ALMA MATER STUDIORUM
UNIVERSITA DI BOLOGNA

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

Real-Time Operating
Systems M

3. IPC ¢ Threads * Process Scheduling



Notice

The course material includes slides downloaded from:
http://codex.cs.yale.edu/avi/os-book/

(slides by Silberschatz, Galvin, and Gagne, associated with
Operating System Concepts, 9th Edition, Wiley, 2013)

and
http://retis.sssup.it/~giorgio/rts-MECS.html

(slides by Buttazzo, associated with Hard Real-Time Computing
Systems, 3rd Edition, Springer, 2011)

which has been edited to suit the needs of this course.
The slides are authorized for personal use only.

Any other use, redistribution, and any for profit sale of the slides (in any
form) requires the consent of the copyright owners.

29 Torroni, Real-Time Operating Systems M ©2013



r.ai Interprocess Communication

B Processes within a system may be independent or cooperating

B Cooperating process can affect or be affected by other processes,
including sharing data

B Reasons for cooperating processes:

@ Information sharing

® Computation speedup

® Modularity & convenience
B Cooperating processes need interprocess communication (IPC)
B Two models of IPC

® Shared memory

® Message passing

Operating System Concepts — 9t Edition 23 Silberschatz, Galvin and Gagnhe ©2013



) «m.k X
Oy . .
r Communications Models
process A process A
process B shared memory :I
process B
message queue
—> Mp|M4|Mo|M3]| ... |Mp|e—
kernel
kernel
(@) (b)
Operating System Concepts — 9t Edition 24 Silberschatz, Galvin and Gagne ©2




“%*"  Producer-Consumer Problem

{ ”
S\

B Paradigm for cooperating processes, producer process
produces information that is consumed by a consumer

process
® Unbounded buffer places no practical limit on the size
of the buffer

® Bounded buffer assumes that there is a fixed buffer
size

Operating System Concepts — 9t Edition 25 Silberschatz, Galvin and Gagnhe ©2013



R

," ,«mj‘
&fﬂ/\ l
** Mff"f Bounded Buffer — Shared-Memory Solution

B Shared data
#define BUFFER SIZE 10

typedef struct {

} item;

item buffer [BUFFER_SIZE] ;
int in = 0;

int out = 0;

B Solution is correct, but can only use BUFFER_SIZE-1 elements

‘42.'/ N
Operating System Concepts — 9t Edition 26 Silberschatz, Galvin and Gagnhe ©2013



”“”“’"
o Bounded Buffer — Producer

item next produced;

while

Operating System Concepts — 9t Edition 2.7

(true) |

/* produce an item in next produced */

while (((in 4+ 1) % BUFFER SIZE) == out)
; /* do nothing */

buffer[in] = next produced;

in = (1n + 1) % BUFFER SIZE;

‘(‘&l N
Silberschatz, Galvin and Gagnhe ©2013



=

“$*/  Bounded Buffer — Consumer

item next consumed;

while

(true) {
while (i1n == out)

; /* do nothing */
next consumed = buffer|out];

out = (out + 1) % BUFFER SIZE;

/* consume the item in next consumed */

‘(\&l N
Operating System Concepts — 9t Edition 2.8 Silberschatz, Galvin and Gagne ©2013



‘f”%v-/ POSIX Shared Memory

B POSIX Shared Memory (access by name):

® Create a new shared memory object (or open an existing object and
share it) using a name

shm fd = shm open("object 1", O CREAT | O RDRW, 0666)

® Memory map the shared memory object
ptr = mmap (0, SIZE, PROT WRITE, MAP SHARED, shm fd, 0);

® Use shared memory

char msg 0="Writing to shared memory”;
sprintf (ptr, msg 0);

ptr += strlen(msg 0);

Operating System Concepts — 9t Edition 29 Silberschatz, Galvin and Gagne ©2013



POSIX Producer

#include <stdio.h>
#include <stlib.h>
#include <string.h>
#include <fcntl.h>
#include <sys/shm.h>
#include <sys/stat.h>

int main()

{

/* the size (in bytes) of shared memory object */
const int SIZE 4096;

/* name of
const char
/* strings
const char
const char

the shared memory object */
*name = "0QS";

written to shared memory */
*message 0 "Hello";
*message_1 "World!";

/* shared memory file descriptor */

int shm fd;
/* pointer
void *ptr;

to shared memory obect */

/* create the shared memory object */
shm fd = shm open(name, O_CREAT | O_RDRW, 0666);

/* configure the size of the shared memory object */
ftruncate(shm fd, SIZE);

/* memory map the shared memory object */
ptr = mmap(0, SIZE, PROT_WRITE, MAP_SHARED, shm fd, 0);

/* write to the shared memory object */
sprintf (ptr, "%s" ,message 0);

ptr += strlen(message 0);

sprintf (ptr, "%s" ,message 1) ;

ptr += strlen(message 1);

return O;

}

Operating System Concepts — 9t Edition 2.10

Silberschatz, Galvin and Gagne ©2013



S POSIX Consumer

#include <stdio.h>
#include <stlib.h>
#include <fcntl.h>
#include <sys/shm.h>
#include <sys/stat.h>

int main()

