
Real-Time Operating
Systems M

3. IPC  Threads  Process Scheduling

2.2! Torroni, Real-Time Operating Systems M ©2013!

Notice

The course material includes slides downloaded from:!
http://codex.cs.yale.edu/avi/os-book/!

(slides by Silberschatz, Galvin, and Gagne, associated with
Operating System Concepts, 9th Edition, Wiley, 2013)!

and!
http://retis.sssup.it/~giorgio/rts-MECS.html!

(slides by Buttazzo, associated with Hard Real-Time Computing
Systems, 3rd Edition, Springer, 2011)!

which has been edited to suit the needs of this course. !
The slides are authorized for personal use only. !
Any other use, redistribution, and any for profit sale of the slides (in any
form) requires the consent of the copyright owners.!

2.3! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Interprocess Communication

  Processes within a system may be independent or cooperating!
  Cooperating process can affect or be affected by other processes,

including sharing data!
  Reasons for cooperating processes:!

  Information sharing!
  Computation speedup!
  Modularity & convenience !!

  Cooperating processes need interprocess communication (IPC)!
  Two models of IPC!

  Shared memory!
  Message passing!

2.4! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Communications Models

process A

message queue

kernel

(a) (b)

process A

shared memory

kernel

process B

m0 m1 m2 ...m3 mn

process B

2.5! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Producer-Consumer Problem

  Paradigm for cooperating processes, producer process
produces information that is consumed by a consumer
process!
  Unbounded buffer places no practical limit on the size

of the buffer!
  Bounded buffer assumes that there is a fixed buffer

size!

2.6! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Bounded Buffer – Shared-Memory Solution

  Shared data!
#define BUFFER_SIZE 10

typedef struct {

 . . .

} item;

item buffer[BUFFER_SIZE];

int in = 0;

int out = 0;
!

  Solution is correct, but can only use BUFFER_SIZE-1 elements!
!

2.7! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Bounded Buffer – Producer

	
item next_produced;

while (true) {

 /* produce an item in next_produced */

 while (((in + 1) % BUFFER SIZE) == out)

 ; /* do nothing */

 buffer[in] = next_produced;

 in = (in + 1) % BUFFER SIZE;

}

	
!

!!
!

2.8! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Bounded Buffer – Consumer

item next_consumed;

while (true) {
 while (in == out)

 ; /* do nothing */
 next_consumed = buffer[out];

 out = (out + 1) % BUFFER SIZE;

 /* consume the item in next_consumed */

}

2.9! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

POSIX Shared Memory

  POSIX Shared Memory (access by name): !
  Create a new shared memory object (or open an existing object and

share it) using a name!
shm_fd = shm_open("object_1", O_CREAT | O_RDRW, 0666);

  Memory map the shared memory object!
ptr = mmap(0, SIZE, PROT_WRITE, MAP_SHARED, shm_fd, 0);

  Use shared memory!
char msg_0="Writing to shared memory”;

sprintf(ptr, msg_0);

ptr += strlen(msg_0);

2.10! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

POSIX Producer

2.11! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

POSIX Consumer

2.12! Torroni, Real-Time Operating Systems M ©2013!

Programming assignment (2)

  Read the online manual (man) of the following system calls:!
  shm_open(), mmap(), shm_unlink()

or!
  shmget(), shmat(), shmdt(), shmctl()

  Implement a bounded buffer (both producer and consumer) using the
POSIX API!
  Extra: without BUFFER_SIZE-1 elements limitation!

2.13! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Message Passing

  Mechanism for processes to communicate and to synchronize their actions!

  Message system – processes communicate with each other without resorting to
shared variables!

  IPC facility provides two operations:!
  send(message) – message size fixed or variable !
  receive(message)!

  If P and Q wish to communicate, they need to:!
  establish a communication link between them!
  exchange messages via send/receive!

  Implementation of communication link!
  physical (e.g., shared memory, hardware bus)!
  logical (e.g., direct or indirect, synchronous or asynchronous, automatic or

explicit buffering)!

2.14! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Implementation Questions

  How are links established?!

  Can a link be associated with more than two processes?!

  How many links can there be between every pair of communicating
processes?!

  What is the capacity of a link?!

  Is the size of a message that the link can accommodate fixed or
variable?!

