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r.ai Interprocess Communication

B Processes within a system may be independent or cooperating

B Cooperating process can affect or be affected by other processes,
including sharing data

B Reasons for cooperating processes:

@ Information sharing

® Computation speedup

® Modularity & convenience
B Cooperating processes need interprocess communication (IPC)
B Two models of IPC

® Shared memory

® Message passing
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“%*"  Producer-Consumer Problem
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B Paradigm for cooperating processes, producer process
produces information that is consumed by a consumer

process
® Unbounded buffer places no practical limit on the size
of the buffer

® Bounded buffer assumes that there is a fixed buffer
size
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** Mff"f Bounded Buffer — Shared-Memory Solution

B Shared data
#define BUFFER SIZE 10

typedef struct {

} item;

item buffer [BUFFER_SIZE] ;
int in = 0;

int out = 0;

B Solution is correct, but can only use BUFFER_SIZE-1 elements

‘42.'/ N
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o Bounded Buffer — Producer

item next produced;

while

Operating System Concepts — 9t Edition 2.7

(true) |

/* produce an item in next produced */

while (((in 4+ 1) % BUFFER SIZE) == out)
; /* do nothing */

buffer[in] = next produced;

in = (1n + 1) % BUFFER SIZE;

‘(‘&l N
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“$*/  Bounded Buffer — Consumer

item next consumed;

while

(true) {
while (i1n == out)

; /* do nothing */
next consumed = buffer|out];

out = (out + 1) % BUFFER SIZE;

/* consume the item in next consumed */

‘(\&l N
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‘f”%v-/ POSIX Shared Memory

B POSIX Shared Memory (access by name):

® Create a new shared memory object (or open an existing object and
share it) using a name

shm fd = shm open("object 1", O CREAT | O RDRW, 0666)

® Memory map the shared memory object
ptr = mmap (0, SIZE, PROT WRITE, MAP SHARED, shm fd, 0);

® Use shared memory

char msg 0="Writing to shared memory”;
sprintf (ptr, msg 0);

ptr += strlen(msg 0);
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POSIX Producer

#include <stdio.h>
#include <stlib.h>
#include <string.h>
#include <fcntl.h>
#include <sys/shm.h>
#include <sys/stat.h>

int main()

{

/* the size (in bytes) of shared memory object */
const int SIZE 4096;

/* name of
const char
/* strings
const char
const char

the shared memory object */
*name = "0QS";

written to shared memory */
*message 0 "Hello";
*message_1 "World!";

/* shared memory file descriptor */

int shm fd;
/* pointer
void *ptr;

to shared memory obect */

/* create the shared memory object */
shm fd = shm open(name, O_CREAT | O_RDRW, 0666);

/* configure the size of the shared memory object */
ftruncate(shm fd, SIZE);

/* memory map the shared memory object */
ptr = mmap(0, SIZE, PROT_WRITE, MAP_SHARED, shm fd, 0);

/* write to the shared memory object */
sprintf (ptr, "%s" ,message 0);

ptr += strlen(message 0);

sprintf (ptr, "%s" ,message 1) ;

ptr += strlen(message 1);

return O;

}
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S POSIX Consumer

#include <stdio.h>
#include <stlib.h>
#include <fcntl.h>
#include <sys/shm.h>
#include <sys/stat.h>

int main()

{

/* the size (in bytes) of shared memory object */
const int SIZE 4096;
/* name of the shared memory object */

const char *name = "QS";

/* shared memory file descriptor */
int shm fd;

/* pointer to shared memory obect */
void *ptr;

/* open the shared memory object */
shm fd = shm open(name, O-RDONLY, 0666) ;

/* memory map the shared memory object */
ptr = mmap(0, SIZE, PROT READ, MAP SHARED, shm fd, 0);

/* read from the shared memory object */
printf ("%s", (char *)ptr);

/* remove the shared memory object */
shm_unlink(name) ;

return 0;
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Programming assignment (2)

B Read the online manual (man) of the following system calls:
® shm open(), mmap(), shm unlink/()
or
® shmget (), shmat(), shmdt(), shmctl ()

B Implement a bounded buffer (both producer and consumer) using the
POSIX API

® Exira: without BUFFER_SIZE-1 elements limitation
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o Message Passing

B Mechanism for processes to communicate and to synchronize their actions

B Message system — processes communicate with each other without resorting to
shared variables

B |PC facility provides two operations:
® send(message) — message size fixed or variable
® receive(message)

B If Pand Q wish to communicate, they need to:
® establish a communication link between them
® exchange messages via send/receive

B Implementation of communication link
® physical (e.g., shared memory, hardware bus)

® logical (e.g., direct or indirect, synchronous or asynchronous, automatic or .
explicit buffering) =S

“(
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r o Implementation Questions

B How are links established?

