





German Research School
for Simulation Sciences

German Research School for Simulation Sciences

Detection of threshold crossings in the leaky
integrate-and-fire neuron model with a-shaped
postsynaptic currents in time-driven simulations

Master’s Thesis

Jeyashree Krishnan

communicated by Univ.-Prof. Marek Behr

Thursday 16" October, 2014

Supervisor
Dr.Moritz Helias

Examiner
Prof.Dr.Markus Diesmann

Co-Examiner
Dr.Edoardo Di Napoli

#) )0LICH RWTH

FORSCHUNGSZENTRUM






Contents

1 Introduction

2 Subthreshold dynamics in time-driven simulations

3 Determination of peak time using Lambert W function
3.1 Lambert Wfunction. . . .. ... .. ...t iee.

3.2 Peak time of PSP

3.3 Critical conditionsS . . . . . . . v i o e e e e
3.3.1 Initial condition y;(0) =0 . . ... .. .. ... ...
3.3.2 Real-valued solution of the Lambert W function . . . . ..........

4 Continuous-time spiking neuron models

4.1 NEST.......

42 a—neuronmodel . . .. ... e

4.3 Spike test . . . .

4.4 Neuron embedded in a quasi-network setup . . . . .. ... ... ... ... ..
4.5 Efficiency of spiketest . . . . . ... .. ...

5 Discussion






1 Introduction

Neuroscience is the scientific study of the nervous system that attempts to understand infor-
mation processing in the brain in terms of electrical activity in different parts of the central
nervous system. A neuron, the functional unit of the nervous system, is an electrically ex-
citable cell that processes and transmits information through electrical and chemical signals
via the points of contacts, called synapses. The brain is a complex system with high connec-
tivity. Neural systems are nonlinear and stochastic in nature. Experimental data to study
such a system is only available either for single or extremely small numbers of neurons
or for superposition signals from very large populations, necessitating the application of
theoretical and computational methods to understand the dynamic properties of neurons.
Therefore, neural network simulations are crucial for the advancement of brain research.

Computational neuroscience is the study of brain function using theoretical methods and
computer simulations. Simulations of neurons employ mathematical models to focus on
reproducing the neural activity in the brain. The dynamics of a neuron can be described by
a set of differential equations where the interaction between a pair of neurons is simulated
as point events, i.e. spikes. The spike or action potential is the unit of signal transmission.
A typical neuron possesses a cell body, dendrites, and an axon. The dendrites act as input
devices and collect input signals from other neurons and transmit them to the soma. The
cell body can be considered as the central processing unit that performs a non-linear pro-
cessing step i.e. if the input exceeds a certain threshold voltage then a spike occurs. The
axon or the output device delivers the output signal to other neurons. By convention, the
sending neuron is referred to as the presynaptic cell and the receiving neuron as the postsy-
naptic cell. A spike causes a small change in the membrane potential of the target neurons,
called the postsynaptic potential (PSP). These PSPs can then further initiate or inhibit action
potentials.

The membrane potential can be static, in absence of inputs, or dynamic, if the cell receives
synaptic input. When synaptic inputs are absent, the membrane potential of the neuron
assumes a static value, called the resting voltage. This potential difference between the
interior and exterior of a neuron is determined by differences of ionic concentrations inside
and outside the cell body, that are kept up by active transport mechanisms.

Two common approaches to modeling the nervous system are the top-down and bottom-
up approaches. In the bottom-up approach neuron are considered as nodes and their synap-
tic connections as edges. The network can then be described in terms of the neurons, and
their projections. This approach is referred to as bottom-up, since we construct the network
from its basic components, the neurons. Hence there are simulation tools, techniques for
single or small numbers of neurons that focus on their morphology and function, like the
NEURON simulator [Hines, 1993], and simulation tools to study large networks of simple
cells, like SPLIT [Djurfeldt, 2009], the Brian simulator [Goodman and Brette, 2009], the
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C2 simulator [Ananthanarayanan and Modha, 2007], and NEST [Gewaltig and Diesmann,
2007]. In a top-down approach, an algorithm described at an abstract mathematical level
is implemented using the constituents available in a neuronal network, i.e. neurons and
synapses.

Simplified neuron models that neglect the morphological structure of the individual cells,
enables the simulation of a large number of neurons while maintaining an acceptable degree
of biological detail [Diesmann and Gewaltig, 2002]. Neural network simulators are software
applications that are used to simulate the behavior of artificial or biological neural networks.
NEST is a simulator for networks of point neurons, that is, neuron models that collapse the
morphology of different parts of a neuron to a single compartment or a small number of
compartments [Gewaltig and Diesmann, 2007]. NEST considers neurons as nodes with
possibly complex connectivity and is aimed to understand the dynamics of large neuronal
networks.

Two classical approaches to simulate neuronal networks are the time-driven and event-
driven methods [Fujimoto, 2000, Zeigler et al., 2000, Sloot et al., 1999, Ferscha, 1996].
Both of these methods describe the physical system in terms of a set of state variables rep-
resenting the neurons and events mediate the interaction between cells. In a time-driven
algorithm the time evolution advances the dynamics of each neuron in time steps defined
by a computational step size h as illustrated in Figure 2.0.2 on page 14. The system is
monitored in unitary time intervals. The characteristics of a time-driven simulation are
a fixed-size simulation step and a fixed-size communication interval. The simulation step
size determines discrete points in time when all neurons are updated and checked for their
membrane potential to cross the threshold. The choice of this constant size is, as in any
numerical simulation, a trade-off between precision and simulation time. In the implemen-
tation with precise spike timing [Morrison et al., 2007b], a variant of the time-driven ap-
proach, the arrival times of incoming spikes introduce additional update-and-check points.
Incoming spikes are incorporated and membrane potential crossings are detected only at
these update-and-check points. The communication interval is a multiple of the simula-
tion step size and defines those discrete points where neurons communicate their spikes to
other neurons. This interval can be as long as the minimum synaptic delay in the network
[Morrison et al., 2005b]. If the voltage of one neuron crosses the threshold, then a spike is
delivered to each of the neurons that it is connected to. After all the neurons are updated,
the next iteration begins. The simulation step can therefore be increased up to the size of
the communication interval. The detection of a threshold crossing can only take place at
a check point, but the timing of the spike is estimated with precision limited only by the
representation of the double floating point number, € [Kunkel et al., 2011], where € is the
smallest number for which the double representation of 1 + ¢ is different from 1 [Morrison
et al., 2007b].

In the event-driven simulation, we observe the system only at points in time where spike
occurrence or a threshold crossing is detected when a neuron receives an event. If this event
leads to a spike occurrence, then it is inserted into the queue. Future event occurrences
induced by states have to be scheduled. Apart from the global clock and state variables
indicating the current state of the system that is also characteristic to a time-driven simu-



lation, an event-driven simulation also maintains a time ordered event list for those events
in the queue [Ferscha, 1996]. Neuron models may exhibit invertible or non-invertible dy-
namics. If, for example, the arrival of a spike causes an immediate jump in the membrane
potential followed by an exponential decay this is an invertible dynamics; a spike can only
be triggered at the point of arrival of an excitatory synaptic event. If the arrival of a spike
causes an excursion of the membrane potential only within a certain rise time, the situa-
tion becomes more complicated. Even though the time point of threshold crossing due to
the incoming event can be predicted, it may have to be corrected, if further events arrive
at the neuron [Morrison and Diesmann, 2008].Consider a network of 10° neurons with a
computation step size of 0.1 ms. If each neuron is receiving inputs at an average rate of
1 Hz from each of the 10* synapses it needs to process a spike at approximately every time
step,meaning 10° neuron updates are performed per second. Considering these two fac-
tors: non-invertible dynamics and simulation time, time-driven simulations are generally
preferred. Such a scheme can incorporate any kind of subthreshold dynamics without mak-
ing changes to the update and spike delivery algorithm and has the same computational
cost as using an event-driven framework when the integration error is taken as the metric
of performance, instead of time interval [Morrison et al., 2007a]. Therefore one is normally
inclined to favor a time-driven framework for the simulation of large, highly connected net-
works. This dynamics can then be propagated in continuous-time or discrete-time. In a
discrete time simulation the occurrence of spikes are constrained to the grid. Forcing spikes
on the grid can however distort the synchronization dynamics of some networks [Hansel
et al., 1998]. Hence a continuous-time algorithm is generally preferred.