  Is a link unidirectional or bi-directional?!

2.15! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Direct Communication

  Processes must name each other explicitly:!
  send (P, message) – send a message to process P!
  receive(Q, message) – receive a message from process Q!

  Properties of communication link!
  Links are established automatically (must know identity of other)!
  A link is associated with exactly one pair of communicating

processes!
  Between each pair there exists exactly one link!
  The link may be unidirectional, but is usually bi-directional!

2.16! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Indirect Communication

  Messages are directed and received from mailboxes (also referred to
as ports)!
  Each mailbox has a unique id!
  Processes can communicate only if they share a mailbox!

  Properties of communication link!
  Link established only if processes share a common mailbox!
  A link may be associated with many processes!
  Each pair of processes may share several communication links!
  Link may be unidirectional or bi-directional!

2.17! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Indirect Communication

  Operations!
  create a new mailbox!
  send and receive messages through mailbox!
  destroy a mailbox!

  Primitives are defined as:!
!send(A, message) – send a message to mailbox A!
!receive(A, message) – receive a message from mailbox A!

2.18! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Indirect Communication

  Mailbox sharing!
  P1, P2, and P3 share mailbox A!
  P1, sends; P2 and P3 receive!
  Who gets the message?!

  Solutions!
  Allow a link to be associated with at most two processes!
  Allow only one process at a time to execute a receive operation!
  Allow the system to select arbitrarily the receiver. Sender is

notified who the receiver was.!

  Who owns A?!

2.19! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Synchronization

  Message passing may be either blocking or non-blocking!

  Blocking is considered synchronous!
  Blocking send has the sender block until the message is

received!
  Blocking receive has the receiver block until a message is

available!

  Non-blocking is considered asynchronous!
  Non-blocking send has the sender send the message and

continue!
  Non-blocking receive has the receiver receive a valid message

or null!
}

2.20! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Synchronization

  Different combinations possible!
  If both send and receive are blocking, we have a rendezvous!

  Producer-consumer becomes trivial  
!

message next_produced;

while (true) {
 /* produce an item in next produced */

 send(next_produced);

}
message next_consumed;
while (true) {
 receive(next_consumed);

 /* consume the item in next consumed */
}

2.21! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Buffering

  Queue of messages attached to the link; implemented in one of three
ways!
1. !Zero capacity – 0 messages 

Sender must wait for receiver (rendezvous)!
2. !Bounded capacity – finite length of n messages 

Sender must wait if link full!
3. !Unbounded capacity – infinite length  

Sender never waits!

2.22! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Communications in Client-Server Systems

  Sockets!

  Remote Procedure Calls!

  Pipes!

2.23! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Sockets

  A socket is defined as an endpoint for communication!

  Concatenation of IP address and port – a number included at start of
message packet to differentiate network services on a host!

  The socket 161.25.19.8:1625 refers to port 1625 on host 161.25.19.8!

  Communication consists between a pair of sockets!

  All ports below 1024 are well known, used for standard services!

  Special IP address 127.0.0.1 (loopback) to refer to system on which
process is running!

2.24! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Socket Communication

2.25! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Remote Procedure Calls

  Remote procedure call (RPC) abstracts procedure calls between processes on
networked systems!
  Again uses ports for service differentiation!

  Stubs – client-side proxy for the actual procedure on the server!
  The client-side stub locates the server and marshalls the parameters!
  The server-side stub receives this message, unpacks the marshalled

parameters, and performs the procedure on the server!
  Data representation handled via External Data Representation (XDL) format

to account for different architectures!
  Big-endian and little-endian!

  Remote communication has more failure scenarios than local!
  Messages can be delivered exactly once rather than at most once!

  OS typically provides a rendezvous (or matchmaker) service to connect client
and server!

2.26! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Execution of RPC

2.27! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Pipes

  Acts as a conduit allowing two processes to communicate!

  Issues!
  Is communication unidirectional or bidirectional?!
  In the case of two-way communication, is it half or full-duplex?!
  Must there exist a relationship (i.e. parent-child) between the

communicating processes?!
  Can the pipes be used over a network?!

2.28! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Ordinary Pipes

  Ordinary Pipes allow communication in standard producer-consumer style  
!

  Producer writes to one end (the write-end of the pipe)!
  Consumer reads from the other end (the read-end of the pipe)!
  Ordinary pipes are therefore unidirectional!