B Can a link be associated with more than two processes?

B How many links can there be between every pair of communicating
processes?

B What is the capacity of a link?

B Is the size of a message that the link can accommodate fixed or
variable?

B Is a link unidirectional or bi-directional?
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b af Direct Communication

B Processes must name each other explicitly:
® send (P, message) — send a message to process P
® receive(Q, message) — receive a message from process Q

B Properties of communication link
® Links are established automatically (must know identity of other)

® Alink is associated with exactly one pair of communicating
processes

® Between each pair there exists exactly one link
® The link may be unidirectional, but is usually bi-directional
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ar & Indirect Communication

B Messages are directed and received from mailboxes (also referred to
as ports)

® Each mailbox has a unique id
® Processes can communicate only if they share a mailbox

B Properties of communication link
® Link established only if processes share a common mailbox
® A link may be associated with many processes
® Each pair of processes may share several communication links
® Link may be unidirectional or bi-directional
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r.al Indirect Communication

B Operations
® create a new mailbox
® send and receive messages through mailbox
® destroy a mailbox

B Primitives are defined as:
send(A, message) — send a message to mailbox A
receive(A, message) — receive a message from mailbox A
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%‘w/ Indirect Communication

B Mailbox sharing
e P, P, and P;share mailbox A
® P, sends; P,and P, receive
® Who gets the message?

B Solutions
® Allow a link to be associated with at most two processes
® Allow only one process at a time to execute a receive operation

@ Allow the system to select arbitrarily the receiver. Sender is
notified who the receiver was.

B Who owns A?
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i Synchronization

B Message passing may be either blocking or non-blocking

B Blocking is considered synchronous

® Blocking send has the sender block until the message is
received

@ Blocking receive has the receiver block until a message is
available

B Non-blocking is considered asynchronous

® Non-blocking send has the sender send the message and
continue

® Non-blocking receive has the receiver receive a valid message
or null
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Synchronization

B Different combinations possible
@ If both send and receive are blocking, we have a rendezvous
B Producer-consumer becomes ftrivial

message next produced;

while (true) {
/* produce an item in next produced */

send (next produced) ;

message next consumed;
while (true) {
recelve (next consumed) ;

/* consume the item in next consumed */
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Buffering

B Queue of messages attached to the link; implemented in one of three
ways

1. Zero capacity — 0 messages
Sender must wait for receiver (rendezvous)

2. Bounded capacity — finite length of n messages
Sender must wait if link full

3. Unbounded capacity — infinite length
Sender never waits

Operating System Concepts — 9t Edition 2.21 Silberschatz, Galvin and Gagne ©2013



Communications in Client-Server Systems

B Sockets

B Remote Procedure Calls

B Pipes
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g,.. Sockets

B A socket is defined as an endpoint for communication

B Concatenation of IP address and port — a number included at start of
message packet to differentiate network services on a host

B The socket 161.25.19.8:1625 refers to port 1625 on host 161.25.19.8
B Communication consists between a pair of sockets
B All ports below 1024 are well known, used for standard services

B Special IP address 127.0.0.1 (loopback) to refer to system on which
process is running

A
A A%
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P Socket Communication

host X
(146.86.5.20)

socket

(146.86.5.20:1625)
web server

(161.25.19.8)

socket
(171,251 €610
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ot Remote Procedure Calls

B Remote procedure call (RPC) abstracts procedure calls between processes on
networked systems

® Again uses ports for service differentiation
B Stubs — client-side proxy for the actual procedure on the server

The client-side stub locates the server and marshalls the parameters

B The server-side stub receives this message, unpacks the marshalled
parameters, and performs the procedure on the server

B Data representation handled via External Data Representation (XDL) format
to account for different architectures

® Big-endian and little-endian
B Remote communication has more failure scenarios than local
® Messages can be delivered exactly once rather than at most once

