
Celestial Mechanics - A.A. 2012-13 1

Carlo Nipoti, Dipartimento di Fisica e Astronomia, Università di Bologna
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2. The gravitational two-body problem

2.1 The reduced mass

[LL]

→ Two-body problem: two interacting particles.

→ Lagrangian

L =
1

2
m1|ṙ1|2 +

1

2
m2|ṙ2|2 − V (|r1 − r2|)

→ Now take the origin in the centre of mass, so r1m1 + r2m2 = 0, and define r ≡ r1 − r2, so

r1 =
m2

m1 +m2
r

r2 = − m1

m1 +m2
r

→ Substituting these in the Lagrangian, we get

L =
1

2
µ∗|ṙ|2 − V (r),

where

µ∗ ≡ m1m2

m1 +m2
=
m1m2

M

is the reduced mass, where M ≡ m1 +m2 is the total mass.

→ So the two-body problem is reduced to the problem of the motion of one particle of mass µ∗ in a central

field with potential energy V (r).
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2.2 Kepler’s problem: integration of the equations of motion

[LL; R05]

→ In the case of gravitational potential

V (|r1 − r2|) = −Gm1m2

|r1 − r2|
,

so

V (r) = −Gm1m2

r
= −Gµ

∗M

r

→ A widely used notation in celestial mechanics is µ ≡ GM = G(m1 +m2), where µ is called the “gravitational

mass”. Note that µ does not have units of mass, while µ∗ and M have units of mass.

→ The problem is reduced to the motion of a particle of mass m = µ∗ in a central field with potential energy

∝ 1/r: this is known as Kepler’s problem. Newtonian gravity: attractive. Coulomb electrostatic interaction:

attractive or repulsive.

→ Let’s focus on the attractive case =⇒ V = −α/r with constant α > 0. We are describing the motion of a

particle m moving in a central potential V = −α/r.

→ In the case of the gravitational two-body problem m = µ∗ (reduced mass) and α = G(m1 + m2)µ∗ =

GMµ∗ = µµ∗

→ We have seen that for motion in a central field, the radial motion is like 1-D motion with effective potential

energy

Veff(r) = −α
r

+
L2

2mr2
,

→ See plot of Veff and energy levels (See fig 10 of LL; FIG CM2.1)

→ Minimum of Veff at r = L2/mα. Veff ,min = −α2m/2L2.

→ Motion is possible only when E > Veff . If E < 0 motion is finite. If E > 0 motion is infinite.

→ Path: φ = φ(r). Take

dφ =
Ldr

r2
√

2m[E − Veff(r)]
=

Ldr

r2
√

2m[E − V (r)]− L2

r2

and substitute V = −α/r.

→ We get

dφ =
Ldr

r2
√

2m
[
E + α

r

]
− L2

r2

,

which can be integrated analytically to obtain:

φ = arccos
(L/r)− (mα/L)√

2mE + m2α2

L2

+ φ0 = arccos
L2

mαr − 1√
1 + 2EL2

mα2

+ φ0,
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with φ0 constant (verified by differentiation). Note that

d

dx
arccosx = − 1√

1− x2

→ Defining ` ≡ L2/mα and e ≡
√

1 + (2EL2/mα2) we get

`

r
= 1 + e cos f,

where f = φ− φ0 is called the true anomaly.

→ This is the equation of a conic section where ` is the semi-latus rectum and e is the eccentricity. r is the

distance from one focus. φ0 is such that φ = φ0 at the pericentre (perihelion).

→ In the two-body problem each orbit is a conic section with one focus in the centre of mass (see plot of conic

sections: fig. 2.4 of MD; FIG CM2.2).

→ We have seen that for motion in a central field the time dependence of the coordinates is given by

dt =

√
mdr√

2[E − V (r)]− L2

mr2

,

which for a Kepler potential can be integrated analytically (see below, for instance for elliptic orbits).