The leaky integrate-and-fire (LIF) neuron model is one of the commonly used spiking
neuron models that can mimic the dynamics of neurons to high accuracy [Rauch et al.,
2003]. These models consist of a system of first order linear differential equations, where
the sub-threshold dynamics can be exactly integrated [Rotter and Diesmann, 1999] and any
excursions that lead to the membrane potential to cross a threshold lead to the emission
of a spike. Kunkel et al. [2011] presented a time-driven simulation method to handle off-
grid spiking in combination with exact sub-threshold integration of LIF neuron models with
exponential PSCs. The spikes are processed sequentially within a predefined time step and
then the dynamics is propagated from spike to spike till the end of the time step. If, in
between the time step there occurs a supra-threshold value of the membrane potential the
time point of threshold crossing can be calculated by interpolation. The state of each neuron
is updated on an equally spaced time grid and the spikes are detected by comparison of
the neuronal state before and after the update. Here spikes are represented by an integer
time stamp and an offset 6. For spiking neurons, a popular model for the postsynaptic
currents is the a-function. Neuron models with ionic currents exhibit a double exponential
membrane dynamics. The a-shaped PSCs are a good approximation of this, and so it is a
frequently used model to describe the time course of ionic currents [Bernard et al., 1994,
Wilson and Bower, 1989]. Using such a model that has finite rise time reduces artificial
synchrony. In the implementation with precise spike timing, the membrane potential is in
addition propagated and checked at the points in time when a spike from another neuron
is received. Typically in a time-driven simulation spikes are detected only at the predefined
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update-and-check points. In the case of a brief membrane potential excursion a threshold
crossing might therefore not be detected at the next check point.

Morrison et al. [2007a] developed the canonical a-model that handles events by ex-
act subthreshold integration in discrete-time neural networks with continuous spike times.
Hansel et al. [1998] and Shelley and Tao [2001] discuss the method of a precise simula-
tion wherein the exact spike timing is calculated by interpolating the spike time within the
grid. Morrison et al. [2005a] addresses why one needs to adopt the precise spike timing
approach. In a purely on-grid scenario, the threshold crossings that occurs between two
consecutive intervals of a time grid and would not carry a precise timestamp which may
lead to artificial synchronization. In addition, grid-constrained spiking causes an integra-
tion error that declines only linearly with the resolution h. The idea of the current work is
to extend this existing a-model by including a spike test as implemented by Kunkel et al.
[2011]. Supplementing the canonical a-model in NEST with standard tests that checks for
supra-threshold membrane potential using an algorithm that can compute the peak time of
threshold crossing between two consecutive interval warrants that the new model (called
“lossless” in the following) is a precise implementation of the mathematical definition of
the model. The objective of this work therefore is to implement a series of tests based on
the initial and final conditions of the dynamic variables at the beginning and the end of a
simulation time step that allow to detect whether or not a spike has been missed. Spike
misses can be traced back in time by expressing the peak time in terms of the Lambert W
function [Corless et al., 1996]. These tests determine whether the initial conditions at the
left check point and the final conditions at the right check point indicate that an excursion
exceeding the threshold has happened in between. We need to find a computationally cheap
and efficient implementations of the spike tests to catch the missed spikes given the typical
statistics of input state variables. The resulting missed spike can be detected by including
this spike-test algorithm at all check points.
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2 Subthreshold dynamics in time-driven
simulations

The leaky integrate-and-fire neuron is the simplest and one of the best known spiking neuron
models due to the ease with which it can be simulated and analyzed [Plesser and Diesmann,
2009]. In its simplest form, the neuron is modeled as a “leaky integrator” of its input I(t)

dv 1 1
T va(t)+ Cl(t), (2.0.1)
where V(t) represents the membrane potential at time t, T7,, = RC is the membrane time
constant, R is the membrane resistance and C is the capacitance. This equation describes a
simple resistor-capacitor (RC) circuit, where the leakage term is due to the resistor and the
integration of I(t) is due to the capacitor that is connected in parallel to the resistor. The
action potential is not explicitly modeled in the LIF model. Instead, when the membrane
potential V(t) reaches the spiking threshold © it is instantaneously set to a reset potential
V, and this is followed by a delay or a momentary refractory period 7, immediately after
V(t)is set to V,.

The a-shaped postsynaptic current (a-PSC) elicited upon arrival of a synaptic impulse at
t =0 is given by

.e =t
I,(t)=1—te"a, (2.0.2)
a

where 1 is the peak value of the current and 7, is the rise time. The values of these param-
eters used in this work are 7,, = 10.0ms, 7, = 2.0ms, C = 250.0pF, ©® = 20mV . The
dynamics of the neuron model is linear and can be formulated into a system of equations
as in Rotter and Diesmann [1999], who combine the state variable in a three component
vector

a1
dt 7,

y?=I (2.0.3)

y3 =V.

The system is propagated in time by the equation

y=Ay (2.0.4)

with the coefficient matrix

11



2 Subthreshold dynamics in time-driven simulations

1 0 0
T(l
A=| 1 -+ o0 |, (2.0.5)
1 1

where the first two components of y describe the sub-system generating the PSCs (2.0.2)
and the third component is the membrane potential. The initial condition of the system of
differential equations (2.0.4) for the arrival of a single synaptic impulse is

i<
Ta

y0=| o |, (2.0.6)
0

where y(0) is the initial condition for a postsynaptic potential starting at time t = 0. Here
Ti is the scaling factor, ensuring that the posystynaptic current has 7 as the peak value. The

a
exact solution for this system is given by

y(t)=P(t) y(0). (2.0.7)

In a temporal grid t = hk the propagator matrix given by

P(h) =™, (2.0.8)

which is a matrix exponential that propagates the system from one grid point to another by

Ye4n =P(h) y,. (2.0.9)

P(h) can be obtained in closed form and, for a discrete time step h, needs to be calculated
only once at the beginning of the simulation making it an efficient method. The propagator
takes the explicit form

e Ta 0 0
__h _h
he <a e "a 0

P(h) = (2.0.10)

Q-

_h _h _h __h _h h
e "m—e "a he 7a le "m—e Ta -
5 — - e ™m
11 (L_L) c (L_L)
Ta Tm Ta Tm Ta Tm

The description of exact integration and precise spike timing that follows here is in large
parts based on Morrison et al. [2007b].
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Figure 2.0.1: Flowchart illustrating the sub-threshold dynamics in a neuron, adapted from
Diesmann et al. [2001]. The state of the neuron is given by the state vector y
for the sub-threshold dynamics and an integer r measuring the time spent in
the absolute refractory period 7,.(h). A constant propagator P(h) propagates
the sub-threshold dynamics in time. The state variables y; and y, describe the
sub-system generating the PSCs and y5 the membrane voltage. The flowchart
represents the propogation of the state variables from time point k to k + 1.
The point of reference is the end of the time interval. First the state vector is
updated by applying the propagator matrix to it. If the neuron is not refractory,
a check for threshold crossing is done in which the membrane voltage is set
to zero and neuron enters refractorniness. If the neuron is refractory in the
first place then the iterative loop runs until the neuron is not refractory, upon
which test for threshold crossing is done.

The complete update step can then be written as

Yerh = P(W)y + Xy (2.0.11)

where x,,}, is the set of initial conditions given by

Xerp = [ § } > (2.0.12)

keS,in
and S, is the set of indices k € 1,...,K of synapses that deliver a spike to the neuron at
time t + h, and 1; is the weight of synapse k i.e. jump or decay of membrane potential due

to the input. Spike arriving at t = h(k + 1) causes changes to x**! which add linearly to
state.
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2 Subthreshold dynamics in time-driven simulations

Figure 2.0.2: (A) Spike generation and refractory periods for conventional grid-constrained

14

method. (B) Continuous time implementation (precise spike timing, adapted
from Morrison et al. [2007b]). The spike threshold © is indicated by a horizon-
tal dashed line. The solid black curve shows the membrane potential dynamics
for a neuron that receives a suprathreshold constant input current such that
there occurs a threshold crossing in the interval (t,t + h]. The gray vertical
lines indicate the discrete time grid with spacing h. Filled circles denote ob-
servable values of the membrane potential, unfilled circles denote supporting
points that are not observable. In the grid-constrained case, the spike is emit-
ted at t + h followed by a short refractory period 7, (equivalent to grid size
h). In the continuous-time implementation, the threshold crossing is found by
interpolation at time t < tg < t + h.



Figure 2.0.3: Handling incoming spikes: Panel (A) shows the grid-constrained case and (B)
the canonical implementation. The curve represents the dynamics of mem-
brane potential in response to two incoming spikes shown here by the vertical
gray dashed lines. Filled circles denote known value of membrane potential
and unfilled circles unobservable values. The gray horizontal arrows indicate
the propagation steps performed during the timestep (t,t 4+ h]. In the grid-
constrained case, the incoming spikes are shifted to the next point in the grid
which stores imprecise timestamp for the input spike which may lead to ar-
tificial synchrony. In the canonical implementation, though the membrane
potential at these points are unknown, they are propagated with the precise
spike timing. Figure adapted from Morrison et al. [2007b].

