a cross-β diffraction pattern, characterised by a reflection at ∼ 4.8 Å

which represents the distance between β-strands, and a second reflection at

∼ 10 Å which represents the distance between β-sheets. The amyloid struc-

ture is then a long fibril formed by a number of β-sheets which lie perpendicular

to the fibril axis. An example of an amyloid structure is shown in figure 1.1,

including the hydrogen bond pattern between the protein backbones that sta-

bilizes the individual β-sheets. Eventually, more detailed structures of amyloid

were determined. For example, Nelson et al. in 200535 showed using X-ray

crystallography that various short amyloidogenic peptides form so-called dry

steric zippers, where no water molecules are found between sheets. Structures

of amyloids can also be determined using solid-state nuclear magnetic reso-

nance36 and electron microscopy.37 Moreover, amyloid formation can also be

followed using dies such as thioflavin T and Congo red.

The structure of amyloid fibrils is now well understood for small amyloido-

genic peptides. However, there are still many open questions about the struc-

ture of other relevant peptides such as Alzheimer’s Aβ,38 which is complicated

to study because of its polymorphicity. Nonetheless, it is now clear that in

many amyloid-related diseases it is not fibrils which are the toxic agents but

small, usually more disordered, oligomers.39–41 Hence, there is now a growing

interest in understanding the structure of oligomers both on- and off-pathway

toward fibril formation.42 However, because of the transient nature of many of

these oligomers, it is often hard to obtain information about them experimen-

tally without stabilizing them artificially, and multiple structures have been

determined for the same peptide.38,42 Even with these obstacles, it is now

known that the oligomers of Alzheimer’s Aβ,43–47 type 2 diabetes’ amylin48,49
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(a) (c)(b)

Figure 1.1.: Structure of residues 18-42 of Alzheimer’s Aβ42 (PDB code 2BEG),36

an example of an amyloid fibril. (a) Amyloid structure from the front.
Each peptide is plotted in a different colour. In this particular fibril,
only 5 peptides are plotted, however an actual amyloid could be made
of thousands or millions of proteins. (b) The same structure rotated
90◦ and seen through its main axis. (c) Close-up on the amyloid struc-
ture. The hydrogen bond network between backbone atoms of different
peptides that stabilize the structure are plotted in red.

and the prion protein50 have a certain amount of β-sheet content. However,

there are contradictory results for Aβ, for which oligomers with little β-sheet

content have also been found.51 Even with these important results, the en-

semble of paths from the monomers, which are usually disordered, up to the

highly-structured fibrils, passing through a multitude of ordered and disordered

oligomers, some of which are toxic, is still unknown.

1.3. Molecular simulations

Understanding the behaviour of proteins at the atomic detail is often hard

to do experimentally. In these cases, molecular simulations, and in particular

molecular dynamics simulations, can play an essential role by simulating the

dynamics of proteins at spatial and temporal resolutions which are impossi-

ble to reach experimentally, where either only static information or ensemble

average properties can be obtained.52 These simulations have become an im-

portant tool for studying both protein aggregation and already formed amyloid

fibrils.38,53–59 Recently, we have published a review paper that summarises the

newest results of atomistic simulation studies of protein aggregation.2

One of the most important questions to solve in the process of amyloid for-

mation is how monomers add to fibrils. By means of atomistic simulations, it

was possible to understand its molecular mechanism: it follows the so-called
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1. Introduction

dock-lock mechanism, in which the monomer first docks to the fibrils followed

by a drastic increase of the β-sheet content of the monomer, which then slowly

locks to the fibril by reorganising itself to optimize the hydrogen bonds with

the fibril.60–62 Regarding the issue of fibril stability, it has been found that

toxic mutations of Alzheimer’s Aβ are more stable than the wild type fibril,63

and that they are stable in more conformations than the wild type.64 Another

interest aspect that can also be studied by means of molecular dynamics sim-

ulations is the effect of secondary nucleation (the fact that the fibril surface

acts as a nucleation surface) on the conformation sampling of monomers.65

A particularly relevant and hard question that can be studied using molec-

ular simulations is the formation of the initial oligomers, which are relevant

because of their toxicity, and are hard to study experimentally because of

their transient nature. Atomistic simulations of protein aggregation are ex-

tremely expensive, particularly if performed with explicitly represented water

molecules. Hence, coarse-grained models with implicitly represented water, in

which multiple atoms are represented as one bead66–70 or even peptides rep-

resented as tubes, are normally used to study protein aggregation.71–74 These

simulations revealed that non-specific interactions are essential for amyloid

formation75 and that crowding agents play an important role in the initial

oligomer formation.76 It has even been possible to build a phase diagram de-

pendant on concentration and temperature for peptide aggregation.77

However, to understand the details of protein aggregation, such as the effect

of mutations on the aggregation of aberrant amyloids, it is essential to per-

form atomistic simulations of the oligomer formation of amyloidogenic pep-

tides. The easiest way of performing simulations of protein aggregation is by

introducing peptides in a simulation box and allowing them to freely aggre-

gate.78–82 The first study in which this approach was used was in 2003 by

Klimov and Thirumalai,78 where they investigated the aggregation of a sec-

tion of Alzheimer’s Aβ, Aβ16−22 and harmonically restrained the center of the

water box and the oligomer center of mass to speed up aggregation. They ob-

served, that aggregation passes through an α-helical intermediate before the

antiparallel β-sheet oligomers were formed. Unrestrained protein aggregation

simulations were used by Matthes et al. to determine that aggregating peptides

first collapse into partially ordered aggregates driven by lowering the solvation

free energy and then reorganize to optimize intermolecular contacts.81 Also,

Barz et al. observed that different peptides aggregate following different path-

ways dependant on their sequence.82 Even with the advent of special-purpose

molecular dynamics computers83 and highly optimized parallelized84,85 and
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GPU-accelerated codes,86,87 protein aggregation simulations are still extremely

expensive, particularly because of the large amount of solvent needed. Hence,

it is customary to study protein aggregation using enhanced sampling algo-

rithms,88 which provide a more efficient use of the computational resources

by speeding up conformational sampling. These methods can provide a con-

verged picture of the free energy landscape but provide limited information

on the kinetics of the simulated process. One of the most commonly used en-

hanced sampling algorithms is replica exchange molecular dynamics (REMD),

in which multiple replicas of the system are simulated at different temperatures

to enhance the sampling of the system.89 There are several studies in which

REMD was used to investigate the aggregation of amyloidogenic peptides.90–96

For example, Nguyen and Derreumaux94 studied the aggregation of 16 Aβ37−42

peptides and observed that the free energy minimum is characterized by 2- and

3-stranded β-sheets. Another enhanced sampling algorithm commonly used is

metadynamics, in which a history dependence bias is applied in a number of

collective variables to sample new sections of configuration space.97,98 When

studying protein aggregation the combination of REMD and metadynamics,

the so-called bias-exchange metadynamics99 has been used.100–102 Using this

methodology, it was found that the aggregation of polyvaline proceeds via an

intermediate characterized by antiparallel β-sheets, before reaching the free en-

ergy minimum mostly composed of parallel β-sheets. Hamiltonian REMD, in

which the Hamiltonian or energy function is changed between different replicas

has also been used to study protein aggregation.103

Even with the limitations caused by the high unrealistic concentration at

which most simulations of protein aggregation are performed,2 atomistic sim-

ulations have provided important information to understand the initial and

final events that drive the formation of amyloids, including a detailed under-

standing of the intermediates followed before reaching the final state.

1.4. Motivation and outline

There are still many open questions regarding amyloid formation, and particu-

larly, how the initial oligomers are formed. Molecular dynamics simulations are

specially well-suited for the study of the initial oligomers. This thesis concen-

trates on understanding the aggregation of biologically relevant amyloidogenic

peptides using molecular dynamics simulations and on understanding the lim-

itations of such simulations in the study of protein aggregation.

In Chapter 2, the basics of molecular dynamics simulations, which will be
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1. Introduction

used during the rest of the thesis, are introduced.

One of the most important questions still to answer is what are the dif-

ferences in the oligomer formation between aberrant and functional amyloids.

Considering that oligomers are the toxic agents in amyloidoses, there should be

differences in the structure and/or dynamics of the oligomers formed between

toxic and non-toxic amyloids. In Chapter 3, the aggregation of the functional

tachykinin peptides and Alzheimer’s Aβ25−35 is investigated. These peptides

are particularly interesting because, even though they share a large amount of

sequence identity, they have different toxicity.

Because of the fact that the application of all-atom explicit solvent simula-

tions is recent, we still do not know if the force fields used to model proteins are

accurate enough for the study of intrinsically disordered peptides and protein

aggregation. In Chapter 4, multiple force fields are tested in how good they

are for the modeling of both an intrinsically disordered protein, Aβ42, which is

usually the state in which monomers associated with amyloids are found; and

in the aggregation of Aβ16−22 and two mutants of this peptide with different

aggregation propensities.

Finally, one of the most important hypotheses regarding what drives protein

aggregation is that the aggregation propensity is encoded in the dynamics of

the monomer. In Chapter 5, a number of mutations of Aβ16−22 with different

aggregation propensities are simulated for the first time and both their struc-

tural and dynamical properties are calculated to correlate them with their

aggregation propensity.

The conclusions from this thesis and an outlook for future studies are pre-

sented in Chapter 6.
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2. Methodology

2.1. Molecular dynamics simulations

Molecular dynamics (MD) is a simulation method to calculate equilibrium

and dynamical properties of a system of interacting atoms.104,105 Even though

quantum mechanical effects can be explicitly included, for many systems, in-

cluding proteins whenever enzymatic reactions are not studied, it is often

enough to model the system using classical mechanics. The first applica-

tion of MD simulations to proteins were performed in the 1970,106,107 and

since then the technique has become a standard tool to study the dynamics

of proteins.52,108,109 In 2013, the Nobel Prize in Chemistry was awarded to

Martin Karplus, Michael Levitt and Arieh Warshel who have worked at large

in the field of MD simulations of proteins. Today, there exist many high qual-

ity programs to perform MD simulations including GROMACS,110 NAMD,85

ACEMD,87 OpenMM,86 Desmond111 and LAMMPS.112

The basic theory behind MD simulations is reasonably simple. First, the

initial coordinates for all atoms in the simulated system must be specified. In

the case of folded proteins, it is customary to start from a structure determined

either using X-ray crystallography or NMR. The potential energy of the inter-

actions between atoms are then calculated with a so-called force field, which

will be explained in detail in the next section. Then, forces are calculated as

the gradient of the potential energy:

Fi = −∇iU , (2.1)

where Fi is the force acting on particle i, U is the potential energy, and ∇i

is the gradient with respect to the coordinates of particle i. Then, Newton’s

second law113 is used to calculate the acceleration of the particles:

Fi = miai, (2.2)

where mi is the mass and ai is the acceleration of particle i. The acceleration is

defined as the derivative of the velocity (vi), which is defined as the derivative
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of the particle’s coordinates (ri):

ai =
dvi
dt

=
d2ri
dt2

. (2.3)

In this way, the new coordinates ri are calculated for all the atoms in the

system. The algorithm can then be used iteratively, until the system has

converged to its free energy minimum.

The simulation of large systems of thousands of atoms cannot be solved

analytically and, hence, the equations of motion must be discretized to solve

the problem numerically. In GROMACS,110,114 the software used for all of the

simulations in this thesis, the standard integrator is the leap-frog integrator,115

which is of third order in the coordinates r and time-reversible. The leap-frog

algorithm receives its name from the fact that coordinates and velocities are

calculated at different times. This algorithm uses coordinates r at time t and

velocities v at time t − 1
2
∆t, where ∆t is the timestep. ∆t should be small

enough to correctly sample the fastest motion simulated, and is usually in the

order of 1 fs in MD simulations of proteins. Modern MD softwares often use

newly developed techniques to increase ∆t, which will be explained in further

sections. The new coordinates and velocities are then calculated with the

following equations:

vi(t+
1

2
∆t) = vi(t−

1

2
∆t) +

∆t

mi

Fi(t), (2.4)

ri(t+ ∆t) = ri(t) + ∆tvi(t+
1

2
∆t). (2.5)

These equations must be modified in order to include constraints, temperature

and pressure coupling.

In the following sections, I will explain the details of how to perform realistic

and fast MD simulations.

2.2. Force fields

The potential energy is calculated with a so-called force field, which is a com-

plex system of equations including multiple terms and parameters that esti-

mate the interaction between the different atoms in a protein and the solvent,

in the case that the solvent is explicitly represented. There are a number

of families of force fields, which have been developed over time and have

had multiple updates of their functional forms and parameters.116 Some of

the most famous force fields families are CHARMM (Chemistry at Harvard
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Macromolecular Mechanics),117 OPLS (Optimized Potentials for Liquid Sim-

ulations),118 AMBER (Assisted Model Building with Energy Refinement)119

and GROMOS (GROningen MOlecular Simulation).120 Most force fields use

the following standard functional form:

U(r) =
∑
bonds

Kb(b− b0)2 +
∑

angles

Kθ(θ − θ0)2

+
∑

dihedrals

∑
n

Kχ(1 + cos(nχ− δ)) +
∑

impropers

Kφ(φ− φ0)2

+
∑

nonbonded

{
εij

[(
rij,0
rij

)12

− 2

(
rij,0
rij

)6
]

+
qiqj

4πε0rij

}
.

(2.6)

The first four terms include the bonded interactions while the last term rep-

resent the non-bonded interactions.

Bonded interactions include bonds, angles, dihedral angles and improper an-

gles. The first term in equation 2.6 represents bonds, which are interactions

between two covalently bonded atoms. The interactions are modeled with a

harmonic potential, in which Kb is the force constant which establishes the

strength of the interaction, b represents the bond distance, and b0 is the equi-

librium bond distance, which is equivalent to the minimum in the potential

energy well. Figure 2.1 shows an example of this functional form. Kb and

b0 are parameters that need to be defined for each bond in the protein and

its parametrization is needed for the development of a force field. The sec-

ond term in equation 2.6 represents angles, which model the angle θ which

is formed between three covalently bonded atoms. Again, there are two pa-

rameters for each angle: the force constant Kθ and the equilibrium angle θ0.

These parameters need to be defined for each angle formed between every

three bonded atoms in the protein. The third term represents dihedral angles

χ, which are the angles defined between the two planes formed by the first

and last three atoms of four atoms that are consecutively covalently bound. In

this case, the term is represented with a sinusoidal function, which allows for

the definition of multiple minima. The parameters that need to be defined are

the force constant Kχ, the multiplicity n and the phase angle δ. An example

of the functional form used to model dihedral angles is plotted in figure 2.2.

Finally, the fourth term represent improper dihedral angles φ, which are also

defined by four covalently bonded atoms and are used to keep certain chemical

groups, such as aromatic rings, planar. There are two parameters that need to

be parametrized for each improper dihedral angle: the force constant Kφ and

the equilibrium improper dihedral angle φ0. Bonded interactions may be aug-
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Figure 2.1.: Harmonic potential for bonded interactions. b0 is the equilibrium bond
length and it represents the minimum in the potential energy. Because
of the harmonic nature of the potential, bonds cannot be broken.

mented by coupling or correction terms, such as the Urey-Bradley potential,121

which is a distance potential between atoms connected through a third atom,

and the CMAP correction,122 a grid-based correction to accurately model the

preferences of the backbone dihedral angles in proteins. These two terms are

used in the CHARMM force field.

The last term in equation 2.6 represents non-bonded interactions, which in-

cludes two terms: Lennard-Jones interactions and electrostatic interactions.

Lennard-Jones interactions (see figure 2.3 for its functional form) are use to

model interactions between all atoms, even if they have no partial charges.

It includes two terms: the first one is a short-range repulsive interaction and

models the Pauli exclusion principle, which impedes the overlap of electron

orbitals; and the second term is attractive and represents long-range disper-

sion interactions, which are interactions that develop between instantaneously

induced dipoles caused by polarization. In equation 2.6, rij represents the dis-

tance between atoms i and j for which the interactions are calculated. The

parameters needed are rij,0 which is the distance of the potential energy mini-

mum and εij, the Lennard-Jones potential energy depth between atoms i and

j. Non-bonded interactions also include electrostatic interactions, which are

essential for protein function. qi and qj are the static partial charges of atoms i

and j respectively, which need to be parametrized for each atom, and ε0 is the

permittivity of the free space. Non-bonded interactions for covalently bonded

atoms and for atoms separated by two covalent bonds are usually neglected

and their interactions are dictated by bonded terms. However, for atoms sepa-

rated by three covalent bonds the non-bonded interactions are included in the

force field. In the CHARMM force field, these interactions are not scaled, but

in OPLS a scaling factor of 0.5 is used. In AMBER, scaling factors of 0.5 and

0.83 are used for Lennard-Jones and electrostatic interactions, respectively.
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Figure 2.2.: Example of a dihedral angle potential. In this case, it represents a
potential that follows the equation U(χ) = K2(1 + cos(2χ)) + K3(1 +
cos(3χ)). The first term is plotted in blue, the second term in light
blue and the sum of them in red. It represents a standard dihedral
angle potential energy function for a case where the two terminal groups
sterically clash. In this case, the gauche conformations are the lowest
potential energy minima, the trans conformation is a metastable energy
minimum, and the cis conformation is the least stable conformation. In
this example, the dihedral potential function only has two terms, but
force fields include interactions with up to four terms. By summing
them up, potentials with multiple minima at different energy levels can
be created.

This limits the transferability between force fields.

The Lennard-Jones parameters εij and rij,0 must be estimated for each pos-

sible pair of atoms that exist in the force field, which means that thousands

of parameters need to be defined. Hence, it is standard to develop atomic

εi and ri,0 parameters which are later combined to obtain the final parame-

ters. CHARMM and AMBER use the Lorentz-Berthelodt rules: i.e., εij are

obtained using the geometric mean εij =
√
εiεj and rij,0 are estimated using

the arithmetic mean rij,0 = (ri,0 + rij0)/2. OPLS, however, uses the geomet-

ric mean for both parameters. This further limits the transferability between

force fields.

Equation 2.6 is the standard equation for the so-called class I additive force

fields. There are also force fields referred to as class II force field, which

include higher order terms for bonds and angle, and also cross terms.123 Further

improvements of classical force fields include the use of the Morse function for

bonds, which allows for the simulation of bond breaking,124 and polarizable

force fields.125 These terms, however, increase the computational costs of the

simulation and are usually not used for proteins.