  See pipes in shell!

  Require parent-child relationship between communicating processes!
!

  Remember to close unused end of pipe from start, and other end once done!
  See Unix code samples in textbook!

2.29! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Named Pipes

  Named Pipes (FIFO in Unix) are more powerful than ordinary pipes 
!

  Communication is bidirectional  
!

  No parent-child relationship is necessary between the communicating
processes (but must be on same machine) 
!

  Several processes can use the named pipe for communication  
!

  Provided on both UNIX and Windows systems!

2.30! Torroni, Real-Time Operating Systems M ©2013!

Programming assignment (3)

  Read the online manual (man) of the following system calls:!
  pipe(), read(), write(), close()

  Implement a Producer-Consumer two-process interaction using a pipe!
  Producer: “produces” lower-case characters (taken from user input or

generated in any other way)!
  Consumer: converts each character into upper case, and displays it!

  Extra: use mkfifo() and implement a FIFO!
  Try with two processes that do not belong to the same subtree!

2.31! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Chapter 4: Threads

1.  Overview!
  Motivation!
  Benefits!
  Multicore Programming!

2.  Multithreading Models!
  Many-to-one, one-to-one, many-to-many, two-level!

3.  Threading Issues!
  Creation, cancellation, signal handling, data, scheduling!

4.  Thread Libraries (POSIX)!
5.  Threads in Linux (NPTL)!
!

2.32! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Objectives

  To introduce the notion of a thread—a fundamental unit of CPU
utilization that forms the basis of multithreaded computer systems!

  To examine issues related to multithreaded programming!
!
  To discuss the APIs for the Pthreads thread library!

  To cover operating system support for threads in Linux!

2.33! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Single and Multithreaded Processes

registers

code data files

stack registers registers registers

code data files

stackstackstack

thread thread

single-threaded process multithreaded process

2.34! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Motivation

  Thread: basic unit of CPU utilization!
  Threads run within application!
  Most modern applications are multithreaded!

  Multiple tasks with the application can be implemented by separate threads!
  Update display!
  Fetch data!
  Spell checking!
  Answer a network request!

  Process creation is heavy-weight while thread creation is light-weight!
  Can simplify code, increase efficiency!

  Web servers, RPC servers!
  Kernels are generally multithreaded!

2.35! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Multithreaded Server Architecture

client

(1) request
(2) create new

thread to service
the request

(3) resume listening
for additional

client requests

server thread

2.36! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Benefits

  Responsiveness – may allow continued execution if part of process is
blocked, especially important for user interfaces 
!

  Resource Sharing – threads share resources of process, easier than
shared memory or message passing  
!

  Economy – cheaper than process creation, thread switching lower
overhead than context switching  
!

  Scalability – process can take advantage of multiprocessor architectures 
!

2.37! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

User Threads and Kernel Threads

  Support for threads provided at user level or at kernel level!
  User threads - management done by user-level threads library!

  Three primary thread libraries:!
  POSIX Pthreads!
  Win32 threads!
  Java threads!

  Kernel threads - Supported by the Kernel!
  Examples – virtually all general purpose operating systems, including:!

  Windows !
  Solaris!
  Linux!
  Tru64 UNIX!
  Mac OS X!

2.38! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Multithreading Models

  Relationship between user-level and kernel-level threads?!

  Many-to-One  
!

  One-to-One  
!

  Many-to-Many!

  Two-level!

2.39! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Many-to-One

  Many user-level threads mapped to single
kernel thread!

J  Efficient thread management in user space!
L  One thread blocking causes all to block!
L  Multiple threads may not run in parallel on

multicore system because only one may be
in kernel at a time!

  Few systems currently use this model!
  Examples:!

  Solaris Green Threads!
  GNU Portable Threads!

user thread

kernel threadk

2.40! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

One-to-One

  Each user-level thread maps to kernel thread!
J  More concurrency than many-to-one!
L  Creating a user-level thread creates a kernel thread (overhead)!

  Number of threads per process sometimes restricted due to overhead!

  Examples!
  Windows NT/XP/2000!
  Linux!
  Solaris 9 and later!

user thread

kernel threadkkkk

2.41! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Many-to-Many Model

  Multiplexes many user-level threads to
a smaller or equal number of kernel
threads!