The time-driven simulation environment in NEST [Gewaltig and Diesmann, 2007] has an
“on-grid” and “off-grid” framework that handle spikes differently. In the on-grid framework,
spikes are constrained to the equidistant time grid. Here, we will not consider this mode
of operation further. In the off-grid framework, spikes can be emitted at any point in time.
The canonical leaky integrate-and-fire neuron model with a-shaped postsynaptic currents
has been implemented by Morrison et al. [2007b] in the neural simulator NEST [Gewaltig
and Diesmann, 2007] and combines the idea of exact integration and precise spike timing
computed by interpolation. The precise timing of incoming events is stored in terms of their
offsets 6 in addition to the time steps of h in which they arrive, as illustrated in Figure 2.0.2
on page 14. Given a sorted list of event offset {5, ,,...,6,} with §; < h, the spikes are
processed at the end of every timestep, but their exact point of arrival as indicated by 6; is
taken into account. If the membrane potential yt3+h exceeds the threshold ©, the neuron
communicates a spike event to the network with a time stamp of ¢t + h and the membrane
potential is set to zero in the interval [tg,tg + 7,]. The reference point is still the end of

15



2 Subthreshold dynamics in time-driven simulations

interval, and hence the spike emitted carries the timestamp t + h with an offset 6 = tg —t.
The neuron is then refractory from tg till tg + 7, where in the membrane potential is
clamped to zero and starts evolving thereafter. Given the sequence of incoming synaptic
events with offsets {61,0,,...,6,}, the subthreshold dynamics is propagrated within one
time step of duration h from event to event, to the time point of arrival of the first event

Yevs, =P(81)y: + x5, (2.0.13)

to the time point of the second event

Y5, = P(02 = 01)Y 15, + X5, (2.0.14)
Yevs, =P(6n = 6,-1)Yes5,, + X5, (2.0.15)

till the end of the timestep
Yern=P(h—=5,)Y¢e4s, - (2.0.16)

If the membrane potential of the neuron is yf+5i < © and yf i > © then the membrane
potential of the neuron reached threshold between t + 6; and t + 6; ;. Since the dynamics
of the neuron is non-invertible, this threshold crossing is detected by interpolation in the
canonical model. This event now carries the timestamp t +h and an offset 6 = tg — t. After
spike is emitted, y5 is reset to zero and the neuron undergoes refractoriness for a duration
T,.

We see that the simulation step and the arrival of synaptic events defines the update-
and-check points, and the communication interval defines the discrete points in time when
all the neurons communicate their spikes. The communication interval is a multiple of the
simulation step size and is limited only by the synaptic delay in the network [Morrison and
Diesmann, 2008, Kunkel et al., 2011]. Also, the simulation step size is bounded by the size
of this communication interval. Consider a situation illustrated in Figure 2.0.4 on page 17
when a short excursion of the membrane potential above threshold happens between the
two check points and goes undetected, resulting in a missed spike.

16
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Figure 2.0.4: Illustration of a case when the threshold crossing maybe missed between two
consecutive intervals on the time grid. tjes and typ, refer to the left and right
ends points of the reference time interval. tg is the point in time when thresh-
old crossing occurs, tpe,y is the time at which the maximum of the membrane
potential occurs. If the maximum appears between the two consecutive time
intervals this may not be detected at the tgp.

The existing canonical a- model detects whether there has been a threshold crossing
point tg (Where t < tg < t + h) by interpolation (linear, quadratic and cubic) as in Figure
2.0.2 on page 14 . However having the knowledge of the peak time would be desirable
which can be computed by he new lossless a-model using the Lambert W function [Corless
et al., 1996]. In the unpublished work on “Lambert-W reveals peak time of postsynaptic
potential evoked by a-shaped current” by Markus Diesmann and Hans Ekkehard Plesser, the
rationale behind deriving a closed form expression for the peak time of PSP was discussed
and an analytical solution for the peak time was derived. Knowing the precise value of
peak time helps compute the peak value of voltage at that point. The peak time determines
the rise time of the PSP and temporal precision of neuronal response, relevant for studies
of spike synchronization [Goedeke and Diesmann, 2008]. The postsynaptic potential that
correspond to (2.0.2) can be efficiently represented as the solution to a system of linear
differential equations. At t = 0 it can be obtained by solving (2.0.1) which yields

=t =t -t
e 1 e'm —e’a tera

7. C (L_L)Z_ (2-2)|
Ta Tm Ta Tm

where the PSC is normalized to unit amplitude [Plesser and Diesmann, 2009, Wilson and

Bower, 1989]. The choice 7,, > 7, covers the PSP shapes with biologically realistic rise

and decay times. u(t) must be scaled to a certain amplitude because the relation of this
amplitude to the spike threshold determines the interaction strength or synaptic weight.

u(t)=

T > Ty (2.0.17)

The idea of the current work is to extend this analytics done by Diesmann (unpubl.) et al.
to include all three sub-systems that constitute the propagator matrix (current and voltage)

17



2 Subthreshold dynamics in time-driven simulations

(2.0.8) and get an explicit expression for the peak time of PSP using the Lambert W function
[Corless et al., 1996]. This result can then be used to construct tests to be included in the
canonical a-model of the precise spike timing framework to catch the spike misses that
happen between grid points.

18



3 Determination of peak time using Lambert W
function

The peak time of PSP refers to the point in time where the voltage reaches its maximum.
In Chapter 2 it was motivated that knowledge of the exact location of peak in the temporal
space reduces artificial synchronization and integration error. The time to maximum can
then be computed using the Lambert W function [Corless et al., 1996] as enumerated in the
following sections of this chapter.

3.1 Lambert W function

The Lambert W function defined by W(x) is the inverse of the function f(x) = xe*,
satisfying

W(x)e" ™ = x (3.1.1)

for any complex number x, and W is any complex number. Since the function is not
injective, the relation W is multivalued except at zero [Corless et al., 1996].

19



3 Determination of peak time using Lambert W function
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Figure 3.1.1: (A) Lambert W function showing the two real branches of W(x). The principal
branch is shown by the green curve and the non-principal branch by the blue
curve. The red vertical line through (—1/e, —1) marks the left border of the
regime in which the two real-valued solutions exist and the red dot is the tran-
sition from one branch to the other. (B) Solution of equation (3.1.1) (Lambert
W function) for different range of values of the argument x.

The upper branch with W > —1 is called the principal branch W;(x) and the lower branch
with W < —1 is called the non-principal branch W_;(x). The Lambert W function finds
application in statistical mechanics, quantum chemistry, combinatorics, hydrology, iterated
exponentiation problems, enzyme kinetics and to solve delay-differential equations [see
citations in Corless et al., 1996].

3.2 Peak time of PSP

The system of equations for (2.0.4) with the (2.0.5) can be written in terms of its three com-
ponents wherein the first two components contribute to current and the third component is
the membrane voltage

20
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The derivative of (2.0.17) is
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The homogeneous solution y, is

t

yh=ew

and the particular solution that vanishes at t =0 is

1

T
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a

1
Tm

=)

a(t) = yh /0 ANy () de!

_e [t _L
= e Ta/ ey (0)e 7« dt
0

= yo(t) = y1(0)tea.

We can determine the maximum of the a-function from y, =0

-1 -t =t
¥1(0) (T—) tewe + y;(0)ea

a

—t
a

~—
(t=714)=>0

From (3.2.6) and (3.2.7)

—t

ea

Yo(To) = y1(0) The !