Even if many force fields have similar functional forms, they can perform

drastically differently when used in the simulation of a particular protein.126,127

One of the main reasons for this, is that the parameters are different between
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Figure 2.3.: Lennard-Jones potential for non-bonded interactions. εij is equivalent
to the depth of the energy well and models the strength of the inter-
action. rij,0 is the distance at which the minimum is located. The left
repulsive interaction for short distances comes from the r−12

ij term and
arouses from the Pauli exclusion principle. The right attractive interac-
tion for long distances comes from the r−6

ij and comes from dispersion

interactions.

different force fields, and even between different versions of the same force

field family. In particular, for both OPLS and CHARMM the partial atomic

charges were determined using HF/6-31*G quantum mechanical calculations,

while AMBER partial atomic charges were calculated based on RESP charges

fit to the same level of theory. The Lennard-Jones parameters of the three

force fields were estimated based on condensed phase simulations of small or-

ganic compounds. However, the water model (see section 2.3) used for the

parametrization of CHARMM and AMBER was TIP3P, while OPLS was

parametrized to work with TIP3P, TIP4P and SPC water models. Bonded

parameters for CHARMM, AMBER and OPLS were estimated to reproduce

quantum mechanical and experimental data for model compounds. The GRO-

MOS force field is the only of the most commonly used force field which still

uses united atoms, where methyl groups are considered as one atom, and it

has been parametrized with a focus on the reproduction of condensed phase

properties. All force fields are regularly updated as computers have become

faster and inaccuracies of the force fields become evident from longer simula-

tions. The complexity of developing accurate force fields means that it is hard

to know which force field is the best for a particular system, and it is often

needed to test and update force fields when new systems are studied.

2.3. Water models

Proteins cannot properly function without water surrounding them and, hence,

the correct treatment of solvation is essential for modeling the dynamics of pro-
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teins. In the past, implicit solvents,128 in which water models are not explicitly

represented but implicitly included in the potential energy function, were nor-

mally used and are still needed when simulating extremely large systems such

as protein aggregation at very low concentrations.65,129 However, there is now

clear evidence that implicit solvents do not represent water accurately130–133

and, therefore, it is now customary to represent water explicitly, even if it is

computationally more expensive.

The most common water models are the TIP3P134 and the SPC135 models,

which have had multiple corrections and extensions.136–140 Both TIP3P and

SPC are three-site models, which means that they have three interaction sites

which correspond to the the three atoms in the water molecule, which carry a

partial charge, while the oxygen atom also has Lennard-Jones interactions. The

TIP3P model is probably the most used water model and most force fields have

been developed to be used in combination with it. The three atoms form an

angle of 104.5◦, which is the value observed experimentally. Simulations with

TIP3P accurately reproduce water energetics and the first two hydration shells.

However, they underestimate the radial distribution function for long-range

water structures and the diffusion constant is larger than the experimental

value by a factor of 2. The SPC model is similar to TIP3P, but it has an

ideal tetrahedral angle of 109.47◦ and, when simulated, results in more defined

peaks in the radial distribution function.

Many of the extensions of the TIP3P model are part of the family of the

TIP4P water model. TIP4P is a four-site model, with an extra dummy atom

with a negative charge near the oxygen along the bisector of the angle between

the three real atoms. The dummy atom improves the electrostatic distribution

around the water model. One of the most current extensions of this model

is the TIP4P-Ew138 water model, which has been developed to be used in

combination with long-range Ewald summation methods.

2.4. Constraints

When discretizing the equations of motion, a timestep ∆t, must be used as

shown in equations 2.4 and 2.5. This timestep should be small enough to cor-

rectly sample the fastest motion in the system, which are usually bond vibra-

tions. A timestep of 1 fs is usually needed to avoid the system from becoming

unstable and the simulation from crashing. This means that to model a system

for 1 µs, a billion steps are necessary. Any method that allows to increase the

timestep, enables considerable larger simulations to be performed.
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One of the most common methods to increase the timestep is to constrain

the bonds. In classical MD, reactions are not being simulated and, hence,

the changes in bond lengths are usually not of interest. In classical protein

simulations, the most relevant effects are produced by non-bonded interactions

and dihedral angles. Therefore, constraining the bonds usually has no major

effects on the simulation and, because it allows for the timestep to be doubled

to 2 fs, simulations twice as large can be performed with the same amount of

computational resources. The constraint algorithm used for the simulations in

this thesis is LINCS (LINear Constraint Solver).141,142 LINCS uses Lagrange

multipliers to constrain the bonds. The constraints create new forces that

must be added to the equations of motion. The most important parameter

to select when using LINCS is the order of the expansion for the numerical

estimation of the Jacobian, which represents the constraining coupling matrix.

For normal MD simulations, an order of 4 is enough, but for simulations with

virtual sites (see next section) an order of 6 is necessary. In the case of parallel

simulations, atoms which are constrained may be found in different processors

and the parallel LINCS algorithm is needed.142 In this case, when an atom

crosses the boundary between processors, atoms up to lincs order + 1 are

communicated between processors and the normal LINCS algorithm is then

used.

For water molecules, the SETTLE algorithm, which is based on the SHAKE

algorithm,143 is used.144 The SHAKE algorithm also solves the constrained

equations of motion using a Lagrange multiplier for each constraint. The La-

grange multipliers are calculated with the Gauss-Seidel method. The algorithm

is iteratively used until a relative tolerance for the constraint is reached. SET-

TLE is an analytical solution of SHAKE which has been designed specifically

for the simulation of water. Instead of calculating constraint forces to correct

the unconstrained move, SETTLE uses quasi-Euler angles to directly correct

the update, and is faster than the original SHAKE algorithm.

2.5. Virtual sites

The next fastest motions after bond vibrations are angle and out-of-plane

motions. However, constraint algorithms such as LINCS have limitations when

the number of constraints are too high, therefore both bonds and angles cannot

be constrained using LINCS. Hence, another strategy must be implemented

to further increase the timestep. One possibility is the use of virtual sites

for hydrogens, which allows to increase the timesteps from 2 fs up to 7 fs.145
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Under this strategy, the positions of the hydrogen atoms are not updated

based on bonded interactions with other atoms, but they are calculated at

every step based on the positions of the three closest heavy atoms. The forces

on the hydrogen atoms are then redistributed on the heavy atoms, and because

virtual sites are massless, the mass of the hydrogens must also be redistributed

on the heavy atoms. In this way, the faster degrees of freedom of the hydrogen

atoms are removed from the system. However, certain degrees of freedom such

as the rotational freedom of the hydrogen atoms in amine groups must still be

simulated to accurately model proteins.

2.6. Parallelization

Many of the advances in theory and implementation of MD simulations al-

low scientists to perform longer and bigger simulations, to obtain converged

simulations and to study new systems, such as protein aggregation. Prob-

ably, the most important advances in the implementation of MD codes is

their parallelization and the design of MD codes for newer computer archi-

tectures. In particular, GROMACS,110 LAMMPS112 and NAMD85 are highly

optimized parallel MD codes. On the other side, ACEMD87 and OpenMM86

have been optimized for their use with graphical processing units (GPUs),

while Desmond111 has been developed to be used with the specialized hard-

ware Anton.83

In parallel codes such as GROMACS,114 the computation is divided between

a number of processors to increase the speed at which the simulation is per-

formed. Because in MD simulations most interactions are of local character, it

is reasonable to use a domain decomposition scheme, in which each processor

is in charge of simulating the atoms in a certain region of space. Atoms, how-

ever, may interact with other atoms located in different processors and, hence,

information from the neighbouring processors needs to be communicated at

every step. GROMACS also uses dynamic load balance to optimize the space

assigned to each processor and maximize the division of work. Even though

most interactions are local, electrostatic interactions are long-range and there-

fore, global communication between all processors is needed for an accurate

calculation of them. In GROMACS, a number of processors are used only for

the calculation of electrostatic interactions, usually using the particle mesh

Ewald (PME) summation method (see next section). In such a way, only a

few processors must communicate globally and this limits the computing time

lost because of the communication between processors.
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2. Methodology

2.7. Long range interactions

The most computationally expensive part of an MD simulation is the calcu-

lation of non-bonded interactions, and particularly electrostatic interactions.

Because these interactions depend on the distance between atoms, the forces

between atoms that are located far apart are negligible. Therefore, truncating

them after a certain cutoff was considered a reasonable approach to decrease

the amount of computing time needed. Originally, cutoffs of 0.8 or 0.9 nm were

used in MD simulations and force fields were parametrized considering such

cutoffs.116 However, important effects are observed when truncating long-range

electrostatic interactions. For example, simulations of the TIP3P water model

reproduce the experimental diffusion constant better without cutoffs146 and

protein simulations are better at reproducing experimental observables when

considering long-range electrostatics.147,148 Hence, long-range electrostatics are

essential to model proteins correctly.

The easiest way to account for long-range electrostatics would be to have

no cutoffs and to take into account all atoms in the force calculation. How-

ever, this method is extremely computationally expensive and alternatives are

usually needed. The most commonly used methods to account for long-range

electrostatics are based on the Ewald summation method,149 which divides

the space into two based on the distance from each atom. Short-range inter-

actions are calculated using a direct calculation, while long-range interactions

are calculated using an efficient reciprocal space treatment. To be able to

use Ewald summation methods, the system under study must be periodic,

hence it is customary to simulate proteins with periodic boundary conditions.

Periodic boundary conditions were originally introduced because of other ad-

vantages such as avoiding the unwanted effects caused by finite systems like

an increased surface tension. When using periodic boundary conditions, the

system is surrounded by copies of itself. Hence, one should always be careful

to leave enough space around the protein so that it does not interact with itself

via its copies. In general, in a system with periodic boundary conditions, the

total electrostatic energy is calculated with:

V =
f

2

∑
nx

∑
ny

∑
n∗z

N∑
i

N∑
j

qiqj
rij,n

, (2.7)

where N is the number of particles, f = 1
4πε0

is the electric conversion factor,

n = (nx, ny, nz) is the box index vector, and the star is to indicate that when

i = j and (nx, ny, nz) = (0, 0, 0) the terms should be omitted, and rij,n is
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2.8. Thermostats

the real distance between particles. In the Ewald summation method, the

conditionally convergent equation 2.7 is divided into three terms to increase

convergence:

V = Vdir + Vrec + V0, (2.8)

where

Vdir =
f

2

N∑
i,j

∑
nx

∑
ny

∑
n∗z

qiqj
erfc(βrij,n)

rij,n
, (2.9)

Vrec =
f

2πV

N∑
i,j

qiqj
∑
mx

∑
my

∑
m∗z

exp(−(πm/β)2 + 2πim · (ri − rj))

m2
(2.10)

and

V0 = − fβ√
π

N∑
i

q2
i , (2.11)

where Vdir is the calculated in direct space, Vrec is calculated in reciprocal space

and V0 is constant. β is a parameter that balances the accuracy of the direct

and reciprocal space, V is the volume of the box and m = (mx,my,mz) is the

wave vector.

In the case of GROMACS, a variation of the Ewald summation method,

called particle mesh Ewald (PME),150 is used. In PME a grid is used to

interpolate particles instead of directly summing wave vectors. The grid is

Fourier transformed with the efficient Fast Fourier Transform algorithm, which

scales as N log(N) instead of N2, and is then more efficient than the original

Ewald summation method.

Even if taking into account long-range electrostatics is now customary for

protein simulations, it is still common to use cutoffs for Lennard-Jones inter-

actions because of their dependence on r−6 instead of r−1 like electrostatic

interactions. If the space outside of the cutoff is considered as homogeneous,

corrections can be applied to take into account the truncation.151 It should be

noted that in the case of surface simulations, it is now becoming normal to

also consider long-range interactions for dispersion interactions.152–156

2.8. Thermostats

If the equations 2.4 and 2.5 are used to perform an MD simulation, it would

be performed in the microcanonical or NVE ensemble, i.e., the number of

particles, volume and energy would be conserved. However, it is often more

realistic to sample the system in the canonical or NVT ensemble (i.e., constant
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2. Methodology

number of particles, volume and temperature) or in the isothermal-isobaric or

NPT ensemble (i.e., constant number of particles, pressure and temperature).

In an MD simulation, the temperature can be calculated as a function of the

kinetic energy of the system, which depends on the velocity of the particles:

T =
1

NdfkB

N∑
i=1

miv
2
i , (2.12)

where Ndf = 3N − Nc − Ncom is the number of degrees of freedom, N is the

number of particles, Nc is the number of constraints, Ncom = 3 is the number

of degrees of freedom of the center of mass velocities, kB is the Boltzmann

constant, mi is the mass and vi is the velocity of particle i.

The easiest way to keep the temperature constant is to rescale the velocities

of the particles after each timestep to maintain the kinetic energy at the cor-

rect value. However, with such a simple method, the system would not sample

a proper canonical ensemble. During production runs, I performed all simula-

tions using the Nosé-Hoover chain method.157,158 In the original Nosé-Hoover

method, a thermal reservoir and friction term are added to the equations of

motions 2.2. The equations of motion are then:

d2ri
dt2

=
Fi

mi

− pε
Q

dri
dt

, (2.13)

where pε is the momentum of the friction parameter ε, which keeps the tem-

perature close to the reference temperature T0, and Q is the coupling strength.

The equation of motion of ε is:

dpε
dt

= (T − T0), (2.14)

where T is the current temperature. The period of the oscillation τT , a pa-

rameter that must be preselected in GROMACS114 to define the strength of

the coupling, can be defined as:

τT =

√
4π2Q

T0

. (2.15)

However, the Nosé-Hoover thermostat can be non-ergodic, which is essential

for a correct sampling of the free energy landscape. Hence, I used the Nosé-

Hoover chain method, in which each Nosé-Hoover thermostat has its own Nosé-

Hoover thermostat controlling its temperature. When infinite chains are used,

the method is known to be ergodic. I used ten chains in all of simulations
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presented in this thesis. The equations of motion for N chains are:

d2ri
dt2

=
Fi

mi

− pε1
Q1

dri
dt

, (2.16)

dpε1
dt

= (T − T0)− pε1
pε2
Q2

, (2.17)

dpεi=2...N

dt
=

(
p2
εi−1

Qi−1

− kT

)
− pεi

pεi+1

Qi−1

, (2.18)

dpεN
dt

=

(
p2
εN−1

QN−1

− kT

)
. (2.19)

In the simulations in this thesis, the solvent and protein are coupled to

different thermostats to stop the protein from freezing.159

2.9. Barostats

Experimental observables in condensed matter physics and protein physics

are normally obtained at constant temperature and pressure. Therefore, it

is common to perform production MD simulations in the NPT ensemble. To

achieve this goal, a barostat that keeps the pressure at a constant value is

needed. In such a simulation, the volume of the system will be allowed to

fluctuate, and care must be taken so that the system does not blow up and

voids of vacuum are created in the simulation box.

Pressure in an MD simulation can be calculated with the following equation:

P =
2

V
(Ekin − Ξ), (2.20)

where V is the volume of the system and Ξ = −1
2

∑
i<j rij ⊗ Fij is the virial

tensor and Ekin = 1
2

∑N
i mivi ⊗ vi. The scalar pressure for isotropic systems

is then calculated as:

P = trace(P/3). (2.21)

In all production runs, I used the Parrinello-Rahman barostat to mantain

the pressure constant.160,161 This method, which is similar to the Nosé-Hoover

thermostat, is stable and samples a true NPT ensemble. The box vectors are

represented by the matrix b and follow the following equation of motion:

db2

dt2
= VW−1b′

−1
(P−P0), (2.22)
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where W determines the coupling strength, b′ is the corrected matrix to con-

sider an anistropic system in a non-cubic box, P is the current pressure and

P0 is the reference pressure. The equations of motion are then:

d2ri
dt2

=
Fi

mi

−M
dri
dt

, (2.23)

M = b−1

(
b
db′

dt
+
db

dt
b′
)
b′
−1

, (2.24)

The coupling strength is calculated as:

(W−1)ij =
4πβij
3τ 2
pL

, (2.25)

where βij is the isothermal compressibility, τp is the pressure time constant

and L is the largest box matrix element.

2.10. Analysis

The goal of performing MD simulations is to understand equilibrium or dy-

namical properties of the system under study. In the case of proteins, this may

include contact between residues, major motions of protein sections, changes in

secondary structure or the estimation of experimental observables. In general,

for MD simulations, properties are estimated as time-averages:

〈A(r,v)〉t = lim
T→∞

1

T

∫ T

t=0

A(r(t),v(t))dt, (2.26)

where t is time, T is the simulation time, and A is the property of interest.

However, it is commonly more interesting to know the ensemble-averaged prop-

erties. In the case of the microcanonical ensemble the following equation can

be used:

〈A(r,v)〉ensemble =

∫
A(r,v)δ(H(r,v)− E)drdv∫

δ(H(r,v)− E)drdv
, (2.27)

where H is the Hamiltonian of the system and E is the energy. According to

the ergodic hypothesis 〈A(r,v)〉t = 〈A(r,v)〉ensemble. In practice, a simulation

can only be performed for a limited amount of time. Selected observables are

then calculated to estimate the convergence of the simulation. The first part

of the simulation is then considered as equilibration and discarded. Ensemble

properties are estimated from the converged simulation. The validity of this

assumption depends on how much phase space has actually been sampled.
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3. Simulations of Functional Amyloid

Aggregation

The discovery of functional amyloids has disproved the notion that amyloids

are inherently toxic, and opened multiple questions, such as what is the differ-

ence between functional and aberrant amyloids, and how do functional amy-

loids avoid toxicity.8,162 Most evidence shows that small, soluble and more dis-

ordered oligomers and not amyloid fibrils are the main toxic agents in amyloid-

related diseases.42 Hence, in this part of the thesis I study the difference in

oligomer formation between functional and aberrant amyloidogenic peptides.

In particular, I study the oligomer formation of kassinin and neuromedin K,

which are part of the tachykinin peptides family and form functional amyloids

and the section 25-35 of Aβ (Aβ25−35), the peptide associated with Alzheimer’s

disease.

Tachykinin peptides are a family of neuropeptides that can be found in

animals ranging from amphibians to mammals and have different functions

like contracting muscles, exciting neurons and dilating blood vessels.163 It was

recently found that many tachykinin peptides, other neuropeptides and hor-

mone proteins are stored in secretory granules as amyloids.24,164 Tachykinin

peptides share a common C-terminus: -Phe-X-Gly-Leu-Met-NH2, where X is

an aromatic or aliphatic residue.163 This C-terminus makes tachykinin peptides

particularly interesting because of its similarity with Aβ25−35 (see table 3.1),

a section of Aβ which forms amyloids165,166 and is toxic167,168 on its own. Be-

cause Aβ25−35 is shorter than Aβ and has similar properties as Aβ, it has been

used as a proxy for the full-length peptide.169 Moreover, tachykinin peptides

can coaggregate with Aβ 170 and decrease its toxicity.171 Tachykinin peptides

and Aβ25−35 are a perfect example to study the difference in oligomer forma-

tion between toxic and functional amyloids, because they have similar primary

structure, but only Aβ25−35 is toxic. Moreover, the peptides are short enough

to obtain converged results when studying them with MD simulations.

In this chapter, I study the aggregation of two tachykinin peptides: kassinin

and neuromedin K, and Aβ25−35 by means of atomistic explicit-solvent MD

simulations. The results of this chapter have been published in The Journal

23



3. Simulations of Functional Amyloid Aggregation

Table 3.1.: Primary structure of Aβ25−35, kassinin and neuromedin K.