J  Allows developer to create as many
threads as she wishes, and threads
can run concurrently!

J  Allows the operating system to create
a sufficient number of kernel threads!
J  A thread blocking does not block

other threads!

  Examples:!
  Solaris prior to version 9!
  Windows NT/2000 with the

ThreadFiber package!

user thread

kernel threadkkk

2.42! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Two-level Model

  Similar to M:M, except that it allows a
user thread to be bound to kernel
thread!

  Examples!
  IRIX!
  HP-UX!
  Tru64 UNIX!
  Solaris 8 and earlier!

user thread

kernel threadkkk k

2.43! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Threading Issues

  Semantics of fork() and exec() system calls!

  Signal handling!
  Synchronous and asynchronous!

!

  Thread cancellation of target thread!
  Asynchronous or deferred!

  Thread-local storage!

!

2.44! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Semantics of fork() and exec()

  Does fork()duplicate only the calling thread or all threads?!
  Some UNIXes have two versions of fork!

  Exec() usually works as normal – replace the running process including
all threads!

2.45! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Signal Handling

  Signals are used in UNIX systems to notify a process that a particular event has
occurred.!

  A signal handler is used to process signals!
1.  Signal is generated by particular event!
2.  Signal is delivered to a process!
3.  Signal is handled by one of two signal handlers:!

1.  default!
2.  user-defined!

  Every signal has default handler that kernel runs when handling signal!
  User-defined signal handler can override default!
  For single-threaded, signal delivered to process!

  Where should a signal be delivered for multi-threaded? !
  Deliver the signal to the thread to which the signal applies!
  Deliver the signal to every thread in the process!
  Deliver the signal to certain threads in the process!
  Assign a specific thread to receive all signals for the process!

2.46! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Thread Cancellation

  Terminating a thread before it has finished!
  Thread to be canceled is target thread!
  Two general approaches:!

  Asynchronous cancellation terminates the target thread immediately!
  Deferred cancellation allows the target thread to periodically check if it

should be cancelled!

  Pthread code to create and cancel a thread:!
!

2.47! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Thread Cancellation (Cont.)

  Invoking thread cancellation requests cancellation, but actual cancellation
depends on thread state!

  If thread has cancellation disabled, cancellation remains pending until thread
enables it!

  Default type is deferred!
  Cancellation only occurs when thread reaches cancellation point!

  I.e. pthread_testcancel()
  Then cleanup handler is invoked!

  On Linux systems, thread cancellation is handled through signals!

2.48! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Thread-Local Storage

  Thread-local storage (TLS) allows each thread to have its own copy
of data!

  Useful when you do not have control over the thread creation process
(i.e., when using a thread pool)!

  Different from local variables!
  Local variables visible only during single function invocation!
  TLS visible across function invocations!

  Similar to static data!
  TLS is unique to each thread!

2.49! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Thread Libraries

  Thread library provides programmer with API for creating and
managing threads!

  Two primary ways of implementing!
  Library entirely in user space !

 No kernel support!
 No system calls!

  Kernel-level library supported by the OS!
 Code and data structures exist in kernel space!
 API function à system call!

2.50! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Pthreads

  May be provided either as user-level or kernel-level!

  A POSIX standard (IEEE 1003.1c) API for thread creation and
synchronization!

  Specification, not implementation!

  API specifies behavior of the thread library, implementation is up to
development of the library!

  Common in UNIX operating systems (Solaris, Linux, Mac OS X)!
!

2.51! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Pthreads Example

2.52! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Pthreads Example (Cont.)

2.53! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Linux Threads

  NPTL (Native POSIX Thread Library; formerly: LinuxThreads)!
  Linux refers to them as tasks rather than threads!
  Thread creation is done through clone() system call!
  clone() allows a child task to share the address space of the parent task

(process)!
  Flags control behavior!

  struct task_struct points to process data structures (shared or unique)

flag meaning

CLONE_FS

CLONE_VM

CLONE_SIGHAND

CLONE_FILES

File-system information is shared.

The same memory space is shared.

Signal handlers are shared.

The set of open files is shared.

2.54! Torroni, Real-Time Operating Systems M ©2013!

