
Real-Time Operating
Systems M

3. IPC Threads Process Scheduling

2.2! Torroni, Real-Time Operating Systems M ©2013!

Notice

The course material includes slides downloaded from:!
http://codex.cs.yale.edu/avi/os-book/!

(slides by Silberschatz, Galvin, and Gagne, associated with
Operating System Concepts, 9th Edition, Wiley, 2013)!

and!
http://retis.sssup.it/~giorgio/rts-MECS.html!

(slides by Buttazzo, associated with Hard Real-Time Computing
Systems, 3rd Edition, Springer, 2011)!

which has been edited to suit the needs of this course. !
The slides are authorized for personal use only. !
Any other use, redistribution, and any for profit sale of the slides (in any
form) requires the consent of the copyright owners.!

2.3! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Interprocess Communication

  Processes within a system may be independent or cooperating!
  Cooperating process can affect or be affected by other processes,

including sharing data!
  Reasons for cooperating processes:!

  Information sharing!
  Computation speedup!
  Modularity & convenience !!

  Cooperating processes need interprocess communication (IPC)!
  Two models of IPC!

  Shared memory!
  Message passing!

2.4! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Communications Models

process A

message queue

kernel

(a) (b)

process A

shared memory

kernel

process B

m0 m1 m2 ...m3 mn

process B

2.5! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Producer-Consumer Problem

  Paradigm for cooperating processes, producer process
produces information that is consumed by a consumer
process!
  Unbounded buffer places no practical limit on the size

of the buffer!
  Bounded buffer assumes that there is a fixed buffer

size!

2.6! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Bounded Buffer – Shared-Memory Solution

  Shared data!
#define BUFFER_SIZE 10

typedef struct {

 . . .

} item;

item buffer[BUFFER_SIZE];

int in = 0;

int out = 0;
!

  Solution is correct, but can only use BUFFER_SIZE-1 elements!
!

2.7! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Bounded Buffer – Producer

	
item next_produced;

while (true) {

 /* produce an item in next_produced */

 while (((in + 1) % BUFFER SIZE) == out)

 ; /* do nothing */

 buffer[in] = next_produced;

 in = (in + 1) % BUFFER SIZE;

}

	
!

!!
!

2.8! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Bounded Buffer – Consumer

item next_consumed;

while (true) {
 while (in == out)

 ; /* do nothing */
 next_consumed = buffer[out];

 out = (out + 1) % BUFFER SIZE;

 /* consume the item in next_consumed */

}

2.9! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

POSIX Shared Memory

  POSIX Shared Memory (access by name): !
  Create a new shared memory object (or open an existing object and

share it) using a name!
shm_fd = shm_open("object_1", O_CREAT | O_RDRW, 0666);

  Memory map the shared memory object!
ptr = mmap(0, SIZE, PROT_WRITE, MAP_SHARED, shm_fd, 0);

  Use shared memory!
char msg_0="Writing to shared memory”;

sprintf(ptr, msg_0);

ptr += strlen(msg_0);

2.10! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

POSIX Producer

2.11! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

POSIX Consumer

2.12! Torroni, Real-Time Operating Systems M ©2013!

Programming assignment (2)

  Read the online manual (man) of the following system calls:!
  shm_open(), mmap(), shm_unlink()

or!
  shmget(), shmat(), shmdt(), shmctl()

  Implement a bounded buffer (both producer and consumer) using the
POSIX API!
  Extra: without BUFFER_SIZE-1 elements limitation!

2.13! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Message Passing

  Mechanism for processes to communicate and to synchronize their actions!

  Message system – processes communicate with each other without resorting to
shared variables!

  IPC facility provides two operations:!
  send(message) – message size fixed or variable !
  receive(message)!

  If P and Q wish to communicate, they need to:!
  establish a communication link between them!
  exchange messages via send/receive!

  Implementation of communication link!
  physical (e.g., shared memory, hardware bus)!
  logical (e.g., direct or indirect, synchronous or asynchronous, automatic or

explicit buffering)!

2.14! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Implementation Questions

  How are links established?!

  Can a link be associated with more than two processes?!

  How many links can there be between every pair of communicating
processes?!

  What is the capacity of a link?!

  Is the size of a message that the link can accommodate fixed or
variable?!

  Is a link unidirectional or bi-directional?!