Peptide Sequence

Aβ25−35 H-GSNKGAIIGLM-OH
Kassinin H-DVPKSDQFVGLM-NH2

Neuromedin K H-DMHDFFVGLM-NH2

of Physical Chemistry B.1

3.1. Methodology

The aggregation of Aβ25−35, kassinin and neuromedin K was studied by al-

lowing them to freely aggregate in MD simulations. For each peptide, six

monomers were randomly placed in a box with a side length of 10 nm (equiva-

lent to a concentration of ≈ 10 mM) and simulated for 300 ns. Each simulation

box contained around 130,000 atoms. Each system was replicated 5 times to

take into account the effects of the stochasticity on the aggregation process.

One simulation of each system was extended to 1 µs to study the changes in

protein conformation in longer simulations. Neuromedin K was simulated with

a charged His3 residue. The simulation was repeated with an unprotonated

His3 (protonated only at Nε) and the effect was found to be negligible. The

systems were modeled with the OPLS force field118,172 and the TIP4P water

model.134 The simulations were performed both at 0 mM NaCl concentra-

tion (only with enough counterions to neutralize the system) and at 150 mM

NaCl. The simulations of Aβ25−35 and kassinin were performed with both free

and amidated C-termini. Aβ25−35 was also studied in a restrained hairpin-like

conformation.

The starting conformations for the aggregation simulations were obtained

from short simulations of the monomer. The monomer simulations for Aβ25−35,

kassinin and neuromedin K were started from the structures with Protein

Database code 1QYT (model 1),173 1MYU174 and 1P9F175 respectively. The

monomer simulations were performed before the aggregation simulations, be-

cause the experimental monomer structures were obtained in micelles, so it

is expected that the experimental conformations have a larger propensity to-

wards α-helical conformations than the one expected in water. Each monomer

was placed in a cubic box, then solvated, and enough counterions were added

to neutralize the system. After an initial minimization using the steepest de-

scent algorithm, the systems were equilibrated with successive 100 ps NVT

and 100 ps NPT simulations. During the equilibration, the peptide coordi-
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nates were constrained. 50 ns production runs were then performed for each

peptide. Random monomer conformations were picked from the last 25 ns of

the simulations to start the aggregation studies.

For the aggregation simulations, six peptides were introduced in a cubic box,

the system was then solvated and enough counterions were added to neutral-

ize the system. The systems were equilibrated with 1 ns NVT and 1 ns NPT

simulations with the peptide coordinates being restrained during the equili-

bration. The systems were then allowed to evolve without restraints during

the 300 ns production runs. In all simulations, a 1 nm cutoff was used for van

der Waals interactions and short-range electrostatic interactions. Electrostatic

interactions were calculated with the particle mesh Ewald algorithm150 with

a grid of 0.12 nm and periodic boundary conditions. The bond length in the

peptides were constrained with the P-LINCS algorithm142 with an expansion

order of 6 and the water molecules were constrained with the SETTLE algo-

rithm.144 A 5 fs time step was used, permitted by the use of virtual sites for

all peptide hydrogen atoms.145 During both monomer and aggregation pro-

duction runs, the temperature was kept constant at 310 K using the Nosé

-Hoover thermostat157,158 and pressure was kept constant at 1 bar using the

Parrinello-Rahman barostat.160,161

All systems were simulated with Gromacs 4.684 and figures of the peptides

were produced with VMD.176 The simulations were analyzed using Gromacs

tools84 and the MDAnalysis package.177 Monomers were clustered using the

algorithm from Daura et al.178 For the monomer contact map, two residues i

and j are considered in contact if any atom of residue i is closer than 0.4 nm of

any atom in residue j. Two peptides i and j are considered as aggregated if the

distance between any atom of peptide i is closer than 0.5 nm from any atom

of peptide j. For oligomer contact maps, residues i and j were considered in

contact if any atom of residue i is closer than 0.5 nm of any atom in residue j.

For these plots, all oligomers (i.e., from dimers to hexamers) of the aggregation

simulations were considered. The solvent accessible surface area (SASA) for

hydrophobic residues were calculated with the algorithm from Eisenhaber et

al.,179 with atoms with charges less than 0.2e considered as hydrophobic. The

secondary structure was calculated using the Define Secondary Structure of

Proteins (DSSP) algorithm.180 To estimate how spherical the oligomers are,

the asphericity was calculated:181

∆ =
3

2

3∑
i=1

(λi − λ̄)2

(trT)2
, (3.1)

25



3. Simulations of Functional Amyloid Aggregation

with

λ̄ =
trT

3
, (3.2)

where T is the inertia tensor and λi are the eigenvalues of T. The asphericity

is a number between 0 and 1: when 0, the oligomer is perfectly spherical,

and the closer the asphericity is to 1, the more aspherical the oligomer is. To

estimate hexamer properties, snapshots were taken every 500 ps.

3.2. Results and Discussion

3.2.1. Aggregation of tachykinin peptides and Aβ25−35

To study the difference in aggregation between functional and aberrant amy-

loidogenic peptides, I simulated the aggregation of Aβ25−35 and two amyloid-

forming functional tachykinin peptides: kassinin and neuromedin K. In figure

3.1a, the average maximum oligomerization state for the five simulations for

each peptide is plotted against time. The tachykinin peptides aggregate faster

than Aβ25−35. Both tachykinin peptides achieve the maximum oligomerization

state in around 100 ns. However, Aβ25−35 does not reach the hexamer state

even after 300 ns. To better quantify the aggregation process, average ag-

gregation rates were calculated for each system and summarized in table 3.2.

These results suggest that functional amyloids may avoid toxicity by aggre-

gating faster than aberrant amyloids and surpassing the toxic oligomer phase.

This has not been observed for tachykinin peptides but it has been observed

for the functional amyloid Pmel17, which aggregates faster than Alzheimer’s

Aβ and Parkinson’s α-synuclein.23 To test if the results depend on a particular

oligomerization state, I added more monomers at the end of each simulation

so that the concentration of free monomers was again ≈ 10 mM and extended

the simulation for 100 ns. The difference in oligomerization state relative to

the beginning of this simulation is plotted in figure 3.2. Both kassinin and neu-

romedin K reach the maximum difference of six in around 100 ns, while Aβ25−35

reaches an average difference of of 3.2 by the end of the 100 ns simulation.

To understand the difference between tachykinin peptides and Aβ25−35 ag-

gregation, I calculated different properties for the hexamers (see table 3.3).

First, I studied the secondary structure content of hexamers. The β-sheet

content is relatively low for all peptides, with a minimum of 3.2 ± 0.2% for

neuromedin K and a maximum of 4.2 ± 0.2% for kassinin. Considering that

β-sheet is a hallmark of amyloid aggregates,9 I suspected that longer simu-

lations are needed to observe a larger content of β-sheet as found in other
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Figure 3.1.: Average oligomerization state as a function of time for Aβ25−35 (red),
kassinin (blue) and neuromedin K (green) with (a) standard and (b) non-
standard termini. In (a) the results for Aβ25−35 with uncapped termini
and for kassinin and neuromedin K with an uncapped N-terminus and a
capped C-terminus, are plotted. In (b) the results for Aβ25−35 with an
uncapped N-terminus and a capped C-terminus, and for kassinin with
uncapped termini, are plotted. In (c) the simulations with 150 mM of
NaCl are plotted for the peptides with standard termini. In addition,
in (a) the results for Aβ25−35 in a constrained hairpin-like conformation
are plotted in pink (Reprinted with permission from Carballo-Pacheco
et al.1 Copyright 2015 American Chemical Society).

Table 3.2.: Average aggregation rate for each system studied.

System NaCl (mM) Aggregation rate (monomer/ns)

Aβ25−35 0 0.0138
Kassinin 0 0.0519

Neuromedin K 0 0.0475
Aβ25−35 with capped C-terminus 0 0.0125

Kassinin with uncapped C-terminus 0 0.0123
Restrained Aβ25−35 0 0.0085

Kassinin in a β-hairpin 0 0.0173
Aβ25−35 150 0.0108
Kassinin 150 0.0157

Neuromedin K 150 0.0147
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Figure 3.2.: Average difference in oligomerization state for the extension of the ag-
gregation simulations of Aβ25−35 (red), kassinin (blue) and neuromedin
K (green). The extension of these simulations were obtained by adding
enough monomers in the system to attain a monomer concentration of
≈ 10 mM in each simulation (Reprinted with permission from Carballo-
Pacheco et al.1 Copyright 2015 American Chemical Society).

simulations of peptide aggregation.80–82 Therefore, I extended one simulation

for each system to 1 µs. At the end of these simulations, Aβ25−35, kassinin

and neuromedin K had β-sheet contents of 12 %, 14 % and 13 % respec-

tively. This shows that longer simulations are needed to obtain large β-sheet

content. The α-helix content is small for all systems. However, I observe a

somewhat larger α-helical content for neuromedin K, which correlates which

circular dichroism experiments.30 There is some experimental evidence that

oligomers with larger hydrophobic surface are more toxic,182–185 hence, the

average hydrophobic SASA was calculated for the simulations. No correla-

tion between toxicity and hydrophobic SASA was observed. However, when

the hydrophobic SASA was normalized by the total SASA, a slightly higher

relative hydrophobic SASA was observed for Aβ25−35 (0.63 ± 0.01) than for

the tachykinin peptides (0.52 ± 0.02 and 0.60 ± 0.02). When visualizing the

oligomers with VMD, I observed that certain oligomers were more extended

than others, so the asphericity was estimated for all peptides. The most as-

pherical oligomers are observed for kassinin, but the standard deviations of

the measurements are too high to properly distinguish between the different

peptides.

3.2.2. Influence of the C-termini

Aiming to gain a deeper understanding of what drives the faster aggregation

of tachykinin peptides compared to Aβ25−35, I plotted contact maps for the

oligomers (see figure 3.3) to see which are the most probable contacts between
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Table 3.3.: Summary of properties of aggregated hexamers.

Peptide Hydrophobic Relative hydrophobic Asphericity β-sheet (%) α-helix (%)
SASA (nm2) SASA (%)

Aβ25−35 31.2± 1.6 0.63± 0.01 0.18± 0.12 3.6± 0.2 0.19± 0.01
Kassinin 34.9± 3.1 0.60± 0.02 0.26± 0.16 4.2± 0.2 0.14± 0.01

Neuromedin K 26.3± 2.1 0.52± 0.02 0.14± 0.08 3.2± 0.2 1.72± 0.12

different peptides in the simulations. In both kassinin and neuromedin K, the

C-termini interact strongly with each other. This interaction is permitted by

the neutral C-termini and the C-terminal hydrophobic residues. However, in

Aβ25−35 the most relevant interactions are between the N-terminus and the C-

terminus. This is expected because both termini have opposite charges and the

interaction between C-termini is less likely because of their negative charge.

This is relevant because it has been observed that an amidated Aβ25−35 has

lower toxicity than an Aβ25−35 with a free C-terminus.168 It is also common

to observe that mutations of neutral to charged amino acids can abolish ag-

gregation. For example, the mutation of the peptide STVIIE to STVIKT

prevents amyloid formation.186 It should also be mentioned that amidation is

a standard post-transcriptional modification for peptides187 and, in particular,

it is essential for the agonist activity of tachykinin peptides.188 The fact that

C-terminal amidation is essential for tachykinin peptide aggregation suggests

that tachykinin peptides have an amidated C-terminal to permit its correct

aggregation and that tachykinin peptide receptors have evolved to adapt to

this change. The contact maps further show that there is a also a strong in-

teraction between the hydrophobic residues in the intermediate section of the

peptides. For example, there is a strong interaction between the isoleucine

residues at positions 7 and 8 from different Aβ25−35 peptides in the oligomers

and between residues 5–7 in neuromedin K.

To test if the C-terminal charges are essential for correct aggregation, I stud-

ied the aggregation of Aβ25−35 with a non-standard amidated C-terminus and

kassinin with a non-standard free carboxylate C-terminus. The oligomeriza-

tion state as a function of time for both systems are plotted in figure 3.1b.

As expected, the aggregation of kassinin with a free carboxylate C-terminus

decreases considerably. This confirms that C-terminal amidation is important

for a correct and fast aggregation of kassinin. However, surprisingly, the ag-

gregation of Aβ25−35 also decreases when the C-terminus being amidated. It

should be considered that the aggregation simulation of Aβ25−35 is performed

at a concentration of ≈ 10 mM, which is much higher than the experimental
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3. Simulations of Functional Amyloid Aggregation

Figure 3.3.: Oligomer contact maps and example snapshots for the oligomers of the
aggregation simulations of (a) Aβ25−35, (b) kassinin and (c) neuromedin
K (Reprinted with permission from Carballo-Pacheco et al.1 Copyright
2015 American Chemical Society).
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Figure 3.4.: Oligomer contact maps for (a) Aβ25−35 with an amidated C-terminus
and (b) kassinin with a free C-terminus (Reprinted with permission from
Carballo-Pacheco et al.1 Copyright 2015 American Chemical Society).

concentration of amyloid forming peptides in vitro. Hence, some aggregation

is expected in my simulations even if it would not happen in vitro. Hence,

the decrease in aggregation of Aβ25−35 when amidated may represent a lack

of aggregation at an experimental concentration. In figure 3.4, I plotted the

oligomer contact maps for Aβ25−35 with an amidated C-terminus and kassinin

with a free carboxylate C-terminus. As expected, there is a strong interaction

between C-termini in the simulations of Aβ25−35, while in the case of kassinin

the interaction between C-termini diminishes. However, the interaction be-

tween N- and C-termini in kassinin is not as strong as in the simulation of

Aβ25−35 with uncapped termini. These results show the importance of the

peptide-specific charges of the termini in peptide aggregation.

3.2.3. Importance of monomer conformations

To understand what drives aggregation, I studied the conformations of the

monomers before aggregation. Figure 3.5 shows the contact maps and most

relevant conformations, according to the cluster analysis using the method of

Daura et al.,178 for the 50 ns monomer simulations of the three peptides. In

the case of Aβ25−35, the most stable conformation is a hairpin-like structure in

which the positively charged Lys4 interacts with the negatively charged termi-

nal Met11. There is also a strong interaction between the positively charged N-

terminus and the negatively charged C-terminus. Similar results were obtained

by Larini and Shea93 with the OPLS force field and TIP3P water model, even

though they observed a stronger interaction between the termini. Kassinin and

neuromedin K have more extended conformations with little contact between

the termini. Some helicity is observed in the N-terminus of neuromedin K.

According to the DSSP algorithm, the central region of Aβ25−35 has a turn
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Figure 3.5.: Monomer contact maps and the most representative monomer conforma-
tions according to the cluster analysis for (a) Aβ25−35, (b) kassinin and
(c) neuromedin K for the 50 ns monomer simulations. The N-terminus
is plotted in blue and the C-terminus in red (Reprinted with permis-
sion from Carballo-Pacheco et al.1 Copyright 2015 American Chemical
Society).

content between 70% and 80 % and these high values are not observed for any

of the two tachykinin peptides (see figure 3.6).

To further understand the influence of the monomer conformations on ag-

gregation, I plotted the monomer contact maps and most representative con-

formations for the simulations of Aβ25−35 with an amidated C-terminus and

kassinin with a free C-terminus (see figure 3.7). I expected to observe hairpin-

like structures for both peptides because their aggregation is slower than that

for the peptides with standard termini. Hairpin-like structures are observed

for both peptides. On the one hand, Aβ25−35 forms a hairpin-like structure be-

cause of a nonspecific interaction between Met11 and the central section of the

peptide (between residues Ser2 and Ile7). On the other hand, kassinin forms

a hairpin-like structure because of a strong electrostatic interactions between

the charged C-terminus and Lys4, similar to the results observed for Aβ25−35

with charged termini. Haspel et al.189 also observed a hairpin-like structure

in the simulation of neuromedin K with charged termini using the AMBER03

force field.

One of the main advantages of simulations over experiments is that we can
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Figure 3.6.: Turn content per residue for the monomer simulations of Aβ25−35 (red),
kassinin (blue) and neuromedin K (green) for the 50 ns monomer simu-
lations (Reprinted with permission from Carballo-Pacheco et al.1 Copy-
right 2015 American Chemical Society).

Figure 3.7.: Monomer contact maps and the most representative conformations ac-
cording to the cluster analysis for the simulations of (a) Aβ25−35 with
an amidated C-terminus and (b) kassinin with a free C-terminus for the
50 ns monomer simulations. The N-terminus is plotted in blue and the
C-terminus is plotted in red (Reprinted with permission from Carballo-
Pacheco et al.1 Copyright 2015 American Chemical Society).
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3. Simulations of Functional Amyloid Aggregation

perform unrealistic simulations to study particular questions that cannot be

performed experimentally. For example, it would be possible to delete electro-

static interactions to observe if they play an important influence on a certain

dynamical feature of proteins. In our case, it would be of interest to force the

peptides into a hairpin-like conformation to observe if this limits aggregation

even further. I decided to repeat the simulation of Aβ25−35 aggregation with a

restraint to force a close interaction between the charged C-terminus and Lys4.

The restraint was applied according to the following equation:

V (rij) =



1
2
k(rij − r0)2, rij < r0,

0, r0 ≤ rij < r1,

1
2
k(rij − r1)2, r1 ≤ rij < r2,

1
2
k(r2 − r1)(2rij − r2 − r1), r2 ≤ rij,

(3.3)

where rij is the distance between the carboxylic acid carbon of the C-terminus

and the side-chain nitrogen of Lys4, r0 = 0.2 nm, r1 = 0.5 nm, r2 = 0.6 nm

and k = 105 kJ mol−1 nm−2. The oligomerization state as a function of time is

plotted in figure 3.1a, and it can be observed that the aggregation diminishes

considerably compared to that of the unconstrained Aβ25−35. This confirms

that forcing a peptide into a hairpin-like conformation can decrease its aggre-

gation propensity.

Because of the importance of the monomer conformations on protein aggre-

gation, I decided to extend the 50 ns monomer simulations up to 1 µs. The

contact map and most representative structures for the three peptides are

plotted in figure 3.8. The conformation of Aβ25−35 and neuromedin K did

not change considerably, while the conformation of kassinin changed into a β-

hairpin. The aggregation simulation of kassinin was then repeated to account

for the hairpin-like conformations. To this end, monomer conformations were

randomly picked from the last 800 ns of the 1 µs simulation and introduced

in a cubic box and the same simulation protocol as before was applied. The

oligomerization state as a function of time and the intermolecular contact map

are plotted in figure 3.9. The aggregation kinetics decreases compared to the

initial simulation, confirming that the conformation of the monomer is essential

to determine the aggregation propensity. However, even with this decrease in

aggregation, the aggregation of kassinin is still faster than the one of Aβ25−35.