{

/* the size (in bytes) of shared memory object */
const int SIZE 4096;
/* name of the shared memory object */

const char *name = "QS";

/* shared memory file descriptor */
int shm fd;

/* pointer to shared memory obect */
void *ptr;

/* open the shared memory object */
shm fd = shm open(name, O-RDONLY, 0666) ;

/* memory map the shared memory object */
ptr = mmap(0, SIZE, PROT READ, MAP SHARED, shm fd, 0);

/* read from the shared memory object */
printf ("%s", (char *)ptr);

/* remove the shared memory object */
shm_unlink(name) ;

return 0;

Operating System Concepts — 9t Edition 2.1 Silberschatz, Galvin and Gagne ©2013



Programming assignment (2)

B Read the online manual (man) of the following system calls:
® shm open(), mmap(), shm unlink/()
or
® shmget (), shmat(), shmdt(), shmctl ()

B Implement a bounded buffer (both producer and consumer) using the
POSIX API

® Exira: without BUFFER_SIZE-1 elements limitation

{5
<.
B

LI
AP,
?g,@ﬂ“l ALMA MATER STUDIORUM
tawiv/s/ UNIVERSITA DI BOLOGNA ) ] )
N\ 212 Torroni, Real-Time Operating Systems M ©2013



o Message Passing

B Mechanism for processes to communicate and to synchronize their actions

B Message system — processes communicate with each other without resorting to
shared variables

B |PC facility provides two operations:
® send(message) — message size fixed or variable
® receive(message)

B If Pand Q wish to communicate, they need to:
® establish a communication link between them
® exchange messages via send/receive

B Implementation of communication link
® physical (e.g., shared memory, hardware bus)

® logical (e.g., direct or indirect, synchronous or asynchronous, automatic or .
explicit buffering) =S

“(

Operating System Concepts — 9t Edition 213 Silberschatz, Galvin and Gagnhe ©2013



r o Implementation Questions

B How are links established?

B Can a link be associated with more than two processes?

B How many links can there be between every pair of communicating
processes?

B What is the capacity of a link?

B Is the size of a message that the link can accommodate fixed or
variable?

B Is a link unidirectional or bi-directional?

Operating System Concepts — 9t Edition 2.14 Silberschatz, Galvin and Gagne ©2013



b af Direct Communication

B Processes must name each other explicitly:
® send (P, message) — send a message to process P
® receive(Q, message) — receive a message from process Q

B Properties of communication link
® Links are established automatically (must know identity of other)

® Alink is associated with exactly one pair of communicating
processes

® Between each pair there exists exactly one link
® The link may be unidirectional, but is usually bi-directional

Operating System Concepts — 9t Edition 2.15 Silberschatz, Galvin and Gagne ©2013



ar & Indirect Communication

B Messages are directed and received from mailboxes (also referred to
as ports)

® Each mailbox has a unique id
® Processes can communicate only if they share a mailbox

B Properties of communication link
® Link established only if processes share a common mailbox
® A link may be associated with many processes
® Each pair of processes may share several communication links
® Link may be unidirectional or bi-directional

> e s
A A%

Operating System Concepts — 9t Edition 2.16 Silberschatz, Galvin and Gagne ©2013




r.al Indirect Communication

B Operations
® create a new mailbox
® send and receive messages through mailbox
® destroy a mailbox

B Primitives are defined as:
send(A, message) — send a message to mailbox A
receive(A, message) — receive a message from mailbox A

Operating System Concepts — 9t Edition 2.17 Silberschatz, Galvin and Gagne ©2013



%‘w/ Indirect Communication

B Mailbox sharing
e P, P, and P;share mailbox A
® P, sends; P,and P, receive
® Who gets the message?

B Solutions
® Allow a link to be associated with at most two processes
® Allow only one process at a time to execute a receive operation

@ Allow the system to select arbitrarily the receiver. Sender is
notified who the receiver was.

B Who owns A?

Operating System Concepts — 9t Edition 2.18 Silberschatz, Galvin and Gagne ©2013



i Synchronization

B Message passing may be either blocking or non-blocking

B Blocking is considered synchronous

® Blocking send has the sender block until the message is
received

@ Blocking receive has the receiver block until a message is
available

B Non-blocking is considered asynchronous

® Non-blocking send has the sender send the message and
continue

® Non-blocking receive has the receiver receive a valid message
or null

Operating System Concepts — 9t Edition 219 Silberschatz, Galvin and Gagnhe ©2013



. (&
/ ':‘x"f""’"j
b 57

L\

Synchronization

B Different combinations possible
@ If both send and receive are blocking, we have a rendezvous
B Producer-consumer becomes ftrivial

message next produced;

while (true) {
/* produce an item in next produced */

send (next produced) ;

message next consumed;
while (true) {
recelve (next consumed) ;

/* consume the item in next consumed */

Operating System Concepts — 9t Edition 2.20 Silberschatz, Galvin and Gagnhe ©2013