2.15! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Direct Communication

  Processes must name each other explicitly:!
  send (P, message) – send a message to process P!
  receive(Q, message) – receive a message from process Q!

  Properties of communication link!
  Links are established automatically (must know identity of other)!
  A link is associated with exactly one pair of communicating

processes!
  Between each pair there exists exactly one link!
  The link may be unidirectional, but is usually bi-directional!

2.16! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Indirect Communication

  Messages are directed and received from mailboxes (also referred to
as ports)!
  Each mailbox has a unique id!
  Processes can communicate only if they share a mailbox!

  Properties of communication link!
  Link established only if processes share a common mailbox!
  A link may be associated with many processes!
  Each pair of processes may share several communication links!
  Link may be unidirectional or bi-directional!

2.17! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Indirect Communication

  Operations!
  create a new mailbox!
  send and receive messages through mailbox!
  destroy a mailbox!

  Primitives are defined as:!
!send(A, message) – send a message to mailbox A!
!receive(A, message) – receive a message from mailbox A!

2.18! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Indirect Communication

  Mailbox sharing!
  P1, P2, and P3 share mailbox A!
  P1, sends; P2 and P3 receive!
  Who gets the message?!

  Solutions!
  Allow a link to be associated with at most two processes!
  Allow only one process at a time to execute a receive operation!
  Allow the system to select arbitrarily the receiver. Sender is

notified who the receiver was.!

  Who owns A?!

2.19! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Synchronization

  Message passing may be either blocking or non-blocking!

  Blocking is considered synchronous!
  Blocking send has the sender block until the message is

received!
  Blocking receive has the receiver block until a message is

available!

  Non-blocking is considered asynchronous!
  Non-blocking send has the sender send the message and

continue!
  Non-blocking receive has the receiver receive a valid message

or null!
}

2.20! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Synchronization

  Different combinations possible!
  If both send and receive are blocking, we have a rendezvous!

  Producer-consumer becomes trivial  
!

message next_produced;

while (true) {
 /* produce an item in next produced */

 send(next_produced);

}
message next_consumed;
while (true) {
 receive(next_consumed);

 /* consume the item in next consumed */
}

2.21! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Buffering

  Queue of messages attached to the link; implemented in one of three
ways!
1. !Zero capacity – 0 messages 

Sender must wait for receiver (rendezvous)!
2. !Bounded capacity – finite length of n messages 

Sender must wait if link full!
3. !Unbounded capacity – infinite length  

Sender never waits!

2.22! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Communications in Client-Server Systems

  Sockets!

  Remote Procedure Calls!

  Pipes!

2.23! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Sockets

  A socket is defined as an endpoint for communication!

  Concatenation of IP address and port – a number included at start of
message packet to differentiate network services on a host!

  The socket 161.25.19.8:1625 refers to port 1625 on host 161.25.19.8!

  Communication consists between a pair of sockets!

  All ports below 1024 are well known, used for standard services!

  Special IP address 127.0.0.1 (loopback) to refer to system on which
process is running!

2.24! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Socket Communication

2.25! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Remote Procedure Calls

  Remote procedure call (RPC) abstracts procedure calls between processes on
networked systems!
  Again uses ports for service differentiation!

  Stubs – client-side proxy for the actual procedure on the server!
  The client-side stub locates the server and marshalls the parameters!
  The server-side stub receives this message, unpacks the marshalled

parameters, and performs the procedure on the server!
  Data representation handled via External Data Representation (XDL) format

to account for different architectures!
  Big-endian and little-endian!

  Remote communication has more failure scenarios than local!
  Messages can be delivered exactly once rather than at most once!

  OS typically provides a rendezvous (or matchmaker) service to connect client
and server!

2.26! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Execution of RPC

2.27! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Pipes

  Acts as a conduit allowing two processes to communicate!

  Issues!
  Is communication unidirectional or bidirectional?!
  In the case of two-way communication, is it half or full-duplex?!
  Must there exist a relationship (i.e. parent-child) between the

communicating processes?!
  Can the pipes be used over a network?!

2.28! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Ordinary Pipes

  Ordinary Pipes allow communication in standard producer-consumer style  
!

  Producer writes to one end (the write-end of the pipe)!
  Consumer reads from the other end (the read-end of the pipe)!
  Ordinary pipes are therefore unidirectional!