Programming assignment (4)

  Read the online manual (man) of:!
  pthreads

and of the following system calls:!
  pthread_create(), pthread_join(), pthread_exit

  clone(), waitpid()

  Implement a bounded buffer using shared memory (same as in assignment
2) and the pthreads library!
  Extra: implement the same, without pthreads (use clone())!

2.55! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Chapter 5: CPU Scheduling

  Basic Concepts!
  Scheduling Criteria !
  Scheduling Algorithms!
  Thread Scheduling!
  Multiple-Processor Scheduling!
  Operating Systems Examples!
  Algorithm Evaluation!

2.56! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Objectives

  To introduce CPU scheduling, which is the basis for multiprogrammed
operating systems!

  To describe various CPU-scheduling algorithms!

  To discuss evaluation criteria for selecting a CPU-scheduling algorithm
for a particular system!

2.57! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Basic Concepts

  Maximum CPU utilization
obtained with multiprogramming!

  CPU–I/O Burst Cycle – Process
execution consists of a cycle of
CPU execution and I/O wait!

  CPU burst followed by I/O burst 
!

  CPU burst distribution is of main
concern!

!

CPU burst
load store
add store
read from file

store increment
index
write to file

load store
add store
read from file

wait for I/O

wait for I/O

wait for I/O

I/O burst

I/O burst

I/O burst

CPU burst

CPU burst

•
•
•

•
•
•

2.58! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Histogram of CPU-burst Times

2.59! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

CPU Scheduler

  Short-term scheduler selects from among the processes in ready
queue, and allocates the CPU to one of them!
  Queue may be ordered in various ways!

  CPU scheduling decisions may take place when a process:!
1. !Switches from running to waiting state!
2. !Switches from running to ready state!
3. !Switches from waiting to ready!
4.  Terminates!

  If scheduling only under 1 and 4: nonpreemptive (cooperative)!
  Otherwise: preemptive scheduling !

  Consider access to shared data!
  Consider preemption while in kernel mode!
  Consider interrupts occurring during crucial OS activities!

2.60! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Dispatcher

  Dispatcher module gives control of the CPU to the process selected by
the short-term scheduler; this involves:!
  switching context!
  switching to user mode!
  jumping to the proper location in the user program to restart that

program!

  Dispatch latency – time it takes for the dispatcher to stop one process
and start another running!

2.61! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Scheduling Criteria

  CPU utilization – keep the CPU as busy as possible!

  Throughput – # of processes that complete their execution per time
unit!

  Turnaround time – amount of time to execute a particular process!

  Waiting time – amount of time a process has been waiting in the
ready queue!

  Response time – amount of time it takes from when a request was
submitted until the first response is produced, not output (for time-
sharing environment)!

2.62! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Scheduling Algorithm Optimization Criteria

  Max CPU utilization!
  Max throughput!
  Min turnaround time !
  Min waiting time !
  Min response time (variance)!

2.63! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

First-Come, First-Served (FCFS) Scheduling

(Note: for simplicity, illustrations show only one CPU-burst per process)!
  Nonpreemptive!

! !Process !Burst Time !!
! ! P1 !24!
! ! P2 !3!
! ! P3 ! 3 !

  Suppose that the processes arrive in the order: P1 , P2 , P3 !

  What is the Gantt Chart for the schedule?  
 
 
 
 
!

!
  Waiting time?!
  Average waiting time?!

2.64! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

First-Come, First-Served (FCFS) Scheduling

(Note: for simplicity, illustrations show only one CPU-burst per process)!
  Nonpreemptive!

! !Process !Burst Time !!
! ! P1 !24!
! ! P2 !3!
! ! P3 ! 3 !

  Suppose that the processes arrive in the order: P1 , P2 , P3 !

  Gantt Chart for the schedule: 
 
 
 
 
!

!
  Waiting time for P1 = 0; P2 = 24; P3 = 27!
  Average waiting time: (0 + 24 + 27)/3 = 17!

P1! P2! P3!

24! 27! 30!0!

2.65! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

FCFS Scheduling (Cont.)

Suppose that the processes arrive in the order:!
! ! P2 , P3 , P1 !

  What is the Gantt chart for the schedule?  
!

  Waiting time?!
  Average waiting time?!

2.66! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

FCFS Scheduling (Cont.)

Suppose that the processes arrive in the order:!
! ! P2 , P3 , P1 !