→ Depending on the sign of E (and therefore on the value of e) we distinguish:

- E < 0 (e < 1): elliptic orbits

- E = 0 (e = 1): parabolic orbits

- E > 0 (e > 1): hyperbolic orbits

2.2.1 Elliptic orbits

[LL; R05; MD]

→ E < 0 =⇒ e < 1 =⇒ elliptic orbit. Brief summary of properties of the ellipse (see fig. 4.3 of R05; FIG

CM2.3). S focus, S′ other focus C centre, P any point on ellipse, CA = a, CB = b, CS = ae, SQ = `,

SP/PM = e < 1 (eccentricity),

SP + PS′ = 2a,

x2

a2
+
y2

b2
= 1

a = `/(1− e2) (Semi−major axis)

b = `/
√

1− e2 (Semi−minor axis),

b = a
√

1− e2 (I)
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→ From the relations among e, `, L and E, we get

a = `/(1− e2) = α/2|E| (II)

b = `/
√

1− e2 = L/
√

2m|E| (III)

→ Pericentre and apocentre. We recall that the equation for the distance r from one of the focus is

r =
`

1 + e cosφ
=

a(1− e2)

1 + e cosφ
,

where we have assumed φ0 = 0, so f = φ. Therefore the apocentre (cosφ = −1) is rapo = a(1 + e) and the

pericentre (cosφ = 1) is rperi = a(1− e).

→ We have seen that for motion in a central field the sectorial velocity dA/dt is constant (Kepler’s second law).

→ Kepler’s third law. Using conservation of angular momentum

L = mr2φ̇ = 2m
dA

dt
= const

we get period T for elliptic orbit:

Ldt = 2mdA =⇒ TL = 2mA = 2mabπ,

where A = πab is the area of the ellipse.

=⇒
T = 2πa3/2

√
m/α = πα

√
m/2|E|3,

which is Kepler’s third law T ∝ a2/3. Note that period depends on energy only. We have used definitions

of a, b and L as functions of ` (semi-latus rectum): a = `/(1− e2) = α/2|E|, b = `/
√

1− e2 = L/
√

2m|E|,
L =

√
mα`.

→ In the case of the gravitational two-body problem we have m = µ∗ and α = GMµ∗, so

T 2GM = 4π2a3 or GM = n2a3,

with n ≡ 2π/T is the mean motion (i.e. the mean angular velocity),

E = −GMµ∗

2a

e =

√
1 +

2EL2

G2M2µ∗3
=

√
1− L̃2

GMa

where L̃ ≡ L/µ∗ = r2φ̇ is the modulus of the angular momentum per unit mass.

→ In the limit m2 � m1 (where m1 and m2 are the masses of the two bodies, for instance Sun and planet),

then µ∗ ≈ m2, M ≈ m1, r1 ≈ 0, r2 ≈ r, so we have Kepler’s first law: the orbit of each planet is an ellipse

with the Sun in one of its foci.
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→ Using the expression for the orbital energy we can relate the velocity modulus v to r and a as follows:

E = T + V =
1

2
µ∗v2 − GMµ∗

r
= −GMµ∗

2a
,

so

v2 = GM

(
2

r
− 1

a

)
,

or

a =

(
2

r
− v2

GM

)−1

.

Kepler’s equation

→ From the time dependence of radial coordinate (see above) we have, in the case of elliptic orbit:

dt =
rdr√

2|E|/m
√
−r2 + αr/|E| − L2/2m|E|

,

→ Note that
L2

2m|E|
= b2 = a2(1− e2) = a2 − a2e2

and

αr/|E| = 2ar, because α = 2a|E|

so

dt =
rdr√

2|E|/m
√
a2e2 − (r − a)2

.

→ Let us introduce the angular variable ξ, known as the eccentric anomaly. We substitute

r = a(1− e cos ξ),

dt =
√
a2m/2|E|(1− e cos ξ)dξ

t =
√
ma3/α(ξ − e sin ξ),

where we have used α = 2|E|a. Note that 0 < ξ < 2π: we do the calculation for [0, π] (so sin ξ =
√

1− cos2 ξ.

The calculation for [π, 2π] is similar, with sin ξ = −
√

1− cos2 ξ.

→ So, for an elliptic orbit

r = a(1− e cos ξ),

t− τ =
√
ma3/α(ξ − e sin ξ),

where τ is the time of pericentric passage (because when t = τ ξ = 0, so r = a(1 − e) = rperi). The latter

equation is known as Kepler’s equation. Here 0 ≤ ξ ≤ 2π for one period. Note that
√
ma3/α = T/2π. To

obtain ξ (then r) as a function of tKepler’s equation must be solved numerically. Note that
√
ma3/α = T/2π.