  See pipes in shell!

  Require parent-child relationship between communicating processes!
!

  Remember to close unused end of pipe from start, and other end once done!
  See Unix code samples in textbook!

2.29! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Named Pipes

  Named Pipes (FIFO in Unix) are more powerful than ordinary pipes 
!

  Communication is bidirectional  
!

  No parent-child relationship is necessary between the communicating
processes (but must be on same machine) 
!

  Several processes can use the named pipe for communication  
!

  Provided on both UNIX and Windows systems!

2.30! Torroni, Real-Time Operating Systems M ©2013!

Programming assignment (3)

  Read the online manual (man) of the following system calls:!
  pipe(), read(), write(), close()

  Implement a Producer-Consumer two-process interaction using a pipe!
  Producer: “produces” lower-case characters (taken from user input or

generated in any other way)!
  Consumer: converts each character into upper case, and displays it!

  Extra: use mkfifo() and implement a FIFO!
  Try with two processes that do not belong to the same subtree!

2.31! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Chapter 4: Threads

1.  Overview!
  Motivation!
  Benefits!
  Multicore Programming!

2.  Multithreading Models!
  Many-to-one, one-to-one, many-to-many, two-level!

3.  Threading Issues!
  Creation, cancellation, signal handling, data, scheduling!

4.  Thread Libraries (POSIX)!
5.  Threads in Linux (NPTL)!
!

2.32! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Objectives

  To introduce the notion of a thread—a fundamental unit of CPU
utilization that forms the basis of multithreaded computer systems!

  To examine issues related to multithreaded programming!
!
  To discuss the APIs for the Pthreads thread library!

  To cover operating system support for threads in Linux!

2.33! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Single and Multithreaded Processes

registers

code data files

stack registers registers registers

code data files

stackstackstack

thread thread

single-threaded process multithreaded process

2.34! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Motivation

  Thread: basic unit of CPU utilization!
  Threads run within application!
  Most modern applications are multithreaded!

  Multiple tasks with the application can be implemented by separate threads!
  Update display!
  Fetch data!
  Spell checking!
  Answer a network request!

  Process creation is heavy-weight while thread creation is light-weight!
  Can simplify code, increase efficiency!

  Web servers, RPC servers!
  Kernels are generally multithreaded!

2.35! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Multithreaded Server Architecture

client

(1) request
(2) create new

thread to service
the request

(3) resume listening
for additional

client requests

server thread

2.36! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Benefits

  Responsiveness – may allow continued execution if part of process is
blocked, especially important for user interfaces 
!

  Resource Sharing – threads share resources of process, easier than
shared memory or message passing  
!

  Economy – cheaper than process creation, thread switching lower
overhead than context switching  
!

  Scalability – process can take advantage of multiprocessor architectures 
!

2.37! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

User Threads and Kernel Threads

  Support for threads provided at user level or at kernel level!
  User threads - management done by user-level threads library!

  Three primary thread libraries:!
  POSIX Pthreads!
  Win32 threads!
  Java threads!

  Kernel threads - Supported by the Kernel!
  Examples – virtually all general purpose operating systems, including:!

  Windows !
  Solaris!
  Linux!
  Tru64 UNIX!
  Mac OS X!

2.38! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Multithreading Models

  Relationship between user-level and kernel-level threads?!

  Many-to-One  
!

  One-to-One  
!

  Many-to-Many!

  Two-level!

2.39! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Many-to-One

  Many user-level threads mapped to single
kernel thread!

J  Efficient thread management in user space!
L  One thread blocking causes all to block!
L  Multiple threads may not run in parallel on

multicore system because only one may be
in kernel at a time!

  Few systems currently use this model!
  Examples:!

  Solaris Green Threads!
  GNU Portable Threads!

user thread

kernel threadk

2.40! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

One-to-One

  Each user-level thread maps to kernel thread!
J  More concurrency than many-to-one!
L  Creating a user-level thread creates a kernel thread (overhead)!

  Number of threads per process sometimes restricted due to overhead!

  Examples!
  Windows NT/XP/2000!
  Linux!
  Solaris 9 and later!

user thread

kernel threadkkkk

2.41! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Many-to-Many Model

  Multiplexes many user-level threads to
a smaller or equal number of kernel
threads!