3.2 Peak time of PSP

3.2.1)

(3.2.2)

(3.2.3)

(3.2.4)

(3.2.5)

(3.2.6)

(3.2.7)

(3.2.8)

From (2.0.5) and (2.0.10) we have the initial relation for computation of peak time of PSP

given by 0= y5 = £y, — 2-¥3
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3 Determination of peak time using Lambert W function

1 -t =t 1 1 e? Ta a 1
0= = [%:000e% +1(0)e™ | -— | n(O)2 - +7,(0)=
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Re-arranging the expression,

0 = y,(0) _te% (1+—T : ! )) —Ti (—(elm _6;32 +¥,(0) |:ef; _%_(Elm _e:;))] _Tiyg(o)eﬁ
"z "\ S "
) =t
2

0 = »0) | —"—te7« — — —T—yg(o)eﬁ (3.2.10)

we define

1 1 Tm
(_ — —) =b and — =aq, (3.2.11)

Ta Tm
where a is the ratio of the two constants and must be greater than 1. With a and b we
rewrite the last expression as

=t =t =t =t
Tm — T Tm — e~
_ 1 (e m eTa ) _ (e m eta ) C

1 =t =t -t

0 = 0) | —/——<tea — — + ¥,(0 Ta — — —y3(0)em
¥1(0) (1_1 € T b2 ¥2(0) |e T b TmJ’?,( Je
a
and get,
—t 11 1 C -t 1 1 1
et [yl(o)ﬁa +yz(0)m+ay3(0)} = e | »(0) (1_1)t+ oz ) T0 (HW)
-1 1
m @ y:(0 %-‘FT—Z + y,(0 1+r_
e ¥ - (-3)  wnb /. (3.2.12)

5 (0103 +:(0)) + £ y3(0)

In order to solve for t we bring the expression to a form that can be solved by the Lambert
W function

L1 1 c t 1 1

e | =5 (105 +27,00)) + S50 |~ 320 DR 3,0 (1425 )| =0
’ (3.2.13)

or
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3.2 Peak time of PSP

»1(0) (W - #,,) +2(0) (1+ )
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: Trln—b (51(0)5 +72(0)) + %)’3(0)

We now define

s = bt,

where s is scaled time and must be positive. (3.2.14) is of the form

e=as+f
Consider (3.2.11)

(-2) - (5-5)0-2)
p(1--) = [—-—)[1--2
a Tg Tm Tm

2 2
(Tm - Ta) _ (Tm - Ta) -
21, (Tm’l,'a)z

= 1,b%

a

Writing (3.2.14) explicitly in terms of (3.2.16)
J’l(o)#
35(n(0)5 +y2(0) + - ¥3(0)
N0 + 20 (14 25)

f 1 1 c
Lambert W solves (3.1.1) b (}’1(0)3 + }’2(0)) + a}’s(o)

ad =

[l
—
~

+
Q\

w
—

5
1%

— =5
-1 —f a
e§ = | ——s|e w
/ - /
 _ a

Plugging in (3.2.18) and (3.2.19) in (3.2.20) the peak time of PSP reads

(3.2.14)

(3.2.15)

(3.2.16)

(3.2.17)

(3.2.18)

(3.2.19)

(3.2.20)
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3 Determination of peak time using Lambert W function

)L +y,0)(1+15)

_1 1 C 1 Tmbz 1 1
w Tmb()ﬁ(o)g + ¥,(0)) + a)’3(0) - P }’1(O)W + y,(0) (1 +5
S =— — e Ta —

)

Jﬁ(@# Jﬁ(@#

(3.2.21)

Preliminary checks for validity and accuracy of this solution was done using Python
[Python Software Foundation, 2008] and then implemented in NEST [Diesmann and Gewaltig,
2002].
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3.2 Peak time of PSP
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Figure 3.2.1: Lambert W function calculates the peak time of PSP (Python Implementation).
Figure shows the results of the implementation of (3.2.21). (A) Dynamics
of membrane voltage as a function of time. (B) Peak time t_,, = 6.650 ms
between two consecutive intervals tjer = 5 ms and ¢y, = 10 ms. The dashed
vertical line marks the position of the peak predicted by (3.2.21) as t ., =
%. The dashed horizontal line is given by (2.0.10) as V(tpax) = ¥3(tmax)-

Threshold voltage ® = 20 mV. Other parameters are y;(0) = 20, y,(0) =0,

¥3(0) = 0 and other standard parameters as in 2.
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3 Determination of peak time using Lambert W function
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Figure 3.2.2: Lambert W function calculates peak time of PSP (NEST Implementation) for
the same conditions as in Figure 3.2.1 on page 25.

The peak time calculated by (3.2.21) coincides with maximum assumed by the time course
of the membrane potential obtained from the Python implementation Figure 3.2.1 on page
25. The difference to the NEST implementation Figure 3.2.2 on page 26 is the existence
of the threshold ® = 20 mV. After hitting the threshold the voltage is reset to the resting
voltage (here at 0 mV). Up to the point of theshold crossing for the same initial conditions,
the both implementations agree.

Real-valued solutions for the above equation lie in the non-principal branch of the Lam-
bert W function. This can be answered by extending the reasoning that has already been
established in Diesmann (unpubl.).

The argument of the Lambert W solution (3.2.21) reads
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3.3 Critical conditions

10 +7,00) (14 25)

T

)’1(0)%
- (71(0)3 + ¥2(0)) + £ y3(0) e
arglWw) = —— T = e p (3.2.22)
11(0)
1 1
~1 3 (105 +52(0)) +Cy3(0)
= — er.
a }’1(0)#
From (3.2.11) and (3.2.21) we have
-1
W< — (3.2.23)
a

since s > 0 and a > 1 in the interval _71 < arg(W) < 0. This interval is bounded by the line
e x Figure 3.1.1 on page 20 which leads to the condition that

-1
— <W<ex (3.2.24)
a

that means that there can be no solution for this equation in the principal branch.

3.3 Critical conditions

3.3.1 Initial condition y,(0) =0

Looking at the solution (3.2.21) we see that for the case y;(0) = 0 there is no solution. This
motivates the need for an expression for this special case. Starting from (3.2.12) we obtain

2-)
NIV (ﬁ + #) +7200) (1+ )

e L (010} +2(0) + £ y5(0)

200 (1+25)

bt
€ - 1 C
ﬂh(o) + a}’s(o)
200 (1+ ;)
s = log| — o
m)’z(o) + a}’s(o)

1 w0 (1+2)

t = Zlog n (3.3.1)

b\ 2572000+ £y3(0)
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3 Determination of peak time using Lambert W function
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Figure 3.3.1: Plots showing the calculation of peak time for the special case when y;(0) =0
from (3.3.1).(A) The dynamics of membrane voltage as a function of time for
initial conditions y;(0) = 0, y,(0) = 10, y3(0) = 0.2 wherein the (3.3.1)
computes the peak time. The dashed vertical and horizontal lines mark this
peak time and the red line marks the threshold voltage(® = 20 mV). (B) The
same figure in a finer resolution where t,, = 1.277 ms.

3.3.2 Real-valued solution of the Lambert W function

Considering the computational cost of this function (3.2.21) that is needed to compute
the peak time at each instance where a spike miss may occur, it is intuitive to think of an
efficient way to eliminate unnecessary computations. It is therefore useful if a certain set
of initial conditions could directly be identified as not leading to a maximum between two
time intervals. From Corless et al. [1996] we have that a real valued solution seizes to exist
(cf. Figure 3.1.1 on page 20) if

-1
arg(W) < - (3.3.2)
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3.3 Critical conditions

The idea is to check what range of initial conditions of the membrane voltage y5 this condi-
tion (3.3.2) corresponds to. From (3.2.22) and (3.3.2) we have

1 1
0)— 5 +y5(0) 1+ ¢
1Oz (1+725)

1 1 c

-1 —5(1(0)5 +¥2(0)) + = y3(0) - o

— > - e T (3.3.3)
e yl(o)rabz

Multiplying both sides of (3.3.2) by —1 and flipping the unequal sign yields after insertion
of (3.2.22)

1 1
0)——5 0)| 1+ —
110y )(1+255)

1 1 c
1 7350105 +y2(0)) + = ¥3(0) - T
~ > b ’ I = e e (3.3.4)
€ 1(0)=
Solving for y3(0) we have
10— y0) (14245 )
1| a oL, -1 1 1
¥3(0) < = | —5¥1(0)e Fab — ~(01(0)= + ¥2(0)) (3.3.5)
C|b b b
The exponent can be re-written as
N0+ (1+ ) | 1O+ (1+25) - 1O
)ﬁ(@# h(@#
012 -2
)’1(0)#
.yZ(O) ( 1 ) 2
= 1+ T b —1,b
yl(O) Tmb * *
¥2(0) ( 1)
= b Tab+—]—14b
y1(0) \ a *
0
_ p2O (3.3.6)
¥1(0)
From (3.3.5) and (3.3.6) we get
1(a (bm_%b) 1 1
¥3(0) < C ﬁ)’l(o)e n© - E(J’l(o)g + ¥2(0)) (3.3.7)
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Figure 3.3.2: Dynamics of membrane voltage as a function of time for iteratively increasing
value of y3(0) which is bound by the condition (3.3.5). The black line indicates
the critical point, given by (3.3.5), above which the membrane voltage cannot
have a peak time that could cause a spike excursion.

This upper limit for the initial condition of membrane voltage is included as a preliminary
check before the spike test is actually carried out in the lossless model. Any initial condition
above this value for sure cannot lead to a threshold crossing. This is illustrated in Figure
3.3.2 on page 30.
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4 Continuous-time spiking heuron models

4.1 NEST

The Neural Simulation Technology (NEST) initiative is a collaborative effort to develop an
open simulation framework for biologically realistic neuronal networks. A NEST simulation
tries to mimic an electrophysiological experiment, which includes two conceptual domains:
the description of the neuronal system and the description of the experimental setup and
protocol. NEST is written in object-oriented style (C++) [Diesmann and Gewaltig, 2002].
The first user-interface to NEST [Gewaltig and Diesmann, 2007] was the simulation lan-
guage SLI, a stack-based language derived from PostScript. A more conveniently usable
interface to NEST is the PyNEST, the Python interface to NEST. NEST defines the neural
world in terms of directed, weighted graph of nodes and connections. Nodes are neurons,
connections are characterized by a configurable fixed delay, and a weight that can be static
or dynamic. Several models for nodes and connections are built into NEST. Their parameters
are accessed via dictionaries [Eppler et al., 2009].