→ Note that often the eccentric anomaly is indicated with E, instead of ξ (see, e.g., R05, MD).
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Mean anomaly, true anomaly and eccentric anomaly.

→ In Kepler’s equation ξ is the eccentric anomaly. Kepler’s equation can be written as

M = ξ − e sin ξ,

whereM = n(t−τ) is the mean anomaly, with n = 2π/T mean motion and T = 2πa3/2
√
m/α is the period.

→ The geometric interpretation of the eccentric anomaly ξ is given in fig. 2.7b of MD (FIG CM2.4). So:

x = a cos ξ

y2 = b2 − b2

a2
x2 = b2(1− cos2 ξ) = b2 sin2 ξ = a2(1− e2) sin2 ξ

r2 = (x− ae)2 + y2 = x2 − 2aex+ a2e2 + y2 = a2 cos2 ξ − 2a2e cos ξ + a2e2 + a2 sin2 ξ − a2e2 sin2 ξ =

= a2 − 2a2e cos ξ + a2e2 cos2 ξ = a2(1− e cos ξ)2

so

r = a(1− e cos ξ)

→ f as a function of ξ. It is useful to derive relations between the eccentric anomaly ξ and the true anomaly

f (see, e.g., VK 3.8). We know that

r =
a(1− e2)

1 + e cos f

so

1− e cos ξ =
1− e2

1 + e cos f

e cos f =
1− e2

1− e cos ξ
− 1

cos f =
cos ξ − e

1− e cos ξ
,

and, using sin f =
√

1− cos2 f ,

sin f =
√

1− e2
sin ξ

1− e cos ξ
.

→ In summary, we recall that there are three different “anomalies”: true anomaly f (or φ−φ0 = φ−ω), mean

anomaly M = n(t− τ) and eccentric anomaly ξ (see definitions above).

2.3 Systems of coordinates and orbital elements

[R05, chapt. 2]
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2.3.1 Celestial systems of coordinates

→ See fig. 2.5 of R05 (FIG CM2.5).

→ Celestial sphere: fictitious sphere of arbitrary radius surrounding the Earth, on which the celestial bodies

are projected.

→ Celestial equator: great circle obtained intersecting the plane of the Earth equator and the celestial sphere.

→ Celestial poles: intersections of Earth axis with celestial sphere

→ Celestial meridians: great circles on the celestial sphere joining the poles

→ Plane of the ecliptic: plane of the Earth orbit around the Sun

→ Ecliptic: great circle obtained intersecting the plane of the ecliptic with the celestial sphere

→ Vernal and autumnal equinoctial points: intersections between ecliptic and celestial equator. Also known as

first point of Aries and Libra.

→ Vernal equinox or first point of Aries (Υ) reference point on the ecliptic and on the celestial equator

→ Angle between ecliptic and celestial equator (i.e. inclination of Earth axis w.r.t. Earth orbit) is 23◦26’

Equatorial coordinates

→ Right ascension α in hours (0-24) or degrees (0-360) from Υ eastwards.

→ Declination δ: angle along the meridian (in degrees) 0 at the equator, 90 at the north pole, -90 at the south

pole.

Ecliptic coordinates

→ Ecliptic longitude λ: in degrees (0-360) or hours (0-24) from Υ eastwards. Also known as celestial longitude.

→ Ecliptic latitude β: in degrees from 0 (ecliptic) to 90◦ (at the North pole of the ecliptic K). Also known as

celestial latitude.

2.3.2 Orbital elements

→ For simplicity it is convenient to refer to a body orbiting the Solar System, but the same formalism applies

to any body orbiting another body, when a reference plane is fixed.

→ See fig. 2.6 of R05 (FIG CM2.6).

→ Position and orbit of a celestial body (e.g. planet) defined by 6 quantities called elements. Let us specialize

to the case of the elliptic orbit.
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→ 3 elements define the orientation of the orbit (Ω, i, ω)

→ 2 elements define size and shape of the orbit (a, e)

→ 1 element defines position of the body at a given time (τ)

→ Line of nodes: intersection between body orbital plane and ecliptic plane

→ Nodes: intersections between ecliptic and line of nodes

→ Ascending node N : when in this node the body goes from the south ecliptic hemisphere to the north ecliptic

hemisphere

(Ω) Longitude of the ascending node Ω: angle from Υ to N measured eastward on the ecliptic (in degrees from

0 to 360).