J  Allows developer to create as many
threads as she wishes, and threads
can run concurrently!

J  Allows the operating system to create
a sufficient number of kernel threads!
J  A thread blocking does not block

other threads!

  Examples:!
  Solaris prior to version 9!
  Windows NT/2000 with the

ThreadFiber package!

user thread

kernel threadkkk

2.42! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Two-level Model

  Similar to M:M, except that it allows a
user thread to be bound to kernel
thread!

  Examples!
  IRIX!
  HP-UX!
  Tru64 UNIX!
  Solaris 8 and earlier!

user thread

kernel threadkkk k

2.43! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Threading Issues

  Semantics of fork() and exec() system calls!

  Signal handling!
  Synchronous and asynchronous!

!

  Thread cancellation of target thread!
  Asynchronous or deferred!

  Thread-local storage!

!

2.44! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Semantics of fork() and exec()

  Does fork()duplicate only the calling thread or all threads?!
  Some UNIXes have two versions of fork!

  Exec() usually works as normal – replace the running process including
all threads!

2.45! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Signal Handling

  Signals are used in UNIX systems to notify a process that a particular event has
occurred.!

  A signal handler is used to process signals!
1.  Signal is generated by particular event!
2.  Signal is delivered to a process!
3.  Signal is handled by one of two signal handlers:!

1.  default!
2.  user-defined!

  Every signal has default handler that kernel runs when handling signal!
  User-defined signal handler can override default!
  For single-threaded, signal delivered to process!

  Where should a signal be delivered for multi-threaded? !
  Deliver the signal to the thread to which the signal applies!
  Deliver the signal to every thread in the process!
  Deliver the signal to certain threads in the process!
  Assign a specific thread to receive all signals for the process!

2.46! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Thread Cancellation

  Terminating a thread before it has finished!
  Thread to be canceled is target thread!
  Two general approaches:!

  Asynchronous cancellation terminates the target thread immediately!
  Deferred cancellation allows the target thread to periodically check if it

should be cancelled!

  Pthread code to create and cancel a thread:!
!

2.47! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Thread Cancellation (Cont.)

  Invoking thread cancellation requests cancellation, but actual cancellation
depends on thread state!

  If thread has cancellation disabled, cancellation remains pending until thread
enables it!

  Default type is deferred!
  Cancellation only occurs when thread reaches cancellation point!

  I.e. pthread_testcancel()
  Then cleanup handler is invoked!

  On Linux systems, thread cancellation is handled through signals!

2.48! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Thread-Local Storage

  Thread-local storage (TLS) allows each thread to have its own copy
of data!

  Useful when you do not have control over the thread creation process
(i.e., when using a thread pool)!

  Different from local variables!
  Local variables visible only during single function invocation!
  TLS visible across function invocations!

  Similar to static data!
  TLS is unique to each thread!

2.49! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Thread Libraries

  Thread library provides programmer with API for creating and
managing threads!

  Two primary ways of implementing!
  Library entirely in user space !

 No kernel support!
 No system calls!

  Kernel-level library supported by the OS!
 Code and data structures exist in kernel space!
 API function à system call!

2.50! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Pthreads

  May be provided either as user-level or kernel-level!

  A POSIX standard (IEEE 1003.1c) API for thread creation and
synchronization!

  Specification, not implementation!

  API specifies behavior of the thread library, implementation is up to
development of the library!

  Common in UNIX operating systems (Solaris, Linux, Mac OS X)!
!

2.51! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Pthreads Example

2.52! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Pthreads Example (Cont.)

2.53! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Linux Threads

  NPTL (Native POSIX Thread Library; formerly: LinuxThreads)!
  Linux refers to them as tasks rather than threads!
  Thread creation is done through clone() system call!
  clone() allows a child task to share the address space of the parent task

(process)!
  Flags control behavior!

  struct task_struct points to process data structures (shared or unique)

flag meaning

CLONE_FS

CLONE_VM

CLONE_SIGHAND

CLONE_FILES

File-system information is shared.

The same memory space is shared.

Signal handlers are shared.

The set of open files is shared.

2.54! Torroni, Real-Time Operating Systems M ©2013!