  Gantt chart for the schedule: 
!

  Waiting time for P1 = 6; P2 = 0; P3 = 3!
  Average waiting time: (6 + 0 + 3)/3 = 3!
  Much better than previous case!
  Convoy effect - short process behind long process!

  Consider one CPU-bound and many I/O-bound processes!

P1!P3!P2!

6!3! 30!0!

2.67! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Shortest-Job-First (SJF) Scheduling

  Associate with each process the length of its next CPU burst!
  Use these lengths to schedule the process with the shortest time!

  SJF is optimal – gives minimum average waiting time for a given set
of processes!
  The difficulty is knowing the length of the next CPU request!
  Could ask the user!

  In batch systems (long-term scheduling)!
 Good estimate: fast response (incentive)!
 Time-limit-exceeded error + resubmission (penalty)!

2.68! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Example of SJF

! ! ProcessArriva!l Time !Burst Time!
! ! P1 !0.0 !6!
! ! P2 !2.0 !8!
! ! P3 !4.0 !7!
! ! P4 !5.0 !3!

  SJF scheduling chart!

  Average waiting time?!

2.69! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Example of SJF

! ! ProcessArriva!l Time !Burst Time!
! ! P1 !0.0 !6!
! ! P2 !2.0 !8!
! ! P3 !4.0 !7!
! ! P4 !5.0 !3!

  SJF scheduling chart!

  Average waiting time = (3 + 16 + 9 + 0) / 4 = 7!

P4! P3!P1!

3! 16!0! 9!

P2!

24!

2.70! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Determining Length of Next CPU Burst

  CPU scheduling: can only estimate – similar to the previous ones?!
  Then pick process with shortest predicted next CPU burst!

  Can be done by using the length of previous CPU bursts, using
exponential averaging!

  Commonly, α set to ½!
  Preemptive version called shortest-remaining-time-first!

!
!

:Define 4.
10 , 3.

burst CPU next the for value predicted 2.
burst CPU of length actual 1.

≤≤

=

=

+

αα

τ 1n

th
n nt

τ n+1 =α tn + 1−α()τ n.

2.71! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Prediction of the Length of the
Next CPU Burst

6 4 6 4 13 13 13 …
810 6 6 5 9 11 12 …

CPU burst (ti)

"guess" (τi)

ti

τi

2

time

4

6

8

10

12

2.72! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Examples of Exponential Averaging

  α =0!
  τn+1 = τn!

  Recent history does not count!
  α =1!

  τn+1 = α tn!
  Only the actual last CPU burst counts!

  Since both α and (1 - α) are less than or equal to 1, each successive
term has less weight than its predecessor!

!

2.73! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Example of Shortest-remaining-time-first

  Now we add the concepts of varying arrival times and preemption to the
analysis!
! ! ProcessA!arri Arrival TimeT !Burst Time!
! ! P1 !0 !8!
! ! P2 !1 !4!
! ! P3 !2 !9!
! ! P4 !3 !5!

  Preemptive SJF Gantt Chart!

  Average waiting time?!
!

2.74! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Example of Shortest-remaining-time-first

  Now we add the concepts of varying arrival times and preemption to the
analysis!
! ! ProcessA!arri Arrival TimeT !Burst Time!
! ! P1 !0 !8!
! ! P2 !1 !4!
! ! P3 !2 !9!
! ! P4 !3 !5!

  Preemptive SJF Gantt Chart!

  Average waiting time = [(10-1)+(1-1)+(17-2)+(5-3)]/4 = 26/4 = 6.5 msec!
!

P1! P1!P2!

1! 17!0! 10!

P3!

26!5!

P4!

2.75! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Priority Scheduling

  A priority number (integer) is associated with each process!

  The CPU is allocated to the process with the highest priority (smallest
integer ≡ highest priority)!
  Preemptive!
  Nonpreemptive!

  SJF is priority scheduling where priority is the inverse of predicted next
CPU burst time!

  Priorities can be defined internally or externally (wrt the OS)!
  Time limits, memory requirements, number of open files, politics!

  Problem ≡ Starvation – low priority processes may never execute!

  Solution ≡ Aging – as time progresses increase the priority of the
process!

!