(i) Inclination i: angle between body orbital plane and ecliptic plane (in degrees)

→ Line of apses: line joining the apocentre (aphelion) and pericentre (perihelion), intercepting the celestial

sphere in B (proj. of pericentre) and B′ (proj. of apocentre)

(ω) Argument of pericentre ω: angle between N and B

(a) Semi-major axis of the elliptic orbit a = GMµ∗/2|E| = GM�mplanet/2|E| (size of orbit)

(e) Eccentricity of the orbit e: distance between focus and centre is ae (shape of the orbit)

(τ) Time of pericentre passage τ : epoch at which the body was at pericentre.

→ Orbital elements for a body orbiting in the Solar System: longitude of the ascending node (Ω), inclination

(i), argument of perihelion (ω), semi-major axis (a), eccentricity (e), time of perihelion passage (τ)

→ When the 6 elements are given, position of body known at any time.

→ Similar orbital elements are taken for satellites of the Earth (taking the equatorial plane as reference) or for

satellites of other planets (with planet’s equator as reference)

→ Also used as element the “longitude of pericentre” $ = ω+Ω (dog-leg angle, because Ω and ω lie in different

planes if i 6= 0)

→ Also used χ = −nτ (mean anomaly at epoch, sometimes indicated with M0), instead of τ (see R05 page

211). The element χ is related to the value of the mean anomaly M≡ n(t− τ) = nt+ χ at t = 0.

→ Also used mean longitude at epoch ε = $ − nτ = $ + χ (see R05 211; MD 6.8) ε is the value of the mean

longitude λ ≡M+$ = n(t− τ) +$ = nt+ ε at t = 0.

→ R05 uses the pair (ω, χ). MD use the pair ($, ε).
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2.4 Kepler’s problem in Hamiltonian mechanics

2.4.1 Kepler’s problem in two dimensions

[VK 4.10]

→ Let us consider for simplicity the planar problem: φ and r are polar coordinates in the plane of the orbit.

In other words, we are assuming that the reference plane of our coordinate system coincides with the plane

of the orbit (inclination i = 0).

→ The kinetic energy is

T =
1

2
µ∗
(
ṙ2 + r2φ̇2

)
→ The potential energy is

V = −µµ
∗

r

with µ = GM = G(m1 +m2)

→ The Lagrangian is

L =
1

2
µ∗
(
ṙ2 + r2φ̇2

)
− V (r).

→ The generalized momenta are

pr =
∂L
∂ṙ

= µ∗ṙ,

pφ =
∂L
∂φ̇

= µ∗r2φ̇.

→ The Hamiltonian is

H =
1

2
µ∗(ṙ2 + r2φ̇2)− µµ∗

r
,

H =
1

2µ∗

(
p2
r +

p2
φ

r2

)
− µµ∗

r
,

which does not depend on φ (i.e., φ is a cyclic coordinate)

→ We want to transform q = (r, φ) and p = (pr, pφ) into a new set of canonical coordinates (Q,P), for which

the Hamiltonian is zero. So we take the action S as the generating function in the form

S = S(q,P, t) = S(r, φ, P1, P2, t),

with P1 and P2 new momenta, which must be constants (because the new Hamiltonian H′ = 0).

→ Let us write the H-J equation. We have pi = ∂S/∂qi, so pr = ∂S/∂r, pφ = ∂S/∂φ, and the H-J equation

H+ ∂S/∂t = 0 reads

1

2µ∗

[(
∂S

∂r

)2

+

(
1

r

∂S

∂φ

)2
]
− µµ∗

r
+
∂S

∂t
= 0.



10 Laurea in Astronomia - Università di Bologna

→ Using the method of separation of variables, we look for a solution in the form

S(r, φ, t) = Sr(r) + Sφ(φ) + St(t)

→ We get

1

2µ∗

[(
dSr
dr

)2

+

(
1

r

dSφ
dφ

)2
]
− µµ∗

r
= −dSt

dt
.

For this to be satisfied we must have
dSt
dt

= −α1 = const

1

2µ∗

[(
dSr
dr

)2

+

(
1

r

dSφ
dφ

)2
]
− µµ∗

r
= α1,

which can be written as (
dSφ
dφ

)2

= r2

[
2µ∗

(
α1 +

µµ∗

r

)
−
(

dSr
dr

)2
]
.