Programming assignment (4)

  Read the online manual (man) of:!
  pthreads

and of the following system calls:!
  pthread_create(), pthread_join(), pthread_exit

  clone(), waitpid()

  Implement a bounded buffer using shared memory (same as in assignment
2) and the pthreads library!
  Extra: implement the same, without pthreads (use clone())!

2.55! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Chapter 5: CPU Scheduling

  Basic Concepts!
  Scheduling Criteria !
  Scheduling Algorithms!
  Thread Scheduling!
  Multiple-Processor Scheduling!
  Operating Systems Examples!
  Algorithm Evaluation!

2.56! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Objectives

  To introduce CPU scheduling, which is the basis for multiprogrammed
operating systems!

  To describe various CPU-scheduling algorithms!

  To discuss evaluation criteria for selecting a CPU-scheduling algorithm
for a particular system!

2.57! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Basic Concepts

  Maximum CPU utilization
obtained with multiprogramming!

  CPU–I/O Burst Cycle – Process
execution consists of a cycle of
CPU execution and I/O wait!

  CPU burst followed by I/O burst 
!

  CPU burst distribution is of main
concern!

!

CPU burst
load store
add store
read from file

store increment
index
write to file

load store
add store
read from file

wait for I/O

wait for I/O

wait for I/O

I/O burst

I/O burst

I/O burst

CPU burst

CPU burst

•
•
•

•
•
•

2.58! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Histogram of CPU-burst Times

2.59! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

CPU Scheduler

  Short-term scheduler selects from among the processes in ready
queue, and allocates the CPU to one of them!
  Queue may be ordered in various ways!

  CPU scheduling decisions may take place when a process:!
1. !Switches from running to waiting state!
2. !Switches from running to ready state!
3. !Switches from waiting to ready!
4.  Terminates!

  If scheduling only under 1 and 4: nonpreemptive (cooperative)!
  Otherwise: preemptive scheduling !

  Consider access to shared data!
  Consider preemption while in kernel mode!
  Consider interrupts occurring during crucial OS activities!

2.60! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Dispatcher

  Dispatcher module gives control of the CPU to the process selected by
the short-term scheduler; this involves:!
  switching context!
  switching to user mode!
  jumping to the proper location in the user program to restart that

program!

  Dispatch latency – time it takes for the dispatcher to stop one process
and start another running!

2.61! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Scheduling Criteria

  CPU utilization – keep the CPU as busy as possible!

  Throughput – # of processes that complete their execution per time
unit!

  Turnaround time – amount of time to execute a particular process!

  Waiting time – amount of time a process has been waiting in the
ready queue!

  Response time – amount of time it takes from when a request was
submitted until the first response is produced, not output (for time-
sharing environment)!

2.62! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Scheduling Algorithm Optimization Criteria

  Max CPU utilization!
  Max throughput!
  Min turnaround time !
  Min waiting time !
  Min response time (variance)!

2.63! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

First-Come, First-Served (FCFS) Scheduling

(Note: for simplicity, illustrations show only one CPU-burst per process)!
  Nonpreemptive!

! !Process !Burst Time !!
! ! P1 !24!
! ! P2 !3!
! ! P3 ! 3 !

  Suppose that the processes arrive in the order: P1 , P2 , P3 !

  What is the Gantt Chart for the schedule?  
 
 
 
 
!

!
  Waiting time?!
  Average waiting time?!

2.64! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

First-Come, First-Served (FCFS) Scheduling

(Note: for simplicity, illustrations show only one CPU-burst per process)!
  Nonpreemptive!

! !Process !Burst Time !!
! ! P1 !24!
! ! P2 !3!
! ! P3 ! 3 !

  Suppose that the processes arrive in the order: P1 , P2 , P3 !

  Gantt Chart for the schedule: 
 
 
 
 
!

!
  Waiting time for P1 = 0; P2 = 24; P3 = 27!
  Average waiting time: (0 + 24 + 27)/3 = 17!

P1! P2! P3!

24! 27! 30!0!

2.65! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

FCFS Scheduling (Cont.)

Suppose that the processes arrive in the order:!
! ! P2 , P3 , P1 !

  What is the Gantt chart for the schedule?  
!

  Waiting time?!
  Average waiting time?!

2.66! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

FCFS Scheduling (Cont.)

Suppose that the processes arrive in the order:!
! ! P2 , P3 , P1 !

  Gantt chart for the schedule: 
!