Buffering

B Queue of messages attached to the link; implemented in one of three
ways

1. Zero capacity — 0 messages
Sender must wait for receiver (rendezvous)

2. Bounded capacity — finite length of n messages
Sender must wait if link full

3. Unbounded capacity — infinite length
Sender never waits

Operating System Concepts — 9t Edition 2.21 Silberschatz, Galvin and Gagne ©2013



Communications in Client-Server Systems

B Sockets

B Remote Procedure Calls

B Pipes

Operating System Concepts — 9t Edition 2.99 Silberschatz, Galvin and Gagne ©2013



g,.. Sockets

B A socket is defined as an endpoint for communication

B Concatenation of IP address and port — a number included at start of
message packet to differentiate network services on a host

B The socket 161.25.19.8:1625 refers to port 1625 on host 161.25.19.8
B Communication consists between a pair of sockets
B All ports below 1024 are well known, used for standard services

B Special IP address 127.0.0.1 (loopback) to refer to system on which
process is running

A
A A%

Operating System Concepts — 9t Edition 2.23 Silberschatz, Galvin and Gagnhe ©2013




P Socket Communication

host X
(146.86.5.20)

socket

(146.86.5.20:1625)
web server

(161.25.19.8)

socket
(171,251 €610

Operating System Concepts — 9t Edition 294 Silberschatz, Galvin and Gagnhe ©2013



ot Remote Procedure Calls

B Remote procedure call (RPC) abstracts procedure calls between processes on
networked systems

® Again uses ports for service differentiation
B Stubs — client-side proxy for the actual procedure on the server

The client-side stub locates the server and marshalls the parameters

B The server-side stub receives this message, unpacks the marshalled
parameters, and performs the procedure on the server

B Data representation handled via External Data Representation (XDL) format
to account for different architectures

® Big-endian and little-endian
B Remote communication has more failure scenarios than local
® Messages can be delivered exactly once rather than at most once

B OS typically provides a rendezvous (or matchmaker) service to connect client
and server

Operating System Concepts — 9t Edition 2.25 Silberschatz, Galvin and Gagne ©2013



Execution of RPC

client

user calls kernel
to send RPC
message to
procedure X

kernel sends
message to
matchmaker to
find port number

kernel places
port Pin user
RPC message

kernel sends
RPC

kernel receives
reply, passes
it to user

Operating System Concepts — 9t Edition

messages

From: client
To: server
Port: matchmaker
Re: address
for RPC X

From: server
To: client
Port: kernel
Re: RPC X
Port: P

From: client
To: server
Port: port P
<contents>

From: RPC
Port: P
To: client
Port: kernel
<output>

2.26

server

matchmaker
receives
message, looks
up answer

A 4

matchmaker
replies to client
with port P

daemon
listening to
port P receives
message

y

A
daemon
processes
request and
processes send
output

Silberschatz, Galvin and Gagnhe ©2013



B Acts as a conduit allowing two processes to communicate

B Issues
® Is communication unidirectional or bidirectional?
® In the case of two-way communication, is it half or full-duplex?

® Must there exist a relationship (i.e. parent-child) between the
communicating processes?

® Can the pipes be used over a network?

Operating System Concepts — 9t Edition 2.27 Silberschatz, Galvin and Gagne ©2013



o Ordinary Pipes

B Ordinary Pipes allow communication in standard producer-consumer style

B Producer writes to one end (the write-end of the pipe)

Consumer reads from the other end (the read-end of the pipe)
B Ordinary pipes are therefore unidirectional
® See pipes in shell

B Require parent-child relationship between communicating processes

parent child
fd(0) fd(1) fd(0) fd(1)

| |
.

B Remember to close unused end of pipe from start, and other end once done

4

B See Unix code samples in textbook

Operating System Concepts — 9t Edition 2.28 Silberschatz, Galvin and Gagnhe ©2013



\§F7 Named Pipes

B Named Pipes (FIFO in Unix) are more powerful than ordinary pipes
B Communication is bidirectional

B No parent-child relationship is necessary between the communicating
processes (but must be on same machine)

B Several processes can use the named pipe for communication

B Provided on both UNIX and Windows systems

Operating System Concepts — 9t Edition 2.29 Silberschatz, Galvin and Gagnhe ©2013



Programming assignment (3)

B Read the online manual (man) of the following system calls:
® pipe(), read(), write(), close()
B Implement a Producer-Consumer two-process interaction using a pipe

® Producer: “produces” lower-case characters (taken from user input or
generated in any other way)

® Consumer: converts each character into upper case, and displays it
B Extra:use mkfifo () andimplement a FIFO
® Try with two processes that do not belong to the same subtree

2.30 Torroni, Real-Time Operating Systems M ©2013



o Chapter 4: Threads

1. Overview
® Motivation
® Benefits
® Multicore Programming
2. Multithreading Models
® Many-to-one, one-to-one, many-to-many, two-level
3. Threading Issues
® Creation, cancellation, signal handling, data, scheduling
4. Thread Libraries (POSIX)
5. Threads in Linux (NPTL)

Operating System Concepts — 9t Edition 2.31 Silberschatz, Galvin and Gagne ©2013



<S5 Objectives

M To introduce the notion of a thread—a fundamental unit of CPU
utilization that forms the basis of multithreaded computer systems