From the intermolecular contact map, it can be observed that the contacts

between the C-termini have diminished, which suggests that when the termini

are free they drive aggregation, while when they form stable intramolecular
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3.2. Results and Discussion

Figure 3.8.: Monomer contact maps and most representative conformations accord-
ing to the cluster analysis for the 1 µs monomer simulations of (a)
Aβ25−35, (b) kassinin and (c) neuromedin K. The N-terminus is plotted
in blue and the C-terminus is plotted in red (Reprinted with permis-
sion from Carballo-Pacheco et al.1 Copyright 2015 American Chemical
Society).

contacts, they cannot drive aggregation.

The results observed here regarding the importance of monomer conforma-

tions is probably extensible for small peptides. However, it is hard to know if

they would be applicable for larger peptides because they have more compli-

cated internal dynamics. However, it has been observed that when the residues

17–36 of Alzheimer’s Aβ40 are restrained in a β-hairpin conformation, its ag-

gregation is inhibited.190 It is also known that small sections of proteins usually

drive the aggregation of the entire proteins.186 Hence, our conclusions could

be of general validity.

3.2.4. Influence of salt concentration

Another interesting question regarding the formation of amyloid is the influ-

ence of external factors on aggregation. It has been observed that amyloid for-

mation depends on pH,191 temperature,192 salt ions and ionic strength,193–195

hydrostatic pressure196 and the presence of crowding agents.197 Most of the in-

formation on the influence of external factors is on fibril formation, but little is

known about the effects on the kinetics and conformations of oligomers. Here,
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3. Simulations of Functional Amyloid Aggregation

Figure 3.9.: (a) Oligomerization state for kassinin in an extended monomer con-
formation (dark blue) and a hairpin-like monomer conformation (light
blue) and (b) oligomer contacts maps for the aggregation simulation of
kassinin in a hairpin-like monomer conformation. (Adapted with per-
mission from Carballo-Pacheco et al.1 Copyright 2015 American Chem-
ical Society).

I repeated the monomer and aggregation simulations for the peptides with

standard termini at 150 mM of NaCl to study the influence of ionic strength

on oligomer formation. The aggregation of kassinin and neuromedin K are

slower at high salt concentration compared to those at low salt concentration

(i.e., only neutralizing ions), while the aggregation of Aβ25−35 is similar at

both concentrations. Because of the change in aggregation kinetics, the three

peptides now have comparable aggregation kinetics (see figure 3.1c). However,

tachykinin peptides still aggregate faster. In figures 3.10 and 3.11, I plotted the

intermolecular contact maps for the oligomers and the intramolecular contact

maps for the monomers of the three peptides. The most important contacts

between monomers are similar at low and high salt concentrations. Monomers

are mostly found in hairpin-like structures for Aβ25−35 and kassinin, which

explains the lower aggregation kinetics of kassinin. Our results are supported

by the experimental results of Naldi et al.,166 who found that salt concentra-

tion does not change the aggregation kinetics of Aβ25−35. The fact that the

results are so dependant on salt concentration demonstrates the importance

of simulating protein aggregation at the correct salt concentration. Moreover,

it displays the difficulty on making general conclusions about the intrinsic

factors that drive protein aggregation, because small differences in external

factors may change the results drastically. This fits the picture that functional

amyloids need to be tightly regulated for their correct aggregation.8
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Figure 3.10.: Oligomer intermolecular contact maps of the aggregation simulations
of (a) Aβ25−35, (b) kassinin and (c) neuromedin K at 150 mM NaCl
(Reprinted with permission from Carballo-Pacheco et al.1 Copyright
2015 American Chemical Society).

Figure 3.11.: Monomer contact maps for the monomer simulations at 150 mM NaCl
of (a) Aβ25−35, (b) kassinin and (c) neuromedin K. The N-terminus is
plotted in blue and the C-terminus is plotted in red (Reprinted with
permission from Carballo-Pacheco et al.1 Copyright 2015 American
Chemical Society).
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3.3. Summary

In this chapter, I studied the aggregation of both functional and aberrant

amyloids using atomistic explicit-solvent simulations. In particular, I studied

the aggregation of two tachykinin peptides, kassinin and neuromedin K, and

Alzheimer’s Aβ25−35. These peptides have a similar primary structure but,

while the first two are functional and non-toxic, the latter is disease-related

and toxic. Moreover, tachykinin peptides are known to be able to influence

the aggregation of Aβ. Few simulations of functional amyloids have been per-

formed so far,198–200 and none of them have concentrated on the difference

between functional and aberrant amyloids. Considering that it is now known

that oligomers are the toxic species in amyloid diseases,42 it is important to un-

derstand the difference in oligomer formation between functional and aberrant

aggregation.

One of the key observation of this chapter is that functional amyloids seem

to aggregate faster than aberrant amyloid peptides. This suggests that func-

tional amyloids may avoid toxicity by aggregating faster and surpassing the

toxic phase. This has not been observed for tachykinin peptides, but it has

been experimentally verified for the functional amyloid Pmel17.23 Functional

amyloids may also avoid toxicity by being tightly regulated and only aggregat-

ing under certain conditions.8 Another important observation is the fact that

the charged termini are essential in modulating peptide aggregation. In partic-

ular, when peptides have a charged C-terminus, they seem to aggregate more

slowly than with an amidated C-terminus. This is relevant because tachykinin

peptides cannot perform their agonist activity when they are not amidated,188

and if Aβ25−35 is amidated its toxicity is reduced.168 Another key observation

is that the conformation of the monomers are essential to understand the ag-

gregation kinetics: when the peptides are extended their aggregation is fast,

while when the peptides are in hairpin-like conformations their aggregation is

limited. The reason for this could be that when peptides are in hairpin-like

conformations the charged interactions sites in the termini are occupied and

are not free to drive aggregation. However, when the peptides are in extended

conformations, the charged interactions sites close to the termini are free to

drive aggregation. There is evidence that stabilizing a β-hairpin in the central

section of Aβ inhibits aggregation,190 which means that our conclusion could

be of general applicability. Finally, I have also studied the effect of changing

the salt concentration from 0 mM to 150 mM on peptide aggregation. The salt

concentration has a strong influence on protein aggregation for the tachykinin

peptides. However, the effect on Aβ25−35 is minimal, which correlates to ex-
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3.3. Summary

perimentally observed results.166 The effect of the salt concentration on the

results shows the importance of external factors on aggregation.

In this chapter, I performed all simulations using only one force field, namely

OPLS. However, it is still an open question if the aggregation results depend

strongly on the force field used, particularly considering that the observed dif-

ference in aggregation between different peptides were not too large. Moreover,

when visualising the simulations with VMD, it appears that some oligomers

are unphysically stable. Hence, I ask myself if force fields are overstabilising

protein-protein aggregation. In the next chapter, I will study the effect of force

fields both on intrinsically disordered peptides and protein aggregation.
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4. Comparison of Force Fields for

Intrinsically Disordered Peptides and

Protein Aggregation

The two main limitations of MD simulations in accurately modeling protein

dynamics are the lack of sampling of the free energy surface and the accuracy

of the force fields. However, with the creation of highly optimized parallel85,110

and GPU-specific86,87 MD codes, the creation of special-purpose hardware83

and the ability to join multiple short MD simulations for the construction of

Markov state models,201–203 sampling of small and middle-sized proteins is no

longer a problem. These long simulations have made it clear that the second

problem, the accuracy of the force fields, is still far from being solved. In this

chapter, I will focus on the accuracy of force fields for simulating intrinsically

disordered proteins (IDPs) and protein aggregation.

Force fields have been developed by fitting to quantum mechanical and ex-

perimental thermodynamical data of small molecules. Many have shown that

protein simulations depend strongly on the used force field,126,127,148,204–206 and

multiple corrections have been proposed based on extensive simulations per-

formed in the last few years. For example, AMBER99SB207 has been recently

updated to AMBER99SB*ILDN208–210 by modifying backbone and side-chain

torsional angles parameters. Also, CHARMM22211 was recently updated to

CHARMM22*210 by modifying backbone and some side-chain parameters.

Newer force fields such as AMBER99SB*ILDN and CHARMM22* were proven

to fold both α-helical and β-sheet peptides.126 Hence, I expect these new force

fields to perform better than older force fields for IDPs and protein aggregation.

IDPs are proteins that, unlike folded proteins, do not have a stable 3-

dimensional structure. They have important biological roles such as in cell

signalling,212 but are also related to amyloid-related diseases because many

amyloidogenic peptides are IDPs in the monomer state. Because of their lack

of stable structure it is hard to study IDPs with experimental methods such

as X-ray crystallography, while nuclear magnetic resonance (NMR) can usu-

ally only provide ensemble averaged properties. Hence, computer simulations
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are used, often in combination with experimental data, to obtain a detailed

understanding of the structure and dynamics of IDPs. It has now become cus-

tomary to study IDPs using atomistic explicit-solvent MD simulations.213–220

Many studies have been performed to understand the influence of force fields

on IDPs,140,221–223 and the conclusion is that newer force fields are in general

better than older force fields. Moreover, in most simulations the proteins have

been found to be too collapsed compared to what is observed experimentally.

Simulations of protein aggregation are particularly difficult because of the

low concentration at which most aggregation experiments are performed. How-

ever, it is now becoming common to study protein aggregation with atomistic

MD simulations.2,78–82,224,225 A few studies have concentrated on the effect of

force fields on protein aggregation and the general conclusion is that most force

fields overstabilize protein-protein interactions.226–228 However, all of these

studies were performed with proteins that do not suffer major conformational

changes when interacting, unlike the proteins that form amyloids. Nguyen et

al.,229 on the other hand, studied the effect of force fields on amyloid formation

and concluded that the main conformations sampled for the monomer, dimer

and trimer varied between force fields. However, they only studied older force

fields, and the effect on the final conformation and not on the aggregation

kinetics. Finally, Bernahu and Hansmann230 studied the influence of force

fields on the stability of Aβ16−22 fibrils and found that AMBER99SB-ILDN

performed the best.

In this chapter, I study two different systems to understand how well mod-

ern force fields model IDPs and protein aggregation. As a model system for

IDPs, I study Aβ42, a peptide that is associated with Alzheimer’s disease.

This protein was chosen because there is ample nuclear magnetic resonance

(NMR) data213,231–235 that can be used to validate the conformational ensem-

ble sampled by the force fields, and because it has already been studied with

computational methods that I can compare to.213,233–249 However, no one has

so far studied the influence of the latest protein force fields in long simula-

tions of Aβ42. As a model system for protein aggregation, I study the ag-

gregation propensity of Aβ16−22 and two mutants: Aβ16−22(F19V,F20V) and

Aβ16−22(F19L). Aβ16−22 is a section of Alzheimer’s Aβ, which has shown to

aggregate and form structured anti-parallel fibrils.250,251 The first mutant was

experimentally shown not to aggregate, while the latter one aggregates faster

than the wild type.252 I studied the aggregation of these three peptides with

different force fields to analyse if they can discriminate the aggregation propen-

sity of the different peptides. Parts of the results of this chapter have been
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published in Protein Science.3

4.1. Methodology

4.1.1. Simulation of Aβ42

To study if different force fields are good at modeling IDPs, I simulated

Aβ42 using five different force fields. In particular, I used CHARMM22*,210

AMBER99SB*ILDN209,210,253 and AMBER99SBILDN-NMR,254 each in com-

bination with the TIP4P-Ew water model.138 This water model was chosen be-

cause it has been shown to perform better than three-site water models.255,256

These new force fields have been developed recently and have been shown to ac-

curately model folded proteins and protein folding. Moreover, AMBER99SB207

with the TIP4P-Ew water model138 and OPLS118,172 with the TIP3P water

model134 were also studied as these were considered to be the best force field

combinations so far.213,233–235,237 All simulations were performed using Gro-

macs 4.6.4.84

To obtain a converged ensemble of the conformational space sampled by

each force field, I performed replica exchange MD (REMD) simulations,89,257

a standard enhanced sampling algorithm.88 In REMD, multiple replicas are

run in parallel at different temperatures for each simulation. After a defined

number of time steps, exchanges between replicas are attempted, which are

accepted based on the Metropolis criteria:258,259

p = min

(
1, e

(Ei−Ej)
(

1
kBTi

− 1
kBTj

))
(4.1)

where i and j are two different replicas, E is the energy of the system, T is the

absolute temperature and kB is the Boltzmann constant. In this way, detailed

balance is preserved and the data obtained from the simulations are ther-

modynamically consistent. Sampling is enhanced because replicas at higher

temperature are used to jump over free energy barriers, and the lower temper-

ature replicas are used to sample the system at the relevant thermodynamic

ensemble. A large amount of replicas may be needed because the energy of the

system grows with the number of atoms, and if the difference in energy between

replicas close in temperature is extremely high, the probability of an exchange

being accepted is low. A recent improvement of the algorithm was proposed by

Chodera and Shirts,260 in which random exchanges are tested between all repli-

cas (normally, exchanges are only tested between replicas that are located at
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consecutive temperatures because they are the most likely to be accepted). In

such a way, the sampling can be further enhanced and convergence is achieved

faster. In my simulations, exchanges were attempted between adjacent repli-

cas every 250 time steps. In addition, 32,768 (i.e., N3, where N = 32 is the

number of replicas, as suggested by Chodera and Shirts260) exchanges between

random replicas were also attempted at each exchange window.

Simulations were started from the Aβ42 structure with PDB code 1IYT.261

This structure was obtained in a solvent with a 80/20 ratio of hexafluoroiso-

propanol (HFIP) to water. The structure is mostly α-helical and is expected

to be different in water. Therefore, I first performed a 500 K high temperature

simulation to obtain a disordered structure. For this simulation, the structure

was first minimized with the steepest descent algorithm. Then, a 10 ns MD

simulation was performed with the AMBER99SB force field. This structure

was used as the initial structure for all simulations.

All simulations were performed with standard protonation states at a neu-

tral pH, with neutral histidines that are only protonated at the Nε. For each

REMD simulation, 32 replicas, which were exponentially distributed between

270 and 443 K, were used. First, the protein was introduced in a rhombic

dodecahedron box with an edge length of 5.5 nm. The box was then solvated

with between 3621 and 3636 water molecules. Each system was neutralized

with 3 sodium atoms, and was then minimized with the steepest descent al-

gorithm. Afterwards, the systems were equilibrated to the right temperature

of each replica and 1 bar of pressure with a 1-ns NVT simulation and a 1-ns

NPT simulation. During the equilibration, protein heavy atoms coordinates

were constrained. A 200 ns production REMD was performed for each sys-

tem. The temperature in each replica was kept constant with the Nosé-Hoover

thermostat157,158 and a time constant of 0.5 ps, and the pressure was kept con-

stant with the Parrinello-Rahman barostat160,161 with a time constant of 2 ps

and a compressibility of 4.5× 10−5 bar−1. The P-LINCS142 and SETTLE144

algorithms were used to constrain protein and water bonds, respectively. A

time step of 4 fs was used, permitted by the use of virtual sites for protein hy-

drogens.145 Van der Waals and short range electrostatic were calculated with

a cutoff of 1.2 nm. Electrostatic interactions were calculated using the par-

ticle mesh Ewald method150 with a Fourier spacing of 0.12 nm and periodic

boundary conditions.

Considering that Aβ42 is an IDP, it is expected that it will sample an ex-

tended ensemble. Therefore, the distances between the peptide and its image

were measured. The snapshots for peptides whose image was closer than 1 nm
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were not considered for the analysis.

To establish which of the force fields is better, the ensembles obtained with

the REMD simulations were compared with different experimental NMR ob-

servables. For calculating the observables, snapshots taken every 0.1 ns of the

replicas between 290 and 310 K were used. First, Cα, Cβ, Hα and HN chem-

ical shifts were calculated with SPARTA+.262 The secondary chemical shifts

were then determined by subtracting random coil chemical shifts263 from the

simulated value, and the resulting values were then compared with the ex-

perimental results by Hou et al.231 Moreover, 3JHNHα coupling constants were

calculated using the Karplus equation:264

J(φ) = A cos2(φ) +B cos(φ) + C (4.2)

where A, B and C are three empiric parameters estimated by Vuister and

Bax: A = 6.51, B = −1.76 and C = 1.60.265 The simulated values were

compared to the experimental values obtained by Rosenman et al. with a J-

resolved SOFAST HMQC.233 Finally, residual dipolar couplings (RDCs) were

calculated for the simulations with the PALES program.266,267 To take into

account the dependence of the alignment tensor magnitude with experimental

conditions, the results were uniformly scaled for each force field to minimize

the RMSD between the simulated and experimental values,. The simulated

values were compared to the experimental values obtained by Yan et al.232

Block averages of 25-ns were used to estimate the errors of the predictions (see

Appendix A for a more detailed explanation on the estimation of errors for

correlated data).

The structures sampled by the REMD simulations were analysed using Gro-

macs analysis tools84 and the MDAnalysis toolkit.177 Secondary structure was

calculated using the DSSP algorithm. To simplify the analysis, β-sheets and β-

bridges were plotted together as extended structures, and α-helices, 310 helices

and π-helices were plotted together as helices. Two residues are considered to

be in contact when the distance between any two atoms of the residues is below

0.5 nm. The algorithm of Daura et al.178 was used to cluster protein structures

with a cutoff of 0.8 nm. Peptide figures were generated with VMD176 and plots

were created with Python with the help of Matplotlib.268

4.1.2. Simulations of protein aggregation

To understand the effect of force fields on protein aggregation, I study the

aggregation of three different peptides: Aβ16−22 (KLVFFAE) and its mutants
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Aβ16−22 (F19V,F20V) (KLVVVAE) and Aβ16−22(F19L) (KLVLFAE). Experi-

mentally, it is known that Aβ16−22(F19L) aggregates faster than Aβ16−22 and

Aβ16−22(F19V,F20V) does not aggregate at all.252 The peptides were studied

with capped termini to reproduce experimental conditions. Five different force

fields were used: Gromos54a7,269 OPLS-AA,118,172 CHARMM22*,122,210,211,270

AMBER99SB*ILDN207,209,253 and AMBER03WS.227,271 Moreover, the simu-

lation with AMBER99SB*ILDN was also repeated using long-range disper-

sion interactions (LRDI) to test their influence on protein aggregation. For

the simulations with AMBER99SB*ILDN and CHARMM22*, the TIP4P-Ew

water model138 was used, the simulation with OPLS was performed with the

TIP4P water model,134 the simulation with AMBER03WS was performed with

TIP4P/2005139 and the simulation with Gromos54a7 was performed with the

SPC water model.135 The peptides were simulated at a concentration of ≈ 10

mM. It should be noted that at concentrations below 0.5 mM, Aβ16−22 does

not aggregate.272

First, the monomer of each peptide was studied. Each monomer simulation

was started with the peptide in an extended conformation, which was intro-

duced in a cubic box with its boundaries at least 1.2 nm away from the peptide.