B OS typically provides a rendezvous (or matchmaker) service to connect client
and server
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Execution of RPC

client

user calls kernel
to send RPC
message to
procedure X

kernel sends
message to
matchmaker to
find port number

kernel places
port Pin user
RPC message

kernel sends
RPC

kernel receives
reply, passes
it to user
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messages

From: client
To: server
Port: matchmaker
Re: address
for RPC X

From: server
To: client
Port: kernel
Re: RPC X
Port: P

From: client
To: server
Port: port P
<contents>

From: RPC
Port: P
To: client
Port: kernel
<output>
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server

matchmaker
receives
message, looks
up answer

A 4

matchmaker
replies to client
with port P

daemon
listening to
port P receives
message

y

A
daemon
processes
request and
processes send
output
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B Acts as a conduit allowing two processes to communicate

B Issues
® Is communication unidirectional or bidirectional?
® In the case of two-way communication, is it half or full-duplex?

® Must there exist a relationship (i.e. parent-child) between the
communicating processes?

® Can the pipes be used over a network?
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o Ordinary Pipes

B Ordinary Pipes allow communication in standard producer-consumer style

B Producer writes to one end (the write-end of the pipe)

Consumer reads from the other end (the read-end of the pipe)
B Ordinary pipes are therefore unidirectional
® See pipes in shell

B Require parent-child relationship between communicating processes

parent child
fd(0) fd(1) fd(0) fd(1)

| |
.

B Remember to close unused end of pipe from start, and other end once done

4

B See Unix code samples in textbook
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\§F7 Named Pipes

B Named Pipes (FIFO in Unix) are more powerful than ordinary pipes
B Communication is bidirectional

B No parent-child relationship is necessary between the communicating
processes (but must be on same machine)

B Several processes can use the named pipe for communication

B Provided on both UNIX and Windows systems
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Programming assignment (3)

B Read the online manual (man) of the following system calls:
® pipe(), read(), write(), close()
B Implement a Producer-Consumer two-process interaction using a pipe

® Producer: “produces” lower-case characters (taken from user input or
generated in any other way)

® Consumer: converts each character into upper case, and displays it
B Extra:use mkfifo () andimplement a FIFO
® Try with two processes that do not belong to the same subtree
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o Chapter 4: Threads

1. Overview
® Motivation
® Benefits
® Multicore Programming
2. Multithreading Models
® Many-to-one, one-to-one, many-to-many, two-level
3. Threading Issues
® Creation, cancellation, signal handling, data, scheduling
4. Thread Libraries (POSIX)
5. Threads in Linux (NPTL)
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<S5 Objectives

M To introduce the notion of a thread—a fundamental unit of CPU
utilization that forms the basis of multithreaded computer systems

B To examine issues related to multithreaded programming

B To discuss the APIs for the Pthreads thread library

B To cover operating system support for threads in Linux
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27" Single and Multithreaded Processes
code data files code data files
registers stack registers ||| registers ||| registers
stack stack stack

thread — é <«— thread

single-threaded process

multithreaded process
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<5 Motivation

B Thread: basic unit of CPU utilization
® Threads run within application
® Most modern applications are multithreaded
B Multiple tasks with the application can be implemented by separate threads
® Update display
® Fetch data
® Spell checking
® Answer a network request
B Process creation is heavy-weight while thread creation is light-weight
B Can simplify code, increase efficiency
® Web servers, RPC servers
® Kernels are generally multithreaded
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“#77  Multithreaded Server Architecture

(2) create new
(1) request thread to service
the request

server > thread

Y

client

(3) resume listening
for additional
client requests
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g Benefits

B Responsiveness — may allow continued execution if part of process is
blocked, especially important for user interfaces

B Resource Sharing — threads share resources of process, easier than
shared memory or message passing

B Economy - cheaper than process creation, thread switching lower
overhead than context switching

B Scalability — process can take advantage of multiprocessor architectures
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&' *“” User Threads and Kernel Threads

B Support for threads provided at user level or at kernel level
B User threads - management done by user-level threads library
® Three primary thread libraries:
» POSIX Pthreads
»  Win32 threads
» Java threads
B Kernel threads - Supported by the Kernel
® Examples — virtually all general purpose operating systems, including:
» Windows
» Solaris
Linux
» Tru64 UNIX
» Mac OS X

v
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~7 Multithreading Models

B Relationship between user-level and kernel-level threads?