For this to be true we must have
dSφ
dφ

= α2

dSr
dr

=

√
2µ∗

(
α1 +

µµ∗

r

)
− α2

2

r2
.

→ Thus, the generating function is

S = −α1t+ α2φ+

∫
dr

√
2µ∗

(
α1 +

µµ∗

r

)
− α2

2

r2
.

→ We take the new generalized momenta as

P1 = α1, P2 = α2

so the new generalized coordinates are

Q1 = β1 =
∂S

∂P1
=

∂S

∂α1

Q2 = β2 =
∂S

∂P2
=

∂S

∂α2

→ The new Hamiltonian is

H′ = H+
∂S

∂t
= H− α1 = 0,

so the integral of motion

α1 = H = µ∗Ẽ = E = −µ
∗µ

2a

is the total energy.
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→ We have introduced the total energy per unit mass

Ẽ = E/µ∗ =
1

2
v2 − µ

r
.

We focus on the elliptic case, so

Ẽ = − µ

2a

→ We also have
∂S

∂φ
= pφ,

so

α2 = pφ = µ∗r2φ̇ = L = µ∗L̃ = µ∗
√
aµ(1− e2),

which is the modulus of the angular momentum.

→ We have introduced the angular momentum per unit mass

L̃ ≡ r2φ̇ =
√
aµ(1− e2),

where we have used the definition of eccentricity:

e ≡
√

1 + (2EL2/µ∗3µ2) =
√

1− L2/aµ∗2µ).

→ So

P1 = −µ
∗µ

2a

P2 = µ∗
√
aµ(1− e2)

→ We now derive Q1 and Q2:

Q1 =
∂S

∂α1
= −t+ I1

where

I1 =

∫
µ∗dr√

2µ∗
(
α1 + µµ∗

r

)
− α2

2
r2

=

∫
µ∗dr√

2µ∗
(
−µ∗µ

2a + µµ∗

r

)
− µ∗2aµ(1−e2)

r2

=
1
√
µ

∫
rdr√

− r2

a + 2r − a(1− e2)
,

and

Q2 =
∂S

∂α2
= φ− α2

µ∗
I2,

where

I2 =

∫
µ∗dr

r2

√
2µ∗

(
α1 + µµ∗

r

)
− α2

2
r2



12 Laurea in Astronomia - Università di Bologna

=

∫
µ∗dr

r2

√
2µ∗

(
−µ∗µ

2a + µµ∗

r

)
− µ∗2aµ(1−e2)

r2

=
1
√
µ

∫
dr

r
√
− r2

a + 2r − a(1− e2)

→ The integrals I1 and I2 can be solved analytically with the change of variable

r = a(1− e cos ξ), dr = ae sin ξdξ,

where ξ is the eccentric anomaly.

→ We have

I1 =
1
√
µ

∫
rdr√

− r2

a + 2r − a(1− e2)

=
1
√
µ

∫
a(1− e cos ξ)ae sin ξdξ√

−a(1− e cos ξ)2 + 2a(1− e cos ξ)− a(1− e2)

=
a3/2

√
µ

∫
(1− e cos ξ)e sin ξdξ√

−1 + 2e cos ξ − e2 cos2 ξ + 2− 2e cos ξ − 1 + e2)

=
a3/2

√
µ

∫
(1− e cos ξ)e sin ξdξ√

e2 sin2 ξ

=
a3/2

√
µ

∫
(1− e cos ξ)dξ =

a3/2

√
µ

(ξ − e sin ξ),

so

Q1 = −t+ I1 = −t+
a3/2

√
µ

(ξ − e sin ξ) = −t+
1

n
M = −t+ (t− τ) = −τ.