2.76! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Example of Priority Scheduling

! ! ProcessA!arri Burst TimeT !Priority!
! ! P1 !10 !3!
! ! P2 !1 !1!
! ! P3 !2 !4!
! ! P4 !1 !5!
! !P5 !5 !2!

  Priority scheduling Gantt Chart!

  Average waiting time?!

2.77! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Example of Priority Scheduling

! ! ProcessA!arri Burst TimeT !Priority!
! ! P1 !10 !3!
! ! P2 !1 !1!
! ! P3 !2 !4!
! ! P4 !1 !5!
! !P5 !5 !2!

  Priority scheduling Gantt Chart!

  Average waiting time = 8.2 msec!

P2! P3!P5!

1! 18!0! 16!

P4!

19!6!

P1!

2.78! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Round Robin (RR)

  Each process gets a small unit of CPU time (time quantum q), usually
10-100 milliseconds. After this time has elapsed, the process is
preempted and added to the end of the ready queue.!

  If there are n processes in the ready queue and the time quantum is q,
then each process gets 1/n of the CPU time in chunks of at most q
time units at once. No process waits more than (n-1)q time units.!

  Timer interrupts every quantum to schedule next process!
  Performance!

  q large ⇒ FCFS!
  q small ⇒ processor sharing. q must be large wrt context switch,

otherwise overhead is too high!

2.79! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Example of RR with Time Quantum = 4

! !Process !Burst Time!
! !P1 !24!
! ! P2 ! 3!
! ! P3 !3!
! !!

  Gantt chart? (q=4) !

2.80! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Example of RR with Time Quantum = 4

! !Process !Burst Time!
! !P1 !24!
! ! P2 ! 3!
! ! P3 !3!
! !!

  The Gantt chart is:  
 
 
 
 
 
!

  Typically, higher average turnaround than SJF, but better
response!

  q should be large compared to context switch time!
  q usually 10ms to 100ms, context switch < 10 usec!

P1! P2! P3! P1! P1! P1! P1! P1!

0! 4! 7! 10! 14! 18! 22! 26! 30!

2.81! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Time Quantum and Context Switch Time

2.82! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Turnaround Time Varies With
The Time Quantum

  Increasing q does not necessarily improve average turnaround!
  In general: improvement whenever most processes finish their next CPU

burst in 1q!

80% of CPU bursts
should be shorter than q

2.83! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Multilevel Queue

  Ready queue is partitioned into separate queues, eg:!
  foreground (interactive)!
  background (batch)!

  Process permanently in a given queue!

  Each queue has its own scheduling algorithm:!
  foreground – RR!
  background – FCFS!

  Scheduling must be done between the queues:!
  Fixed priority scheduling; (i.e., serve all from foreground then from

background). Possibility of starvation.!
  Time slice – each queue gets a certain amount of CPU time which

it can schedule amongst its processes!
 E.g., 80% to foreground in RR, 20% to background in FCFS. !

2.84! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Multilevel Queue Scheduling

2.85! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Multilevel Feedback Queue

  A process can move between the various queues; aging can be
implemented this way!

  Multilevel-feedback-queue scheduler defined by the following
parameters:!
  number of queues!
  scheduling algorithms for each queue!
  method used to determine when to upgrade a process!
  method used to determine when to demote a process!
  method used to determine which queue a process will enter

when that process needs service!

2.86! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Example of Multilevel Feedback Queue

  Three queues: !
  Q0 – RR with time quantum 8 msec!
  Q1 – RR time quantum 16 msec!
  Q2 – FCFS!

  Scheduling!
  A new job enters queue Q0 which is served FCFS!

 When it gains CPU, job receives 8 msec!
  If it does not finish in 8 msec, job is moved to queue Q1!

  At Q1 job is again served and receives +16 msec!
  If it still does not complete, it is preempted and moved to queue Q2!

2.87! Torroni, Real-Time Operating Systems M ©2013!

Exercise

! ! ProcessA!arri Burst TimeT !Priority!
! ! P1 !10 !3!
! ! P2 !1 !1!
! ! P3 !2 !3!
! ! P4 !1 !4!
! !P5 !5 !2!

  Arrived in the top-to-bottom order.!
  Illustrate FCFS, SJF, nonpreemptive priority, RR (q=1) using Gantt!

 Turnaround times?!
 Waiting times?!
 Which algorithm results in the minimum average waiting time?!