® Many-to-One
® One-to0-One

® Many-to-Many

® Two-level

‘(‘&l N
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557 Many-to-One

B Many user-level threads mapped to single
kernel thread

©

Efficient thread management in user space g g g g
<«—— user thread

®

One thread blocking causes all to block

®

Multiple threads may not run in parallel on
multicore system because only one may be
in kernel at a time

B Few systems currently use this model

B Examples:

i ¢ | thread
® Solaris Green Threads < kernel threa

® GNU Portable Threads
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&g;—{ One-to-One

B Each user-level thread maps to kernel thread
© More concurrency than many-to-one
® Creating a user-level thread creates a kernel thread (overhead)
® Number of threads per process sometimes restricted due to overhead

B Examples
® Windows NT/XP/2000 g <«— user thread
® Linux
® Solaris 9 and later
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55 Many-to-Many Model

B Multiplexes many user-level threads to
a smaller or equal number of kernel
threads

© Allows developer to create as many
threads as she wishes, and threads
can run concurrently

34— user thread

© Allows the operating system to create
a sufficient number of kernel threads

© A thread blocking does not block
other threads

<«—— Kkernel thread

B Examples:
® Solaris prior to version 9

® Windows NT/2000 with the
ThreadFiber package
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vl Two-level Model

B Similar to M:M, except that it allows a
user thread to be bound to kernel
thread

B Examples ; ;
é é <«— user thread

e IRIX

® HP-UX

® Tru64 UNIX

® Solaris 8 and earlier
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Threading Issues

B Semantics of fork() and exec() system calls

B Signal handling
® Synchronous and asynchronous

B Thread cancellation of target thread
® Asynchronous or deferred

B Thread-local storage

Operating System Concepts — 9t Edition 2.43
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Semantics of fork() and exec()

B Does fork () duplicate only the calling thread or all threads?
® Some UNIXes have two versions of fork

B Exec() usually works as normal — replace the running process including
all threads
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N Signal Handling

B Signals are used in UNIX systems to notify a process that a particular event has
occurred.

B A signal handler is used to process signals
1. Signal is generated by particular event
2. Signal is delivered to a process
3. Signal is handled by one of two signal handlers:
1. default
2. user-defined

B Every signal has default handler that kernel runs when handling signal
® User-defined signal handler can override default
® For single-threaded, signal delivered to process

B Where should a signal be delivered for multi-threaded?
® Deliver the signal to the thread to which the signal applies
® Deliver the signal to every thread in the process
® Deliver the signal to certain threads in the process
® Assign a specific thread to receive all signals for the process
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o Thread Cancellation

B Terminating a thread before it has finished

Thread to be canceled is target thread
B Two general approaches:
® Asynchronous cancellation terminates the target thread immediately

® Deferred cancellation allows the target thread to periodically check if it
should be cancelled

B Pthread code to create and cancel a thread:

pthread. t tid;

/+* create the thread */
pthread create (&tid, 0, worker, NULL) ;

/* cancel the thread x/
pthread_cancel (tid) ;
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5T Thread Cancellation (Cont.)

B Invoking thread cancellation requests cancellation, but actual cancellation
depends on thread state

Mode State Type
Off Disabled =
Deferred Enabled Deferred
Asynchronous Enabled Asynchronous

B If thread has cancellation disabled, cancellation remains pending until thread
enables it

B Default type is deferred
® Cancellation only occurs when thread reaches cancellation point
» l.e. pthread testcancel ()
» Then cleanup handler is invoked

B On Linux systems, thread cancellation is handled through signals
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o Thread-Local Storage

B Thread-local storage (TLS) allows each thread to have its own copy
of data

B Useful when you do not have control over the thread creation process
(i.e., when using a thread pool)

B Different from local variables
® Local variables visible only during single function invocation
® TLS visible across function invocations

M Similarto static data
® TLS is unique to each thread

Operating System Concepts — 9t Edition 2.48 Silberschatz, Galvin and Gagne ©2013



“Sr7 Thread Libraries

B Thread library provides programmer with API for creating and
managing threads

B Two primary ways of implementing
® Library entirely in user space
» No kernel support
» No system calls
® Kernel-level library supported by the OS
» Code and data structures exist in kernel space
» API function - system call
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7 Pthreads