B To examine issues related to multithreaded programming

B To discuss the APIs for the Pthreads thread library

B To cover operating system support for threads in Linux

Operating System Concepts — 9t Edition 2.32 Silberschatz, Galvin and Gagne ©2013



/%(

o : -
27" Single and Multithreaded Processes
code data files code data files
registers stack registers ||| registers ||| registers
stack stack stack

thread — é <«— thread

single-threaded process

multithreaded process

Operating System Concepts — 9t Edition 2.33 Silberschatz, Galvin and Gagne ©2013



=

=

ﬁ.m%.s
-7 i .
<5 Motivation

B Thread: basic unit of CPU utilization
® Threads run within application
® Most modern applications are multithreaded
B Multiple tasks with the application can be implemented by separate threads
® Update display
® Fetch data
® Spell checking
® Answer a network request
B Process creation is heavy-weight while thread creation is light-weight
B Can simplify code, increase efficiency
® Web servers, RPC servers
® Kernels are generally multithreaded

Operating System Concepts — 9t Edition 2.34 Silberschatz, Galvin and Gagne ©2013



“#77  Multithreaded Server Architecture

(2) create new
(1) request thread to service
the request

server > thread

Y

client

(3) resume listening
for additional
client requests

‘(\&l N
Operating System Concepts — 9t Edition 2.35 Silberschatz, Galvin and Gagnhe ©2013



g Benefits

B Responsiveness — may allow continued execution if part of process is
blocked, especially important for user interfaces

B Resource Sharing — threads share resources of process, easier than
shared memory or message passing

B Economy - cheaper than process creation, thread switching lower
overhead than context switching

B Scalability — process can take advantage of multiprocessor architectures

Operating System Concepts — 9t Edition 2.36 Silberschatz, Galvin and Gagnhe ©2013



%

&' *“” User Threads and Kernel Threads

B Support for threads provided at user level or at kernel level
B User threads - management done by user-level threads library
® Three primary thread libraries:
» POSIX Pthreads
»  Win32 threads
» Java threads
B Kernel threads - Supported by the Kernel
® Examples — virtually all general purpose operating systems, including:
» Windows
» Solaris
Linux
» Tru64 UNIX
» Mac OS X

v

Operating System Concepts — 9t Edition 2.37 Silberschatz, Galvin and Gagnhe ©2013



~7 Multithreading Models

B Relationship between user-level and kernel-level threads?

® Many-to-One
® One-to0-One

® Many-to-Many

® Two-level

‘(‘&l N
Silberschatz, Galvin and Gagnhe ©2013

Operating System Concepts — 9t Edition 2.38



557 Many-to-One

B Many user-level threads mapped to single
kernel thread

©

Efficient thread management in user space g g g g
<«—— user thread

®

One thread blocking causes all to block

®

Multiple threads may not run in parallel on
multicore system because only one may be
in kernel at a time

B Few systems currently use this model

B Examples:

i ¢ | thread
® Solaris Green Threads < kernel threa

® GNU Portable Threads

Operating System Concepts — 9t Edition 2.39 Silberschatz, Galvin and Gagnhe ©2013



&g;—{ One-to-One

B Each user-level thread maps to kernel thread
© More concurrency than many-to-one
® Creating a user-level thread creates a kernel thread (overhead)
® Number of threads per process sometimes restricted due to overhead

B Examples
® Windows NT/XP/2000 g <«— user thread
® Linux
® Solaris 9 and later

Operating System Concepts — 9t Edition 2.40 Silberschatz, Galvin and Gagne ©2013



55 Many-to-Many Model

B Multiplexes many user-level threads to
a smaller or equal number of kernel
threads

© Allows developer to create as many
threads as she wishes, and threads
can run concurrently

34— user thread

© Allows the operating system to create
a sufficient number of kernel threads

© A thread blocking does not block
other threads

<«—— Kkernel thread

B Examples:
® Solaris prior to version 9

® Windows NT/2000 with the
ThreadFiber package

Operating System Concepts — 9t Edition 2.41 Silberschatz, Galvin and Gagnhe ©2013



/%(

vl Two-level Model

B Similar to M:M, except that it allows a
user thread to be bound to kernel
thread

B Examples ; ;
é é <«— user thread

e IRIX

® HP-UX

® Tru64 UNIX

® Solaris 8 and earlier

Operating System Concepts — 9t Edition 2.42 Silberschatz, Galvin and Gagnhe ©2013



Threading Issues

B Semantics of fork() and exec() system calls

B Signal handling
® Synchronous and asynchronous

B Thread cancellation of target thread
® Asynchronous or deferred

B Thread-local storage

Operating System Concepts — 9t Edition 2.43

Silberschatz, Galvin and Gagnhe ©2013



/ ,.«mj
w7

AL

Semantics of fork() and exec()

B Does fork () duplicate only the calling thread or all threads?
® Some UNIXes have two versions of fork

B Exec() usually works as normal — replace the running process including
all threads

Operating System Concepts — 9t Edition 2.44 Silberschatz, Galvin and Gagne ©2013



N Signal Handling

B Signals are used in UNIX systems to notify a process that a particular event has
occurred.