The peptide was then solvated and NaCl ions were added up to a concentra-

tion of 150 mM. The system was then minimized with the steepest descent

algorithm with peptide heavy atoms coordinates being constrained. Then, a

0.1 ns NVT and 0.1 ns NPT simulations were performed to equilibrate the

system. Considering the importance of the monomer conformation observed

in chapter 3, a long 1 µs production run was performed for each system.

Aggregation simulations were then performed for each peptide and force

field. Six peptides were randomly introduced in a cubic box of side length 10

nm. The initial conformations were selected randomly from the last 800 ns

of the 1 µs monomer simulation. NaCl ions were added up to a concentration

of 150 mM. The systems were then minimized using the steepest descent al-

gorithm and equilibrated, with peptides heavy atoms coordinates constrained,

with a 1 ns NVT and a 1 ns NPT simulation. Production runs were performed

for 300 ns or 500 ns, depending on the force field. Each system was studied

five times to account for the stochasticity of protein aggregation.

For the production runs both for monomers and protein aggregation simula-

tions, the following parameters were used. The temperature and pressure were

kept at 310 K with the Nosé-Hoover thermostat157,158 and at 1 bar with the

Parrinello-Rahman barostat,160,161 respectively. The P-LINCS algorithm142

with an expansion order of 6 was used to constrain the bonds in the peptides,
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and the SETTLE algorithm144 was used to constrain water molecules. Virtual

sites145 were used for protein hydrogens, which allowed for a 4 fs timestep. For

the simulations with Gromos54a7, a 0.9 nm cutoff was used for short-range

electrostatic interactions and a 1.4 nm cut off was used for van der Waals in-

teractions. For the simulation with CHARMM22*, a 1.2 nm cutoff was used for

short-range electrostatic interactions and a switching function starting at 1.0

nm and finishing at 1.2 nm was used for van der Waals interactions. In all other

simulations, a 1.0 nm cutoff was used for short-range electrostic interactions

and van der Waals interactions. In all cases, the particle mesh Ewald method

(PME)150 was used for the calculation of electrostatic interactions. For the

simulations using AMBER99SB*ILDN with LRDI, the PME algorithm was

also used for dispersion interactions.273 The MD simulations with LRDI were

performed with Gromacs 5.0.4,110 while all other simulations were performed

with Gromacs 4.6.4.84

The simulations were analysed with MDAnalysis.177 To calculate aggregation

rates, peptides were considered to associate when the distance between any two

atoms from different peptides is under 0.4 nm, and to disassociate when the

distance between all atoms of the two peptides is at least 1 nm. To calculate

contact maps, two residues were considered to be in contact whenever the

distance between any two atoms from the the residues is under 0.4 nm. A

peptide is considered to be in β-strand conformation when the dihedral angles

φ and ψ are inside the polygon (−180◦,180◦), (−180◦,126◦), (−162◦,126◦),

(−162◦,108◦), (−144◦,108◦), (−144◦,90◦), (−50◦,90◦) and (−50◦,180◦).78,82 To

calculate dissociation constants the unbinding rate koff and binding rate kon

were estimated. The unbinding rate is koff = 1/toff where toff is the residence

time before unbinding, i.e., the total time bound divided by the number of

unbinding events. The binding rate is kon = 1/(tonc0), where ton is the average

residence time before binding, i.e., the total time unbound divided by the

number of binding events, and c0 is the protein concentration. In this way, the

dissociation constant can be calculated as Kd = koff/kon.227 The acceptance

probability was calculated as the ratio between the difference between the

number of binding and unbinding events, and the number of binding events.

Kinetic networks were calculated for all aggregation simulations. The nodes in

the networks are defined based on the oligomerization state (from 1 to 6) and

β-strand content (from 1 to 5, where state 1 has 0 to 20 % β-strand content,

state 2 has 20 to 40 %, state 3 has 40 to 60 %, state 4 has 60 to 80 % and

state 5 has 80 to 100 % β-strand content). Simulation snapshots every 5 ps

were considered for the construction of the kinetic networks. The size of the
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nodes corresponds to the population and the size of the edges corresponds to

the monomer flux between the nodes.

To understand the thermodynamic forces that drive protein aggregation,

the formation of the dimer was studied in greater detail. Umbrella sampling

simulations of the aggregation of the dimer were then performed. Umbrella

sampling274,275 is a method to improve sampling of the free energy along a

predefined coordinate. In the case of the dimer, a simulation starting from

the aggregated dimer would unlikely separate and, hence, it would be impos-

sible to accurately measure the free energy difference between aggregated and

unaggregated peptides. To perform an umbrella sampling simulation, one (or

many) reaction coordinate, which must represent progress along the reaction

pathway, must be chosen. In my simulation, the reaction coordinate is the

distance between the two peptides. Furthermore, a number of overlapping

windows between two points in the reaction coordinate must also be chosen.

In this case, I chose to start from the peptides together up to 5 nm apart,

where the peptides are considered as separated. To force each window to sam-

ple a particular section of the free energy landscape, a biasing potential is

introduced to keep the peptide in a position close to its starting position. The

distance between windows must be small enough so that the sampled sections

of the the free energy profile overlap. In this way, the potential of mean force

(PMF), which is the change in energy as a function of the reaction coordinate,

can be calculated. The PMF is similar to the free energy difference, but the

biasing potential alters the free energy landscape slightly and the relationship

between PMFs and free energy is still under debate.276,277 All simulations can

then be joined using the weighted histogram analysis method (WHAM):278

P (z) =

Nsim∑
i=1

ni(z)

Nsim∑
i=1

Ni exp((Fi − Ubias,i(z))/kBT )

(4.3)

and

Fi = −kBT ln

(∑
z

P (z) exp(−Ubias,i(z)/kBT )

)
(4.4)

where Nsim is the number of simulations (i.e., the number of windows), ni is

the counts in the histogram associated with the reaction coordinate z, Ubias,i

is the biasing potential and Fi is the the energy shift of simulation i, P is the

unbiased probability distribution. Both Fi and P are unknown and must be
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solved iteratively. The PMF is then calculated as:

PMF(z) = −kBT ln(P (z)) (4.5)

Umbrella sampling simulations have already been used to study how monomers

bind to amyloid fibrils.279,280

To perform the umbrella sampling simulations, a dimer was picked from

the aggregation simulations at random for each force field and peptide. The

dimer was then introduced in a cubic box whose boundaries are at least 1.5

nm away from the peptides. The system was then solvated, minimized and

equilibrated with 1 ns NVT and 1 ns NPT simulations. The system was then

simulated for 300 ns to allow the dimer to relax to a local minimum. The final

structure of this simulation was used for a pulling simulation to separate the

dimers into monomers. For this simulation, the dimer was introduced in a box

with an extra 5 nm in the z-dimension to account for the pulling. The system

was solvated, minimized and equilibrated again. Then, one of the peptides was

pulled away from the other during 500 ps with a rate of 0.01 nm ps−1 and a force

constant of 1000 kJ mol−1 nm−2. The distance between the center of mass of

the peptides at the end of the simulations was around 5 nm. From this pulling

simulation, snapshots were picked as starting configurations for the umbrella

sampling simulation. The window spacing was 0.1 nm for z ≤ 2 nm, and 0.2

nm between 2 and 5 nm. New windows were added if the overlap between

windows was found to be insufficient. Production runs were then performed

for each window for 50 ns with a force constant of 1000 kJ mol−1 nm−2. The

Gromacs implementation of WHAM278,281 was used to calculate the PMF.

All other simulation parameters were selected as before. The simulations of

Aβ16−22 were also performed at 290, 300, 310, 320, 330, 340, 350 and 360 K, to

estimate the enthalpic and entropic contributions. To this end, the following

equation was fitted:280,282,283

PMF(z, T ) = ∆H(z, T0)− T∆S(z, T0) + ∆Cp(z, T0)

[
(T − T0)− T log

(
T

T0

)]
(4.6)

where T is the temperature, z is the distance between the peptides, T0 is the

temperature for which the contributions are estimated (i.e., 310 K), ∆H is the

difference in enthalpy, ∆S is the difference in entropy and ∆Cp is the difference

in heat capacity.
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4.2. Results and Discussion

4.2.1. Simulation of Aβ42

Comparison to experimental data

In this section, the ensembles sampled by the REMD simulations of Aβ42 are

compared to experimental NMR data. Because of the fact that Aβ42 is an

IDPs, it is often hard to know if simulations of this peptide have converged.

To check for convergence, the distribution of time spent by each replica at

each temperature is plotted in figure 4.1. In all simulations, each replica visits

each temperature and the acceptance ratio for exchanges between replicas

was around 10 %. Considering that each simulation included 32 replicas, the

distribution observed in figure 4.1 is considered as thorough. Then, the root

mean square deviation (RMSD) and Pearson correlation coefficient (PCC) as

a function of time comparing the calculated and experimental values for the

six NMR observables were calculated and plotted in figures 4.2 and 4.3. In

the case of the Cα, Cβ and HN chemical shifts, there is a clear decrease in the

RMSD and an increase in the PCC during the first 100 ns for all force fields. In

the case of J-couplings, the convergence seems to be faster, i.e., around 50 ns.

However, there are no clear trends for Hα chemical shifts and RDCs. Hence,

the first 100 ns will be considered as equilibration, and the last 100 ns will be

used for all further analysis.

The converged ensemble is now used to understand the difference between

force fields in reproducing the NMR observables. In figures 4.4 and 4.5, and

tables 4.1 and 4.2, the results are summarized. For the Cα chemical shifts,

the highest PCC and lowest RMSD is obtained for CHARMM22*. For all

other force fields, the results are similar apart from AMBER99SBILDN-NMR,

which has a much higher RMSD, because the simulated secondary shift is

higher than the experimental results for the central region of Aβ42, which cor-

responds to a high α-helical content as will be seen in the following section. For

the Cβ chemical shifts, the highest PCC and lowest RMSD is obtained for AM-

BER99SB, but the results for AMBER99SB*ILDN, AMBER99SBILDN-NMR

and CHARMM22* are comparable. The results for Hα chemical shifts are sim-

ilar for all force fields. However, most force fields other than CHARMM22*

tend to overestimate the secondary shift of the C-terminus. In the case of the

HN chemical shifts, all force fields other than CHARMM22* underestimate

the secondary shifts for the entire peptide. This error is particularly clear for

OPLS. The better results using CHARMM22* are correlated to a high PCC

and low RMSD. This underestimation of HN chemical shifts has also been ob-

50



4.2. Results and Discussion

Figure 4.1.: Distribution of time spent by each replica (in the y-axis) at differ-
ent thermodynamic states (x-axis, where 1 is the lowest temperature
and 32 is the highest). The maximum time spent by any replica at
one thermodynamic state is 12 % for AMBER99SB, 13 % for AM-
BER99SB*ILDN, 10 % for AMBER99SBILDN-NMR, 14 % for OPLS
and 12 % for CHARMM22* (Reprinted with permission from Carballo-
Pacheco and Strodel.3 Copyright 2016 The Protein Society).
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Figure 4.2.: RMSD between simulated and experimental NMR observables as
a function of time for (a) Cα chemical shifts, (b) Cβ chemical
shifts, (c) Hα chemical shifts, (a) HN chemical shifts, (e) J-couplings
and (f) residual dipolar couplings for AMBER99SB (red), OPLS
(green), AMBER99SBILDN-NMR (red), AMBER99SB*ILDN (brown)
and CHARMM22*(pink) (Reprinted with permission from Carballo-
Pacheco and Strodel.3 Copyright 2016 The Protein Society).
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Figure 4.3.: PCC between simulated and experimental NMR observables as a
function of time for (a) Cα chemical shifts, (b) Cβ chemical shifts,
(c) Hα chemical shifts, (a) HN chemical shifts, (e) J-couplings and
(f) residual dipolar couplings for AMBER99SB (red), OPLS (green),
AMBER99SBILDN-NMR (red), AMBER99SB*ILDN (brown) and
CHARMM22*(pink) (Reprinted with permission from Carballo-Pacheco
and Strodel.3 Copyright 2016 The Protein Society).
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Table 4.1.: PCC and RMSD between simulated and experimental chemical shifts for
each force field.

Force field Cα chemical shift Cβ chemical shift Hα chemical shift HN chemical shift

PCC RMSD (ppm) PCC RMSD (ppm) PCC RMSD (ppm) PCC RMSD (ppm)

AMBER99SB 0.62 0.59 0.82 0.46 0.28 0.17 0.43 0.36
AMBER99SB*ILDN 0.60 0.55 0.75 0.50 0.41 0.14 0.16 0.41

AMBER99SBILDN-NMR 0.56 0.94 0.77 0.50 0.47 0.12 0.32 0.39
OPLS 0.59 0.70 0.59 0.67 0.50 0.15 0.36 0.37

CHARMM22* 0.68 0.48 0.73 0.56 0.38 0.11 0.71 0.27

Table 4.2.: PCC and RMSD between simulated and experimental J-couplings and
RDCs for each force field.

Force field J-coupling RDC

PCC RMSD (Hz) PCC RMSD (Hz)

AMBER99SB 0.49 1.06 0.37 1.75
AMBER99SB*ILDN 0.49 1.02 0.10 2.27

AMBER99SBILDN-NMR 0.35 0.91 0.26 2.64
OPLS 0.48 1.05 -0.03 2.40

CHARMM22* 0.51 1.03 0.02 2.19

served in the simulations of Ball et al.,234 who used AMBER99SB with the

TIP4P-Ew water model. The average RMSD between estimated and chemical

shifts for folded proteins for SPARTA+ for Cα, Cβ, Hα and HN chemical shifts

are 0.94, 1.14, 0.25 and 0.49 ppm, respectively. These are in the order of the

RMSD for all simulations of Aβ42 for all force fields, which shows that even

force fields which are not accurate for Aβ42 are in the order of the average

error. It should be noted that force fields which represent completely different

ensembles such as AMBER99SBILDN-NMR and CHARMM22* have average

errors which are both comparable to the average RMSD for folded proteins

for SPARTA+, which shows that it is hard to discriminate between ensembles

using only chemical shifts. With respect to J-couplings, similar results are ob-

tained for all force fields. It should be noted that the PCC and RMSD for the

simulation with OPLS , which are 0.48 and 1.05 Hz respectively, are similar

to the 0.48 and 1.25 Hz obtained by Rosenman et al.,233 who performed an

REMD study with 52 replicas and 1000 ns/replica for the same system. This

further demonstrates that our simulations are converged. All the force fields

I used here perform better that the older force fields studied by Sgourakis et

al.213 (i.e., Gromos, AMBER94 and AMBER96). In the case of RDCs, the

best results are obtained for AMBER99SB. All other force fields perform simi-

larly, apart from AMBER99SBILDN-NMR which overestimates the RDCs for

the second part of the peptide.
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Figure 4.4.: Experimental (red) and simulation (blue) Cα and Cβ chemical shifts, J-
couplings and residual dipolar couplings per residue for all studied force
fields (Reprinted with permission from Carballo-Pacheco and Strodel.3

Copyright 2016 The Protein Society).
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per residue for all studied force fields (Reprinted with permission from
Carballo-Pacheco and Strodel.3 Copyright 2016 The Protein Society).
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Table 4.3.: Radius of gyration of Aβ42 for each force field.

Force field Radius of gyration (nm)

AMBER99SB 1.09± 0.12
AMBER99SB*ILDN 1.05± 0.08

AMBER99SBILDN-NMR 1.07± 0.07
OPLS 1.01± 0.08

CHARMM22* 1.11± 0.12

Finally, I estimated the radius of gyration for Aβ42. The results can be

found in table 4.3. The simulated radii of gyration are similar between all

force fields and compare favourably with the experimentally estimated hydro-

dynamic radius of 0.9 nm determined with single-molecule fluorescence.284 It

should be noted that all snapshots in which the distance between the protein

and its image were below 1.0 nm, were deleted. In the case of CHARMM22*,

4.7 % of snapshots were deleted, while in all other force fields less than 1.0 %

of snapshots were deleted. Hence, in a larger simulation box, CHARMM22*

could have had a larger radius of gyration. There is now ample evidence that

force fields produce IDP ensembles that are too compact compared to the ex-

perimental ensembles,140,204,221,227 which has prompted to rescale protein-water

interactions.140,227 It has also been shown that CHARMM22* is the force field

which generates more extended conformations before recalibration,244 which

is similar to what I observe. In conclusion, in our simulations of Aβ42, none

of the force fields produced ensembles which are too collapsed when compared

to experiment.

Our results correlate to other studies in which the ability of force fields to

reproduce experimental observables of IDPs was investigated. For example,

Rauscher et al.222 simulated the disordered arginine/serine (RS) peptide and

compared the results to NMR data and X-ray scattering data and observed

that the best correlation was obtained with CHARMM22*. Somavarapu and

Kepp249 compared different force field for the simulation of Aβ40 and found

that AMBER99SB-ILDN and CHARMM22* are the best when compared to

J-couplings and chemical shifts. They also found that TIP3P produced more

compact, helical and structured ensembles when compared to other water mod-

els. Hoffmann et al.223 simulated amylin, the IDP associated with type 2 dia-

betes, and found that AMBER99SB*ILDN, AMBER03W and CHARMM22*

were better than OPLS, Gromos and CHARMM22. There is a general con-

sensus that newer force fields, particularly CHARMM22*, are an improvement

over older force fields.
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Conformational ensemble

To understand the difference on the ensembles sampled by different force fields

and their correlation to experimental observables, a number of structural prop-

erties were calculated. In figure 4.6, the secondary structure is plotted for each

force field. AMBER99SBILDN-NMR shows a high helical and small β content

compared to the other force fields, which correlates with the high secondary Cα

chemical shift. AMBER99SB, OPLS and AMBER99SB*ILDN show a helical

content of about 20 % in the central section of the peptide (residues 11–17)

similar to what was observed by Ball et al.234 and Lin et al.240,285 However,

CHARMM22* shows less helical content with its peak for residues 33–35. Most

force fields show a similar pattern in β content with peaks around residues 4–5,

11–12, 18–20, 30–31 and particularly in the C-terminus. The highest β content

is obtained with CHARMM22* with a content of over 60 % for residues 40 and

41. My results are intermediate to the results obtained by other researchers.

For example, Lin et al.240,285 and Ball et al.234 have observed mostly disor-

dered structures with some helical content and little β-sheet content. On the

other hand, Rosenman et al.233 observed very high β-sheet content and little

helicity. I observe both helical and β structures.