B May be provided either as user-level or kernel-level

B A POSIX standard (IEEE 1003.1c) API for thread creation and
synchronization

B Specification, not implementation

B API specifies behavior of the thread library, implementation is up to
development of the library

B Common in UNIX operating systems (Solaris, Linux, Mac OS X)

Operating System Concepts — 9t Edition 2.50 Silberschatz, Galvin and Gagne ©2013



ot Pthreads Example

#include <pthread.h>
#include <stdio.h>

int sum; /* this data is shared by the thread(s) */
void *runner(void *param); /* threads call this function */

int main(int argc, char *argv([])

{

pthread t tid; /* the thread identifier */
pthread attr_t attr; /* set of thread attributes */

if (argc !'= 2) {
fprintf (stderr,"usage: a.out <integer value>\n");
return -1;

if (atoi(argv[1]) < 0) {
fprintf (stderr,")d must be >= 0\n",atoi(argv[i]));
return -1;

}
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s Pthreads Example (Cont.)

/* get the default attributes */

pthread attr_init(&attr);

/* create the thread */

pthread create(&tid,&attr,runner,argv([1i]);
/* wait for the thread to exit */
pthread_join (tid,NULL);

printf("sum = %d\n",sum);

}

/* The thread will begin control in this function */
void *runner(void *param)

{

int i, upper = atoi(param);
sum = 0;

for (i = 1; i <= upper; i++)
sum += 1i;

pthread exit (0);
}

Figure 4.9 Multithreaded C program using the Pthreads API.
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la .
3 Linux Threads

NPTL (Native POSIX Thread Library; formerly: LinuxThreads)
Linux refers to them as tasks rather than threads
Thread creation is done through clone () system call

clone () allows a child task to share the address space of the parent task
(process)

® Flags control behavior

flag meaning

CLONE FS File-system information is shared.

CLONE_VM The same memory space is shared.

CLONE_SIGHAND Signal handlers are shared.

CLONE FILES The set of open files is shared.

M struct task_struct points to process data structures (shared or unique)
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Programming assignment (4)

B Read the online manual (man) of:
® pthreads
and of the following system calls:
® pthread create(), pthread join(), pthread exit
® clone (), waitpid()

B Implement a bounded buffer using shared memory (same as in assignment
2) and the pthreads library

® Extra: implement the same, without pthreads (use clone ())

!
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™
“$/  Chapter 5: CPU Scheduling

Basic Concepts

Scheduling Criteria
Scheduling Algorithms

Thread Scheduling
Multiple-Processor Scheduling
Operating Systems Examples

Algorithm Evaluation
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<S5 Objectives

B To introduce CPU scheduling, which is the basis for multiprogrammed
operating systems

B To describe various CPU-scheduling algorithms

B To discuss evaluation criteria for selecting a CPU-scheduling algorithm
for a particular system
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S5 Basic Concepts

B Maximum CPU utilization
obtained with multiprogramming

B CPU-I/O Burst Cycle — Process
execution consists of a cycle of
CPU execution and I/O wait

B CPU burst followed by I/O burst

B CPU burst distribution is of main
concern

Operating System Concepts — 9t Edition 2.57
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o CPU Scheduler

B Short-term scheduler selects from among the processes in ready
queue, and allocates the CPU to one of them

® Queue may be ordered in various ways
B CPU scheduling decisions may take place when a process:
1. Switches from running to waiting state
2. Switches from running to ready state
3. Switches from waiting to ready
4. Terminates
B If scheduling only under 1 and 4: nonpreemptive (cooperative)
B Otherwise: preemptive scheduling
® Consider access to shared data
® Consider preemption while in kernel mode
@ Consider interrupts occurring during crucial OS activities
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- o Dispatcher

B Dispatcher module gives control of the CPU to the process selected by
the short-term scheduler; this involves:

® switching context
® switching to user mode

® jumping to the proper location in the user program to restart that
program

B Dispatch latency — time it takes for the dispatcher to stop one process
and start another running
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o Scheduling Criteria

B CPU utilization — keep the CPU as busy as possible

B Throughput — # of processes that complete their execution per time
unit

B Turnaround time — amount of time to execute a particular process

B Waiting time — amount of time a process has been waiting in the
ready queue

B Response time — amount of time it takes from when a request was
submitted until the first response is produced, not output (for time-
sharing environment)
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Schedullng Algorithm Optimization Criteria

v

¢£

&
\‘-

Max CPU utilization
Max throughput
Min turnaround time
Min waiting time

Min response time (variance)
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6“"’f}gl;first-Come, First-Served (FCFS) Scheduling

(Note: for simplicity, illustrations show only one CPU-burst per process)
B Nonpreemptive

Process Burst Time
P, 24
P, 3
P, 3

B Suppose that the processes arrive in the order: P, , P,, P,
B What is the Gantt Chart for the schedule?