B A signal handler is used to process signals
1. Signal is generated by particular event
2. Signal is delivered to a process
3. Signal is handled by one of two signal handlers:
1. default
2. user-defined

B Every signal has default handler that kernel runs when handling signal
® User-defined signal handler can override default
® For single-threaded, signal delivered to process

B Where should a signal be delivered for multi-threaded?
® Deliver the signal to the thread to which the signal applies
® Deliver the signal to every thread in the process
® Deliver the signal to certain threads in the process
® Assign a specific thread to receive all signals for the process

Operating System Concepts — 9t Edition 2.45 Silberschatz, Galvin and Gagne ©2013



o Thread Cancellation

B Terminating a thread before it has finished

Thread to be canceled is target thread
B Two general approaches:
® Asynchronous cancellation terminates the target thread immediately

® Deferred cancellation allows the target thread to periodically check if it
should be cancelled

B Pthread code to create and cancel a thread:

pthread. t tid;

/+* create the thread */
pthread create (&tid, 0, worker, NULL) ;

/* cancel the thread x/
pthread_cancel (tid) ;

Operating System Concepts — 9t Edition 2.46 Silberschatz, Galvin and Gagne ©2013



5T Thread Cancellation (Cont.)

B Invoking thread cancellation requests cancellation, but actual cancellation
depends on thread state

Mode State Type
Off Disabled =
Deferred Enabled Deferred
Asynchronous Enabled Asynchronous

B If thread has cancellation disabled, cancellation remains pending until thread
enables it

B Default type is deferred
® Cancellation only occurs when thread reaches cancellation point
» l.e. pthread testcancel ()
» Then cleanup handler is invoked

B On Linux systems, thread cancellation is handled through signals

Operating System Concepts — 9t Edition 2.47 Silberschatz, Galvin and Gagne ©2013



o Thread-Local Storage

B Thread-local storage (TLS) allows each thread to have its own copy
of data

B Useful when you do not have control over the thread creation process
(i.e., when using a thread pool)

B Different from local variables
® Local variables visible only during single function invocation
® TLS visible across function invocations

M Similarto static data
® TLS is unique to each thread

Operating System Concepts — 9t Edition 2.48 Silberschatz, Galvin and Gagne ©2013



“Sr7 Thread Libraries

B Thread library provides programmer with API for creating and
managing threads

B Two primary ways of implementing
® Library entirely in user space
» No kernel support
» No system calls
® Kernel-level library supported by the OS
» Code and data structures exist in kernel space
» API function - system call

Operating System Concepts — 9t Edition 2.49 Silberschatz, Galvin and Gagne ©2013



7 Pthreads

B May be provided either as user-level or kernel-level

B A POSIX standard (IEEE 1003.1c) API for thread creation and
synchronization

B Specification, not implementation

B API specifies behavior of the thread library, implementation is up to
development of the library

B Common in UNIX operating systems (Solaris, Linux, Mac OS X)

Operating System Concepts — 9t Edition 2.50 Silberschatz, Galvin and Gagne ©2013



ot Pthreads Example

#include <pthread.h>
#include <stdio.h>

int sum; /* this data is shared by the thread(s) */
void *runner(void *param); /* threads call this function */

int main(int argc, char *argv([])

{

pthread t tid; /* the thread identifier */
pthread attr_t attr; /* set of thread attributes */

if (argc !'= 2) {
fprintf (stderr,"usage: a.out <integer value>\n");
return -1;

if (atoi(argv[1]) < 0) {
fprintf (stderr,")d must be >= 0\n",atoi(argv[i]));
return -1;

}

Operating System Concepts — 9t Edition 2.51 Silberschatz, Galvin and Gagne ©2013



s Pthreads Example (Cont.)

/* get the default attributes */

pthread attr_init(&attr);

/* create the thread */

pthread create(&tid,&attr,runner,argv([1i]);
/* wait for the thread to exit */
pthread_join (tid,NULL);

printf("sum = %d\n",sum);

}

/* The thread will begin control in this function */
void *runner(void *param)

{

int i, upper = atoi(param);
sum = 0;

for (i = 1; i <= upper; i++)
sum += 1i;

pthread exit (0);
}

Figure 4.9 Multithreaded C program using the Pthreads API.

Operating System Concepts — 9t Edition 2.52 Silberschatz, Galvin and Gagne ©2013



la .
3 Linux Threads

NPTL (Native POSIX Thread Library; formerly: LinuxThreads)
Linux refers to them as tasks rather than threads
Thread creation is done through clone () system call

clone () allows a child task to share the address space of the parent task
(process)

® Flags control behavior

flag meaning

CLONE FS File-system information is shared.

CLONE_VM The same memory space is shared.

CLONE_SIGHAND Signal handlers are shared.

CLONE FILES The set of open files is shared.