To further understand the ensemble sampled by each force field, intramolec-

ular contact maps and the most representative clusters were calculated for each

force field and plotted in figures 4.7 and 4.8, respectively. For AMBER99SBILDN-

NMR, contacts between residues close in sequence are observed in the contact

map as expected for structures with high α-helical content. This can also be

observed in the most probable cluster which represents 50.4 % of the snapshots

and is mostly α-helical. For all other force fields, the structures are mostly dis-

ordered with some local structure. The ensembles produced by CHARMM22*,

which is the force field that reproduces the experimental NMR observables the

best, OPLS and AMBER99SB show a high propensity for a β-hairpin of the

C-terminus, which has been suggested to be the initial seed for the aggre-

gation process for the β-sheet rich amyloids.286–288 Some force fields such as

AMBER99SBILDN-NMR or OPLS have clusters that represent a large number

of snapshots, while others such as AMBER99SB or AMBER99SB*ILDN have

clusters that represent smaller number of snaphots, which shows that they

sample a more heterogeneous conformational ensemble. Rosenman et al.244

have observed for Aβ40 that different force fields produce different secondary

structures but similar contact maps. In my simulations, there are differences

between force fields in both contact maps and secondary structure.
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permission from Carballo-Pacheco and Strodel.3 Copyright 2016 The
Protein Society).
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Figure 4.7.: Contact maps for the monomer of Aβ using the AMBER99SB, AM-
BER99SB*ILDN, AMBER99SBILDN-NMR, OPLS and CHARMM22*
force fields (Reprinted with permission from Carballo-Pacheco and
Strodel.3 Copyright 2016 The Protein Society).
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Figure 4.8.: Three most representative clusters for the AMBER99SB, AM-
BER99SB*ILDN, AMBER99SBILDN-NMR, OPLS and CHARMM22*
force fields and the percentage of snapshots each cluster represents
(Reprinted with permission from Carballo-Pacheco and Strodel.3 Copy-
right 2016 The Protein Society).
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4.2.2. Simulations of protein aggregation

Aggregation simulations

In this section, the ability of protein force fields to model protein aggregation is

assessed. In particular, the aggregation of Aβ16−22, Aβ16−22(F19V,F20V) and

Aβ16−22(F19L) is studied. Experimentally, it is known that Aβ16−22(F19L)

aggregates faster than Aβ16−22 and that Aβ16−22(F19V,F20V) does not aggre-

gate.289 In figure 4.9, the oligomerization state as a function of time is plotted

for all the tested force fields. The three peptides aggregate to the maximum

oligomerization state of six in the simulations with Gromos54a7. Specifi-

cally, the five replicas of each system have reached the maximum oligomer-

ization state within 200 ns and no disassembly is observed after that. For the

simulations with OPLS, all replicas also reach the maximum oligomerization

state but it takes almost the entire 300 ns of simulation time. The results

for CHARMM22* and AMBER99SB*ILDN are comparable: peptides aggre-

gate fast, however oligomers break continuously. Moreover, it appears that

Aβ16−22(F19V,F20V) aggregates slower than the two other peptides. No ma-

jor differences are observed in the simulations using AMBER99SB*ILDN with

and without LRDI. Finally, the behaviour with AMBER03WS is strikingly dif-

ferent from the other force fields. Little aggregation is observed and the average

oligomerization state is never larger than three. It should be noted that this

force field was developed to correct for the overstabilization of protein-protein

interactions by most force fields and has stronger water-protein interactions.227

To quantify the difference between force fields, dissociation constants KD

and their corresponding free energy differences were estimated as explained in

section 4.1.2. (see table 4.4). The dissociation constant represents the equilib-

rium between the addition of a monomer to an oligomer and the dissociation

of a monomer from an oligomer. The higher the value, the less aggregation

prone the system is, as a higher concentration of monomers is needed for

one to stably bind to an oligomer. Senguen et al.289 calculated experimen-

tally critical concentrations, which are similar to dissociation constants, for

the same peptides. The values for Aβ16−22 and Aβ16−22(F19L) are 33± 3 and

12± 1 µM, respectively. Because Aβ16−22(F19V,F20V) does not aggregate, it

is impossible to calculate the critical concentration for this peptide. The free

energy difference associated with these critical concentrations are −26.8± 0.4

and −29.3 ± 0.4 kJ mol−1 for Aβ16−22 and Aβ16−22(F19L), respectively. The

critical concentration is the monomer concentration at which there is an equi-

librium between adding a monomer to the fibril and a monomer dissociating
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Figure 4.9.: Oligomerization state as a function of time for Aβ16−22 (red),
Aβ16−22(F19V,F20V) (blue) and Aβ16−22(F19L) (green) for (a) Gro-
mos54a7, (b) OPLS-AA, (c) AMBER03WS, (d) CHARMM22*, (e) AM-
BER99SB*ILDN and (f) AMBER99SB*ILDN with LRDI.

from the fibril. Even though it is similar to the dissociation constant, experi-

mentally only the monomer addition to the fibril can be measured, whereas in

my simulations, the monomer addition to oligomers is studied. Since oligomer

formation is considered as the rate limiting step in amyloid formation,290 the

simulated dissociation constants should be much higher than the experimental

critical concentrations. Indeed, for all force fields, the simulated dissociation

constants are higher than the experimental value. However, it should be noted

that for the simulations with OPLS, and particularly Gromos54a7, little dis-

assembly of monomers is observed. This means that if the simulations were

longer, the dissociation constant would considerably decrease, which would

represent that the formation of oligomers would be more favourable than the

monomer addition to fibrils. This suggests that these force fields probably

overstabilize protein-protein interactions.

To further compare the results of the simulations with experiments, I cal-

culated the collision acceptance probability. Because this calculation does not

depend on reaching equilibrium, it should converge faster than the dissocia-

tion constant. In table 4.5, the acceptance probabilities for all force fields are

summarized. The estimation of the collision acceptance probability is hard to

obtain experimentally, and, as far as I know, it has not been estimated for
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Table 4.4.: Equilibrium properties for the aggregation simulations.
Force field Aβ16−22 Aβ16−22(F19V,F20V) Aβ16−22(F19L)

KD (mM) ∆G (kJ mol−1) KD (mM) ∆G (kJ mol−1) KD (mM) ∆G (kJ mol−1)

Gromos54a7 0.19± 0.09 −20.9± 0.7 0.25± 0.04 −21.8± 0.4 0.65± 0.18 −19.0± 0.9
OPLS-AA 0.6± 0.2 −19.8± 1.4 0.9± 0.2 −18.3± 1.2 1.1± 0.4 −16.7± 0.8

AMBER03WS 36± 8 −9.8± 0.4 61± 15 −8.6± 0.9 40± 8 −8.0± 0.7
CHARMM22* 1.3± 0.3 −18.0± 0.8 4.2± 1.4 −13.6± 1.0 1.4± 0.3 −17.8± 0.4

AMBER99SB*ILDN 3.8± 1.3 −14.6± 1.2 7.1± 2.5 −13.5± 1.5 3.7± 1.0 −15.0± 0.8
AMBER99SB*ILDN (LRDI) 3.4± 0.9 −15.3± 0.5 3.8± 0.4 −14.9± 0.2 2.5± 0.3 −15.6± 0.6

Aβ16−22. However, it has been estimated for other proteins. In particular,

Knowles et al.291 measured an acceptance probability of 1 in 10,000 for insulin

aggregation using a quartz crystal oscillator. Furthermore, Xue and Rad-

ford292 also measured an acceptance rate of 1 in 10,000 for β2 microglobulin

using tapping-mode atomic force microscopy. However, these estimations were

performed for monomer addition to fibrils and even lower acceptance proba-

bilities are expected for oligomer formation. I must note that different results

are expected for different peptides, so the picture could be completely different

for Aβ16−22. However, it is interesting that the simulated acceptance proba-

bilities are orders of magnitude higher than the experimental values, which

could be used as order of magnitude estimates. For example, for some of the

simulations with Gromos54a7, no rejection is ever observed. The only force

field which comes close to the experimental values is AMBER03WS, with an

acceptance rate of 0.013± 0.005 for Aβ16−22.

Table 4.5.: Collision acceptance probability in the aggregation simulations.

Force field Aβ16−22 Aβ16−22(F19V,F20V) Aβ16−22(F19L)

Gromos54a7 0.65± 0.26 0.47± 0.19 0.31± 0.12
OPLS-AA 0.27± 0.11 0.42± 0.17 0.20± 0.08

AMBER03WS 0.013± 0.005 0.005± 0.002 0.006± 0.002
CHARMM22* 0.19± 0.07 0.07± 0.03 0.11± 0.04

AMBER99SB*ILDN 0.07± 0.03 0.04± 0.02 0.06± 0.02
AMBER99SB*ILDN (LRDI) 0.09± 0.03 0.07± 0.03 0.07± 0.03

Considering the strong differences in the aggregation kinetics between force

fields, intermolecular contacts were calculated to understand which peptide-

peptide interactions drive aggregation. In figures 4.10, 4.11 and 4.12, the

intermolecular contact maps between peptides for each force field for Aβ16−22,

Aβ16−22(F19V,F20V) and Aβ16−22(F19L), respectively, are plotted. In the

contact map of Aβ16−22, the phenylalanines in the center of the peptides in-

teract strongly between peptides, which is expected as phenylalanines have

always been considered essential for the aggregation of many amyloidogenic
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peptides,293–296 and mutations of Phe19 and Phe20 strongly change the aggrega-

tion propensity of Aβ16−22.252,289 Moreover, the positively charged N-terminal

Lys forms a salt bridge with the negatively charged C-terminal Glu. The in-

teractions predicted by all force fields are similar, which demonstrates that

force fields with different aggregation kinetics may have the same predomi-

nant contacts. On the contrary, the main interactions between peptides in

the simulations of Aβ16−22(F19V,F20V) differ between force fields. In most

force fields, the interaction between the N-terminal Lys and the C-terminal

Glu is still present, but there is no interaction between the central section of

the peptides. In the case of CHARMM22* and AMBER99SB*ILDN though,

the most relevant interaction is between residues Leu17-Val19 of the different

peptides. Similar results are obtained for Gromos54a7 but the interactions

are weaker. In the case of OPLS, there are unspecific interactions between

all residues. The simulation with AMBER03WS is particularly interesting be-

cause the contact map shows a perfect anti-parallel β-sheet, which means that

whenever the peptides are in contact with each other, they form an ordered

structured. I can hypothesise that the aggregation at low concentration will

then not proceed, considering aggregates are only stable when a very specific

interaction is formed and unstable otherwise, which is different for the results

for other peptides or force fields where unspecific interactions are found. Fi-

nally, in the case of Aβ16−22(F19L) the contacts are similar to the ones observed

for Aβ16−22.

Considering the importance of the monomer dynamics in the simulations of

protein aggregation,1 monomer intramolecular contact maps before aggrega-

tion were also calculated for all peptides and force fields. The contact maps

are plotted in figures 4.13, 4.14 and 4.15 for Aβ16−22, Aβ16−22(F19V,F20V) and

Aβ16−22(F19L), respectively. All force fields sample similar, mostly extended,

conformations for Aβ16−22 and Aβ16−22(F19L). For Aβ16−22(F19V,F20V), all

force fields except for OPLS, also preferentially sample an extended confor-

mation. However, OPLS predicts a bended conformation where the C- and

N-termini are in close contact with each other. Considering the similarity of

the conformations predicted by the different force fields, in this case the dif-

ference in aggregation propensity cannot be explained by the conformations

of the monomer and must therefore arise from the interactions between the

peptides. Nonetheless, these results show that, even at the monomer stage,

there are some important differences between force fields.

To understand the intermediate conformations in the aggregation process,

kinetic transition networks (KTNs) were calculated and plotted in figures 4.16,
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Figure 4.10.: Intermolecular contact maps for Aβ16−22 oligomers in the aggregation
simulations using the following force fields: (a) Gromos54a7, (b) OPLS-
AA, (c) AMBER03WS, (d) CHARMM22*, (e) AMBER99SB*ILDN
and (f) AMBER99SB*ILDN with LRDI.
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Figure 4.11.: Intermolecular contact maps for Aβ16−22(F19V,F20V) oligomers in
the aggregation simulations using the following force fields: (a) Gro-
mos54a7, (b) OPLS-AA, (c) AMBER03WS, (d) CHARMM22*, (e)
AMBER99SB*ILDN and (f) AMBER99SB*ILDN with LRDI.
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Figure 4.12.: Intermolecular contact maps for Aβ16−22(F19L) oligomers in the
aggregation simulations using the following force fields: (a) Gro-
mos54a7, (b) OPLS-AA, (c) AMBER03WS, (d) CHARMM22*, (e)
AMBER99SB*ILDN and (f) AMBER99SB*ILDN with LRDI.
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Figure 4.13.: Intramolecular contact maps for Aβ16−22 monomers in the simulations
using the following force fields: (a) Gromos54a7, (b) OPLS-AA, (c)
AMBER03WS, (d) CHARMM22*, (e) AMBER99SB*ILDN and (f)
AMBER99SB*ILDN with LRDI.
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Figure 4.14.: Intramolecular contact maps for Aβ16−22(F19V,F20V) monomers in
the simulations using the following force fields: (a) Gromos54a7,
(b) OPLS-AA, (c) AMBER03WS, (d) CHARMM22*, (e) AM-
BER99SB*ILDN and (f) AMBER99SB*ILDN with LRDI.
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Figure 4.15.: Intramolecular contact maps for Aβ16−22(F19L) monomers in the simu-
lations using the following force fields: (a) Gromos54a7, (b) OPLS-AA,
(c) AMBER03WS, (d) CHARMM22*, (e) AMBER99SB*ILDN and (f)
AMBER99SB*ILDN with LRDI.
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4.17 and 4.18 for Aβ16−22, Aβ16−22(F19V,F20V) and Aβ16−22(F19L), respec-

tively. KTNs are a method to visualize the most relevant states and connec-

tions of a free energy landscape297–302 and have recently been applied to study

protein aggregation.79,82 Here, I used two properties to define the states: the

oligomerization state in the vertical direction and the β-strand content in the

horizontal direction. It should be noted that the definition of the β-strand is

based on the dihedral angles, which means that even if the β-strand content

of an oligomer is high, this does not mean that a β-sheet has been formed

between the peptides. This definition was used because other standard defi-

nitions such as DSSP are based on the formation of hydrogen bonds between

backbone atoms which means that, for these short peptides, the β-strand con-

tent of the monomer would always be close to zero. The KTNs of Aβ16−22

are similar for all force fields, except for AMBER03WS. In general, the most

populated nodes are the high oligomerization states with high β-strand con-

tent. The nodes with low β-strand content and high oligomerization state are

rarely populated, which shows that β-strand content rapidly increases during

the aggregation process. Monomers can be found with both high and low β-

strand content, though the ones with high β-strand content are more common,

particularly for CHARMM22* and AMBER99SB*ILDN. The simulation with

OPLS shows lower β-strand content than those with other force fields. In the

case of AMBER03WS, the free energy landscape is tilted toward monomers

and low-mass oligomers with high β-strand content. For the simulations of

Aβ16−22(F19V,F20V) and Aβ16−22(F19L), similar results are observed. The

biggest difference is that for OPLS and Aβ16−22(F19V,F20V), the system has

even lower β-strand content, which is expected from the monomer contact

map described before. Also, the simulation of Aβ16−22(F19V,F20V) with AM-

BER03WS tends to favour smaller oligomers than the other peptides with the

same force field. All force fields predict high β-strand content, which has been

observed experimentally for Aβ16−22, in which peptides form β-sheets with

interchangeable β-strands.251

It should be noted that the influence of long-range dispersion interactions

(LRDI) is very limited on the results of the simulations with AMBER99SB*ILDN.

Recently, it was found that systems that are inhomogeneous and anisotropic

such as surfaces, LRDI can play an essential role.152,155,156 Of particular inter-

est for biomolecular systems is the result that the surface tension can change

drastically in simulations of lipid membranes when using LRDI.273 However,

in the system studied here, the influence of LRDI is negligible.
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Figure 4.16.: Kinetic transition networks for Aβ16−22 aggregation using the oligomer-
ization state (from monomer to hexamer, in the vertical axis) and
the β-strand content (state 1 being from 0 to 20 % β-strand con-
tent up to state 5 with 80 to 100 % β-strand content, in the hor-
izontal axis) in the simulations using the force fields: Gromos54a7,
OPLS-AA, AMBER03WS, CHARMM22*, AMBER99SB*ILDN and
AMBER99SB*ILDN with LRDI.
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Figure 4.17.: Kinetic transition networks for Aβ16−22(F19V,F20V) aggregation using
the oligomerization state (from monomer to hexamer, in the vertical
axis) and the β-strand content (state 1 being from 0 to 20 % β-strand
content up to state 5 with 80 to 100 % β-strand content, in the hor-
izontal axis) in the simulations using the force fields: Gromos54a7,
OPLS-AA, AMBER03WS, CHARMM22*, AMBER99SB*ILDN and
AMBER99SB*ILDN with LRDI.
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Figure 4.18.: Kinetic transition networks for Aβ16−22(F19L) aggregation using the
oligomerization state (from monomer to hexamer, in the vertical axis)
and the β-strand content (state 1 being from 0 to 20 % β-strand con-
tent up to state 5 with 80 to 100 % β-strand content, in the hor-
izontal axis) in the simulations using the force fields: Gromos54a7,
OPLS-AA, AMBER03WS, CHARMM22*, AMBER99SB*ILDN and
AMBER99SB*ILDN with LRDI.
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Thermodynamics of dimer formation

To better understand the thermodynamic forces that drive protein aggrega-

tion, the simplest oligomer, i.e., the dimer, was studied in greater detail. In

particular, one snapshot per force field and peptide was selected and separated

into monomers for the generation of starting configurations to initiate umbrella

sampling simulations and calculate PMFs between the aggregated and unag-

gregated peptides. The difference between the minimum and maximum in the

PMFs for all peptides and force fields are summarized in table 4.6. The differ-

ences in free energy for Gromos54a7 are the highest for all the systems, which

is expected from the fastest aggregation kinetics. The difference in free energy

for all other force fields are smaller. However, the difference in free energy for

AMBER03WS is not smaller than for the other force fields, which is surpris-

ing because of the slower aggregation kinetics obtained with this force field.

It should be noted that the umbrella sampling simulations were started from

dimers from the aggregation simulations, that are different between force fields

(see figure 4.19), which may influence the PMF. The simulations could have

been performed starting from the same initial structure, however, the reason

for these simulations was to measure the driving forces behind the aggrega-

tion in our simulations and not to see the difference in stability predicted by

different force fields.

Table 4.6.: ∆G based on the PMFs for dimer formation.

Force field Aβ16−22 Aβ16−22(F19V,F20V) Aβ16−22(F19L)

∆G (kJ mol−1) ∆G (kJ mol−1) ∆G (kJ mol−1)

Gromos54a7 −30 −27 −37
OPLS-AA −36 −13 −12

AMBER03WS −15 −11 −11
CHARMM22* −11 −7 −18

AMBER99SB*ILDN −10 −11 −4
AMBER99SB*ILDN (LRDI) −13 −9 −19

An important question that needs to be addressed regarding the aggregation

of amyloidogenic peptides is to understand if the process is driven by entropy

or enthalpy. Rao Jampani et al.280 performed multiple umbrella sampling

simulations at different temperatures to calculate the enthalpic and entropic

contributions for monomer addition to a short fibril and a similar protocol is

followed here to calculate the contributions for the dimer formation of Aβ16−22.