  Waiting time for P1 = 6; P2 = 0; P3 = 3!
  Average waiting time: (6 + 0 + 3)/3 = 3!
  Much better than previous case!
  Convoy effect - short process behind long process!

  Consider one CPU-bound and many I/O-bound processes!

P1!P3!P2!

6!3! 30!0!

2.67! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Shortest-Job-First (SJF) Scheduling

  Associate with each process the length of its next CPU burst!
  Use these lengths to schedule the process with the shortest time!

  SJF is optimal – gives minimum average waiting time for a given set
of processes!
  The difficulty is knowing the length of the next CPU request!
  Could ask the user!

  In batch systems (long-term scheduling)!
 Good estimate: fast response (incentive)!
 Time-limit-exceeded error + resubmission (penalty)!

2.68! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Example of SJF

! ! ProcessArriva!l Time !Burst Time!
! ! P1 !0.0 !6!
! ! P2 !2.0 !8!
! ! P3 !4.0 !7!
! ! P4 !5.0 !3!

  SJF scheduling chart!

  Average waiting time?!

2.69! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Example of SJF

! ! ProcessArriva!l Time !Burst Time!
! ! P1 !0.0 !6!
! ! P2 !2.0 !8!
! ! P3 !4.0 !7!
! ! P4 !5.0 !3!

  SJF scheduling chart!

  Average waiting time = (3 + 16 + 9 + 0) / 4 = 7!

P4! P3!P1!

3! 16!0! 9!

P2!

24!

2.70! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Determining Length of Next CPU Burst

  CPU scheduling: can only estimate – similar to the previous ones?!
  Then pick process with shortest predicted next CPU burst!

  Can be done by using the length of previous CPU bursts, using
exponential averaging!

  Commonly, α set to ½!
  Preemptive version called shortest-remaining-time-first!

!
!

:Define 4.
10 , 3.

burst CPU next the for value predicted 2.
burst CPU of length actual 1.

≤≤

=

=

+

αα

τ 1n

th
n nt

τ n+1 =α tn + 1−α()τ n.

2.71! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Prediction of the Length of the
Next CPU Burst

6 4 6 4 13 13 13 …
810 6 6 5 9 11 12 …

CPU burst (ti)

"guess" (τi)

ti

τi

2

time

4

6

8

10

12

2.72! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Examples of Exponential Averaging

  α =0!
  τn+1 = τn!

  Recent history does not count!
  α =1!

  τn+1 = α tn!
  Only the actual last CPU burst counts!

  Since both α and (1 - α) are less than or equal to 1, each successive
term has less weight than its predecessor!

!

2.73! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Example of Shortest-remaining-time-first

  Now we add the concepts of varying arrival times and preemption to the
analysis!
! ! ProcessA!arri Arrival TimeT !Burst Time!
! ! P1 !0 !8!
! ! P2 !1 !4!
! ! P3 !2 !9!
! ! P4 !3 !5!

  Preemptive SJF Gantt Chart!

  Average waiting time?!
!

2.74! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Example of Shortest-remaining-time-first

  Now we add the concepts of varying arrival times and preemption to the
analysis!
! ! ProcessA!arri Arrival TimeT !Burst Time!
! ! P1 !0 !8!
! ! P2 !1 !4!
! ! P3 !2 !9!
! ! P4 !3 !5!

  Preemptive SJF Gantt Chart!

  Average waiting time = [(10-1)+(1-1)+(17-2)+(5-3)]/4 = 26/4 = 6.5 msec!
!

P1! P1!P2!

1! 17!0! 10!

P3!

26!5!

P4!

2.75! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Priority Scheduling

  A priority number (integer) is associated with each process!

  The CPU is allocated to the process with the highest priority (smallest
integer ≡ highest priority)!
  Preemptive!
  Nonpreemptive!

  SJF is priority scheduling where priority is the inverse of predicted next
CPU burst time!

  Priorities can be defined internally or externally (wrt the OS)!
  Time limits, memory requirements, number of open files, politics!

  Problem ≡ Starvation – low priority processes may never execute!

  Solution ≡ Aging – as time progresses increase the priority of the
process!

!

2.76! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Example of Priority Scheduling

! ! ProcessA!arri Burst TimeT !Priority!
! ! P1 !10 !3!
! ! P2 !1 !1!
! ! P3 !2 !4!
! ! P4 !1 !5!
! !P5 !5 !2!