M struct task_struct points to process data structures (shared or unique)

Operating System Concepts — 9t Edition 2.53 Silberschatz, Galvin and Gagne ©2013



Programming assignment (4)

B Read the online manual (man) of:
® pthreads
and of the following system calls:
® pthread create(), pthread join(), pthread exit
® clone (), waitpid()

B Implement a bounded buffer using shared memory (same as in assignment
2) and the pthreads library

® Extra: implement the same, without pthreads (use clone ())

!

R I
ASTTDN
,{?},@ﬁ“} ALMA MATER STUDIORUM
Al UNIVERSITA DI BOLOGNA
e ¢ . , .
\\};3.//& 254 Torroni, Real-Time Operating Systems M ©2013



™
“$/  Chapter 5: CPU Scheduling

Basic Concepts

Scheduling Criteria
Scheduling Algorithms

Thread Scheduling
Multiple-Processor Scheduling
Operating Systems Examples

Algorithm Evaluation

Operating System Concepts — 9t Edition 2.55 Silberschatz, Galvin and Gagnhe ©2013



<S5 Objectives

B To introduce CPU scheduling, which is the basis for multiprogrammed
operating systems

B To describe various CPU-scheduling algorithms

B To discuss evaluation criteria for selecting a CPU-scheduling algorithm
for a particular system

Operating System Concepts — 9t Edition 2.56 Silberschatz, Galvin and Gagne ©2013



S5 Basic Concepts

B Maximum CPU utilization
obtained with multiprogramming

B CPU-I/O Burst Cycle — Process
execution consists of a cycle of
CPU execution and I/O wait

B CPU burst followed by I/O burst

B CPU burst distribution is of main
concern

Operating System Concepts — 9t Edition 2.57

load store
add store
read from file

wait for I/O

store increment
index
write to file

wait for I/O

load store
add store
read from file

wait for I/O

» CPU burst

>~ 1/0O burst

CPU burst

j I/O burst

» CPU burst

~ 1/0 burst

Silberschatz, Galvin and Gagnhe ©2013



Histogram of CPU-burst Times

160
140 \
120 \
§1oo
s |}
>
g 8o

60 \
of
20 \

0 8 16 24 32 40
burst duration (milliseconds)

A 4

RS

Operating System Concepts — 9t" Edition 2.58 Silberschatz, Galvin and Gagne ©2013



o CPU Scheduler

B Short-term scheduler selects from among the processes in ready
queue, and allocates the CPU to one of them

® Queue may be ordered in various ways
B CPU scheduling decisions may take place when a process:
1. Switches from running to waiting state
2. Switches from running to ready state
3. Switches from waiting to ready
4. Terminates
B If scheduling only under 1 and 4: nonpreemptive (cooperative)
B Otherwise: preemptive scheduling
® Consider access to shared data
® Consider preemption while in kernel mode
@ Consider interrupts occurring during crucial OS activities

Operating System Concepts — 9t Edition 2.59 Silberschatz, Galvin and Gagnhe ©2013



- o Dispatcher

B Dispatcher module gives control of the CPU to the process selected by
the short-term scheduler; this involves:

® switching context
® switching to user mode

® jumping to the proper location in the user program to restart that
program

B Dispatch latency — time it takes for the dispatcher to stop one process
and start another running

Operating System Concepts — 9t Edition 2.60 Silberschatz, Galvin and Gagnhe ©2013



o Scheduling Criteria

B CPU utilization — keep the CPU as busy as possible

B Throughput — # of processes that complete their execution per time
unit

B Turnaround time — amount of time to execute a particular process

B Waiting time — amount of time a process has been waiting in the
ready queue

B Response time — amount of time it takes from when a request was
submitted until the first response is produced, not output (for time-
sharing environment)

Operating System Concepts — 9t Edition 2.61 Silberschatz, Galvin and Gagne ©2013



=

Schedullng Algorithm Optimization Criteria

v

¢£

&
\‘-

Max CPU utilization
Max throughput
Min turnaround time
Min waiting time

Min response time (variance)

Operating System Concepts — 9t Edition 2.62 Silberschatz, Galvin and Gagne ©2013



=

6“"’f}gl;first-Come, First-Served (FCFS) Scheduling

(Note: for simplicity, illustrations show only one CPU-burst per process)
B Nonpreemptive

Process Burst Time
P, 24
P, 3
P, 3

B Suppose that the processes arrive in the order: P, , P,, P,
B What is the Gantt Chart for the schedule?

B Waiting time?
B Average waiting time?

Operating System Concepts — 9t Edition 2.63 Silberschatz, Galvin and Gagnhe ©2013



=

'AMf_«.«mil,’i\
“¥First-Come, First-Served (FCFS) Scheduling

(Note: for simplicity, illustrations show only one CPU-burst per process)
B Nonpreemptive

Process Burst Time
P, 24
P, 3
P, 3

B Suppose that the processes arrive in the order: P, , P,, P,
B Gantt Chart for the schedule:

0 24 27 30

B Waiting time for P, =0; P, =24; P;=27
B Average waiting time: (0 +24 +27)/3 =17

Operating System Concepts — 9t Edition 2.64 Silberschatz, Galvin and Gagne ©2013



R

o FCFS Scheduling (Cont.)