In figure 4.20, both contributions are plotted as a function of the distance be-

tween the two peptides. In most force fields, the aggregation is enthalpy driven

and an enthalpy-entropy compensation is observed,303–312 in which a decrease
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(a) (c)(b)

(d) (f)(e)

Figure 4.19.: Initial conformations for Aβ16−22 the dimer simulations using the
following force fields: (a) Gromos54a7, (b) OPLS-AA, (c) AM-
BER03WS, (d) CHARMM22*, (e) AMBER99SB*ILDN and (f) AM-
BER99SB*ILDN with LRDI.

of enthalpy is partially compensated by a decrease in entropy. It has been sug-

gested that this effect is a consequence of the formation of hydrogen bonds,303

which are important in protein-protein interactions. The decrease in entropy

is expected when free peptides lock into stable structures, and the decrease of

enthalpy probably arouses from the strong contacts between peptides. Sim-

ilar results are observed by Rao Jampani et al.280 Interestingly, I observe a

different mechanism for the stabilization of the dimer in the simulation with

CHARMM22*. In this case, both the entropy and the enthalpy increase. This

difference probably arises from the different initial conformation of the sim-

ulations: the initial conformation of the simulation with CHARMM22* did

not have such an ordered structure as the ones with most of the other force

fields (see figure 4.19). In this case, the increase in entropy probably arouses

from the solvent that surrounds the peptide, and the increase in enthalpy from

the unfavourable contacts between peptides. This shows that the aggrega-

tion of monomers to oligomers may follow a similar scheme to the dock-lock

mechanism.60 There are dock interactions which are non-specific and increase

entropy and enthalpy but are still stable and lock interactions which lower

both enthalpy and entropy by rearranging hydrogen bonds leading to ordered

structures. Both of these mechanisms are stabilizing protein interactions in
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Figure 4.20.: Enthalpy (red) and entropy (blue) calculated from the umbrella sam-
pling simulations for the formation of a Aβ16−22 dimer using the follow-
ing force fields: (a) Gromos54a7, (b) OPLS-AA, (c) AMBER03WS, (d)
CHARMM22*, (e) AMBER99SB*ILDN and (f) AMBER99SB*ILDN
with LRDI. The error is colored as a shaded area.

my simulations.

4.3. Summary

To be able to use molecular simulations to properly simulate amyloid for-

mation, the force fields used must accurately model the free energy land-

scape of both IDPs and protein-protein interactions. In this chapter, I stud-

ied how various force fields reproduce the free energy landscape of Aβ42,

an example for IDPs, and the aggregation of Aβ16−22 and two mutations:

Aβ16−22(F19V,F20V) and Aβ16−22(F19L) to estimate if force fields accurately

reproduce protein aggregation.

The comparison of the simulations of Aβ42 with experimental observables is

straightforward because of the existence of multiple experimental NMR data,

in particular J-coupling, chemical shifts and residual dipolar couplings, and the

ease of calculating them from the simulated ensemble. Most of the tested force

fields (CHARMM22*, AMBER99SB, OPLS and AMBER99SB*ILDN) are ac-

curate enough in reproducing the experimental observables, with CHARMM22*

being slightly better than others. However, in general the errors of the esti-
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mation methods are high which means that it is often hard to differentiate

which of the force field is better. It is interesting that even if the correlation

between the experimental observables and simulated ensembles are compara-

ble for the different force fields, they nonetheless sample distinct secondary

structures and tertiary contacts. This means that based on the current exper-

imental data that is available for Aβ42, it is difficult to decide which of the

sampled structures are the correct ones.

In the case of the simulations of peptide aggregation, the comparison with

experimental observables is complicated. In this chapter, I simulated the ag-

gregation of Aβ16−22 and Aβ16−22(F19L) which are known to aggregate and

Aβ16−22(F19V,F20V) which is known not to aggregate. However, in most

of the simulations all peptides behave rather similarly. While in the simu-

lations with most force fields all peptides aggregate, in the simulation with

AMBER03WS little aggregation is observed. Even if the aggregation kinet-

ics and propensity between different force fields are diverse, the most relevant

contacts between peptides are the same for all force fields for the peptides

that are known to aggregate experimentally. However, different contacts are

observed for Aβ16−22(F19V,F20V). In particular, it is interesting that only

when peptides found each other in a perfect antiparallel β-sheet, oligomers are

stable in the simulation with AMBER03WS. One of the main limitation of

these and many other studies is that the systems are studied at concentrations

much higher than the experimental values.2 Nonetheless, this study shows that

care must be taken in the selection of force fields for the simulation of protein

aggregation.
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monomer dynamics

There is no absolute theory regarding what makes certain protein and pep-

tides aggregate into amyloid formation and others not. There are multiple

algorithms that can predict amyloid propensity based on the sequence of a

protein.313–317 These algorithms are usually based on the hydrophobicity, β-

sheet propensity, net charge and solubility of the proteins. However, these

algorithms cannot be used to understand the physico-chemical aggregation

process. The interaction between proteins is, as expected, essential for protein

aggregation, however, it is still an open question if the conformations of the

monomers can be used to predict protein aggregation.

It has been suggested that protein aggregation is encoded in the monomer

conformations.53,318–321 In particular, one of the strongest hypotheses is that

proteins can be found in two different conformations, a conformation M which

is not aggregation prone, and an aggregation prone conformation M*. The M*

conformation usually has hydrophobic residues at the surface that can stabilize

protein-protein interactions. Further, it has been suggested that the reconfig-

uration rate between these states is essential for understanding the propensity

to protein aggregation322 and there is some experimental evidence to support

this theory.323–325 So far, no one has performed long atomistic explicit-solvent

molecular dynamics simulations of multiple peptides with different aggrega-

tion propensities and try to correlate their experimentally known aggregation

propensity with the conformational ensembles of the monomers.

Here, I study the monomer dynamics by means of molecular simulations

of Aβ16−22 and eight different mutants: Aβ16−22(F19A), Aβ16−22(F19L,F20L),

Aβ16−22(F19L), Aβ16−22(F20L), Aβ16−22(F20V), Aβ16−22(F19Y), Aβ16−22(F19V)

and Aβ16−22(F19V,F20V). The aggregation propensities of these peptides have

been experimentally characterized.252,289 The conformational ensembles of the

peptides are described using standard analysis and the kinetic properties of

the peptides are estimated using the recently developed variational approach

to molecular kinetics.326–328
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5. Aggregation propensity encoded in the monomer dynamics

5.1. Theory

The description of the properties of the conformational ensembles sampled

by the simulated peptides is performed with methods which are standard for

analysing molecular dynamics simulations, and have been used in previous

chapters. Hence, they are explained briefly in section 5.2. On the other hand,

to estimate the kinetic properties of the peptides, a new method that uses a

variational approach to molecular kinetics was used.326–328 The theory behind

the method is introduced in this section.

If we consider X to be the conformational space that a protein in water can

access to be ergodic, reversible and Markovian, the probability density of a

particular state x ∈ X is pt(x) at time t. pt(x) will relax to the equilibrium

probability distribution π(x) for t → ∞. The evolution of the probability

density is:

pt+τ = P(τ)pt(x), (5.1)

where P(τ) is the propagator operator, which calculates the new probabil-

ity distribution after a time interval τ , called the lag time. The propagator

operator has the following eigenvalue spectrum

λ1 = 1 > |λ2(τ)| ≥ |λ3(τ)| . . . , (5.2)

where λ1 is the largest eigenvalue. Its associated eigenvector is the equilibrium

probability distribution π(x):

P(τ)π(x) = λ1π(x), (5.3)

which means that when the systems reaches π(x), it will remain there. Be-

cause of ergodicity and reversibility, the eigenvalues λi(τ) and eigenvectors

li(x) have real values. Also, because of self-adjointness, the eigenfunctions

form a complete basis and the probability density can be decomposed as:

pt(x) =
∞∑
i=1

ciλi(τ)li(x) = π(x) +
∞∑
i=2

ci exp(−t/ti)li(x), (5.4)

where ti = − τ
ln |λi(τ)| and ci are the coefficients determined at time t = 0.

pt(x) can be seen as a superposition of modes li, and considering that |λi| < 1

for i > 2, all modes decay with time as the process approaches the equilib-

rium probability distribution. The system cannot be solved analytically and,

therefore, a variational approach is used to estimate the dominant eigenfunc-

tions and eigenvalues, which hold important information of the most relevant
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conformational states and the rates of exchanges between these states.

Because of the self-adjointness and the bounded eigenvalue spectrum of the

propagator, a variational principle can be stated:

〈f |P(τ)|f〉π−1 ≤ 1, (5.5)

where the scalar product must be weighted by π−1. Using the method of linear

variation, the eigenfunctions can be approximated as linear combinations of

basis functions φi(x):

li(x) ≈ l̂i(x) =
M∑
j=1

ajiφj(x), (5.6)

where M is the number of basis functions. If the expansion on the basis is

introduced in the variational principle and the coefficients aji are used to max-

imize the variational problem, a generalized eigenvalue problem is obtained:

C(τ)ai = Sλi(τ)ai, (5.7)

where C(τ) is the correlation matrix with elements Cij(τ) = 〈φi|P(τ)φj〉π−1

and S is the overlap matrix with elements Sij(τ) = 〈φi|φj〉π−1 . For a large space

such as X, the correlation matrix can be calculated as time-lagged correlation

function, which for finite times is equal to:

Ĉij(τ) =
1

NT − nτ

NT−nτ∑
t=1

χj(xt)χi(xt+nτ ), (5.8)

where xt is a time-discretized realization of the dynamical process, NT is the

length of the realization, and nτ = τ/∆t. It should be noted, that the cor-

relation functions are calculated with respect to the cofunctions χi and not

the basis functions φi, where χi(x) = π−1(x)φi(x). The overlap matrix can be

calculated as:

Ŝij =
1

NT

NT∑
t=1

χj(xt)χi(xt). (5.9)

In conclusion, to use the variational approach to MD simulations, first a

realization xt needs to be performed (i.e., a trajectory of an MD simulation).

Then, after the basis functions are defined, xt needs to be projected onto these

basis functions. Next, with a chosen lag time, the correlation and overlap ma-

trix are estimated. Finally, using equation 5.7 the eigenvalues and expansion

coefficient for the first M eigenfunctions are calculated.
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5. Aggregation propensity encoded in the monomer dynamics

An essential step in using the variational approach is the definition of the

basis sets that will be used for the projection of the trajectory. A correct basis

set would be able to distinguish all major conformational changes, should be

transferable (i.e., when applying the variational approach to different peptides,

it should be easy to compare between them) and should be as small as possible.

Vitalini et al.328 designed a basis set based on the backbone torsion angles φ

and ψ of the capped amino acids that can be used for the simulation of small

peptides. In this thesis, the same basis set will be used. In short, the basis

function χ for each peptide is formed by the tensor product of the residue basis

function:

χ(φ1, ψ1, φ2, ψ2, . . . , φN , ψN) = R(φ1, ψ1)⊗R(φ2, ψ2)⊗ . . .⊗R(φN , ψN) (5.10)

where R(φ, ψ) are the dynamic modes for that particular residue. In this

way, the basis sets are constructed by combining the dynamic modes of the

individual residues. Physically, this means that the motions of each residue are

considered independently. In this thesis, only the first three dynamic modes

for each residue are used, with the first mode being the ground state of the

residue, the second mode being the slowest transition in the residue and the

third mode being the second slowest transition of the residue. In this way, the

basis function χ1111111 represents the entire peptide (in this case a heptamer,

which is why 7 residue basis functions are needed) being in the ground state,

and the basis function χ1112111 represents all residues being in equilibrium but

residue 4 having a transition in its slowest dynamical mode. The residue

basis functions depend on the force field used and are constructed here for

AMBER99SB*ILDN.

5.2. Computational Methodology

All peptides were simulated with capped termini, to reproduce experimental

conditions.252,289 To sample the conformational ensemble of the peptide thor-

oughly, multiple simulations were performed. To start these simulations from

different relevant conformations, a short Hamiltonian replica exchange MD

(HREMD) simulation was performed.329 HREMD is similar to REMD, how-

ever, instead of the temperature, the Hamiltonian is changed between different

replicas. One of the problems with REMD is that the number of replicas de-

pend on the number of atoms in the system. If explicit solvent simulations

are performed, the number of replicas can become very large and, thus, the

simulation can become computationally too expensive. In HREMD, the sys-
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tem is divided into a hot section, usually the protein, whose temperature is

implicitly increased in the higher temperature replicas, and a cold section,

usually the solvent and ions, whose temperature remains the same. In this

way, the number of replicas depends only on the number of atoms in the hot

region and not on the entire system. Considering that the goal of enhanced

sampling algorithms is to enhance the sampling of the protein and not the

solvent, HREMD is an efficient way of saving computing time. To separate

the system into hot and cold sections, the Hamiltonian of the system must be

modified. The algorithm used in this chapter is the REST2 scheme,330–332 in

which the Hamiltonian at each replica is scaled based on a parameter λ. In

particular, charges are scaled by a factor of
√
λ, the Lennard-Jones parameters

ε are scaled by a factor λ and the dihedral potentials are scaled by a factor

λ. The parameter λ is 1 for the reference replica and between 0 and 1 for all

other replicas. The HREMD simulations were performed with the PLUMED

plug-in333,334 in Gromacs 4.6.84 HREMD has already been used to increase the

sampling in simulations of peptides335–337 and even in the study of oligomer

formation by amyloidogenic peptides.103

All simulations were performed with the AMBER99SB*ILDN force field208–210

and the TIP4-Ew water model.138 For the HREMD simulation, each peptide

was introduced in a dodecahedral box in an extended conformation, with a

1.2 nm distance between the peptide and the box walls. The system was sol-

vated and ions were added up to a concentration of 150 mM. It was then

minimized using the steepest descent algorithm, and equilibrated with 0.1 ns

NVT and NPT simulations. A 100 ns HREMD simulation was then launched

using 8 replicas. The scaling factor λ was evenly distributed between 1.0

and 0.5. The temperature was kept constant at 310 K using the Nosé-Hoover

algorithm157,158 and the pressure was kept contant at 1 bar with the Parrinello-

Rahman algorithm.160,161 Protein bonds and water molecules were constrained

with the LINCS algorithm142 and the Settle algorithm,144 respectively. A 2 fs

timestep was used. A 1 nm cutoff was used for both Lennard-Jones interac-

tions and short range electrostatic interactions. Electrostatic interactions were

calculated using the particle mesh Ewald method.150

From the last 80 ns of the HREMD simulations with λ = 1, five conforma-

tions were picked at random and standard MD simulations were started from

them. The system was again equilibrated with 0.1 ns NVT and NPT simu-

lations. Then, 2 µs production runs were performed for each replica with the

same parameters as for the HREMD simulations, leading to a total of 10 µs

simulation time per peptide. These simulations were performed with Gromacs
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5. Aggregation propensity encoded in the monomer dynamics

5.110

The analysis of the conformational ensemble sampled by the peptides was

done with the help of MDAnalysis.177 Similar to the previous chapter, peptides

were considered to be in a β-strand conformation when the dihedral angles

φ and ψ were inside the polygon (−180◦,180◦), (−180◦,126◦), (−162◦,126◦),

(−162◦,108◦), (−144◦,108◦), (−144◦,90◦), (−50◦,90◦) and (−50◦,180◦).78,82 For

calculating intramolecular contact maps, two residues were considered to be

in contact whenever the distance between any two atoms of the residues were

under 0.4 nm.

To use the variational approach for understanding the kinetic properties of

the peptides, first a basis set was created from the dynamics of the individual

amino acids. For these simulations, the residues were capped (Ac-X-NHMe,

where X is the residue under study) and introduced in dodecahedral box with a

distance between the peptide and the walls of 1.2 nm. The system was solvated

and NaCl ions were added to simulate a concentration of 150 mM. It was then

minimized with the steepest descent algorithm, and then equilibrated with a

0.1 NVT and NPT simulations. Then, a 1 µs production run was performed

with the same parameters as for the HREMD simulations.

For the construction of the residue-based functions, Markov state mod-

els (MSM) were constructed from the residue simulations with the help of

PyEMMA.338 For each trajectory, the backbone torsion angles were first ex-

tracted and projected onto a grid of 36× 36 states. Then, an MSM was con-

structed using standard input parameters and used to calculate the main dy-

namical modes. The basis functions were constructed for the following amino

acids: alanine, glutamate, leucine, lysine, phenylalanine, tyrosine and valine.

For the application of the variational approach to the peptides, only singly

excited states (i.e., only one residue can be excited at a time) were used for

the construction of the peptide basis set.

5.3. Results and Discussion

5.3.1. Conformational ensemble

In this section, the conformational ensemble sampled by the nine different

peptides were studied. Among the nine peptides, six have different aggre-

gation propensities, while three (Aβ16−22(F19A), Aβ16−22(F19V,F20V) and

Aβ16−22(F19Y)) do not aggregate.252,289 In figure 5.1, the β-strand content

is plotted. All peptides have similar β-strand content and there is no clear

difference between the aggregating and non-aggregating peptides. All pep-
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Figure 5.1.: Average β-strand content per residue for Aβ16−22 (red solid line),
Aβ16−22(F19A) (red dashed line), Aβ16−22(F19L,F20L) (red dotted
line), Aβ16−22(F19L) (blue solid line), Aβ16−22(F20L) (green solid line),
Aβ16−22(F20V) (blue dotted line), Aβ16−22(F19Y) (blue dashed line),
Aβ16−22(F19V) (green dotted line) and Aβ16−22(F19V,F20V) (green
dashed line). The three peptides which do not aggregate are plotted
as dashed lines.

tides have high β-strand content with a probability between 0.5 and 0.7 for

all residues. There are only small differences in residues 19-21 and the non-

aggregating peptides are some of the ones with higher β-strand content. To

better understand the conformational ensemble of the peptides, and consider-

ing how important the monomer dynamics was to understand the difference

in aggregation between functional and aberrant amyloids (see chapter 3), in-

tramolecular monomer contact maps were plotted for each peptide in figure

5.2. There are no clear differences between aggregating and non-aggregating

peptides. All peptides are mostly extended and very few contacts are observed

between the termini. These results show that there is no clear correlation be-

tween the ensembles sampled by the peptides and their aggregation propensity.