4.2 a— neuron model

In the previous chapter Chapter 2 an outline of the canonical neuron model has been dis-
cussed. The idea of combining exact integration of sub-threshold membrane dynamics with
interpolation to calculate the precise spike timing has been motivated in Chapter 2 using
illustrations Figure 2.0.2 on page 14 and Figure 2.0.3 on page 15. This chapter discusses
an overview of the general algorithmic structure of the alpha models: canonical and
lossless.

The key function that handles spike events in the alpha model is the update function.
The update and spike handling function applies the time evolution operator and calls the
emit_spike, propagate function and other auxiliary functions that processes events in
the time grid. The update function moves the state of the neuron from t, to t, + dt either
in steps of resolution h, if there are no incoming spike events in the time interval or from
event to event, as retrieved from the spike queue. The dynamics from one point to the other
is calculated using the propagator matrix. For steps in which there are no incoming spike
events, it is handled by the fixed pre-computed propagator matrix.
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4 Continuous-time spiking neuron models
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Figure 4.2.1: Time grid with the position of maximum membrane potential at t,e,. The
points of reference for the functions emit_spike and spike_test functions
are different: The emit_spike function measures time backward i.e. tj.g is
the point of reference. The spike_test function operates with tyg, as its
reference point.

emit_spike Algorithm 2 on page 37 emits a single spike and resets the neuron. The
function assumes that the the membrane potential of the neuron was below threshold at the
beginning of a time step and above afterwards. Further emit_spike calls thresh_find
that determines the time of threshold crossing using interpolation (linear, cubic or quadratic)
[Morrison et al., 2007b] which has been briefly discussed in Chapter 2. spike_test
Algorithm 4 on page 38 (part of the lossless neuron model) in addition to the inter-
polation function captures spike misses between points on the time grid. The point of refer-
ence of computation in the emit_spike function is the beginning of the interval and that
of the spike_test function is the end of the interval, as illustrated in Figure 4.2.1 on page
32.

The update function Algorithm 1 on page 33 initially checks for realistic conditions of
the time grid and if the membrane potential was initially set above threshold it calls the
emit_instant_spike function that resets the membrane voltage and switches the neuron
to refractoriness. To make the neuron return from refractoriness after the refractory time, it
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4.2 a— neuron model

places a pseudoevent into the ring buffer, that, when processed, ends the refractory period.

1 method update_neuron(origin,tis, tright)

2 assert (tygy = 0and teq < tyigh)

3 if (te==0)

4 prepare for delivery of input spike

5 if(neuron is suprathreshold initially)

6 emit_instant_spike (origin,tyg,h)

7 for each time step within range (ftif, trighe)
8 if(neuron returns from refractoriness)

9 place pseudoevent to mark the end

10 memorize state variables before spike-time interpolation
11 //spike_test_case_1: no incoming events

12 if(no incoming spikes)

13 if(not refractory)

14 y<—P(h)y

15 if(membrane potential > threshold)

16 emit_spike // Alg. (2)

17 else

18 spike_test_wrapper // Alg. (5)

19 //spike_test_case_2: incoming events

20 else

21 last_offset «h

22 do

23 // event offsets are measured backward

24 // from the right end of the interval

25 ministep < last_offset — event_offset

26 y < P(ministep)y // Eq. (2.0.10)

27 if(membrane potential > threshold)

28 emit_spike

29 else

30 spike_test_wrapper

31 if(end_of _refract)

32 is_refractory « false

33 else

34 apply received spike input to change initial conditions
35 memorize state variables before interpolation
36 last_offset < event_offset

37 while(there are incoming spikes, set event_offset)

38 //spike_test_case_3: no events remaining, do remainder
39 if (last_offset > 0)

40

41 y < P(last_offset) y

42 if(membrane potential > threshold)

43 emit_spike

44 else

45 spike_test_wrapper 33
46 set new input current

47 record data

48 endfor

Algorithm 1: update function algorithm: The update function acts as a time-evolution
operator and propagates the state of the neuron in time from ¢ to t + h.



4 Continuous-time spiking neuron models

This is followed by the principal part of the update function where the dynamics of the
neuron is propagated by updating membrane voltage at every checkpoint by applying the
pre-computed fix propagator matrix (where there are no incoming events) and propagat-
ing the dynamics using (2.0.10) where there are incoming events. Whenever there is a
threshold crossing, the emit_spike function Algorithm 2 on page 37 a spike event is
registered and the membrane voltage of the neuron is reset to the resting voltage after
which the neuron enters a short period of refractoriness. This emit_spike function Algo-
rithm 2 is integrated into the spike_test Algorithm 4 on page 38 function in case of
the lossless model. The flow of the update function Algorithm 1 on page 33 is distin-
guished as three cases based on arrival (or non-arrival) of events and discretization of the
time interval under consideration.

case 1 case 2 case 3
origin | origin origin origin
A lag lag lag lag
to 0 h—last_offset | h—last_offset
dt h ministep last_offset
| | case 1 | case 2 case 3
B to T T T
tleft h ministep | last_offset
Emax Emax Cmax max

Table 4.2.1: Delineation ~ of the  different conditions that calls for (A)
emit_spike_(&origin, lag, t,, dt) Algorithm2 on page37 and
(B) spike_test (tg, tiefr, &tmax) Algorithm 4 on page 38 functions that are
called in the update function Algorithm 1 on page 33 . The columns indicate
different spike test cases as illustrated in Figure 4.2.2 on page 35, Figure 4.2.3
on page 36 and Figure 4.2.4 on page 37. The rows indicate the arguments
taken by the function in the respective cases. The parameter origin refers to
the timestamp at the beginning of the time slice, lag is the timestep within
each slice, t is the beginning of each mini-timestep and dt is the duration of
the mini-timestep. T = origin + lag is the time at the start of each update step.
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Figure 4.2.2: Illustration of the spike_test_case_1 referring to line 11 of Algorithm 1
on Page 33 where there are no incoming spike events and the dynamics is
propagated in intervals of h (indicated by the gray box). The membrane po-
tential is lower than the threshold at t.; and ;g and the excursion occurs
between these two points. Filled black dots show that the values of state vari-
ables are known at those points in time.

In spike_test_case_1 shown in Figure 4.2.2 on page 35 the membrane dynamics is
propagated using a fixed propagator matrix since there are no incoming events. The fixed
propagator matrix is pre-computed and hence handling this case separately improves per-
formance. If the membrane voltage is above threshold and is detected right away, the
emit_spike function Algorithm 2 on page 37 is called else (in the case of the lossless
model) the spike test wrapper Algorithm5 on page 39 is called to check whether
there has been a spike miss Algorithm 4 on page 38 between the two consecutive intervals
of the time grid under reference.
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Figure 4.2.3: Illustration of spike_test_case_2 referring to line 20 of Algorithm 1 where
there are incoming events. In this case the interval is divided into offsets
and the time is measured backwards Figure 4.2.1 on page 32. A ministep,
defined in terms of these offsets is propagated (by the propagate function)
and the check for threshold crossings is carried out in these smaller intervals
(indicated by the gray box). If the membrane potential is suprathreshold in
these ministeps, emit_spike is called, else a spike_test is carried out to
determine missed excursions. Filled black dots show that the values of state
variables are known at those points in time. Gray dots indicate points where
the values of state variables are unknown.

In spike_test_case_2 time within the reference interval is propagated in steps cor-
responding to the offsets 6; < &, < ... < §; of the incoming spike events. The offsets
are measured backward in time, i.e. an offset is h at tjee and O at tygq,, as illustrated in
Figure 4.2.3 on page 36. The time propagation therefore happens in ministeps that are de-
fined as the difference between the last offset last offset =9;_; and the current offset
event_offset =6; as ministep = last_offset — event_offset. The dynamics is driven forward
by applying the propagator in ministeps Algorithm 3A1gorithm 3 on page 38 until the end
of the interval. Due to an incoming event between tjs and tygpe a crossing of the mem-
brane voltage occurs in one of these ministeps. In the case of the lossless model, if
the membrane potential is below threshold at the boundaries of the ministep the spike
testwrapper Algorithm 5 on page 39 is called to check for possibility of missed excur-
sions Algorithm 4 on page 38 .
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Figure 4.2.4: Tllustration of the spike_test_case_3 referring to line 37 of Algorithm 1
where spiking occurs when last_offset> 0 (interval indicated by gray box).
Filled black dots show that the values of state variables are known at those
points in time. Gray dots indicate points where the values of state variables
are unknown.