L\

Suppose that the processes arrive in the order:
P21 P3! P1
B What is the Gantt chart for the schedule?

B Waiting time?
B Average waiting time?

‘42.'/ N
Operating System Concepts — 9t Edition 2.65 Silberschatz, Galvin and Gagne ©2013



"S5 FCFS Scheduling (Cont.)

Suppose that the processes arrive in the order:
P21 P3! P1
B Gantt chart for the schedule:

0 3 6 30
Waiting time for P; =6,P,=0.P;=3
Average waiting time: (6 + 0+ 3)/3=3
Much better than previous case
Convoy effect - short process behind long process
® Consider one CPU-bound and many |I/O-bound processes

Operating System Concepts — 9t Edition 2.66 Silberschatz, Galvin and Gagnhe ©2013



=N

m%l

“»”’ Shortest-Job-First (SJF) Scheduling

B Associate with each process the length of its next CPU burst
® Use these lengths to schedule the process with the shortest time

B SJF is optimal — gives minimum average waiting time for a given set
of processes

® The difficulty is knowing the length of the next CPU request
® Could ask the user

» In batch systems (long-term scheduling)

» Good estimate: fast response (incentive)

» Time-limit-exceeded error + resubmission (penalty)

Operating System Concepts — 9t Edition 2.67 Silberschatz, Galvin and Gagne ©2013



Iy
P Example of SJF

Process Burst Time
P, 6
P, 8
P, 7
P, 3

B SJF scheduling chart

B Average waiting time?

AU X
Operating System Concepts — 9t Edition 2.68 Silberschatz, Galvin and Gagne ©2013



.
Example of SJF

Process Burst Time
P, 6
P, 8
P, 7
P, 3

B SJF scheduling chart

I34 P 1 PS |32

B Average waitingtime=(3+16+9+0)/4=7

Operating System Concepts — 9t Edition 2.69

24

‘42.'/ N
Silberschatz, Galvin and Gagnhe ©2013



("%"" Determining Length of Next CPU Burst

B CPU scheduling: can only estimate — similar to the previous ones?
@ Then pick process with shortest predicted next CPU burst

B Can be done by using the length of previous CPU bursts, using
exponential averaging

1. t, = actual length of n CPU burst

2. 1, = predicted value for the next CPU burst
3. a,0=a <1

4. Define: T, =at,+(l-a)T,.

B Commonly, « setto 12
B Preemptive version called shortest-remaining-time-first

Operating System Concepts — 9t Edition 2.70 Silberschatz, Galvin and Gagne ©2013



Prediction of the Length of the
Next CPU Burst

12 //—
T, 10 /

L/
E
4
2
time ——
CPU burst (t) 6 4 6 4 13 13 13

"guess" (1) 10 8 6 6 5 9 11 12

Operating System Concepts — 9t Edition 2.71 Silberschatz, Galvin and Gagne ©2013



ml% . .
~$7/ Examples of Exponential Averaging

B o=0
o
® Recent history does not count

H o=1
® T, =al
® Only the actual last CPU burst counts

n+1 — %n

B Since both o and (1 - a) are less than or equal to 1, each successive
term has less weight than its predecessor

Operating System Concepts — 9t Edition 2.72 Silberschatz, Galvin and Gagne ©2013



“$7"  Example of Shortest-remaining-time-first

B Now we add the concepts of varying arrival times and preemption to the

analysis
Process Arrival Time Burst Time
P, 0 8
P, 1 4
P, 2 9
P, 3 5

B Preemptive SJF Gantt Chart

B Average waiting time?

~

4 L)
A

NANY \\!

= AN
s

Operating System Concepts — 9t Edition 2.73 Silberschatz, Galvin and Gagnhe ©2013



“m'l
g*"” Example of Shortest-remaining-time-first

B Now we add the concepts of varying arrival times and preemption to the

analysis
Process Arrival Time Burst Time
P, 0 8
P, 1 4
P, 2 9
P, 3 5
B Preemptive SJF Gantt Chart
P, P, P, P, Ps
0 1 5 10 17 26

B Average waiting time = [(10-1)+(1-1)+(17-2)+(5-3)]/4 = 26/4 = 6.5 msec

Operating System Concepts — 9t Edition 2.74 Silberschatz, Galvin and Gagne ©2013



=

o

g - f,m%.s

B A priority number (integer) is associated with each process

B The CPU is allocated to the process with the highest priority (smallest
integer = highest priority)

® Preemptive
® Nonpreemptive

B SJF is priority scheduling where priority is the inverse of predicted next
CPU burst time

B Priorities can be defined internally or externally (wrt the OS)
@ Time limits, memory requirements, number of open files, politics

B Problem = Starvation — low priority processes may never execute

B Solution = Aging — as time progresses increase the priority of the
process

Operating System Concepts — 9t Edition 2.75 Silberschatz, Galvin and Gagnhe ©2013



& Example of Priority Scheduling

Process Burst Time Priority
P, 10 3
P, 1 1
P, 2 4
P, 1 5
Ps 5 2

M Priority scheduling Gantt Chart

B Average waiting time?