→ We have

I2 =
1
√
µ

∫
dr

r
√
−r2/a+ 2r − a(1− e2)

=
1
√
µ

∫
ae sin ξdξ

a(1− e cos ξ)
√
−a(1− e cos ξ)2 + 2a(1− e cos ξ)− a(1− e2)

=
1
√
aµ

∫
e sin ξdξ

(1− e cos ξ)
√
−1 + 2e cos ξ − e2 cos2 ξ + 2− 2e cos ξ − 1 + e2)

=
1
√
aµ

∫
e sin ξdξ

(1− e cos ξ)
√
e2 sin2 ξ

=
1
√
aµ

∫
dξ

1− e cos ξ

=
1√

aµ(1− e2)

∫ √
1− e2dξ

1− e cos ξ
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→ We recall that the relation between true anomaly f and eccentric anomaly ξ is

sin f =
√

1− e2
sin ξ

1− e cos ξ
,

so

cos fdf =
√

1− e2
cos ξ(1− e cos ξ)− e sin2 ξ

(1− e cos ξ)2
dξ,

cos fdf =
√

1− e2
cos ξ − e

(1− e cos ξ)2
dξ,

cos fdf =
√

1− e2
cos f

(1− e cos ξ)
dξ,

because

cos f =
cos ξ − e

1− e cos ξ
,

so

df =

√
1− e2

(1− e cos ξ)
dξ,

thus

I2 =
1√

aµ(1− e2)

∫
df =

f√
aµ(1− e2)

So

Q2 = φ− α2

µ∗
I2 = φ− α2

µ∗
f√

aµ(1− e2)

= φ−
√
aµ(1− e2)

f√
aµ(1− e2)

= φ− f = φ− (φ− ω) = ω

where we have used

α2 = µ∗
√
aµ(1− e2).

→ In summary, the new generalized coordinates are Q1 = β1 = −τ (minus the time of pericentric passage) and

Q2 = β2 = ω (argument of pericentre). The new generalized momenta are P1 = α1 = µ∗Ẽ (total energy) and

P2 = α2 = µ∗
√
aµ(1− e2) (angular momentum modulus). All of these are constants. The new Hamiltonian

is H′ = 0.

→ With the above canonical transformation we have obtained 4 constant canonical coordinates, i.e. 4 integrals

of motion. These integrals of motions fully constrain the orbit. The solution of the equations of motion, i.e.

r = r(t) and φ = φ(r), is given by the equations

β1 =
∂S

∂α1
, β2 =

∂S

∂α2
.
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2.4.2 Kepler’s problem in three dimensions

[VK 4.11]

→ We now consider Kepler’s problem in 3D: in practice we take a system of coordinates in which the reference

plane does not coincide with the orbital plane. We recall that the motion is planar: however it is often

convenient to describe it in 3D (for instance, when describing the orbit of a body in the Solar System, it is

useful to take as reference plane the ecliptic: see also Chapter on perturbation theory).

→ The Lagrangian in spherical coordinates is

L =
1

2
µ∗
(
ṙ2 + r2θ̇2 + r2 sin2 θφ̇2

)
+
µ∗µ

r
.

Note that when sin θ = 1 and θ̇ = 1 we reduce the problem to the 2D case.

→ The generalized momenta are

pr =
∂L
∂ṙ

= µ∗ṙ,

pθ =
∂L
∂θ̇

= µ∗r2θ̇,

pφ =
∂L
∂φ̇

= µ∗r2 sin2 θφ̇.

→ The Hamiltonian of the Kepler problem in spherical coordinates is

H =
1

2
µ∗(ṙ2 + r2θ̇2 + r2 sin2 θφ̇2)− µ∗µ

r
.

H =
1

2µ∗

(
p2
r +

p2
θ

r2
+

p2
φ

r2 sin2 θ

)
− µ∗µ

r
.

→ The H-J equation reads

1

2µ∗

[(
∂S

∂r

)2

+

(
1

r

∂S

∂θ

)2

+

(
1

r sin θ

∂S

∂φ

)2
]
− µ∗µ

r
+
∂S

∂t
= 0,

→ The action as generating function is in the form S = S(q,P, t) = S(r, θ, φ, P1, P2, P3, t) with Pi = αi = const.

Using the method of separation of variables, we look for a solution in the form

S(r, θ, φ, t) = Sr(r) + Sθ(θ) + Sφ(φ) + St(t)

→ We have
∂St
∂t

= −α1

∂Sφ
∂φ

= α3(
∂Sθ
∂θ

)2

+
α2

3

sin2 θ
= α2

2(
∂Sr
∂r

)2

+
α2

2

r2
= 2µ∗

(
α1 +

µ∗µ

r

)
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→ Performing calculations analogous to the 2-D case we get the (constant) generalized coordinates

Q1 = β1 = −τ, (time of pericentric passage)

Q2 = ω, (argument of pericentre)

Q3 = Ω, (longitude of the ascending node),

and the (constant) generalized momenta

P1 = µ∗Ẽ = −µ
∗µ

2a
, (total energy),

P2 = µ∗
√
aµ(1− e2), (angular momentum modulus),

P3 = µ∗
√
aµ(1− e2) cos i, (z-component of angular momentum).