In spike_test_case_3, here illustrated in Figure 4.2.4 on page 37, there are no in-
coming spikes, but as an after-effect of an incoming event the last_offset §; > 0. This
requires a plain update across the remainder of the timestep using the propagate func-
tion. If the membrane potential is less than threshold at 6;_; and at ¢, in the case of
the lossless model, the spike_test Algorithm 4 on page 38 is carried out to check
whether there has been a missed spike. If an excursion is detected between these two points,
the emit_spike function Algorithm 2 on page 37 is called. The specifics of these two
functions (emit_spike and spike_test) are highlighted in Table 4.2.1 on page 34.

1 method emit_spike (&origin,lag,ty,dt)
2 spike_offset = h — (t, + thresh_find(dt))

3 last_spike_offset < spike_offset

4 Y3 < Ureset

5 is_refractory « true

6 send spike

7 return

Algorithm 2: emit_spike function algorithm.

The emit_spike function views the timestep with the beginning of interval as its ref-
erence as illustrated in Figure 4.2.1 on page 32 and updates last_offset to the precise
spike_offset based on interpolation using the thresh_find function. It resets the mem-
brane potential to resting membrane potential sets the neuron to refractoriness. Membrane
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4 Continuous-time spiking neuron models

voltage remains unchanged during refractory period of neuron.

method propagate (dt)
if(not refractory)

1
2
3 compute propagator matrix
4

OO U WN

g T T i iy
g D W N~ OO

y < Pt)y
Algorithm 3: Propagate function algorithm Eq.2.0.10.

The propagate function moves the state of neuron by applying the propagator matrix
(2.0.8) to every timestep i.e. in steps of dt.

boolean,double spike_test (tip,s trighe)
if(y3(0) violates critical condition) // Eq. (3.3.7)
return false, O
else
if (y;(0)==0)
compute tp, special condition // Eq. (3.3.1)
else
compute tp,x Lambert W function // Eq. (3.2.21)
lf( tpeak < _tleft && tpeak < 0)
propagate (ty)// Eq. (2.0.10)
tmax = Clefe T tpeak
if(membrane potential at tp,, = threshold)
return true, tg.,, //spike miss
return false, O

Algorithm 4: spike_test function algorithm.

spike_test checks for spikes that are otherwise missed. It initially checks for certain
critical conditions that has been analytically derived in Section 3.3 which would render
running through this test unnecessary thereby optimizing performance. In this case, the
function returns false, indicating that there are no spikes missed. The peak time is calcu-
lated using the Lambert W function [Corless et al., 1996] but for special initial conditions
a different expression is used as discussed in Section 3.2. The spike_test function views
the time grid with the end of the time interval as its reference Figure 4.2.1 on page 32. The
computed peak time is checked whether it is located between the two consecutive points on
the temporal grid. If this is satisfied and if the membrane potential at this point exceeds the
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4.3 Spike test
threshold, then a spike has been certainly missed, and the function returns true.

1 method spike_test_wrapper

2 store state variables before spike test

3 boolean test_cond = spike_test(timestamp ,h,&ty,y)

4 if(test_cond)

5 emit_spike (origin,lag,ty,dt)

6 else

7 update membrane potential

8 memorize the values of synaptic current after spike test

Algorithm 5: Spike test wrapper.

The spike test wrapper is called in the different instances in which spiking can hap-
pen in the update function. This executes spike_test Algorithm 4 on page 38, and
emits spike Algorithm 2 on page37 to compensate for the missed spike in case there has
been a spike miss. In this case, the state of membrane potential is preserved i.e. it holds
the peak value of membrane potential. However, if there has been no spike miss, then the
values of the state variables are restored to that of the end of the time interval of reference.
This spike_test implemented in the 1ossless model and complements the interpolation
function thresh_find existing in the canonical model.

4.3 Spike test

In Section 4.2 the different methods in which spike events are handled by the update
function were discussed. This also corresponds to the different situations Figure 4.2.2 on
page 35, Figure 4.2.3 on page 36 and Figure 4.2.4 on page 37 in which spikes may be missed.
The idea of the lossless model is to detect these spike misses using the spike_test
that computes peak time using the Lambert W function [Corless et al., 1996] and to call
emit_spike for every lost spike. To check for the credibility of this test, certain initial
conditions were constructed such that a situation where spike miss is certain (here referred
to as explicit spike tests). Applying these conditions to the implementation developed for the
NEST simulator Gewaltig and Diesmann [2007], we confirmed that the spike test captures
these misses.
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Figure 4.3.1: spike_test_case_1 of the Algorithm 1 on page 33: there are no incom-
ing events: The threshold ® = 20 mV marked by the red line and the
black line shows the membrane potential dynamics for a fine grid resolution
(h = 0.01 ms) and the blue line for a coarse grid resolution (h = 5.0 ms).
Panel (A) shows that for larger grid resolution an excursion is missed at the
beginning of the simulation in a step h marked by the green lines for the ini-
tial condition (y;(0) = 22mV, y,(0) = y3(0) = 0). Panel (B) shows a closer
look at the interval of reference (tjefy = 5.0 ms and tgn, = 10.0 ms) wherein
the threshold crossing is missed for a larger grid size. This can be corrected
by including the spike_test Algorithm 4 on Page 38 that calculates the
precise spike timing. A sketch of fine grid resolution is shown along to com-
pare with an accurately propagated dynamics of membrane potential.

The spike_test_case_1 Algorithm 4 on page 38 is the situation where there are no
incoming events. In such a condition, a spike is missed between tje and gy Figure 4.3.1
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4.3 Spike test

on page 40 shows that for large grid resolution such excursions are missed but can be caught
by the spike_test Algorithm 4 on page 38.
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Figure 4.3.2: spike_test_case_2 of the Algorithm 1 on Page 33 . The neuron is con-
nected to a spike generator and there are incoming events: The threshold
© = 20 mV marked by the red line and the black line shows the membrane
potential dynamics for a fine grid resolution (h = 0.01 ms) and the blue line
for a coarse grid resolution (h = 5.0 ms). Panel (A) shows that an incoming
event causes a threshold crossing in a ministep (here between 5.0 ms and
7.0 ms indicated by the green lines) for initial conditions (y;(0) = 21 mV,
¥5(0) = y3(0) = 0). Panel (B) shows a closer look at the interval of reference
(tiefe = 5.0 ms and tyjg = 10.0 ms) wherein the threshold crossing is missed
for a larger grid size. This can be corrected by including the spike_test
Algorithm 4 on Page 38 that calculates the precise spike timing. A sketch
of fine grid resolution is shown along to compare with an accurately propa-
gated dynamics of membrane potential.

The spike_test_case_2 Figure 4.2.3 on page 36 is the situation in which there are incom-
ing events. Therefore, spike misses occur most often in this condition. In such a condition,
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4 Continuous-time spiking neuron models

a spike is missed in a ministep. Figure 4.3.2 on page 41 shows that for large grid resolu-
tion such excursions are missed but can be caught by the spike_test Algorithm4 on
page 38 .
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Figure 4.3.3: spike_test_case_3 of the Algorithm 1 on Page 33 : propagation through
the remainder of the interval (last_offset): The threshold ® = 20 mV
marked by the red line and the black line shows the membrane potential dy-
namics for a fine grid resolution (h = 0.01 ms) and the blue line for a coarse
grid resolution (h = 10.0ms). Panel (A) shows that an incoming event coming
in at the beginning of the first interval that did not lead to threshold cross-
ing for initial conditions y;(0) = 15 mV, y,(0) = 10 mV, y5(0) = 0.05 mV
leading to a spike excursion in the second interval between t;.; = 10.0 ms and
tright = 20.0ms (here indicated by the green lines) in the 1ast_offset which
goes undetected for larger grid resolution as observed in panel (B). This can be
corrected by including the spike_test Algorithm 4 on page 38 that calcu-
lates the precise spike timing. A sketch of fine grid resolution is shown along
to compare with an accurately propagated dynamics of membrane potential.