‘(‘&/ N
Silberschatz, Galvin and Gagnhe ©2013

Operating System Concepts — 9t Edition 2.76



g
Q“’%;" Example of Priority Scheduling

Process Burst Time Priority

P, 10 3

P, 1 1

P, 2 4

P, 1 5

P, 5 2

0 1 6 16 18 19

B Average waiting time = 8.2 msec

Operating System Concepts — 9t Edition 2.77 Silberschatz, Galvin and Gagnhe ©2013



55 Round Robin (RR)

B Each process gets a small unit of CPU time (time quantum q), usually
10-100 milliseconds. After this time has elapsed, the process is
preempted and added to the end of the ready queue.

B |If there are n processes in the ready queue and the time quantum is g,
then each process gets 1/n of the CPU time in chunks of at most g
time units at once. No process waits more than (n-1)g time units.

B Timer interrupts every quantum to schedule next process
B Performance
® glarge = FCFS

® gsmall = processor sharing. g must be large wrt context switch,
otherwise overhead is too high

Operating System Concepts — 9t Edition 2.78 Silberschatz, Galvin and Gagne ©2013



«m.‘%
“$% Example of RR with Time Quantum = 4

Process Burst Time
P, 24
P, 3
P 3

B Gantt chart? (q=4)

)
Operating System Concepts — 9t Edition 2.79 Silberschatz, Galvin and Gagne ©2013



%

-3 *” Example of RR with Time Quantum = 4

Process Burst Time
P, 24
P, 3
P, 3

B The Gantt chart is:

P, | P,| P, | P, | P, | P, | P | P

B Typically, higher average turnaround than SJF, but better
response

g should be large compared to context switch time
g usually 10ms to 100ms, context switch < 10 usec

Operating System Concepts — 9t Edition 2.80 Silberschatz, Galvin and Gagnhe ©2013



“f?f’f Time Quantum and Context Switch Time

process time = 10 quantum context
switches
12 0
0 10
6 1
0 6 10
1 9

Operating System Concepts — 9t Edition 2.81 Silberschatz, Galvin and Gagne ©2013



™ Turnaround Time Varies With
The Time Quantum

12.5

12.0

11.5

11.0

10.5

10.0

average turnaround time

9.5

9.0

process

time

ZN

N = @

1 2

3 4 5 6 7
time quantum

80% of CPU bursts
should be shorter than g

B Increasing q does not necessarily improve average turnaround

B In general: improvement whenever most processes finish their next CPU

burstin 1q

Operating System Concepts — 9t Edition

2.82

Silberschatz, Galvin and Gagne ©2013



o

o

!
oy 4
r @ Multilevel Queue

B Ready queue is partitioned into separate queues, eqg:
@ foreground (interactive)
® background (batch)

B Process permanently in a given queue

B Each queue has its own scheduling algorithm:
® foreground — RR
® background — FCFS

B Scheduling must be done between the queues:

® Fixed priority scheduling; (i.e., serve all from foreground then from
background). Possibility of starvation.

® Time slice — each queue gets a certain amount of CPU time which
it can schedule amongst its processes

» E.g., 80% to foreground in RR, 20% to background in FCFS.

Operating System Concepts — 9t Edition 2.83 Silberschatz, Galvin and Gagne ©2013



Multilevel Queue Scheduling

highest priority

P interactive editing processes )

— batch processes — 2

— student processes >

lowest priority

Operating System Concepts — 9t" Edition 2.84 Silberschatz, Galvin and Gagne ©2013



b af Multilevel Feedback Queue

B A process can move between the various queues; aging can be
implemented this way

B Muliilevel-feedback-queue scheduler defined by the following
parameters:

® number of queues
® scheduling algorithms for each queue

® method used to determine when to upgrade a process

® method used to determine when to demote a process

® method used to determine which queue a process will enter
when that process needs service

Operating System Concepts — 9t Edition 2.85 Silberschatz, Galvin and Gagnhe ©2013



=

»7" Example of Multilevel Feedback Queue
= R
B Three queues: gl S
® Q,— RR with time quantum 8 msec
® Q, —RRtime quantum 16 msec V- ,
° Qg _ FCFS > guantum = 16
<A ,
> FCFS .
B Scheduling

® A new job enters queue Q, which is served FCFS
» When it gains CPU, job receives 8 msec
» If it does not finish in 8 msec, job is moved to queue Q,
® At Q, job is again served and receives +16 msec
» If it still does not complete, it is preempted and moved to queue Q,

Operating System Concepts — 9t Edition 2.86 Silberschatz, Galvin and Gagne ©2013



EXxercise

Process Burst Time Priority
P, 10 3
P, 1 1
P, 2 3
P, 1 4
P 5 2

B Arrived in the top-to-bottom order.
o lllustrate FCFS, SJF, nonpreemptive priority, RR (gq=1) using Gantt
» Turnaround times?
» Waiting times?
» Which algorithm results in the minimum average waiting time?

I%@“\l”l ALMA MATER STUDIORUM
\\éﬁﬁ» UNIVERSITA DI BOLOGNA T . Real-Time O ing & M ©2013
e 2.87 orroni, Real-Time Operating Systems