  Priority scheduling Gantt Chart!

  Average waiting time?!

2.77! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Example of Priority Scheduling

! ! ProcessA!arri Burst TimeT !Priority!
! ! P1 !10 !3!
! ! P2 !1 !1!
! ! P3 !2 !4!
! ! P4 !1 !5!
! !P5 !5 !2!

  Priority scheduling Gantt Chart!

  Average waiting time = 8.2 msec!

P2! P3!P5!

1! 18!0! 16!

P4!

19!6!

P1!

2.78! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Round Robin (RR)

  Each process gets a small unit of CPU time (time quantum q), usually
10-100 milliseconds. After this time has elapsed, the process is
preempted and added to the end of the ready queue.!

  If there are n processes in the ready queue and the time quantum is q,
then each process gets 1/n of the CPU time in chunks of at most q
time units at once. No process waits more than (n-1)q time units.!

  Timer interrupts every quantum to schedule next process!
  Performance!

  q large ⇒ FCFS!
  q small ⇒ processor sharing. q must be large wrt context switch,

otherwise overhead is too high!

2.79! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Example of RR with Time Quantum = 4

! !Process !Burst Time!
! !P1 !24!
! ! P2 ! 3!
! ! P3 !3!
! !!

  Gantt chart? (q=4) !

2.80! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Example of RR with Time Quantum = 4

! !Process !Burst Time!
! !P1 !24!
! ! P2 ! 3!
! ! P3 !3!
! !!

  The Gantt chart is:  
 
 
 
 
 
!

  Typically, higher average turnaround than SJF, but better
response!

  q should be large compared to context switch time!
  q usually 10ms to 100ms, context switch < 10 usec!

P1! P2! P3! P1! P1! P1! P1! P1!

0! 4! 7! 10! 14! 18! 22! 26! 30!

2.81! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Time Quantum and Context Switch Time

2.82! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Turnaround Time Varies With
The Time Quantum

  Increasing q does not necessarily improve average turnaround!
  In general: improvement whenever most processes finish their next CPU

burst in 1q!

80% of CPU bursts
should be shorter than q

2.83! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Multilevel Queue

  Ready queue is partitioned into separate queues, eg:!
  foreground (interactive)!
  background (batch)!

  Process permanently in a given queue!

  Each queue has its own scheduling algorithm:!
  foreground – RR!
  background – FCFS!

  Scheduling must be done between the queues:!
  Fixed priority scheduling; (i.e., serve all from foreground then from

background). Possibility of starvation.!
  Time slice – each queue gets a certain amount of CPU time which

it can schedule amongst its processes!
 E.g., 80% to foreground in RR, 20% to background in FCFS. !

2.84! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Multilevel Queue Scheduling

2.85! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Multilevel Feedback Queue

  A process can move between the various queues; aging can be
implemented this way!

  Multilevel-feedback-queue scheduler defined by the following
parameters:!
  number of queues!
  scheduling algorithms for each queue!
  method used to determine when to upgrade a process!
  method used to determine when to demote a process!
  method used to determine which queue a process will enter

when that process needs service!

2.86! Silberschatz, Galvin and Gagne ©2013!Operating System Concepts – 9th Edition!

Example of Multilevel Feedback Queue

  Three queues: !
  Q0 – RR with time quantum 8 msec!
  Q1 – RR time quantum 16 msec!
  Q2 – FCFS!

  Scheduling!
  A new job enters queue Q0 which is served FCFS!

 When it gains CPU, job receives 8 msec!
  If it does not finish in 8 msec, job is moved to queue Q1!

  At Q1 job is again served and receives +16 msec!
  If it still does not complete, it is preempted and moved to queue Q2!

2.87! Torroni, Real-Time Operating Systems M ©2013!

Exercise

! ! ProcessA!arri Burst TimeT !Priority!
! ! P1 !10 !3!
! ! P2 !1 !1!
! ! P3 !2 !3!
! ! P4 !1 !4!
! !P5 !5 !2!

  Arrived in the top-to-bottom order.!
  Illustrate FCFS, SJF, nonpreemptive priority, RR (q=1) using Gantt!

 Turnaround times?!
 Waiting times?!
 Which algorithm results in the minimum average waiting time?!