The spike_test_case_3Figure 4.2.4 on page 37 is the situation in which an incoming event
causes a spike excursion such that last_offset> 0. Spikes misses in last offsets can occur
for very large grid resolution which can be captured by including the spike_test function
Algorithm 4 on page 38 .
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4.4 Neuron embedded in a quasi-network setup

As it can be seen in the above illustrations the inclusion of spike_test becomes signifi-
cant only after a certain resolution. For fine grid, using the lossless model does not come
with an advantage. This minimum resolution can be intuitively calculated as the width of
the excursion i.e. the duration in milliseconds taken for the rise and fall of voltage to occur.
Typically in such situations the membrane voltage is below threshold at the boundaries of
the interval and spiking occurs in between as in Figure 4.3.4 on page 43.
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Figure 4.3.4: The minimum grid resolution at which using the 1ossless model is signifi-
cant is the width of threshold crossing that can be ballparked at ~ 3.2ms. The
threshold is set at ® = 20 mV and indicated here by the red line. The thresh-
old crossing tg is denoted by the red arrow and the dotted line is drawn to
mark the peak time tpeq;- This result was inferred from spike_test_case_2
as in Figure 4.2.3 on page 36 .The green lines here indicate the
ministep in the interval of reference.

With this minimum resolution as reference the simulations are run to test the working and
efficiency of the lossless model are performed for grid resolution h = 5.0 ms, referred to
as the standard grid size.

4.4 Neuron embedded in a quasi-network setup

In the previous section it has been verified that the lossless a-model catches missed
threshold crossings. To test the new a-model in a fluctuating membrane voltage setup it is
embedded in a quasi-network setting where it receives excitatory and inhibitory inputs from
two poisson generators. This would also help determine the reduction in performance of
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4 Continuous-time spiking neuron models

the 1lossless model due to the additional tests.

The parameters that characterize the input to the neuron are the mean u and the variance
o2 of the total incoming synaptic current. These in turn depend on the excitatory and
inhibitory synaptic amplitudes J, and J;, excitatory and inhibitory firing rates r, and r; of
the Poisson sources and the membrane time constant 7,,.

®
AN

Figure 4.4.1: Excitatory E and Inhibitory I Poisson generators connected to Neuron n. The
neuron receives an excitatory synaptic input J and inhibitory synaptic input
-Jg.

We will therefore define the overall mean voltage and variance of the neuron’s membrane
potentialand first check if the simulation results agree to the desired values. The expres-
sion for mean and variance for a neuron with & —shaped post-synaptic currents is given as
[Helias et al., 2013]

u = Tp(Jere+Jir;) (4.4.1)
2 _ Tmo 2
ot = 2 (F2re+J21) (4.4.2)

Given u and o2, the expressions for the excitatory and inhibitory firing rate can be analyti-
cally derived from above (4.4.1) and (4.4.2) and we arrive at

2J, uo?
r,o= —oeMT (4.4.3)
Tmdi (Jo —J;)
202 —uJ;
ro= =2 B4 (4.4.4)
TmJe(Je_Ji)

Since the lossless neuron model receives a—shaped post-synaptic currents we need to

44



4.4 Neuron embedded in a quasi-network setup

modify (4.4.1) and (4.4.2) to take the shape of the PSC into account. We are here only
interested in an approximate expression valid for short 7, < 7,,. Therefore we try to
approximate the a-shaped pulses by 6-inputs and derive an expression for the new scaled
synaptic amplitudes. These will be referred to as Je,. for excitatory input and Ji,, for the
inhibitory input.

I I
A A

> >

~r
< grid resolution

a-PSC 6-PSC

Figure 4.4.2: Approximation of a—shaped post-synaptic currents by d-currents. The width
of the a-pulse is less than the grid size and is therefore a fairly good approx-
imation when the dynamics is propagated from one time point in the grid to
the next.

We are integrating the PSCs over time to determine their area which we will then choose
identical to the factor in front of the 6-current. From (2.0.3) and (2.0.8) this integral can
be written as

o0 o ot ot
/ yo(t)dt =/ (yl(O) te 7 + y,(0)e ) dt, (4.4.5)
0 0
which, due to linearity, can be re-written as
/ yz(t)dtzyl(O)/ te‘fadt+y2(0)/ e % dt. (4.4.6)
0 0 0
We define
00 _t
Il =y1(0)/ te Edt (4.4.7)
0
0o
12 =y2(0)/ e Edt. (4.4.8)
0

Since we are interested in the effect of a single incoming synaptic event, we use the initial
condition y,(0) =0, so

IZZO
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4 Continuous-time spiking neuron models

and applying integration by parts we get

_t ™ o0 _t
L = y.1(0) [—t’rae Ta]o +/0 Tge Tadt
=0
—t oo
= y1(0)(0—[—fiew] )
0
I = }’1(0)’5(21-

The solution to (4.4.5) is therefore

/ yo(t)dt =y (0)72. (4.4.9)
0

The solution of the first component y; of the subsystem in (2.0.4) generating the alpha
current obeys the differential equation y; = —Ti y; with the initial condition y;(0) =1 Ti
Hence its solution is

. e __t
yl(t)=iT—e “a (4.4.10)

a

therefore the synaptic amplitude J (affecting the membrane potential and hence including
the factor C in (2.0.5)) can be written as

Ta
J=Cy(0)-* (4.4.11)

which gives

1 e
0)=——1J. 4.4.12
¥1(0) CT ( )

a

From (4.4.9) and (4.4.12) we get

© eJTi
| wwar =
0 CTa

Toed
= 4.4.13
C ( )

where 7,e can be thought of as the charge per unit spike. For Poisson processes, the
membrane voltage y;(t) can be given as the convolution of the spike train, a sum of all
o-currents located at the point in time of arrival of the spike, arriving with rate r

s(t) = Za(t —t) (4.4.14)

and kernel
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4.4 Neuron embedded in a quasi-network setup

h(t)=e

as

y3(t) = (s xh)(¢).

According to Campbell’s theorem [Campbell, 1909], the mean voltage u is

% = (¥3(0))
1 T
= Tlggo;/o Ya(t)dt
1 T
00 t
Carrgbell r/ e dt
0

ToaJer Ty
C

where r is the firing rate. The variance o2

o? = <()’3(f))2> - <J’3(f)>2
1T 2
= Tll_r)rolo?/o (r3(t) = (¥3(6)))” dt
Cam:pbell r/oo hz(t)df
0

rszriez 2
= _— e mdt
0

(4.4.15)

(4.4.16)

(4.4.17)

(4.4.18)

(4.4.19)

(4.4.20)

The overall firing rate is the number of spikes divided by the simulation duration, which

can be calculated directly from the simulated data.
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4 Continuous-time spiking neuron models
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Figure 4.4.3: Neuron receiving input from two Poisson generators supplying excitatory and

48

inhibitory inputs. The parameters taken here are 7, = 20 ms, 7, = 2 ms,
J=01mV, g =5, u=15mV,0? = 25mV?, V; = 20mV and V,.;, = O mV.
The overall mean and variance are adjusted to 15mV and 25 mV? respectively.
Simulation is performed for grid resolution h = 5.0ms and simulation time t =
100s. Panel (A) shows the dynamics of membrane voltage with respect to time
for the 1lossless model that has no threshold voltage. The NEST computed
mean and variance are 14.86 mV and 22.14 mV respectively (here indicated
by the black and green dotted lines). Panel (B) shows similar simulation with
threshold voltage Vg = 20mV. The NEST computed mean and variance in this
case are 11.18mV and 26.27mV (here indicated by the black and green dotted
lines).



4.5 Efficiency of spike test

The NEST computed mean agrees almost exactly with the pre-set mean value in case (A)
where there is no threshold set. However, in case (B) we observe a large deviation in the
value of the NEST computed mean from the pre-set mean. This is attributed to the fact that
whenever the voltage hits threshold, it is reset back to the resting voltage (here 0 mV) and
this reset due to spiking also influences the overall dynamics of the network as seen closely
in 4.4.4. This is not the case when there is no threshold set, which validates exactly the
results observed analytically using the Campbell’s theorem as observed in 4.4.18.
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Figure 4.4.4: Dynamics of membrane voltage with respect to time for a neuron connected to
two Poisson generators sending excitatory and inhibitory inputs, respectively.
Zoom in of a period in time when the neuron reaches threshold at Vg = 20mV.
In the time interval considered here, we observe that at the time instance when
this threshold is reached the neuron is reset to its resting voltage immediately,
which is followed by a short period of refractoriness after which the neuron
starts firing again.

This aspect of neuron dynamics is motivated here because it has an influence on the firing
rate of the neuron which will be discussed in Section 4.5.