B Waiting time?
B Average waiting time?
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“¥First-Come, First-Served (FCFS) Scheduling

(Note: for simplicity, illustrations show only one CPU-burst per process)
B Nonpreemptive

Process Burst Time
P, 24
P, 3
P, 3

B Suppose that the processes arrive in the order: P, , P,, P,
B Gantt Chart for the schedule:

0 24 27 30

B Waiting time for P, =0; P, =24; P;=27
B Average waiting time: (0 +24 +27)/3 =17
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o FCFS Scheduling (Cont.)

L\

Suppose that the processes arrive in the order:
P21 P3! P1
B What is the Gantt chart for the schedule?

B Waiting time?
B Average waiting time?

‘42.'/ N
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"S5 FCFS Scheduling (Cont.)

Suppose that the processes arrive in the order:
P21 P3! P1
B Gantt chart for the schedule:

0 3 6 30
Waiting time for P; =6,P,=0.P;=3
Average waiting time: (6 + 0+ 3)/3=3
Much better than previous case
Convoy effect - short process behind long process
® Consider one CPU-bound and many |I/O-bound processes
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“»”’ Shortest-Job-First (SJF) Scheduling

B Associate with each process the length of its next CPU burst
® Use these lengths to schedule the process with the shortest time

B SJF is optimal — gives minimum average waiting time for a given set
of processes

® The difficulty is knowing the length of the next CPU request
® Could ask the user

» In batch systems (long-term scheduling)

» Good estimate: fast response (incentive)

» Time-limit-exceeded error + resubmission (penalty)
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P Example of SJF

Process Burst Time
P, 6
P, 8
P, 7
P, 3

B SJF scheduling chart

B Average waiting time?

AU X
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.
Example of SJF

Process Burst Time
P, 6
P, 8
P, 7
P, 3

B SJF scheduling chart

I34 P 1 PS |32

B Average waitingtime=(3+16+9+0)/4=7
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("%"" Determining Length of Next CPU Burst

B CPU scheduling: can only estimate — similar to the previous ones?
@ Then pick process with shortest predicted next CPU burst

B Can be done by using the length of previous CPU bursts, using
exponential averaging

1. t, = actual length of n CPU burst

2. 1, = predicted value for the next CPU burst
3. a,0=a <1

4. Define: T, =at,+(l-a)T,.

B Commonly, « setto 12
B Preemptive version called shortest-remaining-time-first
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Prediction of the Length of the
Next CPU Burst

12 //—
T, 10 /

L/
E
4
2
time ——
CPU burst (t) 6 4 6 4 13 13 13

"guess" (1) 10 8 6 6 5 9 11 12
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~$7/ Examples of Exponential Averaging

B o=0
o
® Recent history does not count

H o=1
® T, =al
® Only the actual last CPU burst counts

n+1 — %n

B Since both o and (1 - a) are less than or equal to 1, each successive
term has less weight than its predecessor

Operating System Concepts — 9t Edition 2.72 Silberschatz, Galvin and Gagne ©2013



“$7"  Example of Shortest-remaining-time-first

B Now we add the concepts of varying arrival times and preemption to the

analysis
Process Arrival Time Burst Time
P, 0 8
P, 1 4
P, 2 9
P, 3 5

B Preemptive SJF Gantt Chart

B Average waiting time?

~
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g*"” Example of Shortest-remaining-time-first

B Now we add the concepts of varying arrival times and preemption to the

analysis
Process Arrival Time Burst Time
P, 0 8
P, 1 4
P, 2 9
P, 3 5
B Preemptive SJF Gantt Chart
P, P, P, P, Ps
0 1 5 10 17 26

B Average waiting time = [(10-1)+(1-1)+(17-2)+(5-3)]/4 = 26/4 = 6.5 msec
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B A priority number (integer) is associated with each process

B The CPU is allocated to the process with the highest priority (smallest
integer = highest priority)

® Preemptive
® Nonpreemptive

B SJF is priority scheduling where priority is the inverse of predicted next
CPU burst time

B Priorities can be defined internally or externally (wrt the OS)
@ Time limits, memory requirements, number of open files, politics

B Problem = Starvation — low priority processes may never execute

B Solution = Aging — as time progresses increase the priority of the
process
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& Example of Priority Scheduling

Process Burst Time Priority
P, 10 3
P, 1 1
P, 2 4
P, 1 5
Ps 5 2

M Priority scheduling Gantt Chart

B Average waiting time?