5.3.2. Kinetic properties

In this section, the kinetic properties of the nine peptides are studied using

the variational approach to molecular kinetics. First, MSMs were built for

the residues to construct the residue-based basis functions. In figure 5.3, the

implied timescales as a function of lag time for the MSM of phenylalanine is

plotted. It is clear that the MSM converges fast, because the implied timescales

do not change as a function of the lag time. Therefore, a lag time of 50 ps

was used to construct the peptide basis functions. Similar plots are observed

for all the residues. The first three dynamical modes for phenylalanine are

plotted in figure 5.4. The first mode is the ground state which represents the
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Figure 5.2.: Intramolecular contact maps for the monomers of (a) Aβ16−22,
(b) Aβ16−22(F19A), (c) Aβ16−22(F19L,F20L), (d) Aβ16−22(F19L),
(e) Aβ16−22(F20L), (f) Aβ16−22(F20V), (g) Aβ16−22(F19Y), (h)
Aβ16−22(F19V) and (i) Aβ16−22(F19V,F20V). The peptides that do not
aggregate are plotted in red.
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Figure 5.3.: Implied timescales as a function of the lag time for the Markov state
model for the capped phenylalanine residue.
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Figure 5.4.: Most relevant dynamical modes for the Markov state model for the
capped phenylalanine residue. The first dynamical mode is the equi-
librium distribution. The second dynamical mode is a change in the φ
angle, while a transition along ψ occurs in the third dynamical mode.

equilibrium probability density. The second mode represents the transition

between right-handed α-helices and β-strands, to left-handed α-helices. The

third mode represents the transition between α-helices and β-strands. Similar

modes are observed for all residues. Using these residue-based basis functions,

peptide basis functions were constructed. In particular, only the singly excited

(i.e., only one of the residues can be either in the second or third dynamical

mode) were used. All of the used basis functions are listed in table 5.1.

With the use of the peptide basis functions, the variational approach was

applied to the simulations of the 9 peptides. In figure 5.5, the implied timescale

as a function of lag time is plotted for Aβ16−22. In this case, the convergence is

much slower than for the simulations of the capped residues. This likely occurs

because of the more complex dynamics that the peptides have compared to the
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5. Aggregation propensity encoded in the monomer dynamics

Table 5.1.: Transitions represented by each basis functions.

Basis function Transition

1 1111111
2 2111111
3 3111111
4 1211111
5 1311111
6 1121111
7 1131111
8 1112111
9 1113111
10 1111211
11 1111311
12 1111121
13 1111131
14 1111112
15 1111113

capped residues. Nevertheless, the timescale do stay reasonably constant after

a lag time of around 5 ns. Similar results are observed for all other peptides.

Therefore, this lag time is chosen for the analysis of the peptide dynamics.

The main results from the variational approach are the timescales for the

most relevant processes and the basis functions involved in such processes. In

figure 5.6, the coefficients for the basis functions involved in the six slowest

processes for Aβ16−22 are plotted. As expected, the first eigenvalue λ = 1

represents the equilibrium probability density (i.e., the first basis function).

The second eigenvalue represents mostly basis function 8, with contributions of

basis functions 4, 6 and 10. Basis function 8 represents the transition of residue

4 (i.e., Phe19) from a right-handed α-helix and β-strand, to left-handed α-helix,

which considering that the peptides are mostly extended can be understood

as a closing of the peptides through its central residue. The third eigenvalue

represents mostly the basis function 6 with contributions from 4, 8 and 10.

Basis function 6 is similar to basis function 8, but for residue 3 (i.e., Val18).

In this way, the slowest transitions and their identities can be extracted from

the variational method. In table 5.2, the two slowest transitions and the basis

functions they represent are listed for each of the peptides.

Considering that no correlation was observed between static properties and

the aggregation propensity of the different peptides, and that the dynamics of

the monomer may be essential for aggregation, I decided to study if there is

a correlation between the slowest timescales and the aggregation propensity.

With this in mind, the slowest timescales were plotted as a function of the criti-
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Figure 5.5.: Three slowest implied timescales as a function of lag time for the simula-
tion of Aβ16−22. After an initial increase in the timescale, they plateau
around 5 ns, which is chosen as the lag time for estimating the timescales
of the major processes.
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Figure 5.6.: Expansions coefficients for the six largest eigenvalues for the simulation
of Aβ16−22.
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Table 5.2.: The two slowest timescales and basis functions they represent for each of
the peptides under study. The non-aggregating peptides are highlighted
in red.

Peptide t1 (ns) Process t2 (ns) Process

Aβ16−22 6.8 1112111 5.7 1121111
Aβ16−22(F19A) 5.5 1112111 and 1121111 4.3 1211111

Aβ16−22(F19L,F20L) 12.8 1112111 6.2 1211111
Aβ16−22(F19L) 13.2 1121111 4.8 1112111
Aβ16−22(F20L) 10.0 1112111 4.0 1211111
Aβ16−22(F20V) 11.1 1112111 4.2 1121111
Aβ16−22(F19Y) 7.5 1112111 5.5 1121111
Aβ16−22(F19V) 5.7 1112111 4.2 1111211

Aβ16−22(F19V,F20V) 10.2 1112111 6.8 1121111

cal monomer concentration needed for the peptide to aggregate calculated from

experiments in figure 5.7. As mentioned in the previous chapter, the critical

concentration represents the concentration in which there is an equilibrium be-

tween adding a monomer to a fibril and a monomer separating from an existing

fibril. Hence, the smaller the critical concentration, the higher the aggrega-

tion propensity of the peptide. In figure 5.7, the three peptides which do not

aggregate in vitro (Aβ16−22(F19A), Aβ16−22(F19Y) and Aβ16−22(F19V,F20V))

are plotted with critical concentrations of 100 µM, which is the maximum con-

centration experimentally studied. These peptides may aggregate at a higher

concentration. Considering all peptides, there is no clear correlation between

the data points in figure 5.7. However, there seems to be a correlation for the

aggregating peptides. Hence, they were plotted separately in figure 5.8. Here,

a very clear correlation is observed between the critical concentration of the

peptides and its slowest implied timescale: the peptides with slower timescales

are the ones that aggregate faster. Considering the theory from Lapidus,322 it

appears that for these small peptides, most of them lie in a regime in which the

aggregation is slowed by the rapid reconfiguration rate of the peptides which

does not allow them to stay in their aggregation prone position for enough time

to rapidly aggregate. Hence, when the reconfiguration rate decreases, they stay

longer in the aggregation prone position and their aggregation is faster. The

fact that the non-aggregating peptides do not follow this trend probably arises

from the fact that this theory is too simplistic. Other factors, such as the

strength of the interactions between the peptides may also be important for

protein aggregation.
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Figure 5.7.: Correlation between experimental critical concentrations measured by
Senguen et al.252,289 and the slowest implied timescale for Aβ16−22 and
its eight simulated mutants. The three data points at the left repre-
sent peptides that do not aggregate (Aβ16−22(F19A), Aβ16−22(F19Y)
and Aβ16−22(F19V,F20V) ) whose critical concentration is larger than
100 µM.
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Figure 5.8.: Correlation between experimental critical concentrations measured by
Senguen et al.252,289 and the slowest implied timescale for Aβ16−22 and
the 5 simulated mutants which aggregate.
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5.4. Summary

There are still many open questions about what drives protein aggregation. In

particular, it is still hard to predict if a peptide aggregates and if it will aggre-

gate faster than other peptides. Even though there exist multiple bioinformat-

ical programs to predict the aggregation propensity based on properties of the

residues, they are not able to make predictions about the aggregation path-

ways. One of the most interesting hypotheses, is that the aggregation propen-

sity is based on the conformational ensemble of the monomer. In this chapter,

this hypothesis was tested by studying the monomer conformational ensemble

of Aβ16−22 and eight different mutants: Aβ16−22(F19A), Aβ16−22(F19L,F20L),

Aβ16−22(F19L), Aβ16−22(F20L), Aβ16−22(F20V), Aβ16−22(F19Y), Aβ16−22(F19V)

and Aβ16−22(F19V,F20V). These peptides have different aggregation propen-

sities which have been characterized experimentally, with three of them not

aggregating at all.252,289

No correlation is observed between average ensemble properties of the pep-

tides and their aggregation propensity. In particular, all peptides have a large

percentage of β-strand content, which is essential for amyloid formation, and

form mostly extended structures. This is true even for peptides which do not

aggregate. However, when the kinetic properties of the peptides are studied,

a clear correlation is observed between experimental and simulated proper-

ties. Here, a variational approach to molecular kinetics was used to measure

the slowest transitions. A negative correlation is observed between the slow-

est implied timescales and the experimentally known critical concentration.

This shows that these peptides are in the regime in which aggregation can

be accelerated by decreasing its reconfiguration rate, which means that slower

aggregating peptides reconfigure too fast to form stable contacts. It should

be noted that non-aggregating peptides do not follow this correlation. This

shows that the process of amyloid formation is more complicated and not solely

determined by the structural preference and kinetics of the monomer.
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The aggregation of peptides into highly structured amyloid fibrils is associated

with multiple diseases including Alzheimer’s disease, Parkinson’s disease and

type 2 diabetes. However, amyloids are also associated with biologically func-

tional roles such as storing of signalling peptides. Moreover, because of the

intrinsic properties of amyloids (biocompatible, stable, self-aggregating, rigid

and can be assembled from simple building blocks), they could be used as the

basis for novel nanomaterials. If we could understand the driving forces behind

the aggregation of peptides into amyloid fibrils, we could find drugs to treat

amyloid-related diseases and design novel amyloid materials.

To design drugs for amyloid-related diseases, we should first understand

which are their toxic agents. Most experimental evidence shows that they are

not highly structured amyloid fibrils but smaller and usually more disordered

oligomers which are the main toxic species. Hence, to understand the differ-

ence in toxicity between functional and aberrant amyloids, and to understand

why certain mutations lead to higher toxicity, the conformational ensembles of

oligomers need to be determined. However, most oligomer species are transient

and can only be studied experimentally by artificially stabilizing them. There-

fore, molecular simulations are an essential tool for the understanding of how

amyloid oligomers behave. In particular, atomistic explicit solvent molecular

dynamics (MD) simulations can provide a detailed understanding of how the

aggregation process proceeds. In this thesis, I studied the formation of amyloid

oligomers and their preceding monomers using extensive MD simulations.

In chapter 3, the difference in oligomer formation between functional and

aberrant amyloidogenic peptides was studied. In particular, the aggregation

of Alzheimer’s Aβ25−35 and two functional tachykinin peptides: kassinin and

neuromedin K. Aβ25−35 is a section of the Alzheimer’s peptide which aggre-

gates and is toxic on its own. Tachykinin peptides are neuropeptides which are

stored in secretory granules as amyloids. Moreover, Aβ25−35 and tachykinin

peptides have similar primary sequences, which is particularly interesting be-

cause of their dissimilar toxicity. In the simulations, tachykinin peptides ag-

gregate faster than Aβ25−35, which suggests that functional amyloids avoid

being toxic by aggregating faster than toxic amyloids thereby surpassing the
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toxic oligomer phase. Furthermore, I found that the charges of the C-terminus

are essential in modulating aggregation. For example, when capping the C-

terminus the aggregation kinetics of kassinin decreases considerably. This is

important because tachykinin peptides need to be capped for their agonist ac-

tivity. Moreover, I observed that peptides which exist in the monomer phase in

extended conformations aggregate faster than those that exist in hairpin-like

conformations.

The study of functional amyloids and the application of molecular simula-

tions has only just started. Major experimental studies should be performed in

the future to understand the difference in behaviour in the oligomer formation

of functional and aberrant amyloids. Different properties that can be mea-

sured experimentally include aggregation kinetic constants and hydrophobic

surface areas. This study is a first step towards understanding the difference

in oligomer formation between functional and aberrant amyloids.

In chapter 4, the effect of multiple force fields on intrinsically disordered

proteins (IDPs), which is relevant as most amyloid-forming peptides are IDPs

in their monomer phase, and on protein aggregation was studied. Testing the

accuracy of current force field is essential for correctly modeling biological pro-

cesses. To study the effect of force fields on IDPs, various force fields were used

to model Aβ42 and the results were compared to experimental nuclear magnetic

resonance (NMR) data, such as J-couplings, chemical shifts and residual dipo-

lar couplings. Most current force fields excluding AMBER99SBILDN-NMR

are accurate enough at reproducing NMR observables, with CHARMM22*

being slightly better than others. However, the error in the prediction of

NMR observables from simulated ensembles is so high that it is hard to dif-

ferentiate between force fields. In my simulations, I did not observe that the

simulated Aβ42 conformational ensembles are too compact when compared

to experiments, which has been observed in other simulations of IDPs. To

study the effect of force fields on protein aggregation, various force fields were

used to model the aggregation of Aβ16−22 and two mutants: Aβ16−22(F19L),

which aggregates faster, and Aβ16−22(F19V,F20V), which does not aggregate

in vitro. However, the three peptides behave similarly during the aggrega-

tion simulations with all force fields. The difference in behaviour between

force fields is striking too: fast aggregation is observed with most force fields

(particularly with Gromos and OPLS), but little aggregation is observed in the

simulation with AMBER03WS. Even if the aggregation kinetics is different be-

tween force fields, the most relevant intermolecular contacts between peptides

are similar. The most remarkable difference is seen for Aβ16−22(F19V,F20V)
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with AMBER03WS with which the peptide only aggregate when in a perfect

antiparallel β-sheet, which suggests that this peptide only aggregates in this

specific conformation, and its aggregation may not happen at low concentra-

tions because of the unlikelihood of this conformation being formed. For all

other force fields and peptide conformations, a large percentage of unspecific

interactions are found to be stable.

Finally, in chapter 5, the monomers of different mutants of Aβ16−22 were

simulated to understand if the aggregation propensity is encoded in the dy-

namics of the monomer. It is still hard to predict which peptides form amyloids

and at which speed. Particularly, it is still unknown if this prediction can be

based on the conformational ensemble of the monomer. In my simulations,

no correlation was observed between ensemble average properties, such as β-

strand content or intramolecular contact map, and aggregation propensity.

All peptides sample similar β-strand content and intramolecular contact map.

However, a strong correlation between aggregation propensity and the kinetic

properties of the peptides was identified. In particular, there is a negative

correlation between the experimental critical concentration and the implied

timescales of the first dynamical process in the peptide. This suggests that

more dynamic peptides aggregate slower because they stay in the aggregation

prone conformation for too short a time to form stable intermolecular contacts.

When the peptide dynamics decreases, the aggregation propensity of the pep-

tides increases. However, it should be noted that this correlation does not

include the mutants that do not aggregate (Aβ16−22(F19A), Aβ16−22(F19Y)

and Aβ16−22(F19V,F20V)), which suggests that aggregation is a more com-

plex process where intermolecular contacts are also essential for predicting

aggregation propensities and dynamics.

Atomistic simulations of protein aggregation is still in its infancy. Only a

few years ago has it become possible to even perform such simulations because

of the advent of faster computers and better MD codes. Hence, there are many

open questions about how to perform simulations of protein aggregation. One

of the main problems is the fact that simulations are often performed at much

higher concentrations compared to the experimental set up. The reason for

this is that if the experimental concentrations were used, simulation systems

would be too large and thus the simulations too expensive to be performed.

Moreover, most of the simulation time would be spent on water molecules and

in the simulation of protein diffusion, which could be estimated with a simu-

lation of the monomer. Furthermore, the conformational sampling of proteins

is slow, which means that if simulations are performed at high concentration,
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peptides do not have enough time to rearrange before other peptides collide

with them. Hence, new multiscale methods should be created to simulate this

process at low concentrations. For example, simulations of oligomer formation

could be performed by means of monomer addition. The aggregation kinetics

could then be corrected using the experimental or simulated diffusion con-

stant. Moreover, care must be taken with the force fields used for simulating

protein aggregation as most of the current force fields seem to overstabilize

protein-protein aggregation. However, it should also be mentioned that better

experimental methods are needed to be able to perform an accurate comparison

between simulations and experiments, so as to have a clear picture of which

is the correct force field to use. The advance in the simulations of protein

aggregation will perform an important role in the understanding of protein

aggregation and amyloid formation. Such an understanding will help us to

find a cure for amyloid associated diseases and to precisely design amyloid

materials.
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A. Errors in correlated data

In MD simulations, calculating the error of the simulated properties is not

trivial because the snapshots used for the calculation are not independent from

each other. Therefore, errors cannot be calculated with the normal equation

for the standard error of the mean:

SE =

√∑N
i=1 xi − x̄

(N − 1)N
(A.1)

where N is the number of snapshots, xi is the value of the observable for each

snapshot and x̄ is the average value of the observable. Even if multiple sim-

ulations were started from the same starting configuration, these trajectories

would still not be entirely independent.

Here, I use the blocking method, which is based on the renormalization group

theory, summarized by Flyvbjerg and Petersen.339 This method was probably

invented by Wilson340 and is also described by Whitmer341 and Gottlieb et

al.342 The blocking method is based on repeatedly blocking the data and cal-

culating the errors for this blocked data. In particular, if the data set is x1, ...,

xn, the data can be transformed into a data set half as large x′1,...,x′n where:

x′1 =
1

2
(x2i−1 + x2i), (A.2)

n′ =
1

2
n. (A.3)

The correlation function can then be defined as:

γi,j = 〈xixj〉 − 〈xi〉 〈xj〉 , (A.4)

and because of invariance under time translation γt ≡ γij where t = |i − j|.
For the prime variables:

γ′t =

1
2
γ0 + 1

2
γ1 for t = 0,

1
4
γ2t−1 + 1

2
γ2t + 1

4
γ2t+1 for t > 0.

(A.5)
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The estimator of the variance is then:

σ2(x̄′) =
1

n′2

n′∑
i,j=1

γ′i,j. (A.6)

The error can then be calculated as:

σ2(x̄) ≥ γ0

n
. (A.7)

Because the data becomes more uncorrelated with a larger number of block

transformations, γ0/n increases every time the data is blocked, up until it has

converged to the real value. A possible estimator with a small bias for γt is:

ct ≡
1

n− t

n−t∑
k=1

(xk − x̄)(xk+t − x̄), (A.8)

σ2(x̄) ≥
〈

c0

n− 1

〉
. (A.9)

Hence, the blocking method works in the following way. First c0
n−1

is cal-

culated. Then, the data is blocked and
c′0
n′−1

is calculated. The method is

repeated iteratively. The value for c0
n−1

should converge to a defined value. If

we consider the variables as independent and following a Gaussian distribution,

the variance of the error can be estimated as :

σ2(x̄) ≈ c′0
n′ − 1

±
√

2

n′ − 1

c′0
n′ − 1

. (A.10)

In the case of the REMD simulation of Aβ42 in chapter 4, the last 100 ns

of the Cα chemical shifts were used to estimate the convergence of the data.

An example of the estimation of the error is plotted in figure A.1. It can be

observed that the error grows as a function of the number of transformation

until it converges. However, after too many transformation, it becomes impos-

sible to measure convergence because the estimation of the standard deviation

of the error is too high. A conservative 25-ns block, which is equivalent to 8

transformations, was used for the estimation of the errors for all observables.
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Figure A.1.: Standard error and estimation of the deviation of the standard error (in
error bars) as a function of the number of block transformations for the
Ile32 Cα chemical shift calculated with the blocking method. Similar
results are observed for other residues (Reprinted with permission from
Carballo-Pacheco and Strodel.3 Copyright 2016 The Protein Society).
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Variational Approach to Molecular Kinetics. J. Chem. Theory Comput.

2014, 10, 1739–1752.
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