4.5 Efficiency of spike test

We now take the setting Figure 4.4.1 on page 44 of the neuron embedded in a quasi-network
setup described in Section 4.4 as the basis for getting a better understanding of the advan-
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4 Continuous-time spiking neuron models

tages and limitations of including the additional spike test function Algorithm 4 on
page 38.
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Figure 4.5.1: Effect of mean voltage on firing rate and spike misses. For u =
[10,12...,24] mV, 02 =25mV?, 1,, =20ms, T, =2ms,J =0.1mV, g =5,
t = 100s and for simulation grid size h = 5 ms panel (A) This is verified by
the plot in panel (B) that shows spike misses as a function of mean voltage.
It should be noted here that these results are congruent both when the initial
conditions were set explicitly to the case of silent neuron and also when this is
not pre-set and is not part of the parameter dictionary.
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4.5 Efficiency of spike test

Figure 4.5.1 on page 50 panel (A) illustrates that for increasing mean voltage the fir-
ing rate also increases which leads to the natural conclusion that spike misses also show a
general rising trend with increase in mean voltage. This supports the rationale that for in-
creasing mean voltage the chance that the voltage hits the threshold (here Vg = 20mV) also
increases. Intuitively one would suppose that since the firing rate increases with increase
in mean voltage, the number of missed spikes will also increase monotonically. This is sup-
ported by panel (B) in Figure 4.5.1 on page 50. Up to 20 mV (the threshold voltage) we
see that the number of spike misses adopt a linear trend. At this point there are 91 spikes
that are missed within a simulation of duration t = 100sec. For mean voltage of 22 mV
we see a sudden increase of the number of misses to 123 and the trend goes up and drops
down again to 127 at 26 mV. How does one explain the sudden increase in spike misses at
22 mV? This is because the threshold Vg is set to a standard value of 20 mV. To check if
this hypothesis is true, the threshold was set to a lower value (10 mV) it was verified (data
not shown) that the number of spike misses exhibit a similar increase immediately after the
membrane potential crosses threshold. The conclusion that we would draw here is that as
a consequence of increasing mean voltage, firing rate and number of spike misses increases
for a fixed simulation time and grid size. This motivates the investigation of effect of grid
size on firing rate. For fine grid resolutions, the canonical and lossless model should
show similar trends in firing rate. Ideally, there should be no spikes that are missed at this
level of resolution.
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4 Continuous-time spiking neuron models
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Figure 4.5.2: Comparison of firing rate as a function of mean voltage between the
canonical (shown here by the red dashed lines) and lossless (shown
here by the blue dashed lines) a-model for a grid resolution h = 0.1 ms in
panel (A) and h = 1.0 ms in panel (B). The other simulation parameters are
u=[10,12...,24] mV, 02 = 25mV?, 7,, = 20ms, 7, = 2ms, J = 0.1 mV,
g =5 and simulation time ¢t = 10s.

From Figure 4.5.2 on page 52 one can observe that the trend in firing rate adopted by
the canonical and lossless model. They overlay each other exactly thereby confirming
the idea sugessted by Figure 4.3.4 on page 43 that at low resolutions there are nearly no
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4.5 Efficiency of spike test

(~ 7) spike misses. At this grid resolution, using the canonical model is rational. Now we
would like to observe the trend in firing rates of the canonical and lossless model for
coarser grid resolutions.
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Figure 4.5.3: Comparison of firing rate as a function of mean voltage between the
canonical (shown by the red dashed lines) and lossless (shown by the
blue line) a-model for a grid resolution h = 5.0 ms. The other simulation pa-
rameters are u = [10,12...,24] mV, 02 = 25mV?, 7,, = 20ms, T, = 2 ms,
J =0.1mV, g =5 and simulation time t = 100s.

Figure 4.5.3 on page 53 illustrates that the firing rate of the lossless model is persis-
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4 Continuous-time spiking neuron models

tently above that of the canonical model, suggesting that this is because the spikes missed
by the canonical model for higher resolutions are captured by the lossless model. Fig-
ure 4.5.3 on page 53 Panel (A) shows that there is a small but distinguishable difference
between the firing rate trend of the canonical and lossless model which can be caught
better in panel (B), where we observe that this is ~ 0.2 Hz. This difference in firing rate
corresponds to ~ 50 spike misses as can be verified in Figure 4.5.5 on page 56. Here we
draw attention to the observation made from Figure 4.4.4 on page 49, where the aspect
that the membrane voltage is reset immediately to the resting voltage whenever it hits the
threshold was discussed. Continuous voltage resets after spiking also influences firing rate.
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4.5 Efficiency of spike test
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Figure 4.5.4: Comparison of firing rate as a function of mean voltage between the
canonical (shown by the red dashed lines) and lossless (shown by the
blue line) a-model for a grid resolution h = 5.0 ms. The other simulation pa-
rameters are u = [10,12...,24] mV, 02 = 25mV?, 7,, = 20ms, T, = 2 ms,
J =0.1mV, g =5 and t = 100s. Panel (A) shows that there is a defined
difference in firing rate between the canonical and lossless model which
from panel (B) is observed to be equivalent to ~ 4 Hz.

Figure 4.5.4 on page 55 shows that there is a consistently higher firing rate in the lossless
model compared to the canonical model. This suggests that the spike misses detected by
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4 Continuous-time spiking neuron models

the spike_test Algorithm4 in the lossless model are counterbalanced by emitting
spikes Algorithm 2 thereby exhibiting higher firing rates. This corresponds to ~ 400 spike
misses as verified in Figure 4.5.5 on page 56.
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Figure 4.5.5: Spike misses for a range of grid resolution for a simulation time of t = 100s
The number of spikes missed increases with larger grid spacing. The other
simulation parameters are yu = 15mV, 0% =25mV?, Tm =20ms, 7, =2ms,
J=0.1mVand g =5.

Figure 4.5.5 on page 56 shows that the number of spike misses increases with increase
in grid spacing. The number of spike misses here corresponds approximately to the higher
firing rate that we observe in the lossless model as seen in Figure 4.5.3 on page 53 and
Figure 4.5.4 on page 55. We also make the natural observation that the number of spike
misses increases in proportion to the simulation time.

So far it has been motivated that the lossless model is efficient to capture the missed
spikes since the spike_test computes the precise spike timing [Morrison et al., 2005a]
using the Lambert W function [Corless et al., 1996]. However this also indicates that such a
computation comes with a cost. Therefore it is worthy to investigate the execution time of
lossless model and compare it with the canonical a-model.
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4.5 Efficiency of spike test
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Figure 4.5.6: Execution time as a function of grid resolution (h = 0.1 ms,1.0 ms, 5.0 ms and
10.0 ms) for a simulation time t = 10s. The blue line shows the time taken
by the lossless model and the red line by the canonical model. The other
simulation parameters are u = 15 mV, 0?=25 mVZ, Tm =20ms, T, = 2ms,
J=0.1mVand g =5.

From Figure 4.5.6 on page 57 we make two major observations. The execution time
decreases with increase with the grid spacing since the number of computation steps are
lesser. However, it is also seen that the lossless model takes continuously more time
as compared to the canonical model, even for smaller grid sizes. This is attributed to the
fact that every time there is an incoming event the lossless model has to make a yes or
no decision by executing the spike_test Algorithm4 (and if yes, go find the threshold
crossing by interpolation), which happens at the expense of computation time.

57



4 Continuous-time spiking neuron models

S - canonical
D —  |ossless
2 | >
CIEJ 7
= ,L N
c 7
O 7
)
3 —

2 — —
S 7 _ -7
L 7T - =

o le = I

50000 100000

Simulation time (ms)

Figure 4.5.7: Execution time as a function of simulation time for the standard grid size
h = 5ms. The blue line shows the trend for the lossless model and red line
for the canonical model. The other simulation parameters are y = 15 mV,

02=25mV?, 7, =20ms, T,=2ms,J =0.1mV and g =5.

Figure 4.5.7 on page 58 validates the observations made from Figure 4.5.6 on page 57. It
shows that the execution time increases linearly with simulation duration. The time taken
for execution by the lossless model is consistently more than that of the canonical
model i.e. the lossless model is efficient but computationally expensive. This suggests
that it is rational to use the canonical model for grid resolutions < 5 ms and choose
between the canonical or lossless model for grid sizes above this depending on the

efficiency that is desired by the user.
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5 Discussion

The lossless model is the accurate implementation of the mathematical model describing
the LIF neuron with a-PSCs. The model is efficient and can catch otherwise missed spikes
in coarse grid resolutions Figure 4.5.5 on page 56. Since the lossless model never looses
spikes its accuracy is always above that of the canonical model. We also observe from
the comparison of execution time between the two models Figure 4.5.7 on page 58 that this
accuracy comes with computational cost.

However, it is rational to compare the execution time of two models that have equivalent
accuracy which was not the case in our preliminary analysis here. Therefore a comparison
of the canonical a-model with a pre-set tolerance level for spike misses with that of the
lossless a-model would give us a better insight into the efficiency of the new model.

A detailed analysis of the state variables governing the system of equations of the model
could help us exclude more initial conditions that correspond to the situation where there
can be no spike misses, thereby optimizing the spike test function and improving the
efficiency of the lossless model.
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