‘(‘&/ N
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Q“’%;" Example of Priority Scheduling

Process Burst Time Priority

P, 10 3

P, 1 1

P, 2 4

P, 1 5

P, 5 2

0 1 6 16 18 19

B Average waiting time = 8.2 msec
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55 Round Robin (RR)

B Each process gets a small unit of CPU time (time quantum q), usually
10-100 milliseconds. After this time has elapsed, the process is
preempted and added to the end of the ready queue.

B |If there are n processes in the ready queue and the time quantum is g,
then each process gets 1/n of the CPU time in chunks of at most g
time units at once. No process waits more than (n-1)g time units.

B Timer interrupts every quantum to schedule next process
B Performance
® glarge = FCFS

® gsmall = processor sharing. g must be large wrt context switch,
otherwise overhead is too high
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“$% Example of RR with Time Quantum = 4

Process Burst Time
P, 24
P, 3
P 3

B Gantt chart? (q=4)

)
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-3 *” Example of RR with Time Quantum = 4

Process Burst Time
P, 24
P, 3
P, 3

B The Gantt chart is:

P, | P,| P, | P, | P, | P, | P | P

B Typically, higher average turnaround than SJF, but better
response

g should be large compared to context switch time
g usually 10ms to 100ms, context switch < 10 usec
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“f?f’f Time Quantum and Context Switch Time

process time = 10 quantum context
switches
12 0
0 10
6 1
0 6 10
1 9
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™ Turnaround Time Varies With
The Time Quantum

12.5

12.0

11.5

11.0

10.5

10.0

average turnaround time

9.5

9.0

process

time

ZN

N = @

1 2

3 4 5 6 7
time quantum

80% of CPU bursts
should be shorter than g

B Increasing q does not necessarily improve average turnaround

B In general: improvement whenever most processes finish their next CPU

burstin 1q
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r @ Multilevel Queue

B Ready queue is partitioned into separate queues, eqg:
@ foreground (interactive)
® background (batch)

B Process permanently in a given queue

B Each queue has its own scheduling algorithm:
® foreground — RR
® background — FCFS

B Scheduling must be done between the queues:

® Fixed priority scheduling; (i.e., serve all from foreground then from
background). Possibility of starvation.

® Time slice — each queue gets a certain amount of CPU time which
it can schedule amongst its processes

» E.g., 80% to foreground in RR, 20% to background in FCFS.
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Multilevel Queue Scheduling

highest priority

P interactive editing processes )

— batch processes — 2

— student processes >

lowest priority
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b af Multilevel Feedback Queue

B A process can move between the various queues; aging can be
implemented this way

B Muliilevel-feedback-queue scheduler defined by the following
parameters:

® number of queues
® scheduling algorithms for each queue

® method used to determine when to upgrade a process

® method used to determine when to demote a process

® method used to determine which queue a process will enter
when that process needs service
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»7" Example of Multilevel Feedback Queue
= R
B Three queues: gl S
® Q,— RR with time quantum 8 msec
® Q, —RRtime quantum 16 msec V- ,
° Qg _ FCFS > guantum = 16
<A ,
> FCFS .
B Scheduling

® A new job enters queue Q, which is served FCFS
» When it gains CPU, job receives 8 msec
» If it does not finish in 8 msec, job is moved to queue Q,
® At Q, job is again served and receives +16 msec
» If it still does not complete, it is preempted and moved to queue Q,
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EXxercise

Process Burst Time Priority
P, 10 3
P, 1 1
P, 2 3
P, 1 4
P 5 2

B Arrived in the top-to-bottom order.
o lllustrate FCFS, SJF, nonpreemptive priority, RR (gq=1) using Gantt
» Turnaround times?
» Waiting times?
» Which algorithm results in the minimum average waiting time?
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