The corresponding Hamiltonian is H′ = 0.

→ With the above canonical transformation we have obtained 6 constant canonical coordinates, i.e. 6 integrals

of motion. These integrals of motions fully constrain the orbit. The solution of the equations of motion is

given by the equations

βi =
∂S

∂αi
, i = 1, 2, 3.

→ It is also possible to obtain another set of canonical coordinates, maintaining the generalized coordinates as

they are, but mass-normalizing the generalized momenta and the Hamiltonian. So, we start from Qi, Pi and

define a new set of variables q̃i = Qi, p̃i = Pi/µ
∗. The equations of motion keep the canonical form with the

Hamiltonian H̃ = H′/µ∗ (i.e. this is a canonical transformation; see G09). This can be seen also by noting

that

Ṗi = −∂H
′

∂Q
=⇒ Ṗi

µ∗
= −∂(H′/µ∗)

∂Qi
=⇒ ˙̃pi = −∂H̃

∂q̃i

and

Q̇i =
∂H′

∂Pi
=
∂(H′/µ∗)
∂Pi/µ∗

=⇒ ˙̃qi =
∂H̃
∂p̃i

.

→ The (constant) mass-normalized canonical coordinates are

β̃1 = q̃1 = −τ, β̃2 = q̃2 = ω, β̃3 = q̃3 = Ω

α̃1 = p̃1 = − µ

2a
, α̃2 = p̃2 =

√
aµ(1− e2), α̃3 = p̃3 =

√
aµ(1− e2) cos i.

The mass-normalized Hamiltonian is H̃ = H′/µ∗ = 0.
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2.4.3 Delaunay’s variables

[VK 4.12]

→ We can perform a further canonical transformation to transform the above set in a new set of angle-action

coordinates, known as Delaunay’s variables (coordinates lD, gD, hD, and momenta LD, GD, HD).

→ While q̃2 and q̃3 are angles, q̃1 = −τ is not. So we replace−τ with the mean anomalyM = n(t−τ) = n(t+q̃1),

which is an angle. We want to find the transformation to have

lD = n(t+ q̃1)

gD = q̃2 = ω

hD = q̃3 = Ω

LD =? (to be determined)

GD = p̃2 =
√
aµ(1− e2)

HD = p̃3 =
√
aµ(1− e2) cos i

where LD must be found consistently with the choice of lD.

→ A generating function that does the job is

F (q̃1, q̃2, q̃3, LD, GD, HD, t) =

(
nLD −

3µ

2a

)
(t+ q̃1) + q̃2GD + q̃3HD,

where the term −3µ/2a appears to simplify the form of LD and of the Hamiltonian.

→ We have

lD =
∂F

∂LD
= n(t+ q̃1)

gD =
∂F

∂GD
= q̃2

hD =
∂F

∂HD
= q̃3

p̃1 =
∂F

∂q̃1
= nLD −

3µ

2a

p̃2 =
∂F

∂q̃2
= GD,

p̃3 =
∂F

∂q̃3
= HD,

so

LD =
1

n

(
p̃1 +

3µ

2a

)
=
a3/2

µ1/2

(
− µ

2a
+

3µ

2a

)
=
a3/2

µ1/2

µ

a
=
√
aµ
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→ The new (Delaunay’s) Hamiltonian is

KD = 0 +
∂F

∂t
= nLD −

3µ

2a
=
√
µa−3/2√aµ− 3µ

2a
= − µ

2a
= − µ2

2aµ
= − µ2

2L2
D

→ In summary the Delaunay’s variables are

lD = n(t− τ) =M

gD = q̃3 = ω

hD = q̃3 = Ω

LD =
√
aµ

GD = p̃2 =
√
aµ(1− e2)

HD = p̃3 =
√
aµ(1− e2) cos i

and the corresponding Hamiltonian is

KD = − µ2

2L2
D

.

→ Five of the Delaunay’s variables are constants, but lD (mean anomaly) is not constant and varies linearly

with time.
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